1
|
Lemieux-Labonté V, Pathmanathan JS, Terrat Y, Tromas N, Simard A, Haase CG, Lausen CL, Willis CKR, Lapointe FJ. Pseudogymnoascus destructans invasion stage impacts the skin microbial functions of highly vulnerable Myotis lucifugus. FEMS Microbiol Ecol 2024; 100:fiae138. [PMID: 39400741 PMCID: PMC11523048 DOI: 10.1093/femsec/fiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024] Open
Abstract
The role of the skin microbiome in resistance and susceptibility of wildlife to fungal pathogens has been examined from a taxonomic perspective but skin microbial function, in the context of fungal infection, has yet to be studied. Our objective was to understand effects of a bat fungal pathogen site infection status and course of invasion on skin microbial function. We sampled seven hibernating colonies of Myotis lucifugus covering three-time points over the course of Pseudogymnoascus destructans (Pd) invasion and white nose syndrome (pre-invasion, epidemic, and established). Our results support three new hypotheses about Pd and skin functional microbiome: (1) there is an important effect of Pd invasion stage, especially at the epidemic stage; (2) disruption by the fungus at the epidemic stage could decrease anti-fungal functions with potential negative effects on the microbiome and bat health; (3) the collection site might have a larger influence on microbiomes at the pre-invasion stage rather than at epidemic and established stages. Future studies with larger sample sizes and using meta-omics approaches will help confirm these hypotheses, and determine the influence of the microbiome on wildlife survival to fungal disease.
Collapse
Affiliation(s)
| | - Jananan S Pathmanathan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Paris, 75005, France
| | - Yves Terrat
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Nicolas Tromas
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Anouk Simard
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, G1R 5V7, Canada
| | - Catherine G Haase
- Department of Biology, Austin Peay State University, Clarksville, TN, 37044, United States
| | - Cori L Lausen
- Wildlife Conservation Society Canada, Kaslo, British-Columbia, V0G 1M0, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | | |
Collapse
|
2
|
Twort VG, Laine VN, Field KA, Whiting-Fawcett F, Ito F, Reiman M, Bartonicka T, Fritze M, Ilyukha VA, Belkin VV, Khizhkin EA, Reeder DM, Fukui D, Jiang TL, Lilley TM. Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen. BMC Genomics 2024; 25:828. [PMID: 39227786 PMCID: PMC11370307 DOI: 10.1186/s12864-024-10722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Disease can act as a driving force in shaping genetic makeup across populations, even species, if the impacts influence a particularly sensitive part of their life cycles. White-nose disease is caused by a fungal pathogen infecting bats during hibernation. The mycosis has caused massive population declines of susceptible species in North America, particularly in the genus Myotis. However, Myotis bats appear to tolerate infection in Eurasia, where the fungal pathogen has co-evolved with its bat hosts for an extended period of time. Therefore, with susceptible and tolerant populations, the fungal disease provides a unique opportunity to tease apart factors contributing to tolerance at a genomic level to and gain an understanding of the evolution of non-harmful in host-parasite interactions. To investigate if the fungal disease has caused adaptation on a genomic level in Eurasian bat species, we adopted both whole-genome sequencing approaches and a literature search to compile a set of 300 genes from which to investigate signals of positive selection in genomes of 11 Eurasian bats at the codon-level. Our results indicate significant positive selection in 38 genes, many of which have a marked role in responses to infection. Our findings suggest that white-nose syndrome may have applied a significant selective pressure on Eurasian Myotis-bats in the past, which can contribute their survival in co-existence with the pathogen. Our findings provide an insight on the selective pressure pathogens afflict on their hosts using methodology that can be adapted to other host-pathogen study systems.
Collapse
Affiliation(s)
- V G Twort
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - V N Laine
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - F Whiting-Fawcett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - F Ito
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - M Reiman
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - T Bartonicka
- Dept. Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - M Fritze
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- German Bat Observatory, Berlin, Germany
- Competence Center for Bat Conservation Saxony Anhalt, in the South Harz Karst Landscape Biosphere Reserve, Südharz, Germany
| | - V A Ilyukha
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - V V Belkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - E A Khizhkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - D M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - D Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo Fuji Iyashinomori Woodland Study Center, The University of Tokyo, Yamanakako, Japan
| | - T L Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - T M Lilley
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Kwait R, Pinsky ML, Gignoux‐Wolfsohn S, Eskew EA, Kerwin K, Maslo B. Impact of putatively beneficial genomic loci on gene expression in little brown bats ( Myotis lucifugus, Le Conte, 1831) affected by white-nose syndrome. Evol Appl 2024; 17:e13748. [PMID: 39310794 PMCID: PMC11413065 DOI: 10.1111/eva.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024] Open
Abstract
Genome-wide scans for selection have become a popular tool for investigating evolutionary responses in wildlife to emerging diseases. However, genome scans are susceptible to false positives and do little to demonstrate specific mechanisms by which loci impact survival. Linking putatively resistant genotypes to observable phenotypes increases confidence in genome scan results and provides evidence of survival mechanisms that can guide conservation and management efforts. Here we used an expression quantitative trait loci (eQTL) analysis to uncover relationships between gene expression and alleles associated with the survival of little brown bats (Myotis lucifugus) despite infection with the causative agent of white-nose syndrome. We found that 25 of the 63 single-nucleotide polymorphisms (SNPs) associated with survival were related to gene expression in wing tissue. The differentially expressed genes have functional annotations associated with the innate immune system, metabolism, circadian rhythms, and the cellular response to stress. In addition, we observed differential expression of multiple genes with survival implications related to loci in linkage disequilibrium with focal SNPs. Together, these findings support the selective function of these loci and suggest that part of the mechanism driving survival may be the alteration of immune and other responses in epithelial tissue.
Collapse
Affiliation(s)
- Robert Kwait
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | | | - Evan A. Eskew
- Institute for Interdisciplinary Data SciencesUniversity of IdahoMoscowIdahoUSA
| | - Kathleen Kerwin
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Brooke Maslo
- Department of Ecology, Evolution and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
4
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Vargas-Muñiz JM. Adaptive fungal invasion of bat cells. Science 2024; 385:142-143. [PMID: 38991085 DOI: 10.1126/science.adq5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A fungus uses different cell entry strategies, depending on its host's hibernation status.
Collapse
Affiliation(s)
- José M Vargas-Muñiz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Early Career Whitman Fellow, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
6
|
Isidoro-Ayza M, Klein BS. Pathogenic strategies of Pseudogymnoascus destructans during torpor and arousal of hibernating bats. Science 2024; 385:194-200. [PMID: 38991070 DOI: 10.1126/science.adn5606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/14/2024] [Indexed: 07/13/2024]
Abstract
Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, that invades their skin. Mechanisms of P. destructans invasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle of P. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)-dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosed P. destructans blocks endolysosomal maturation, facilitating P. destructans survival and germination after return to torpor. Blockade of EGFR aborts P. destructans entry into keratinocytes.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce S Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Whiting-Fawcett F, Blomberg AS, Troitsky T, Meierhofer MB, Field KA, Puechmaille SJ, Lilley TM. A Palearctic view of a bat fungal disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14265. [PMID: 38616727 DOI: 10.1111/cobi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 04/16/2024]
Abstract
The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.
Collapse
Affiliation(s)
- F Whiting-Fawcett
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - A S Blomberg
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - M B Meierhofer
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - S J Puechmaille
- Institut des Sciences de l'Évolution Montpellier (ISEM), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Greening SS, Haman K, Drazenovich T, Chacon-Heszele M, Scafini M, Turner G, Huckabee J, Leonhardt J, vanWestrienen J, Perelman M, Thompson P, Keel MK. Validation of a Field-Portable, Handheld Real-Time PCR System for Detecting Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome in Bats. J Wildl Dis 2024; 60:298-305. [PMID: 38329747 DOI: 10.7589/jwd-d-23-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has decimated bat populations across North America. Despite ongoing management programs, WNS continues to expand into new populations, including in US states previously thought to be free from the pathogen and disease. This expansion highlights a growing need for surveillance tools that can be used to enhance existing monitoring programs and support the early detection of P. destructans in new areas. We evaluated the feasibility of using a handheld, field-portable, real-time (quantitative) PCR (qPCR) thermocycler known as the Biomeme two3 and the associated field-based nucleic acid extraction kit and assay reagents for the detection of P. destructans in little brown bats (Myotis lucifugus). Results from the field-based protocol using the Biomeme platform were compared with those from a commonly used laboratory-based qPCR protocol. When using dilutions of known conidia concentrations, the lowest detectable concentration with the laboratory-based approach was 108.8 conidia/mL, compared with 1,087.5 conidia/mL (10 times higher, i.e., one fewer 10× dilution) using the field-based approach. Further comparisons using field samples suggest a high level of concordance between the two protocols, with positive and negative agreements of 98.2% and 100% respectively. The cycle threshold values were marginally higher for most samples using the field-based protocol. These results are an important step in establishing and validating a rapid, field-assessable detection platform for P. destructans, which is urgently needed to improve the surveillance and monitoring capacity for WNS and support on-the-ground management and response efforts.
Collapse
Affiliation(s)
- Sabrina S Greening
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, 382 West Street Road, Kennett Square, Pennsylvania 19348, USA
| | - Katie Haman
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, 382 West Street Road, Kennett Square, Pennsylvania 19348, USA
- Washington Department of Fish and Wildlife, 1111 Washington Street, Olympia, Washington 98501, USA
| | - Tracy Drazenovich
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, California 95616, USA
| | - Maria Chacon-Heszele
- Biomeme, 401 North Broad Street, Suite 222, Philadelphia, Pennsylvania 19108, USA
| | - Michael Scafini
- Bureau of Wildlife Management, Pennsylvania Game Commission, 2001 Elmerton Avenue, Harrisburg, Pennsylvania 17110, USA
| | - Greg Turner
- Bureau of Wildlife Management, Pennsylvania Game Commission, 2001 Elmerton Avenue, Harrisburg, Pennsylvania 17110, USA
| | - John Huckabee
- PAWS Wildlife Center, 15305 44th Avenue West, Lynnwood, Washington 98087, USA
| | - Jean Leonhardt
- PAWS Wildlife Center, 15305 44th Avenue West, Lynnwood, Washington 98087, USA
| | - Jesse vanWestrienen
- Biomeme, 401 North Broad Street, Suite 222, Philadelphia, Pennsylvania 19108, USA
| | - Max Perelman
- Biomeme, 401 North Broad Street, Suite 222, Philadelphia, Pennsylvania 19108, USA
| | - Patricia Thompson
- Washington Department of Fish and Wildlife, 1111 Washington Street, Olympia, Washington 98501, USA
| | - M Kevin Keel
- Department of Veterinary Medicine, Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, California 95616, USA
| |
Collapse
|
9
|
Pérez AA, Tobin A, Stechly JV, Ferrante JA, Hunter ME. A minimally invasive, field-applicable CRISPR/Cas biosensor to aid in the detection of Pseudogymnoascus destructans, the causative fungal agent of white-nose syndrome in bats. Mol Ecol Resour 2024; 24:e13902. [PMID: 38069533 DOI: 10.1111/1755-0998.13902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
The accessibility to CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) genetic tools has given rise to applications beyond site-directed genome editing for the detection of DNA and RNA. These tools include precise diagnostic detection of human disease pathogens, such as SARS-CoV-2 and Zika virus. Despite the technology being rapid and cost-effective, the use of CRISPR/Cas tools in the surveillance of the causative agents of wildlife diseases has not been prominent. This study presents the development of a minimally invasive, field-applicable and user-friendly CRISPR/Cas-based biosensor for the detection of Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), an infectious disease that has killed more than five million bats in North America since its discovery in 2006. The biosensor assay combines a recombinase polymerase amplification (RPA) step followed by CRISPR/Cas12a nuclease cleavage to detect Pd DNA from bat dermal swab and guano samples. The biosensor had similar detection results when compared to quantitative PCR in distinguishing Pd-positive versus negative field samples. Although bat dermal swabs could be analysed with the biosensor without nucleic acid extraction, DNA extraction was needed when screening guano samples to overcome inhibitors. This assay can be applied to help with more rapid delineation of Pd-positive sites in the field to inform management decisions. With further optimization, this technology has broad translation potential to wildlife disease-associated pathogen detection and monitoring applications.
Collapse
Affiliation(s)
- Adam A Pérez
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| | - Abigail Tobin
- Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - John V Stechly
- Cherokee Nation System Solutions, Contractor to the U.S. Geological Survey, Gainesville, Florida, USA
| | - Jason A Ferrante
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, USA
| |
Collapse
|
10
|
Mathur S, Haynes E, Allender MC, Gibbs HL. Genetic mechanisms and biological processes underlying host response to ophidiomycosis (snake fungal disease) inferred from tissue-specific transcriptome analyses. Mol Ecol 2024; 33:e17210. [PMID: 38010927 DOI: 10.1111/mec.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Emerging infectious diseases in wildlife species caused by pathogenic fungi are of growing concern, yet crucial knowledge gaps remain for diseases with potentially large impacts. For example, there is detailed knowledge about host pathology and mechanisms underlying response for chytridiomycosis in amphibians and white-nose syndrome in bats, but such information is lacking for other more recently described fungal infections. One such disease is ophidiomycosis, caused by the fungus Ophidiomyces ophidiicola, which has been identified in many species of snakes, yet the biological mechanisms and molecular changes occurring during infection are unknown. To gain this information, we performed a controlled experimental infection in captive Prairie rattlesnakes (Crotalus viridis) with O. ophidiicola at two different temperatures: 20 and 26°C. We then compared liver, kidney, and skin transcriptomes to assess tissue-specific genetic responses to O. ophidiicola infection. Given previous histopathological studies and the fact that snakes are ectotherms, we expected highest fungal activity on skin and a significant impact of temperature on host response. Although we found fungal activity to be localized on skin, most of the differential gene expression occurred in internal tissues. Infected snakes at the lower temperature had the highest host mortality whereas two-thirds of the infected snakes at the higher temperature survived. Our results suggest that ophidiomycosis is likely a systemic disease with long-term effects on host response. Our analysis also identified candidate protein coding genes that are potentially involved in host response, providing genetic tools for studies of host response to ophidiomycosis in natural populations.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, USA
| | - Ellen Haynes
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, USA
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Brookfield Zoo, Chicago Zoological Society, Brookfield, Illinois, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Troitsky TS, Laine VN, Lilley TM. When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation. Anim Microbiome 2023; 5:66. [PMID: 38129884 PMCID: PMC10740296 DOI: 10.1186/s42523-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.
Collapse
Affiliation(s)
- T S Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - V N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Ange-Stark M, Parise KL, Cheng TL, Hoyt JR, Langwig KE, Frick WF, Kilpatrick AM, Gillece J, MacManes MD, Foster JT. White-nose syndrome restructures bat skin microbiomes. Microbiol Spectr 2023; 11:e0271523. [PMID: 37888992 PMCID: PMC10714735 DOI: 10.1128/spectrum.02715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Inherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes of Myotis lucifugus and Perimyotis subflavus indicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd.
Collapse
Affiliation(s)
- Meghan Ange-Stark
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Katy L. Parise
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Tina L. Cheng
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
- Bat Conservation International, Austin, Texas, USA
| | - Joseph R. Hoyt
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Kate E. Langwig
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Winifred F. Frick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
- Bat Conservation International, Austin, Texas, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - John Gillece
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Matthew D. MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jeffrey T. Foster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
14
|
Pikula J, Brichta J, Seidlova V, Piacek V, Zukal J. Higher antibody titres against Pseudogymnoascus destructans are associated with less white-nose syndrome skin lesions in Palearctic bats. Front Immunol 2023; 14:1269526. [PMID: 38143741 PMCID: PMC10739372 DOI: 10.3389/fimmu.2023.1269526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. Methods In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. Results and Discussion Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
- CEITEC: Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jiri Brichta
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
15
|
Li A, Leng H, Li Z, Jin L, Sun K, Feng J. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen. Virulence 2023; 14:2156185. [PMID: 36599840 PMCID: PMC9815227 DOI: 10.1080/21505594.2022.2156185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,CONTACT Keping Sun
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China,Jiang Feng
| |
Collapse
|
16
|
Hooper S, Amelon S. Contact-independent exposure to Rhodococcus rhodochrous DAP96253 volatiles does not improve the survival rate of Myotis lucifugus (little brown bats) affected by White-nose Syndrome. PeerJ 2023; 11:e15782. [PMID: 37868049 PMCID: PMC10590100 DOI: 10.7717/peerj.15782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/03/2023] [Indexed: 10/24/2023] Open
Abstract
Since the emergence of White-nose Syndrome, a fungal disease in bats, caused by Pseudogymnoascus destructans, hibernating populations of little brown bats (Myotis lucifugus) have declined by 70-90% within P. destructans positive hibernacula. To reduce the impact of White-nose Syndrome to North American little brown bat populations we evaluated if exposure to volatile organic compounds produced by induced cells from Rhodococcus rhodochrous strain DAP96253 could improve the overwinter survival of bats infected by P. destructans. Two simultaneous field treatment trials were conducted at natural hibernacula located in Rockcastle and Breckinridge counties, Kentucky, USA. A combined total of 120 little brown bats were randomly divided into control groups (n = 60) which were not exposed to volatile organic compounds and treatment groups (n = 60) which were exposed to volatile organic compounds produced by non-growth, fermented cell paste composed of R. rhodochrous strain DAP96253 cells. Cox proportional hazard models revealed a significant decreased survival at the Rockcastle field trial site but not the Breckinridge field site. At the Breckinridge hibernacula, overwinter survival for both treatment and control groups were 60%. At the Rockcastle hibernacula, Kaplan-Meier survival curves indicated significantly increased overwinter survival of bats in the control group (43% survived) compared to the treatment group (20% survived). Although complete inhibition of P. destructans by volatile organic compounds produced by induced R. rhodochrous strain DAP96253 cells was observed in vitro studies, our results suggest that these volatile organic compounds do not inhibit P. destructans in situ and may promote P. destructans growth.
Collapse
Affiliation(s)
- Sarah Hooper
- Department of Veterinary Pathobiology, University of Missouri - Columbia, Columbia, MO, United States of America
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Sybill Amelon
- USDA US Forest Service Northern Research Station, Columbia, MO, United States of America
| |
Collapse
|
17
|
Li A, Li Z, Leng H, Jin L, Xiao Y, Sun K, Feng J. Seasonal assembly of skin microbiota driven by neutral and selective processes in the greater horseshoe bat. Mol Ecol 2023; 32:4695-4707. [PMID: 37322601 DOI: 10.1111/mec.17051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Skin microbiota play an important role in protecting bat hosts from the fungal pathogen Pseudogymnoascus destructans, which has caused dramatic bat population declines and extinctions. Recent studies have provided insights into the bacterial communities of bat skin, but variation in skin bacterial community structure in the context of the seasonal dynamics of fungal invasion, as well as the processes that drive such variation, remain largely unexplored. In this study, we characterized bat skin microbiota over the course of the bat hibernation and active season stages and used a neutral model of community ecology to determine the relative roles of neutral and selective processes in driving microbial community variation. Our results showed significant seasonal shifts in skin community structure, as well as less diverse microbiota in hibernation than in the active season. Skin microbiota were influenced by the environmental bacterial reservoir. During both the hibernation and active season stages, more than 78% of ASVs in bat skin microbiota were consistent with neutral distribution, implying that neutral processes, that is, dispersal or ecological drift contributing the most to shifts in skin microbiota. In addition, the neutral model showed that some ASVs were actively selected by the bats from the environmental bacterial reservoir, accounting for approximately 20% and 31% of the total community during hibernation and active season stages, respectively. Overall, this research provides insights into the assemblage of bat-associated bacterial communities and will aid in the development of conservation strategies against fungal disease.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Mallinger EC, Goodwin KR, Kirschbaum A, Shen Y, Gillam EH, Olson ER. Species-specific responses to white-nose syndrome in the Great Lakes region. Ecol Evol 2023; 13:e10267. [PMID: 37435023 PMCID: PMC10329912 DOI: 10.1002/ece3.10267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
White-nose syndrome is a fungal disease that is threatening bat populations across North America. The disease primarily affects cave-hibernating bats by depleting fat reserves during hibernation and causing a range of other physiological consequences when immune responses are suppressed. Since it was first detected in 2006, the disease has killed millions of bats and is responsible for extensive local extinctions. To better understand the effects of white-nose syndrome on various bat species, we analyzed summer acoustic survey data collected from 2016 to 2020 at nine US National Parks within the Great Lakes region. We examined the effect that white-nose syndrome, time of the year relative to pup volancy, habitat type, and regional variation (i.e., park) have on the acoustic abundance (i.e., mean call abundance) of six bat species. As expected, little brown bat (Myotis lucifugus) and northern long-eared bat (Myotis septentrionalis), both hibernating species, experienced a significant decline in acoustic abundance following white-nose syndrome detection. We observed a significant increase in acoustic abundance as white-nose syndrome progressed for hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans), both migratory species that are not impacted by the disease. Contrary to our predictions, we observed an increase in big brown bat (Eptesicus fuscus; hibernating) acoustic abundance and a decrease in eastern red bat (Lasiurus borealis; migratory) acoustic abundance following the detection of white-nose syndrome. We did not observe any significant changes after the onset of white-nose syndrome in the seasonal patterns of acoustic activity related to pup volancy, suggesting that production or recruitment of young may not be affected by the disease. Our results suggest that white-nose syndrome is affecting the acoustic abundance of certain species; however, these changes may not be a result of reduced reproductive success caused by the disease. In addition, species population dynamics may be indirectly affected by white-nose syndrome as a result of reduced competition or a foraging niche release. We also found that for parks located at higher latitudes, little brown bat and northern long-eared bat were more likely to experience greater declines in acoustic abundance as a result of white-nose syndrome. Our work provides insight into species-specific responses to white-nose syndrome at a regional scale and examines factors that may facilitate resistance or resiliency to the disease.
Collapse
Affiliation(s)
| | - Katy R. Goodwin
- Department of Biological Sciences, Dept. 2715North Dakota State UniversityFargoNorth DakotaUSA
- Great Lakes Inventory and Monitoring NetworkNational Park ServiceAshlandWisconsinUSA
| | - Alan Kirschbaum
- Great Lakes Inventory and Monitoring NetworkNational Park ServiceAshlandWisconsinUSA
| | - Yunyi Shen
- Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision SystemsMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Erin H. Gillam
- Department of Biological Sciences, Dept. 2715North Dakota State UniversityFargoNorth DakotaUSA
| | - Erik R. Olson
- Department of Natural ResourcesNorthland CollegeAshlandWisconsinUSA
| |
Collapse
|
19
|
Hicks AC, Darling SR, Flewelling JE, von Linden R, Meteyer CU, Redell DN, White JP, Redell J, Smith R, Blehert DS, Rayman-Metcalf NL, Hoyt JR, Okoniewski JC, Langwig KE. Environmental transmission of Pseudogymnoascus destructans to hibernating little brown bats. Sci Rep 2023; 13:4615. [PMID: 36944682 PMCID: PMC10030556 DOI: 10.1038/s41598-023-31515-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detect P. destructans in environmental samples, we initiated this study to assess whether P. destructans can persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to two P. destructans contaminated hibernacula in Vermont where native bats had been excluded. Infection with P. destructans was apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure to P. destructans is sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts.
Collapse
Affiliation(s)
- Alan C Hicks
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
| | - Scott R Darling
- Vermont Fish and Wildlife Department, 271 North Main Street, Suite 215, Rutland, VT, 05701, USA
| | - Joel E Flewelling
- Vermont Fish and Wildlife Department, 271 North Main Street, Suite 215, Rutland, VT, 05701, USA
| | - Ryan von Linden
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
| | - Carol U Meteyer
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - David N Redell
- Wisconsin Department of Natural Resources, Madison, WI, USA
| | - J Paul White
- Wisconsin Department of Natural Resources, Madison, WI, USA
| | | | - Ryan Smith
- Vermont Fish and Wildlife Department, 271 North Main Street, Suite 215, Rutland, VT, 05701, USA
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | | | - Joseph R Hoyt
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Joseph C Okoniewski
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA
| | - Kate E Langwig
- New York State Department of Environmental Conservation, 625 Broadway, Albany, NY, 12233-4754, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
20
|
Sewall BJ, Turner GG, Scafini MR, Gagnon MF, Johnson JS, Keel MK, Anis E, Lilley TM, White JP, Hauer CL, Overton BE. Environmental control reduces white‐nose syndrome infection in hibernating bats. Anim Conserv 2023. [DOI: 10.1111/acv.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- B. J. Sewall
- Department of Biology Temple University Philadelphia PA USA
| | | | | | - M. F. Gagnon
- Department of Biology Temple University Philadelphia PA USA
| | - J. S. Johnson
- Department of Biological Sciences Ohio University Athens OH USA
- School of Information Technology University of Cincinnati Cincinnati OH USA
| | - M. K. Keel
- School of Veterinary Medicine University of California Davis CA USA
| | - E. Anis
- Department of Pathobiology University of Pennsylvania, School of Veterinary Medicine, New Bolton Center Kennett Square PA USA
| | - T. M. Lilley
- Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - J. P. White
- Wisconsin Department of Natural Resources Madison WI USA
| | - C. L. Hauer
- Department of Biology Temple University Philadelphia PA USA
| | - B. E. Overton
- Department of Biology Commonwealth University of Pennsylvania Lock Haven PA USA
| |
Collapse
|
21
|
Higher white-nose syndrome fungal isolate yields from UV-guided wing biopsies compared with skin swabs and optimal culture media. BMC Vet Res 2023; 19:40. [PMID: 36759833 PMCID: PMC9912490 DOI: 10.1186/s12917-023-03603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.
Collapse
|
22
|
de Souza Suguiura IM, Bracarense APFL, de Carvalho Ishiuchi GG, Sano A, Branco KS, Itano EN, Ono MA. Histopathological survey of free-ranging neotropical bats with dermatitis. Vet Pathol 2023; 60:369-373. [PMID: 36757133 DOI: 10.1177/03009858231155399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bats have a fundamental ecological role, and no wildlife disease has decimated more individuals than white-nose syndrome (WNS). This impactful mycosis has raised the importance of monitoring disease threats to bat populations. In this study, we aimed to investigate gross skin lesions in neotropical bats by histopathology to survey the occurrence of dermatitis that could resemble WNS cases in Brazil. Eleven species of free-ranging bats were sampled from the rabies surveillance program in 9 municipalities of Northern Paraná. Members of the Molossidae family were the most frequent ones among the 126 analyzed individuals, and 4 cases of dermatitis in 2 black mastiff bats (Molossus rufus), 1 great fruit-eating bat (Artibeus lituratus), and a big free-tailed bat (Nyctinomops macrotis) were detected. Gross lesions included alopecia, macules, discoloration, and hyperkeratosis. Among the bats with gross lesions, dermal thickening and mild inflammation were observed histologically. Two M. rufus bats had dermal fungal invasion; however, none resembled WNS.
Collapse
Affiliation(s)
- Igor M de Souza Suguiura
- Secretaria de Estado da Saúde do Paraná, Londrina, Brazil.,Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | - Ayako Sano
- University of the Ryukyus, Nakagusuku-Gun, Japan
| | | | - Eiko N Itano
- Universidade Estadual de Londrina, Londrina, Brazil
| | - Mario A Ono
- Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
23
|
Simonis MC, Hartzler LK, Turner GG, Scafini MR, Johnson JS, Rúa MA. Long‐term exposure to an invasive fungal pathogen decreases
Eptesicus fuscus
body mass with increasing latitude. Ecosphere 2023. [DOI: 10.1002/ecs2.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Molly C. Simonis
- Department of Biology University of Oklahoma Norman Oklahoma USA
- Environmental Sciences PhD Program Wright State University Dayton Ohio USA
| | - Lynn K. Hartzler
- Environmental Sciences PhD Program Wright State University Dayton Ohio USA
- Department of Biological Sciences Wright State University Dayton Ohio USA
| | - Gregory G. Turner
- Bureau of Wildlife Management Pennsylvania Game Commission Harrisburg Pennsylvania USA
| | - Michael R. Scafini
- Bureau of Wildlife Management Pennsylvania Game Commission Harrisburg Pennsylvania USA
| | - Joseph S. Johnson
- School of Information Technology University of Cincinnati Cincinnati Ohio USA
| | - Megan A. Rúa
- Environmental Sciences PhD Program Wright State University Dayton Ohio USA
- Department of Biological Sciences Wright State University Dayton Ohio USA
| |
Collapse
|
24
|
Souto EPF, Oliveira AM, Hoffmann AR, Mota RA, Galiza GJN, Dantas AFM. Cutaneous phaeohyphomycosis in a greater bulldog bat (Noctilio leporinus) in northeastern Brazil. J Comp Pathol 2023; 201:37-40. [PMID: 36701871 DOI: 10.1016/j.jcpa.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/11/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
An adult male greater bulldog bat (Noctilio leporinus) was found dead in a suburban area in the municipality of Patos, Paraiba, northeastern Brazil. At post-mortem examination, the bat was emaciated and had multifocal to coalescent grey, crusted, dry, scaly cutaneous lesions, irregularly distributed over the dorsal thoracoabdominal region, muzzle, labial commissures, ears and dorsoventral surfaces of the patagia. Histopathology revealed numerous longitudinal and transverse sections of fungal organisms, with weakly basophilic walls, associated with multifocal areas of ulceration of the epidermis, necrosis, rupture and discontinuity of collagen fibres in the dermis without any inflammatory response. Molecular identification matched the organism to Cladosporium spp, Curvularia spp, Exserohilum spp, Bipolaris spp (100%) and Alternaria spp (97%), all of which have been associated with phaeohyphomycosis. Phaeohyphomycosis should be included as a differential diagnosis of cutaneous lesions in chiropterans.
Collapse
Affiliation(s)
- E P F Souto
- Laboratory of Animal Pathology, Federal University of Campina Grande, Patos, Paraiba, Brazil.
| | - A M Oliveira
- Laboratory of Animal Pathology, Federal University of Campina Grande, Patos, Paraiba, Brazil
| | - A R Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - R A Mota
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - G J N Galiza
- Laboratory of Animal Pathology, Federal University of Campina Grande, Patos, Paraiba, Brazil
| | - A F M Dantas
- Laboratory of Animal Pathology, Federal University of Campina Grande, Patos, Paraiba, Brazil
| |
Collapse
|
25
|
Characterization of Pseudogymnoascus destructans conidial adherence to extracellular matrix: Association with fungal secreted proteases and identification of candidate extracellular matrix binding proteins. Microb Pathog 2023; 174:105895. [PMID: 36423748 DOI: 10.1016/j.micpath.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Pseudogymnoascus destructans is the etiological agent of white-nose syndrome (WNS), a fungal skin infection of hibernating bats. Pathophysiology of the disease involves disruption of bat metabolism and hibernation patterns, which subsequently causes premature emergence and mortality. However, information on the mechanism(s) and virulence factors of P. destructans infection is minimally known. Typically, fungal adherence to host cells and extracellular matrix (ECM) is the critical first step of the infection. It allows pathogenic fungi to establish colonization and provides an entry for invasion in host tissues. In this study, we characterized P. destructans conidial adherence to laminin and fibronectin. We found that P. destructans conidia adhered to laminin and fibronectin in a dose-dependent, time-dependent and saturable manner. We also observed changes in the gene expression of secreted proteases, in response to ECM exposure. However, the interaction between fungal conidia and ECM was not specific, nor was it facilitated by enzymatic activity of secreted proteases. We therefore further investigated other P. destructans proteins that recognized ECM and found glyceraldehyde-3-phosphate dehydrogenase and elongation factor 1-alpha among the candidate proteins. Our results demonstrate that P. destructans may use conidial surface proteins to recognize laminin and fibronectin and facilitate conidial adhesion to ECM. In addition, other non-specific interactions may contribute to the conidial adherence to ECM. However, the ECM binding protein candidates identified in this study highlight additional potential fungal virulence factors worth investigating in the P. destructans mechanism of infection in future studies.
Collapse
|
26
|
Risk of infection of white-nose syndrome in North American vespertilionid bats in Mexico. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
First Isolation of Pseudogymnoascus destructans, the Fungal Causative Agent of White-Nose Syndrome, in Korean Bats (Myotis petax). J Fungi (Basel) 2022; 8:jof8101072. [PMID: 36294636 PMCID: PMC9605074 DOI: 10.3390/jof8101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
White-nose syndrome (WNS), caused by Pseudogymnoascus destructans (Pd), is a lethal fungal disease that affects hibernating bats in North America. Recently, the presence of Pd was reported in countries neighboring Korea. However, Pd has not been investigated in Korea. Therefore, this study aimed to identify the presence of Pd in Korean bats. Altogether, wings from 241 bats were collected from 13 cities and cultured. A total of 79 fungal colonies were isolated, and two isolates were identified as Pd using polymerase chain reaction. Of the nine bat species captured in 13 cities, Pd was isolated only from Myotis petax in Goryeong. Atypical, curved conidia were observed in two isolated fungal colonies. Although histological lesions were not observed by hematoxylin and eosin or periodic acid−Schiff staining, fungal invasion was observed in the tissue sections. Taken together, these results confirmed the presence of Pd in Korean bats and suggest the possibility of WNS outbreaks in Korean bats. This is the first report of the isolation and molecular analysis of Pd from Korean bats.
Collapse
|
29
|
Jackson RT, Willcox EV, Zobel JM, Bernard RF. Emergence activity at hibernacula differs among four bat species affected by white-nose syndrome. Ecol Evol 2022; 12:e9113. [PMID: 35845385 PMCID: PMC9277409 DOI: 10.1002/ece3.9113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Prior to the introduction of white-nose syndrome (WNS) to North America, temperate bats were thought to remain within hibernacula throughout most of the winter. However, recent research has shown that bats in the southeastern United States emerge regularly from hibernation and are active on the landscape, regardless of their WNS status. The relationship between winter activity and susceptibility to WNS has yet to be explored but warrants attention, as it may enable managers to implement targeted management for WNS-affected species. We investigated this relationship by implanting 1346 passive integrated transponder (PIT) tags in four species that vary in their susceptibility to WNS. Based on PIT-tag detections, three species entered hibernation from late October to early November. Bats were active at hibernacula entrances on days when midpoint temperatures ranged from -1.94 to 22.78°C (mean midpoint temperature = 8.70 ± 0.33°C). Eastern small-footed bats (Myotis leibii), a species with low susceptibility to WNS, were active throughout winter, with a significant decrease in activity in mid-hibernation (December 16 to February 15). Tricolored bats (Perimyotis subflavus), a species that is highly susceptible to WNS, exhibited an increase in activity beginning in mid-hibernation and extending through late hibernation (February 16 to March 31). Indiana bats (M. sodalis), a species determined to have a medium-high susceptibility to WNS, remained on the landscape into early hibernation (November 1 to December 15), after which we did not record any again until the latter portion of mid-hibernation. Finally, gray bats (M. grisescens), another species with low susceptibility to WNS, maintained low but regular levels of activity throughout winter. Given these results, we determined that emergence activity from hibernacula during winter is highly variable among bat species and our data will assist wildlife managers to make informed decisions regarding the timing of implementation of species-specific conservation actions.
Collapse
Affiliation(s)
- Reilly T. Jackson
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
- Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Emma V. Willcox
- Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John M. Zobel
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Riley F. Bernard
- Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleTennesseeUSA
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
30
|
Forsythe A, Fontaine N, Bissonnette J, Hayashi B, Insuk C, Ghosh S, Kam G, Wong A, Lausen C, Xu J, Cheeptham N. Microbial isolates with Anti-Pseudogymnoascus destructans activities from Western Canadian bat wings. Sci Rep 2022; 12:9895. [PMID: 35701553 PMCID: PMC9198084 DOI: 10.1038/s41598-022-14223-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudogymnoascus destructans (Pd) is the causative agent of white-nose syndrome, which has resulted in the death of millions of bats in North America (NA) since 2006. Based on mortalities in eastern NA, the westward spread of infections likely poses a significant threat to western NA bats. To help prevent/reduce Pd infections in bats in western NA, we isolated bacteria from the wings of wild bats and screened for inhibitory activity against Pd. In total, we obtained 1,362 bacterial isolates from 265 wild bats of 13 species in western Canada. Among the 1,362 isolates, 96 showed inhibitory activity against Pd based on a coculture assay. The inhibitory activities varied widely among these isolates, ranging from slowing fungal growth to complete inhibition. Interestingly, host bats containing isolates with anti-Pd activities were widely distributed, with no apparent geographic or species-specific pattern. However, characteristics of roosting sites and host demography showed significant associations with the isolation of anti-Pd bacteria. Specifically, anthropogenic roosts and swabs from young males had higher frequencies of anti-Pd bacteria than those from natural roosts and those from other sex and age-groups, respectively. These anti-Pd bacteria could be potentially used to help mitigate the impact of WNS. Field trials using these as well as additional microbes from future screenings are needed in order to determine their effectiveness for the prevention and treatment against WNS.
Collapse
Affiliation(s)
- Adrian Forsythe
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nick Fontaine
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Julianna Bissonnette
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Brandon Hayashi
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.,Department of Genetics, Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Gabrielle Kam
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Aaron Wong
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC, V0G 1M0, Canada.
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.
| |
Collapse
|
31
|
Meteyer CU, Dutheil JY, Keel MK, Boyles JG, Stukenbrock EH. Plant pathogens provide clues to the potential origin of bat white-nose syndrome Pseudogymnoascus destructans. Virulence 2022; 13:1020-1031. [PMID: 35635339 PMCID: PMC9176227 DOI: 10.1080/21505594.2022.2082139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
White-nose syndrome has killed millions of bats, yet both the origins and infection strategy of the causative fungus, Pseudogymnoascus destructans, remain elusive. We provide evidence for a novel hypothesis that P. destructans emerged from plant-associated fungi and retained invasion strategies affiliated with fungal pathogens of plants. We demonstrate that P. destructans invades bat skin in successive biotrophic and necrotrophic stages (hemibiotrophic infection), a mechanism previously only described in plant fungal pathogens. Further, the convergence of hyphae at hair follicles suggests nutrient tropism. Tropism, biotrophy, and necrotrophy are often associated with structures termed appressoria in plant fungal pathogens; the penetrating hyphae produced by P. destructans resemble appressoria. Finally, we conducted a phylogenomic analysis of a taxonomically diverse collection of fungi. Despite gaps in genetic sampling of prehistoric and contemporary fungal species, we estimate an 88% probability the ancestral state of the clade containing P. destructans was a plant-associated fungus.
Collapse
Affiliation(s)
- Carol Uphoff Meteyer
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin 53711
| | - Julien Y. Dutheil
- Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - M. Kevin Keel
- School of Veterinary Medicine, Dept of Pathology, Microbiology & Immunology, University of California, Davis, California 95616
| | - Justin G. Boyles
- Cooperative Wildlife Research Laboratory and School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901
| | - Eva H. Stukenbrock
- Environmental Genomics Group, Botanical Institute, Christian-Albrechts University of Kiel, Kiel, Germany and Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
32
|
Salazar-Hamm PS, Hathaway JJM, Winter AS, Caimi NA, Buecher DC, Valdez EW, Northup DE. Great diversity of KS α sequences from bat-associated microbiota suggests novel sources of uncharacterized natural products. FEMS MICROBES 2022; 3:xtac012. [PMID: 35573391 PMCID: PMC9097503 DOI: 10.1093/femsmc/xtac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Polyketide synthases (PKSs) are multidomain enzymes in microorganisms that synthesize complex, bioactive molecules. PKS II systems are iterative, containing only a single representative of each domain: ketosynthase alpha (KS[Formula: see text]), ketosynthase beta and the acyl carrier protein. Any gene encoding for one of these domains is representative of an entire PKS II biosynthetic gene cluster (BGC). Bat skin surfaces represent an extreme environment prolific in Actinobacteria that may constitute a source for bioactive molecule discovery. KS[Formula: see text] sequences were obtained from culturable bacteria from bats in the southwestern United States. From 467 bat bacterial isolates, we detected 215 (46%) had KS[Formula: see text] sequences. Sequencing yielded 210 operational taxonomic units, and phylogenetic placement found 45 (21%) shared <85% homology to characterized metabolites. Additionally, 16 Actinobacteria genomes from the bat microbiome were analyzed for biosynthetic capacity. A range of 69-93% of the BGCs were novel suggesting the bat microbiome may contain valuable uncharacterized natural products. Documenting and characterizing these are important in understanding the susceptibility of bats to emerging infectious diseases, such as white-nose syndrome. Also noteworthy was the relationship between KS [Formula: see text] homology and total BGC novelty within each fully sequenced strain. We propose amplification and detection of KS[Formula: see text] could predict a strain's global biosynthetic capacity.
Collapse
Affiliation(s)
- Paris S Salazar-Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ara S Winter
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Nicole A Caimi
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ernest W Valdez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
- U.S. Geological Survey, Fort Collins Science Center, Department of Biology, MSC03 2020, University of New Mexico, lbuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
33
|
Li Z, Li A, Dai W, Leng H, Liu S, Jin L, Sun K, Feng J. Skin Microbiota Variation Among Bat Species in China and Their Potential Defense Against Pathogens. Front Microbiol 2022; 13:808788. [PMID: 35432245 PMCID: PMC9009094 DOI: 10.3389/fmicb.2022.808788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Host-associated skin bacteria are essential for resisting pathogen infections and maintaining health. However, we have little understanding of how chiropteran skin microbiota are distributed among bat species and their habitats, or of their putative roles in defending against Pseudogymnoascus destructans in China. In this study, we characterized the skin microbiomes of four bat species at five localities using 16S rRNA gene amplicon sequencing to understand their skin microbial composition, structure, and putative relationship with disease. The alpha- and beta-diversities of skin microbiota differed significantly among the bat species, and the differences were affected by environmental temperature, sampling sites, and host body condition. The chiropteran skin microbial communities were enriched in bacterial taxa that had low relative abundances in the environment. Most of the potential functions of skin microbiota in bat species were associated with metabolism. Focusing on their functions of defense against pathogens, we found that skin microbiota could metabolize a variety of active substances that could be potentially used to fight P. destructans. The skin microbial communities of bats in China are related to the environment and the bat host, and may be involved in the host's defense against pathogens.
Collapse
Affiliation(s)
- Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
34
|
Evaluation of Virus-Free and Wild-Type Isolates of Psuedogymnoascus Destructans Using a Porcine Ear Model. mSphere 2022; 7:e0102221. [PMID: 35306863 PMCID: PMC9044960 DOI: 10.1128/msphere.01022-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
White-nose syndrome (WNS), responsible for the mass mortality of North American bats, lacks economically viable and practical in vitro models for Pseudogymnoascus destructans infection, the causative agent of WNS. Not only are many susceptible North American insectivorous bats nearing extinction and, thus, scarce for experimental studies, but they are difficult to care for and maintain in captivity because of their specialized habitats and diets. In this study, we explored porcine ears as a potential substrate for studying infection development and the dynamics of P. destructans growth in the laboratory. Porcine ear skin shares many tissue-level similarities with bat skin and is a readily available resource. We found the porcine ear model provided a substrate faithfully mimicking external P. destructans colony morphology and internal histology similar to what is seen with P. destructans infections in bat wing membranes. This model provided a major advance by distinguishing virulence attributes between a wild-type Pseudogymnoascus destructans strain harboring a partitivirus common to all North American strains of the fungus and an isogenic virus-cured P. destructans strain. ImageJ analysis showed that the cured P. destructans strain was reduced significantly in ability to produce hyphal cover and showed less spore production on porcine skin. Taken together, these results strengthen our previous finding that the partitivirus infection has a role in WNS and provides a valuable model host tool in understanding P. destructans virulence factors for therapeutic application. IMPORTANCE This work describes an important insight into the role of Pseudogymnoascus destructans partitivirus in fungal biology and provides a model system for studying white-nose syndrome in bats, which has decimated North American populations.
Collapse
|
35
|
Grimaudo AT, Hoyt JR, Yamada SA, Herzog CJ, Bennett AB, Langwig KE. Host traits and environment interact to determine persistence of bat populations impacted by white-nose syndrome. Ecol Lett 2022; 25:483-497. [PMID: 34935272 PMCID: PMC9299823 DOI: 10.1111/ele.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
Emerging infectious diseases have resulted in severe population declines across diverse taxa. In some instances, despite attributes associated with high extinction risk, disease emergence and host declines are followed by host stabilisation for unknown reasons. While host, pathogen, and the environment are recognised as important factors that interact to determine host-pathogen coexistence, they are often considered independently. Here, we use a translocation experiment to disentangle the role of host traits and environmental conditions in driving the persistence of remnant bat populations a decade after they declined 70-99% due to white-nose syndrome and subsequently stabilised. While survival was significantly higher than during the initial epidemic within all sites, protection from severe disease only existed within a narrow environmental space, suggesting host traits conducive to surviving disease are highly environmentally dependent. Ultimately, population persistence following pathogen invasion is the product of host-pathogen interactions that vary across a patchwork of environments.
Collapse
Affiliation(s)
| | - Joseph R. Hoyt
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | | | - Carl J. Herzog
- New York State Department of Environmental ConservationAlbanyNew YorkUSA
| | | | - Kate E. Langwig
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
36
|
Doty AC, Wilson AD, Forse LB, Risch TS. Biomarker Metabolites Discriminate between Physiological States of Field, Cave and White-nose Syndrome Diseased Bats. SENSORS 2022; 22:s22031031. [PMID: 35161777 PMCID: PMC8840073 DOI: 10.3390/s22031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Analysis of volatile organic compound (VOC) emissions using electronic-nose (e-nose) devices has shown promise for early detection of white-nose syndrome (WNS) in bats. Tricolored bats, Perimyotis subflavus, from three separate sampling groups defined by environmental conditions, levels of physical activity, and WNS-disease status were captured temporarily for collection of VOC emissions to determine relationships between these combinations of factors and physiological states, Pseudogymnoascus destructans (Pd)-infection status, and metabolic conditions. Physiologically active (non-torpid) healthy individuals were captured outside of caves in Arkansas and Louisiana. In addition, healthy and WNS-diseased torpid bats were sampled within caves in Arkansas. Whole-body VOC emissions from bats were collected using portable air-collection and sampling-chamber devices in tandem. Electronic aroma-detection data using three-dimensional Principal Component Analysis provided strong evidence that the three groups of bats had significantly different e-nose aroma signatures, indicative of different VOC profiles. This was confirmed by differences in peak numbers, peak areas, and tentative chemical identities indicated by chromatograms from dual-column GC-analyses. The numbers and quantities of VOCs present in whole-body emissions from physiologically active healthy field bats were significantly greater than those of torpid healthy and diseased cave bats. Specific VOCs were identified as chemical biomarkers of healthy and diseased states, environmental conditions (outside and inside of caves), and levels of physiological activity. These results suggest that GC/E-nose dual-technologies based on VOC-detection and analyses of physiological states, provide noninvasive alternative means for early assessments of Pd-infection, WNS-disease status, and other physiological states.
Collapse
Affiliation(s)
- Anna C. Doty
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Correspondence: ; Tel.: +1-661-654-6836
| | - A. Dan Wilson
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Lisa B. Forse
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
37
|
Experimental inoculation trial to determine the effects of temperature and humidity on White-nose Syndrome in hibernating bats. Sci Rep 2022; 12:971. [PMID: 35046462 PMCID: PMC8770465 DOI: 10.1038/s41598-022-04965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Disease results from interactions among the host, pathogen, and environment. Inoculation trials can quantify interactions among these players and explain aspects of disease ecology to inform management in variable and dynamic natural environments. White-nose Syndrome, a disease caused by the fungal pathogen, Pseudogymnoascus destructans (Pd), has caused severe population declines of several bat species in North America. We conducted the first experimental infection trial on the tri-colored bat, Perimyotis subflavus, to test the effect of temperature and humidity on disease severity. We also tested the effects of temperature and humidity on fungal growth and persistence on substrates. Unexpectedly, only 37% (35/95) of bats experimentally inoculated with Pd at the start of the experiment showed any infection response or disease symptoms after 83 days of captive hibernation. There was no evidence that temperature or humidity influenced infection response. Temperature had a strong effect on fungal growth on media plates, but the influence of humidity was more variable and uncertain. Designing laboratory studies to maximize research outcomes would be beneficial given the high costs of such efforts and potential for unexpected outcomes. Understanding the influence of microclimates on host-pathogen interactions remains an important consideration for managing wildlife diseases, particularly in variable environments.
Collapse
|
38
|
Cable AB, Willcox EV, Leppanen C. Contaminant exposure as an additional stressor to bats affected by white-nose syndrome: current evidence and knowledge gaps. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:12-23. [PMID: 34625892 DOI: 10.1007/s10646-021-02475-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Bats are exposed to numerous threats including pollution and emerging diseases. In North America, the fungal disease white-nose syndrome (WNS) has caused declines in many bat species. While the mechanisms of WNS have received considerable research attention, possible influences of contaminants have not. Herein, we review what is known about contaminant exposure and toxicity for four species whose populations have been severely affected by WNS (Myotis sodalis, M. septentrionalis, M. lucifugus, and Perimyotis subflavus) and identify temporal and spatial data gaps. We determine that there is limited information about the effects of contaminants on bats, and many compounds that have been detected in these bat species have yet to be evaluated for toxicity. The four species examined were exposed to a wide variety of contaminants; however, large spatial and knowledge gaps limit our ability to evaluate if contaminants contribute to species-level declines and if contaminant exposure exacerbates infection by WNS.
Collapse
Affiliation(s)
- Ashleigh B Cable
- Department of Forestry, Wildlife, and Fisheries, 274 Ellington Plant Sciences, University of Tennessee, Knoxville, TN, 37996-1610, USA
| | - Emma V Willcox
- Department of Forestry, Wildlife, and Fisheries, 274 Ellington Plant Sciences, University of Tennessee, Knoxville, TN, 37996-1610, USA.
| | - Christy Leppanen
- Department of Ecology and Evolutionary Biology, 569 Dabney Hall, University of Tennessee, Knoxville, TN, 37996-1610, USA
- The Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| |
Collapse
|
39
|
Cheng TL, Reichard JD, Coleman JTH, Weller TJ, Thogmartin WE, Reichert BE, Bennett AB, Broders HG, Campbell J, Etchison K, Feller DJ, Geboy R, Hemberger T, Herzog C, Hicks AC, Houghton S, Humber J, Kath JA, King RA, Loeb SC, Massé A, Morris KM, Niederriter H, Nordquist G, Perry RW, Reynolds RJ, Sasse DB, Scafini MR, Stark RC, Stihler CW, Thomas SC, Turner GG, Webb S, Westrich BJ, Frick WF. The scope and severity of white-nose syndrome on hibernating bats in North America. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1586-1597. [PMID: 33877716 PMCID: PMC8518069 DOI: 10.1111/cobi.13739] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/16/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Assessing the scope and severity of threats is necessary for evaluating impacts on populations to inform conservation planning. Quantitative threat assessment often requires monitoring programs that provide reliable data over relevant spatial and temporal scales, yet such programs can be difficult to justify until there is an apparent stressor. Leveraging efforts of wildlife management agencies to record winter counts of hibernating bats, we collated data for 5 species from over 200 sites across 27 U.S. states and 2 Canadian provinces from 1995 to 2018 to determine the impact of white-nose syndrome (WNS), a deadly disease of hibernating bats. We estimated declines of winter counts of bat colonies at sites where the invasive fungus that causes WNS (Pseudogymnoascus destructans) had been detected to assess the threat impact of WNS. Three species undergoing species status assessment by the U.S. Fish and Wildlife Service (Myotis septentrionalis, Myotis lucifugus, and Perimyotis subflavus) declined by more than 90%, which warrants classifying the severity of the WNS threat as extreme based on criteria used by NatureServe. The scope of the WNS threat as defined by NatureServe criteria was large (36% of Myotis lucifugus range) to pervasive (79% of Myotis septentrionalis range) for these species. Declines for 2 other species (Myotis sodalis and Eptesicus fuscus) were less severe but still qualified as moderate to serious based on NatureServe criteria. Data-sharing across jurisdictions provided a comprehensive evaluation of scope and severity of the threat of WNS and indicated regional differences that can inform response efforts at international, national, and state or provincial jurisdictions. We assessed the threat impact of an emerging infectious disease by uniting monitoring efforts across jurisdictional boundaries and demonstrated the importance of coordinated monitoring programs, such as the North American Bat Monitoring Program (NABat), for data-driven conservation assessments and planning.
Collapse
Affiliation(s)
- Tina L. Cheng
- Bat Conservation International500 North Capital of Texas Highway, Building 1AustinTX78746U.S.A.
| | - Jonathan D. Reichard
- Ecological ServicesU.S. Fish and Wildlife Service300 Westgate Center DriveHadleyMA01035U.S.A.
| | - Jeremy T. H. Coleman
- Ecological ServicesU.S. Fish and Wildlife Service300 Westgate Center DriveHadleyMA01035U.S.A.
| | - Theodore J. Weller
- Pacific Southwest Research StationU.S. Department of Agriculture1700 Bayview DriveArcataCA95521U.S.A.
| | - Wayne E. Thogmartin
- Upper Midwest Environmental Sciences CenterU.S. Geological Survey2630 Fanta Reed RoadLa CrosseWI54601U.S.A.
| | - Brian E. Reichert
- Fort Collins Science CenterU.S. Geological Survey2150 Centre AvenueFort CollinsCO80526U.S.A.
| | - Alyssa B. Bennett
- Vermont Department of Fish and Wildlife111 West St.Essex JunctionVT05452U.S.A.
| | | | - Joshua Campbell
- Tennessee Wildlife Resources Agency5107 Edmonson PikeNashvilleTN37211U.S.A.
| | | | - Daniel J. Feller
- Maryland Department of Natural Resources580 Taylor Ave.FrostburgMD21401U.S.A.
| | - Richard Geboy
- U.S. Fish and Wildlife Service520 S. Walker St.BloomingtonIN47403U.S.A.
| | - Traci Hemberger
- Kentucky Department of Fish and Wildlife Resources1 Sportsman's Ln.FrankfortKY40601U.S.A.
| | - Carl Herzog
- New York Department of Environmental Conservation625 BroadwayAlbanyNY12233U.S.A.
| | - Alan C. Hicks
- New York Department of Environmental Conservation625 BroadwayAlbanyNY12233U.S.A.
| | | | - Jessica Humber
- NL Wildlife DivisionGovernment of Newfoundland and Labrador192 Wheeler's Rd., P.O. Box 2006Corner BrookNLA2H 0J1Canada
| | - Joseph A. Kath
- Illinois Department of Natural Resources1 Natural Resources WaySpringfieldIL62702U.S.A.
| | - R. Andrew King
- U.S. Fish and Wildlife Service520 S. Walker St.BloomingtonIN47403U.S.A.
| | - Susan C. Loeb
- Southern Research Station, U.S. Forest ServiceClemson University233 Lehotsky HallClemsonSC29634U.S.A.
| | - Ariane Massé
- Ministère des Forêts, de la Faune et des Parcs880 ch. Sainte‐FoyQuébecQCG1S 4X4Canada
| | - Katrina M. Morris
- Wildlife Conservation SectionGeorgia Department of Natural Resources2065 US Hwy 278 SESocial CircleGA30025U.S.A.
| | - Holly Niederriter
- Delaware Department of Natural Resources and Environmental ControlRichardson and Robbins Bldg., 89 Kings Hwy SWDoverDE19901U.S.A.
| | - Gerda Nordquist
- Minnesota Department of Natural Resources500 Lafayette Rd.Saint PaulMN55155U.S.A.
| | - Roger W. Perry
- U.S. Forest Service100 Reserve St.Hot SpringsAR71901U.S.A.
| | - Richard J. Reynolds
- Virginia Department of Wildlife Resources7870 Villa Park Dr. #400RichmondVA23228U.S.A.
| | - D. Blake Sasse
- Arkansas Game and Fish Commission2 Natural Resources Dr.Little RockAR72205U.S.A.
| | | | - Richard C. Stark
- U.S. Fish and Wildlife Service9014 E. 21st St.TulsaOK74129U.S.A.
| | - Craig W. Stihler
- West Virginia Division of Natural ResourcesP.O. Box 67ElkinsWV26241U.S.A.
| | - Steven C. Thomas
- National Park Service, Cumberland Piedmont Inventory and Monitoring NetworkMammoth Cave National ParkP.O. Box 8Mammoth CaveKY42259U.S.A.
| | - Gregory G. Turner
- Pennsylvania Game Commission2001 Elmerton Ave.HarrisburgPA17110U.S.A.
| | - Shevenell Webb
- Maine Department of Inland Fisheries and Wildlife284 State St.AugustaME04330U.S.A.
| | - Bradford J. Westrich
- Indiana Department of Natural Resources402 W. Washington St.IndianapolisIN46204U.S.A.
| | - Winifred F. Frick
- Bat Conservation International500 North Capital of Texas Highway, Building 1AustinTX78746U.S.A.
- Department of Ecology and EvolutionUniversity of California130 McAllister Way, Santa CruzSanta CruzCA95060U.S.A.
| |
Collapse
|
40
|
Feasting, not fasting: winter diets of cave hibernating bats in the United States. Front Zool 2021; 18:48. [PMID: 34556122 PMCID: PMC8461964 DOI: 10.1186/s12983-021-00434-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Temperate bat species use extended torpor to conserve energy when ambient temperatures are low and food resources are scarce. Previous research suggests that migratory bat species and species known to roost in thermally unstable locations, such as those that roost in trees, are more likely to remain active during winter. However, hibernating colonies of cave roosting bats in the southeastern United States may also be active and emerge from caves throughout the hibernation period. We report what bats are eating during these bouts of winter activity. We captured 2,044 bats of 10 species that emerged from six hibernacula over the course of 5 winters (October–April 2012/2013, 2013/2014, 2015/2016, 2016/2017, and 2017/2018). Using Next Generation sequencing of DNA from 284 fecal samples, we determined bats consumed at least 14 Orders of insect prey while active. Dietary composition did not vary among bat species; however, we did record variation in the dominant prey items represented in species’ diets. We recorded Lepidoptera in the diet of 72.2% of individual Corynorhinus rafinesquii and 67.4% of individual Lasiurus borealis. Diptera were recorded in 32.4% of Myotis leibii, 37.4% of M. lucifugus, 35.5% of M. sodalis and 68.8% of Perimyotis subflavus. Our study is the first to use molecular genetic techniques to identify the winter diet of North American hibernating bats. The information from this study is integral to managing the landscape around bat hibernacula for insect prey, particularly in areas where hibernating bat populations are threatened by white-nose syndrome.
Collapse
|
41
|
Boone JM, Fountain K, Williams J, Lloyd DH, Killick R, Rodriguez Barbón A, Stidworthy MF, Loeffler A. Diseases and histopathological findings from lesional pinnae of 10 bats. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Johann M. Boone
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | - Kay Fountain
- Department of Biology and Biochemistry University of Bath Claverton Down Bath UK
| | - Jonathan Williams
- Department of Pathobiology and Population Sciences Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | - David H. Lloyd
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| | | | | | - Mark F. Stidworthy
- Pathology Division International Zoo Veterinary Group Station House, Keighley West Yorkshire UK
| | - Anette Loeffler
- Department of Clinical Science and Services Royal Veterinary College, Hatfield, North Mymms Hertfordshire UK
| |
Collapse
|
42
|
Fritze M, Puechmaille SJ, Fickel J, Czirják GÁ, Voigt CC. A Rapid, in-Situ Minimally-Invasive Technique to Assess Infections with Pseudogymnoascus destructans in Bats. ACTA CHIROPTEROLOGICA 2021. [DOI: 10.3161/15081109acc2021.23.1.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marcus Fritze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | | | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Gábor Á. Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Christian C. Voigt
- Institute of Biology, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
43
|
Analysis of Archival Specimens Confirms White-Nose Syndrome in Little Brown Bats (Myotis lucifugus) from New York, USA, in Spring 2007. J Wildl Dis 2021; 57:457-460. [PMID: 33600575 DOI: 10.7589/jwd-d-20-00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022]
Abstract
White-nose syndrome (WNS), an emerging fungal disease of North American bats, was first diagnosed in January 2008, although mortality and photodocumentation suggest the disease might have been present earlier. Using archived samples, we describe a definitive case of WNS in little brown bats (Myotis lucifugus) from New York, US, in spring 2007.
Collapse
|
44
|
Blehert DS, Lorch JM. Laboratory Maintenance and Culture of Pseudogymnoascus destructans, the Fungus That Causes Bat White-Nose Syndrome. Curr Protoc 2021; 1:e23. [PMID: 33497534 DOI: 10.1002/cpz1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudogymnoascus destructans is a fungal pathogen that causes white-nose syndrome, an emerging and fatal disease of North American bats that has led to unprecedented population declines. As a psychrophile, P. destructans is adapted to infect bats during winter hibernation, when host metabolic activity and core body temperature are greatly reduced. The ability to maintain and cultivate isolates of P. destructans in the laboratory is necessary for conducting research with this fungus. This article describes protocols for culturing P. destructans from bat wing skin and soil, for cryopreserving the fungus, and for preparing liquid suspensions for laboratory experimentation. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolating Pseudogymnoascus destructans from bat wing skin Basic Protocol 2: Isolating Pseudogymnoascus destructans from soil Basic Protocol 3: Cryopreservation of Pseudogymnoascus destructans Basic Protocol 4: Preparing liquid conidial suspension of Pseudogymnoascus destructans.
Collapse
Affiliation(s)
- David S Blehert
- U.S. Geological Survey National Wildlife Health Center, Madison, Wisconsin
| | - Jeffrey M Lorch
- U.S. Geological Survey National Wildlife Health Center, Madison, Wisconsin
| |
Collapse
|
45
|
Pannkuk EL, Dorville NASY, Dzal YA, Fletcher QE, Norquay KJO, Willis CKR, Fornace AJ, Laiakis EC. Hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at early stages of white-nose syndrome. Sci Rep 2021; 11:11581. [PMID: 34078939 PMCID: PMC8172879 DOI: 10.1038/s41598-021-90828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
White-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Nicole A S-Y Dorville
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Yvonne A Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Quinn E Fletcher
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Kaleigh J O Norquay
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada.
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| |
Collapse
|
46
|
Fritze M, Puechmaille SJ, Costantini D, Fickel J, Voigt CC, Czirják GÁ. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104017. [PMID: 33476670 DOI: 10.1016/j.dci.2021.104017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome in North America, has decimated bat populations within a decade. The fungus impacts bats during hibernation when physiological functions, including immune responses, are down-regulated. Studies have shown that Pd is native to Europe, where it is not associated with mass mortalities. Moreover, genomic and proteomic studies indicated that European bats may have evolved an effective immune defence, which is lacking in North American bats. However, it is still unclear which defence strategy enables European bats to cope with the pathogen. Here, we analyzed selected physiological and immunological parameters in torpid, Pd infected European greater mouse-eared bats (Myotis myotis) showing three different levels of infection (asymptomatic, mild and severe symptoms). From a subset of the studied bats we tracked skin temperatures during one month of hibernation. Contrasting North American bats, arousal patterns remained unaffected by Pd infections in M. myotis. In general, heavier M. myotis aroused more often from hibernation and showed less severe disease symptoms than lean individuals; most likely because heavy bats were capable of reducing the Pd load more effectively than lean individuals. In the blood of severely infected bats, we found higher gene expression levels of an inflammatory cytokine (IL-1β), but lower levels of an acute phase protein (haptoglobin), reactive oxygen metabolites (ROMs) and plasma non-enzymatic antioxidant capacity (OXY) compared to conspecifics with lower levels of infection. We conclude that M. myotis, and possibly also other European bat species, tolerate Pd infections during torpor by using selected acute phase response parameters at baseline levels, yet without arousing from torpor and without synthesizing additional immune molecules.
Collapse
Affiliation(s)
- Marcus Fritze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| | - Sebastien J Puechmaille
- Institut des Sciences de L'Evolution, University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34095, Montpellier, France
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National D'Histoire Naturelle, CNRS, CP32, 57 Rue Cuvier, 75005, Paris, France
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| |
Collapse
|
47
|
COUNTCOLORS, AN R PACKAGE FOR QUANTIFICATION OF THE FLUORESCENCE EMITTED BY PSEUDOGYMNOASCUS DESTRUCTANS LESIONS ON THE WING MEMBRANES OF HIBERNATING BATS. J Wildl Dis 2021; 56:759-767. [PMID: 32609601 DOI: 10.7589/2019-09-231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022]
Abstract
Pseudogymnoascus destructans colonizes the wing membrane of hibernating bats with the potential to form dense fungal hyphae aggregates within cupping erosions. These fungal cupping erosions emit a characteristic fluorescent orange-yellow color when the wing membrane is transilluminated with 385 nm ultraviolet (UV) light. The purpose of this study was to create and validate the R package, countcolors, for quantifying the distinct orange-yellow UV fluorescence in bat-wing membrane lesions caused by P. destructans. Validation of countcolors was completed by first quantifying the percent area of 20, 2.5 cm2 images. These generated images were of two known pixel colors ranging from 0% to 100% of the pixels. The countcolors package accurately measured the known proportion of a given color in each image. Next, 40, 2.5 cm2 sections of UV transilluminated photographs of little brown bat (Myotis lucifugus) wings were given to a single evaluator. The area of fluorescence was both manually measured and calculated using image analysis software and quantified with countcolors. There was good agreement between the two methods (Pearson's correlation=0.915); however, the manual use of imaging software showed a consistent negative bias. Reproducibility of the analysis methods was tested by providing the same images to naive evaluators who previously never used the software; no significant difference (P=0.099) was found among evaluators. Using the R package countcolors takes less time than does manually measuring the fluorescence in image analysis software, and our results showed that countcolors can improve the accuracy when quantifying the area of P. destructans infection in bat wing-membranes.
Collapse
|
48
|
Garzoli L, Bozzetta E, Varello K, Cappelleri A, Patriarca E, Debernardi P, Riccucci M, Boggero A, Girometta C, Picco AM. White-Nose Syndrome Confirmed in Italy: A Preliminary Assessment of Its Occurrence in Bat Species. J Fungi (Basel) 2021; 7:192. [PMID: 33803110 PMCID: PMC8000523 DOI: 10.3390/jof7030192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although no mass mortality has been recorded so far, the precise demographic effect of white-nose syndrome (WNS) on European bats still remains to be ascertained. Following the first isolation of P. destructans in Italy, further surveys were performed to assess the distribution of the fungus in NW Italy and its effects on bats. Data were collected from March 2019 to April 2020 at sites used for hibernation (six sites) and/or for reproduction (four sites) in Piedmont and Aosta Valley. A total of 138 bats, belonging to 10 species, were examined to identify clinical features possibly related to the fungal presence. Culture from swabs and the molecular identification of isolates confirmed the presence of P. destructans in bats from five sites, including two maternal roosts. Dermal fungal infiltration, the criterion to assess the presence of WNS, was observed in biopsies of bats belonging to Myotis blythii, M. daubentonii, M. emarginatus and M. myotis. This is the first report of the disease in Italy. The results suggest a greater susceptibility to the infection of the genus Myotis and particularly of M. emarginatus, possibly due to the long length of its hibernation period. Other fungal dermatophytes were also observed.
Collapse
Affiliation(s)
- Laura Garzoli
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Elena Bozzetta
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Katia Varello
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Andrea Cappelleri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy;
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, 20139 Milan, Italy
| | - Elena Patriarca
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Paolo Debernardi
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Marco Riccucci
- Zoological Section «La Specola», Museum of Natural History of the University of Florence, 50125 Florence, Italy;
| | - Angela Boggero
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Carolina Girometta
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| |
Collapse
|
49
|
Landscape Genetic Connectivity and Evidence for Recombination in the North American Population of the White-Nose Syndrome Pathogen, Pseudogymnoascus destructans. J Fungi (Basel) 2021; 7:jof7030182. [PMID: 33802538 PMCID: PMC8001231 DOI: 10.3390/jof7030182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
White-Nose Syndrome is an ongoing fungal epizootic caused by epidermal infections of the fungus, Pseudogymnoascus destructans (P. destructans), affecting hibernating bat species in North America. Emerging early in 2006 in New York State, infections of P. destructans have spread to 38 US States and seven Canadian Provinces. Since then, clonal isolates of P. destructans have accumulated genotypic and phenotypic variations in North America. Using microsatellite and single nucleotide polymorphism markers, we investigated the population structure and genetic relationships among P. destructans isolates from diverse regions in North America to understand its pattern of spread, and to test hypotheses about factors that contribute to transmission. We found limited support for genetic isolation of P. destructans populations by geographic distance, and instead identified evidence for gene flow among geographic regions. Interestingly, allelic association tests revealed evidence for recombination in the North American P. destructans population. Our landscape genetic analyses revealed that the population structure of P. destructans in North America was significantly influenced by anthropogenic impacts on the landscape. Our results have important implications for understanding the mechanism(s) of P. destructans spread.
Collapse
|
50
|
Abstract
The recent introduction of Pseudogymnoascus destructans (the fungal pathogen that causes white-nose syndrome in bats) from Eurasia to North America has resulted in the collapse of North American bat populations and restructured species communities. The long evolutionary history between P. destructans and bats in Eurasia makes understanding host life history essential to uncovering the ecology of P. destructans. In this Review, we combine information on pathogen and host biology to understand the patterns of P. destructans spread, seasonal transmission ecology, the pathogenesis of white-nose syndrome and the cross-scale impact from individual hosts to ecosystems. Collectively, this research highlights how early pathogen detection and quantification of host impacts has accelerated the understanding of this newly emerging infectious disease.
Collapse
|