1
|
Deng M, Li X, Shi D, Fan Q, Zhang H, Wang Z, Wang Y, Xiao Z. iTRAQ-Based Serum Proteomic Analysis Reveals Multifactorial Cellular Function Impairment and Aggravated Systematic Inflammation in Drug-free Obsessive-Compulsive Disorders. ACS Chem Neurosci 2024; 15:3053-3063. [PMID: 39120470 DOI: 10.1021/acschemneuro.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental disorder with obvious difficulties in treatment. Its pathogenesis has not been fully elucidated. Further understanding of etiology and mechanism needs to be explored further. We employed the isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to compare serum proteome profile between OCD patients and healthy controls, in order to find out the possible mechanism of OCD in the downstream biological process. Eighty-one drug-free OCD patients and 78 healthy controls were enrolled. A total of 475 proteins were identified. Totally, 80 proteins with p < 0.05 were selected for gene set enrichment analysis (GSEA), and only those with a fold change ≥1.2 and q value <0.2 between groups were accepted as differentially expressed proteins (DEPs). We observed a significant enrichment of immuno-inflammation-related pathways, along with intriguing expression trends that immuno-inflammation-related proteins were upregulated in GSEA. After that, 2 up-regulated proteins and 13 down-regulated ones were accepted as DEP. According to the available literature, most of the DEPs have not been reported in OCD. These DEPs were enriched in 121 gene ontology (GO) terms, including hepatocyte growth factor receptor activity, angiogenin-PRI complex, and so on. DEPs were enriched in pathways including adherens junction in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Alterations in DEPs including STXBP5L, GRN, and ANG were validated in OCD animal models. Our study suggested that OCD patients manifested multifactorial impairment in neuronal or non-neuronal cellular function under the inflammatory background. Further research employing larger sample sizes, longitudinal design, stratified analysis, and multiomics methodology will be needed. Experiments in laboratories were essential in illuminating the mechanism.
Collapse
Affiliation(s)
- Miaohan Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dongdong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haiyin Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zeping Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
2
|
Park HY, Lee GS, Go J, Ryu YK, Lee CH, Moon JH, Kim KS. Angiotensin-converting enzyme inhibition prevents l-dopa-induced dyskinesia in a 6-ohda-induced mouse model of Parkinson's disease. Eur J Pharmacol 2024; 973:176573. [PMID: 38642669 DOI: 10.1016/j.ejphar.2024.176573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Parkinson's disease (PD) is characterised by severe movement defects and the degeneration of dopaminergic neurones in the midbrain. The symptoms of PD can be managed with dopamine replacement therapy using L-3, 4-dihydroxyphenylalanine (L-dopa), which is the gold standard therapy for PD. However, long-term treatment with L-dopa can lead to motor complications. The central renin-angiotensin system (RAS) is associated with the development of neurodegenerative diseases in the brain. However, the role of the RAS in dopamine replacement therapy for PD remains unclear. Here, we tested the co-treatment of the angiotensin-converting enzyme inhibitor (ACEI) with L-dopa altered L-dopa-induced dyskinesia (LID) in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Perindopril, captopril, and enalapril were used as ACEIs. The co-treatment of ACEI with L-dopa significantly decreased LID development in 6-OHDA-lesioned mice. In addition, the astrocyte and microglial transcripts involving Ccl2, C3, Cd44, and Iigp1 were reduced by co-treatment with ACEI and L-dopa in the 6-OHDA-lesioned striatum. In conclusion, co-treatment with ACEIs and L-dopa, such as perindopril, captopril, and enalapril, may mitigate the severity of L-DOPA-induced dyskinesia in a mouse model of PD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Guo X, Ma H, Cui Z, Zhao Q, Zhang Y, Jia L, Zhang L, Guo H, Zhang X, Zhang Y, Guan Y, Ma H. Chronic Intermittent Hypobaric Hypoxia Reduces Hypothalamic N-Methyl-d-Aspartate Receptor Activity and Sympathetic Outflow in Spontaneously Hypertensive Rats. High Alt Med Biol 2024; 25:77-88. [PMID: 38241485 DOI: 10.1089/ham.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Guo, Xinqi, Hongyu Ma, Ziye Cui, Qiyue Zhao, Ying Zhang, Lu Jia, Liping Zhang, Hui Guo, Xiangjian Zhang, Yi Zhang, Yue Guan, and Huijie Ma. Chronic intermittent hypobaric hypoxia reduces hypothalamic N-Methyl-d-Aspartate Receptor activity and sympathetic outflow in spontaneously hypertensive rats. High Alt Med Biol. 25:77-88, 2024. Objective: This study aims to determine the role of hypothalamic renin-angiotensin system (RAS) in the antihypertensive effect of chronic intermittent hypobaric hypoxia (CIHH). Methods: Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) received 35 days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h/day. The levels of RAS, blood pressure, and N-methyl-d-aspartate receptor (NMDAR) activities of hypothalamic paraventricular nucleus (PVN) presympathetic neurons from each group of rats were determined. Results: The systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure (MAP) of SHRs significantly decreased from the third week of CIHH treatment. This blood pressure reduction effect could be maintained for at least 2 weeks after stopping the CIHH treatment. CIHH treatment also attenuated the decrease in MAP and renal sympathetic nerve activity induced by hexamethonium administration in SHRs, but not in WKY rats. Furthermore, CIHH reversed the increase in serum angiotensin (Ang)II concentration and the expression of PVN angiotensin-converting enzyme (ACE) and AngII type 1 (AT1) receptors, as well as the decrease in serum Ang1-7 concentration and the expression of PVN ACE2 and Mas receptors in SHRs. In addition, the administration of CIHH resulted in a reduction in the frequency of miniature excitatory postsynaptic currents and amplitude of NMDAR current in PVN presympathetic neurons of SHRs, which means that CIHH decreased the pre- and postsynaptic NMDAR activity of PVN presympathetic neurons in SHRs. However, pretreatment with A779 (a Mas receptor blocker) or AngII abrogated the above effects. Meanwhile, Ang1-7 pretreatment mimicked the CIHH effect on pre- and postsynaptic NMDAR activity of presympathetic neurons in SHRs. Conclusions: Our data indicate that CIHH reduces pre- and postsynaptic NMDAR activity of PVN presympathetic neurons, sympathetic outflow, and blood pressure by decreasing the activity of the ACE/AngII/AT1 axis and increasing the activity of ACE2/Ang1-7/Mas axis in the hypothalamus in hypertension.
Collapse
Affiliation(s)
- Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ziye Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ying Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lu Jia
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
4
|
Scheinman SB, Tseng KY, Alford S, Tai LM. Higher Neuronal Facilitation and Potentiation with APOE4 Suppressed by Angiotensin II. RESEARCH SQUARE 2023:rs.3.rs-2960437. [PMID: 37292788 PMCID: PMC10246245 DOI: 10.21203/rs.3.rs-2960437/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aβ are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.
Collapse
Affiliation(s)
| | - Kuei Y Tseng
- University of Illinois at Chicago College of Medicine
| | - Simon Alford
- University of Illinois at Chicago College of Medicine
| | - Leon M Tai
- University of Illinois at Chicago College of Medicine
| |
Collapse
|
5
|
Zhou JJ, Shao JY, Chen SR, Pan HL. Calcineurin Controls Hypothalamic NMDA Receptor Activity and Sympathetic Outflow. Circ Res 2022; 131:345-360. [PMID: 35862168 PMCID: PMC9357136 DOI: 10.1161/circresaha.122.320976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Hypertension is a common and serious adverse effect of calcineurin inhibitors, including cyclosporine and tacrolimus (FK506). Although increased sympathetic nerve discharges are associated with calcineurin inhibitor–induced hypertension, the sources of excess sympathetic outflow and underlying mechanisms remain elusive. Calcineurin (protein phosphatase-2B) is broadly expressed in the brain, including the paraventricular nuclear (PVN) of the hypothalamus, which is critically involved in regulating sympathetic vasomotor tone.
Objective:
We determined whether prolonged treatment with the calcineurin inhibitor causes elevated sympathetic output and persistent hypertension by potentiating synaptic N-methyl-D-aspartate (NMDA) receptor activity in the PVN.
Methods and Results:
Telemetry recordings showed that systemic administration of FK506 (3 mg/kg per day) for 14 days caused a gradual and profound increase in arterial blood pressure in rats, which lasted at least 7 days after discontinuing FK506 treatment. Correspondingly, systemic treatment with FK506 markedly reduced calcineurin activity in the PVN and circumventricular organs, but not rostral ventrolateral medulla, and increased the phosphorylation level and synaptic trafficking of NMDA receptors in the PVN. Immunocytochemistry labeling showed that calcineurin was expressed in presympathetic neurons in the PVN. Whole-cell patch-clamp recordings in brain slices revealed that treatment with FK506 increased baseline firing activity of PVN presympathetic neurons; this increase was blocked by the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Also, treatment with FK506 markedly increased presynaptic and postsynaptic NMDA receptor activity of PVN presympathetic neurons. Furthermore, microinjection of the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist into the PVN of anesthetized rats preferentially attenuated renal sympathetic nerve discharges and blood pressure elevated by FK506 treatment. In addition, systemic administration of memantine, a clinically used NMDA receptor antagonist, effectively attenuated FK506 treatment–induced hypertension in conscious rats.
Conclusions:
Our findings reveal that normal calcineurin activity in the PVN constitutively restricts sympathetic vasomotor tone via suppressing NMDA receptor activity, which may be targeted for treating calcineurin inhibitor–induced hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Bigalke JA, Gao H, Chen QH, Shan Z. Activation of Orexin 1 Receptors in the Paraventricular Nucleus Contributes to the Development of Deoxycorticosterone Acetate-Salt Hypertension Through Regulation of Vasopressin. Front Physiol 2021; 12:641331. [PMID: 33633591 PMCID: PMC7902066 DOI: 10.3389/fphys.2021.641331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Salt-sensitivity is a major factor in the development of hypertension. The brain orexin system has been observed to play a role in numerous hypertensive animal models. However, orexin’s role in the pathology of salt-sensitive hypertension (SSH) remains to be adequately explored. We assessed the impact of orexin hyperactivity in the pathogenesis of the deoxycorticosterone acetate (DOCA) – salt rat model, specifically through modulation of Arginine Vasopressin (AVP). Adult male rats were separated into three groups: vehicle control, DOCA-salt, and DOCA-salt+OX1R-shRNA. DOCA-salt rats received subcutaneous implantation of a 21-day release, 75 mg DOCA pellet in addition to saline drinking water (1% NaCl and 0.2% KCl). DOCA-salt+OX1R-shRNA rats received bilateral microinjection of AAV2-OX1R-shRNA into the paraventricular nucleus (PVN) to knockdown function of the Orexin 1-Receptor (OX1R) within that area. Following 2-week to allow full transgene expression, a DOCA pellet was administered in addition to saline drinking solution. Vehicle controls received sham DOCA implantation but were given normal water. During the 3-week DOCA-salt or sham treatment period, mean arterial pressure (MAP) and heart rate (HR) were monitored utilizing tail-cuff plethysmography. Following the 3-week period, rat brains were collected for either PCR mRNA analysis, as well as immunostaining. Plasma samples were collected and subjected to ELISA analysis. In line with our hypothesis, OX1R expression was elevated in the PVN of DOCA-salt treated rats when compared to controls. Furthermore, following chronic knockdown of OX1R, the hypertension development normally induced by DOCA-salt treatment was significantly diminished in the DOCA-salt+OX1R-shRNA group. A concurrent reduction in PVN OX1R and AVP mRNA was observed in concert with the reduced blood pressure following AAV2-OX1R-shRNA treatment. Similarly, plasma AVP concentrations appeared to be reduced in the DOCA-salt+OX1R-shRNA group when compared to DOCA-salt rats. These results indicate that orexin signaling, specifically through the OX1R in the PVN are critical for the onset and maintenance of hypertension in the DOCA-salt model. This relationship is mediated, at least in part, through orexin activation of AVP producing neurons, and the subsequent release of AVP into the periphery. Our results outline a promising mechanism underlying the development of SSH through interactions with the brain orexin system.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Department of Psychology, Montana State University, Bozeman, MT, United States
| | - Huanjia Gao
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
7
|
Corrêa DG, de Souza Lima FC, da Cruz Bezerra D, Coutinho AC, Hygino da Cruz LC. COVID-19 associated with encephalomyeloradiculitis and positive anti-aquaporin-4 antibodies: Cause or coincidence? Mult Scler 2020; 27:973-976. [PMID: 32909895 DOI: 10.1177/1352458520949988] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurologic complications are being recognized as important outcomes of coronavirus disease 2019 (COVID-19). Pathogenesis is varied and incompletely understood, and may include neuroinvasion, indirect post-infectious neuroinflammation, and cerebrovascular pathologies. We present a case of COVID-19-related encephalomyeloradiculitis with clinical and magnetic resonance imaging characteristics of neuromyelitis optica spectrum disorders that was associated with anti-aquaporin-4 antibodies. Our case suggests post-infectious autoimmunity as a mechanism in at least a subset of patients with COVID-19-related neurologic disease.
Collapse
Affiliation(s)
- Diogo Goulart Corrêa
- Department of Radiology, Clínica de Diagnóstico por Imagem (CDPI)/DASA, Rio de Janeiro, Brazil/Department of Radiology, Hospital Universitário Antônio Pedro, Federal Fluminense University, Niterói, Brazil
| | | | - Daniel da Cruz Bezerra
- Department of Neurology, Hospital Samaritano, Rio de Janeiro, Brazil/Department of Neurology, Hospital Pró-Cardíaco, Rio de Janeiro, Brazil
| | - Antônio Carlos Coutinho
- Department of Radiology, Clínica de Diagnóstico por Imagem (CDPI)/DASA, Rio de Janeiro, Brazil/Department of Radiology, Fátima Digittal, Casa de Saúde Nossa Senhora de Fátima, Nova Iguaçu, Brazil
| | | |
Collapse
|
8
|
Dupont AG, Légat L. GABA is a mediator of brain AT 1 and AT 2 receptor-mediated blood pressure responses. Hypertens Res 2020; 43:995-1005. [PMID: 32451494 DOI: 10.1038/s41440-020-0470-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
The nucleus tractus solitarius (NTS), paraventricular nucleus (PVN), and rostral ventrolateral medulla (RVLM) are the most targeted regions of central blood pressure control studies. Glutamate and gamma-aminobutyric acid (GABA) interact within these brain regions to modulate blood pressure. The brain renin-angiotensin system also participates in central blood pressure control. Angiotensin II increases blood pressure through the stimulation of angiotensin II type 1 (AT1) receptors within the PVN and RVLM and attenuates baroreceptor sensitivity, resulting in elevated blood pressure within the NTS. Angiotensin II type 2 (AT2) receptors in cardiovascular control centers in the brain also appear to be involved in blood pressure control and counteract AT1 receptor-mediated effects. The current review is focused on the interaction of GABA with AT1 and AT2 receptors in the control of blood pressure within the RVLM, PVN and NTS. Within the NTS, GABA is released from local GABAergic interneurons that are stimulated by local AT1 receptors and mediates a hypertensive response. In contrast, the local increase in GABA levels observed after AT2 receptor stimulation within the RVLM, likely from GABAergic nerve endings originating in the caudal ventrolateral medulla, is important in the mediation of the hypotensive response. Preliminary results suggest that the hypertensive response to AT1 receptor stimulation within the RVLM is associated with a reduction in GABA release. The current experimental evidence therefore indicates that GABA is an important mediator of brainstem responses to AT1 and AT2 receptor stimulation and that increased GABA release may play a role in hypertensive and hypotensive responses, depending on the site of action.
Collapse
Affiliation(s)
- Alain G Dupont
- Department of Pharmacology, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences, (C4N) Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Laura Légat
- Department of Pharmacology, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences, (C4N) Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium.
| |
Collapse
|
9
|
Angiotensin-Receptor-Associated Protein Modulates Ca 2+ Signals in Photoreceptor and Mossy Fiber cells. Sci Rep 2019; 9:19622. [PMID: 31873081 PMCID: PMC6928155 DOI: 10.1038/s41598-019-55380-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022] Open
Abstract
Fast, precise and sustained neurotransmission requires graded Ca2+ signals at the presynaptic terminal. Neurotransmitter release depends on a complex interplay of Ca2+ fluxes and Ca2+ buffering in the presynaptic terminal that is not fully understood. Here, we show that the angiotensin-receptor-associated protein (ATRAP) localizes to synaptic terminals throughout the central nervous system. In the retinal photoreceptor synapse and the cerebellar mossy fiber-granule cell synapse, we find that ATRAP is involved in the generation of depolarization-evoked synaptic Ca2+ transients. Compared to wild type, Ca2+ imaging in acutely isolated preparations of the retina and the cerebellum from ATRAP knockout mice reveals a significant reduction of the sarcoendoplasmic reticulum (SR) Ca2+-ATPase (SERCA) activity. Thus, in addition to its conventional role in angiotensin signaling, ATRAP also modulates presynaptic Ca2+ signaling within the central nervous system.
Collapse
|
10
|
Costa-Ferreira W, Gomes-de-Souza L, Crestani CC. AT2 and MAS (but not AT1) angiotensinergic receptors in the medial amygdaloid nucleus modulate the baroreflex activity in rats. Pflugers Arch 2019; 471:1173-1182. [DOI: 10.1007/s00424-019-02301-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/27/2023]
|
11
|
Ma H, Chen SR, Chen H, Pan HL. Endogenous AT1 receptor-protein kinase C activity in the hypothalamus augments glutamatergic input and sympathetic outflow in hypertension. J Physiol 2019; 597:4325-4340. [PMID: 31241170 PMCID: PMC6697190 DOI: 10.1113/jp278427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The angiotensin AT1 receptor expression and protein kinase C (PKC)-mediated NMDA receptor phosphorylation levels in the hypothalamus are increased in a rat genetic model of hypertension. Blocking AT1 receptors or PKC activity normalizes the increased pre- and postsynaptic NMDA receptor activity of hypothalamic presympathetic neurons in hypertensive animals. Inhibition of AT1 receptor-PKC activity in the hypothalamus reduces arterial blood pressure and sympathetic nerve discharges in hypertensive animals. AT1 receptors in the hypothalamus are endogenously activated to sustain NMDA receptor hyperactivity and elevated sympathetic outflow via PKC in hypertension. ABSTRACT Increased synaptic N-methyl-d-aspartate receptor (NMDAR) activity in the hypothalamic paraventricular nucleus (PVN) plays a major role in elevated sympathetic output in hypertension. Although exogenous angiotensin II (AngII) can increase NMDAR activity in the PVN, whether endogenous AT1 receptor-protein kinase C (PKC) activity mediates the augmented NMDAR activity of PVN presympathetic neurons in hypertension is unclear. Here we show that blocking AT1 receptors with losartan or inhibiting PKC with chelerythrine significantly decreased the frequency of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of puff NMDA currents of retrogradely labelled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs). Also, treatment with chelerythrine abrogated the potentiating effect of AngII on mEPSCs and puff NMDA currents of labelled PVN neurons in SHRs. In contrast, neither losartan nor chelerythrine had any effect on mEPSCs or puff NMDA currents in labelled PVN neurons in Wistar-Kyoto (WKY) rats. Furthermore, levels of AT1 receptor mRNA and PKC-mediated NMDAR phosphorylation in the PVN were significantly higher in SHRs than in WKY rats. In addition, microinjection of losartan or chelerythrine into the PVN substantially reduced blood pressure and renal sympathetic nerve discharges in SHRs but not in WKY rats. Chelerythrine blocked sympathoexcitatory responses to AngII microinjected into the PVN. Our findings suggest that endogenous AT1 receptor-PKC activity is essential for presynaptic and postsynaptic NMDAR hyperactivity of PVN presympathetic neurons and for the augmented sympathetic outflow in hypertension. This information advances our mechanistic understanding of the interplay between angiotensinergic and glutamatergic excitatory inputs in hypertension.
Collapse
Affiliation(s)
- Huijie Ma
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system. Clin Sci (Lond) 2019; 133:1097-1113. [PMID: 31015358 PMCID: PMC6833955 DOI: 10.1042/cs20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Environmental temperature plays a role in the variation of blood pressure. Maternal cold stress could affect the physiological phenotype of the offspring, including blood pressure elevation. In the present study, we found that adult offspring of dams exposed to cold have increased systolic and diastolic blood pressure, and decreased urine volume and sodium excretion, accompanied by increased heart rate and heart rate variability, secondary to increased activity of the sympathetic nervous system. Renal denervation or adrenergic receptor blockade decreased blood pressure and increased sodium excretion. The increase in peripheral sympathetic nerve activity can be ascribed to the central nervous system because administration of clonidine, a centrally acting α2 adrenergic receptor agonist, lowered blood pressure to a greater degree in the prenatal cold-exposed than control offspring. Moreover, these prenatal cold-exposed offspring had hypothalamic paraventricular nucleus (PVN) disorder because magnetic resonance spectroscopy showed decreased N-acetylaspartate and increased choline and creatine ratios in the PVN. Additional studies found that prenatal cold exposure impaired the balance between inhibitory and excitatory neurons. This led to PVN overactivation that was related to enhanced PVN-angiotensin II type 1 (AT1) receptor expression and function. Microinjection of the AT1 receptor antagonist losartan in the PVN lowered blood pressure to a greater extent in prenatal cold-exposed that control offspring. The present study provides evidence for overactive peripheral and central sympathetic nervous systems in the pathogenesis of prenatal cold-induced hypertension. Central AT1 receptor blockade in the PVN may be a key step for treatment of this type hypertension.
Collapse
|
13
|
Cheng L, Li P, Patel Y, Gong Y, Guo ZL, Wu H, Malik S, Tjen-A-Looi SC. Moxibustion Modulates Sympathoexcitatory Cardiovascular Reflex Responses Through Paraventricular Nucleus. Front Neurosci 2019; 12:1057. [PMID: 30718997 PMCID: PMC6348372 DOI: 10.3389/fnins.2018.01057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Electroacupuncture (EA) point specific (ST36-37) stimulation decreases cardiovascular reflex responses through supraspinal regions such as the hypothalamic paraventricular nucleus (PVN) while mechanical stimulation of acupoints decreases pressor responses through peripheral thermal transient receptor potential vanilloid type-1 (TRPV1). Moxibustion generating heat applied at acupoint in combination with antihypertensive drugs decreases elevated blood pressure. We hypothesized that moxibustion modulates sympathoexcitatory cardiovascular responses through the hypothalamic PVN and peripheral heat sensitive TRPV1 in the absence of antihypertensive drugs. Rats were anesthetized, ventilated, and heart rate and mean blood pressure were monitored. Gastric distention induced consistent pressor reflex responses every 10-min. Thirty-minutes of bilateral moxibustion at the acupoint ST36, overlying the deep peroneal nerves, reduced the gastric distention evoked elevation in blood pressure. Blood pressure reflex responses were not reduced by both EA and moxibustion at G39. The moxibustion inhibition but not EA inhibition of the cardiovascular responses was reversed with blockade of local heat sensitive TRPV1 at ST36. Accordingly, activation of thermal TRPV1 by moxibustion at an average of 44.2°C in contrast to 40°C reduced the pressor responses. Naloxone, an opioid receptor antagonist, microinjected into PVN inhibited transiently the effect of moxibustion. Thus, activation of peripheral heat sensitive TRPV1 mediated the moxibustion-inhibition, but not EA-inhibition, of sympathoexcitatory cardiovascular reflex responses through hypothalamic PVN opioid system.
Collapse
Affiliation(s)
- Ling Cheng
- Eastern Hospital Affiliated to Tongji University, Shanghai, China
| | - Peng Li
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Yash Patel
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Yiwei Gong
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Zhi-Ling Guo
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Huangan Wu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| | - Stephanie C. Tjen-A-Looi
- Susan Samueli Integrative Health Institute, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Malek M. Brain consequences of acute kidney injury: Focusing on the hippocampus. Kidney Res Clin Pract 2018; 37:315-322. [PMID: 30619687 PMCID: PMC6312775 DOI: 10.23876/j.krcp.18.0056] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
The high mortality rates associated with acute kidney injury are mainly due to extra-renal complications that occur following distant-organ involvement. Damage to these organs, which is commonly referred to as multiple organ dysfunction syndrome, has more severe and persistent effects. The brain and its sub-structures, such as the hippocampus, are vulnerable organs that can be adversely affected. Acute kidney injury may be associated with numerous brain and hippocampal complications, as it may alter the permeability of the blood-brain barrier. Although the pathogenesis of acute uremic encephalopathy is poorly understood, some of the underlying mechanisms that may contribute to hippocampal involvement include the release of multiple inflammatory mediators that coincide with hippocampus inflammation and cytotoxicity, neurotransmitter derangement, transcriptional dysregulation, and changes in the expression of apoptotic genes. Impairment of brain function, especially of a structure that has vital activity in learning and memory and is very sensitive to renal ischemic injury, can ultimately lead to cognitive and functional complications in patients with acute kidney injury. The objective of this review was to assess these complications in the brain following acute kidney injury, with a focus on the hippocampus as a critical region for learning and memory.
Collapse
Affiliation(s)
- Maryam Malek
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Angiotensin II-mediated suppression of synaptic proteins in mouse hippocampal neuronal HT22 cell was inhibited by propofol: role of calcium signaling pathway. J Anesth 2018; 32:856-865. [DOI: 10.1007/s00540-018-2565-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
|
16
|
Angiotensin II facilitates GABAergic neurotransmission at postsynaptic sites in rat amygdala neurons. Neuropharmacology 2018; 133:334-344. [PMID: 29447844 DOI: 10.1016/j.neuropharm.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022]
Abstract
The central nucleus of the amygdala (CeA) is critical in the regulation of sodium appetite. Angiotensin II (Ang II) is important in the generation of sodium appetite and may function as a neurotransmitter or modulator to affect the synaptic transmission and the excitability of neurons. However, the role of Ang II in the CeA remains unclear. In this study, we determined the effects of Ang II on the excitatory and inhibitory synaptic inputs to the CeA neurons in brain slices with whole-cell patch-clamp recordings. Ang II (0.5-5 μM) significantly potentiated the amplitude of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) in a concentration-dependent manner. Ang II (2 μM) significantly increased the amplitude of miniature GABAergic inhibitory postsynaptic currents (mIPSCs) without affecting the frequency. This effect was blocked by Ang II type 1 (AT1) receptor antagonist, losartan. One mM guanosine 5'-O-(-2-thiodiphosphate) (GDP-β-s) in the pipette internal solution eliminated the facilitatory effect of Ang II on GABAergic synaptic transmission. In contrast, Ang II had no effect on the spontaneous glutamatergic excitatory postsynaptic currents (EPSCs) and did not alter the frequency and amplitude of miniature EPSCs at concentrations that facilitated IPSCs. Furthermore, Ang II decreased the firing activity of CeA neurons, and this effect was abolished by losartan and GDP-β-s. In addition, Ang II failed to inhibit CeA neurons in the presence of bicuculline. These data provide substantial new evidence that Ang II inhibits the CeA neurons by facilitation of GABAergic synaptic input efficacy through activation of postsynaptic AT1 receptors.
Collapse
|
17
|
Légat L, Brouwers S, Smolders IJ, Dupont AG. Hypotensive Response to Angiotensin II Type 2 Receptor Stimulation in the Rostral Ventrolateral Medulla Requires Functional GABA-A Receptors. Front Neurosci 2017; 11:346. [PMID: 28674483 PMCID: PMC5474467 DOI: 10.3389/fnins.2017.00346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Objectives: Angiotensin II, glutamate and gamma-aminobutyric acid (GABA) interact within the rostral ventrolateral medulla (RVLM) and the paraventricular nucleus (PVN) modulating the central regulation of blood pressure and sympathetic tone. Our aim was to assess the effects of local angiotensin II type 2 receptor stimulation within the RVLM and the PVN on neurotransmitter concentrations and mean arterial pressure (MAP). Methods:In vivo microdialysis was used for measurement of extracellular glutamate and GABA levels and for local infusion of the angiotensin II type 2 receptor agonist Compound 21 in the RVLM and the PVN of conscious normotensive Wistar rats. The MAP response to local Compound 21 was monitored with a pressure transducer under anaesthesia. Angiotensin II type 2 receptor selectivity was assessed using the angiotensin II type 2 receptor antagonist PD123319; the GABA-A receptor antagonist bicuculline was used to assess the involvement of GABA-A receptors. Results: Infusion of Compound 21 (0.05 μg/μl/h) in the RVLM significantly increased GABA levels and lowered blood pressure. These effects were abolished by co-infusion with PD123319. No changes in neurotransmitter levels or effects on blood pressure were seen with PD123319 infusion alone. Co-infusion of bicuculline abolished the Compound 21 evoked decrease in MAP. Infusion of Compound 21 within the PVN did not change extracellular neurotransmitter levels nor MAP. Conclusion: Selective stimulation of angiotensin II type 2 receptor within the RVLM by local Compound 21 infusion reduces blood pressure and increases local GABA levels in normotensive rats. This hypotensive response requires functional GABA-A receptors, suggesting that GABAergic neurons are involved in the sympatho-inhibitory action underlying this hypotensive response.
Collapse
Affiliation(s)
- Laura Légat
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis BrusselBrussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis BrusselBrussels, Belgium
| | - Sofie Brouwers
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis BrusselBrussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis BrusselBrussels, Belgium
| | - Ilse J Smolders
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium
| | - Alain G Dupont
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit BrusselBrussels, Belgium.,Cardiovascular Center, Universitair Ziekenhuis BrusselBrussels, Belgium.,Department of Clinical Pharmacology and Clinical Pharmacy, Universitair Ziekenhuis BrusselBrussels, Belgium
| |
Collapse
|
18
|
Moura AG, Pires W, Leite LH, da Cunha DNQ, Peçanha T, de Lima JRP, Natali AJ, Prímola-Gomes TN. Power spectrum analysis of cardiovascular variability during passive heating in conscious rats. J Therm Biol 2016; 62:20-29. [DOI: 10.1016/j.jtherbio.2016.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/05/2016] [Accepted: 08/22/2016] [Indexed: 11/28/2022]
|
19
|
|
20
|
Tjen-A-Looi SC, Guo ZL, Fu LW, Longhurst JC. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture. Sci Rep 2016; 6:25910. [PMID: 27181844 PMCID: PMC4867624 DOI: 10.1038/srep25910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism.
Collapse
Affiliation(s)
- Stephanie C. Tjen-A-Looi
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| | - Zhi-Ling Guo
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| | - Liang-Wu Fu
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| | - John C. Longhurst
- Susan Samueli Center for Integrative Medicine School of Medicine, Univ. of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Palmirotta R, Barbanti P, Ludovici G, De Marchis ML, Ialongo C, Egeo G, Aurilia C, Fofi L, Abete P, Spila A, Ferroni P, Della-Morte D, Guadagni F. Association between migraine and ACE gene (insertion/deletion) polymorphism: the BioBIM study. Pharmacogenomics 2015; 15:147-55. [PMID: 24444405 DOI: 10.2217/pgs.13.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM In the present case-control study, we investigated the correlation between the common ACE insertion/deletion (I/D) polymorphism and migraine. MATERIALS & METHODS Genotyping of the ACE I/D variant was performed in 502 Caucasian patients with migraine and 323 age-, sex- and race/ethnicity-matched healthy controls. We investigated associations between ACE genetic variants and sociodemographic and/or clinical features of migraineurs. RESULTS We found a significant association between ACE insertion/insertion (I/I) polymorphism and lower use of pharmacological prophylaxis in migraine patients with aura and in those with chronic migraine. Moreover, ACE I/I polymorphism was significantly more common in migraine patients with aura who had a negative family history of migraine. CONCLUSION Our data suggest that although the ACE I/D polymorphism is not a direct risk factor for migraine, the ACE I/I genotype may influence the clinical feature of this disease being associated with reduced use of prophylactic agents in patients with migraine with aura and in those with chronic migraine.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Interinstitutional Multidisciplinary BioBank (BioBIM), Department of Advanced Biotechnologies & Bioimaging, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chao J, Gao J, Parbhu KJK, Gao L. Angiotensin type 2 receptors in the intermediolateral cell column of the spinal cord: negative regulation of sympathetic nerve activity and blood pressure. Int J Cardiol 2013; 168:4046-55. [PMID: 23871345 DOI: 10.1016/j.ijcard.2013.06.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/07/2013] [Accepted: 06/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous study demonstrated that AT2R in brainstem nuclei participated in the regulation of sympathetic outflow and cardiovascular function. However, the functional significance of AT2R in the intermediolateral cell column (IML) of the thoracic spinal cord in normal rats remains elusive. We hypothesized that AT2R activation in the IML exerts a sympatho-inhibitory effect. METHODS AND RESULTS Using Western-blot analysis, immunohistochemical staining and quantitative real-time PCR, both AT1R and AT2R expressions were detected in the spinal cord. The highest AT2R protein expression was found in the IML, while AT1R expression didn't display regional differences within the gray matter. Microinjection of Ang II into the IML dose-dependently elevated mean blood pressure (MAP, employing a transducer-tipped catheter) and renal sympathetic nerve activity (RSNA, using a pair of platinum-iridium recording electrodes), which were completely abolished by Losartan, and attenuated by TEMPOL and apocynin. Activation of AT2R in the IML with CGP42112 evoked hypotension (ΔMAP: -21 ± 4 mmHg) and sympatho-inhibition (RSNA: 73 ± 3% of baseline), which were completely abolished by PD123319 and l-NAME. Blockade of AT2R in the IML with PD123319 significantly increased MAP (11 ± 1 mmHg) and sympathetic nerve activity (RSNA: 133 ± 13% of baseline). Moreover, PD123319 significantly enhanced the Ang II induced pressor response. Furthermore, in isolated IML neurons, CGP42112 treatment augmented potassium current and decreased resting membrane potential by employing whole-cell patch clamp. CONCLUSION In the normal condition, AT2R in the IML tonically inhibits sympathetic activity through an NO/NOS dependent pathway and subsequent potassium channel activation.
Collapse
Affiliation(s)
- Jie Chao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
23
|
Di Lorenzo C, Coppola G, Currà A, Grieco G, Santorelli FM, Lepre C, Porretta E, Pascale E, Pierelli F. Cortical response to somatosensory stimulation in medication overuse headache patients is influenced by angiotensin converting enzyme (ACE) I/D genetic polymorphism. Cephalalgia 2012; 32:1189-97. [PMID: 23053304 DOI: 10.1177/0333102412461890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Medication overuse headache (MOH) is a disabling health problem. Convincing evidence attributes a pathophysiologic role to central sensitization. By recording somatosensory evoked potentials (SSEPs) in patients with MOH, we observed increased sensitization and deficient habituation to repetitive sensory stimuli consistent with drug overuse. The renin-angiotensin system in the brain seems to play a relevant role in neural plasticity and dependence behavior. We therefore sought differences in SSEP sensitization and habituation in patients with MOH who underwent angiotensin converting enzyme (ACE) I/D polymorphism analysis. METHODS We recorded median-nerve SSEPs (two blocks of 100 sweeps) in 43 patients with MOH. We measured N20-P25 amplitudes, and assessed sensitization using the first block amplitudes, and habituation using amplitude changes between the two sequential blocks. According to their genotype, subjects were divided into three groups: "D/D", "D/I" and "I/I" carriers. RESULTS The habituation slope of the two SSEP block amplitudes was significantly increased in the D/D subgroup (n = 16) with respect to that of the I/I subgroup (n = 6), with the D/I subgroup (n = 21) falling in between. In D/D carriers, the habituation slope correlated positively with the duration of the overuse headache, and the first SSEP block amplitudes, a measure of sensitization, increased in strict relationship with the type of overused medication in the MOH patients overall and in the D/D subgroup; this was not so in the D/I and I/I subgroups. CONCLUSION In patients with MOH, the homozygote D/D ACE polymorphism influences habituation and sensitization to repeated sensory stimuli in strict relationship with medication overuse. We suggest that angiotensin peptides influence neuronal mechanisms of plasticity by interacting with central monoaminergic synaptic transmission.
Collapse
|
24
|
Restini C, Reis R, Costa-Neto C, Garcia-Cairasco N, Cortes-de-Oliveira J, Bendhack L. Role of endothelium on the abnormal Angiotensin-mediated vascular functions in epileptic rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbpc.2012.32019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Conner KR, Forbes ME, Lee WH, Lee YW, Riddle DR. AT1 receptor antagonism does not influence early radiation-induced changes in microglial activation or neurogenesis in the normal rat brain. Radiat Res 2011; 176:71-83. [PMID: 21545290 DOI: 10.1667/rr2560.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS) ameliorate cognitive deficits and some aspects of brain injury after whole-brain irradiation. We investigated whether treatment with the angiotensin II type 1 receptor antagonist L-158,809 at a dose that protects cognitive function after fractionated whole-brain irradiation reduced radiation-induced neuroinflammation and changes in hippocampal neurogenesis, well-characterized effects that are associated with radiation-induced brain injury. Male F344 rats received L-158,809 before, during and after a single 10-Gy dose of radiation. Expression of cytokines, angiotensin II receptors and angiotensin-converting enzyme 2 was evaluated by real-time PCR 24 h, 1 week and 12 weeks after irradiation. At the latter times, microglial density and proliferating and activated microglia were analyzed in the dentate gyrus of the hippocampus. Cell proliferation and neurogenesis were also quantified in the dentate subgranular zone. L-158,809 treatment modestly increased mRNA expression for Ang II receptors and TNF-α but had no effect on radiation-induced effects on hippocampal microglia or neurogenesis. Thus, although L-158,809 ameliorates cognitive deficits after whole-brain irradiation, the drug did not mitigate the neuroinflammatory microglial response or rescue neurogenesis. Additional studies are required to elucidate other mechanisms of normal tissue injury that may be modulated by RAAS blockers.
Collapse
Affiliation(s)
- Kelly R Conner
- Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Brain angiotensin II (Ang II) induces tonic sympathoexcitatory effects through AT1 receptor stimulation of glutamatergic neurons and sympathoinhibitory effects via GABAergic neurons in the rostral ventrolateral medulla, the brainstem 'pressor area'. NADPH-derived superoxide production and reactive oxygen species signalling is critical in these actions, and AT2 receptors in the rostral ventrolateral medulla appear to mediate opposing effects on sympathetic outflow. In the hypothalamic paraventricular nucleus, Ang II has AT1 receptor-mediated sympathoexcitatory effects and enhances nitric oxide formation, which in turn inhibits the Ang II effects through a GABAergic mechanism. Ang II also decreases the tonic sympathoinhibitory effect of gamma amino butyric acid within the paraventricular nucleus. Angiotensin III and Angiotensin IV increase blood pressure via brain AT1 receptor stimulation. Angiotensin (1-7) influences cardiovascular function through a specific Mas-receptor. This review examines the evidence that brain angiotensin peptides, glutamate, gamma amino butyric acid and nitric oxide interact within the rostral ventrolateral medulla and paraventricular nucleus to control sympathetic tone and blood pressure.
Collapse
|
27
|
Effect of acute stress on sexual behavior in female rats: Participation of the central angiotensinergic system. Behav Brain Res 2010; 207:429-33. [DOI: 10.1016/j.bbr.2009.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 11/23/2022]
|
28
|
Conner KR, Payne VS, Forbes ME, Robbins ME, Riddle DR. Effects of the AT1 receptor antagonist L-158,809 on microglia and neurogenesis after fractionated whole-brain irradiation. Radiat Res 2010; 173:49-61. [PMID: 20041759 DOI: 10.1667/rr1821.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction develops in approximately 50% of patients who receive fractionated whole-brain irradiation and survive 6 months or more. The mechanisms underlying these deficits are unknown. A recent study demonstrated that treatment with the angiotensin II type 1 receptor antagonist (AT(1)RA) L-158,809 before, during and after fractionated whole-brain irradiation prevents or ameliorates radiation-induced cognitive deficits in adult rats. Given that (1) AT(1)RAs may function as anti-inflammatory drugs, (2) inflammation is thought to contribute to radiation injury, and (3) radiation-induced inflammation alters progenitor cell populations, we tested whether the cognitive benefits of L-158,809 treatment were associated with amelioration of the sustained neuroinflammation and changes in neurogenesis that are induced by fractionated whole-brain irradiation. In rats examined 28 and 54 weeks after irradiation, L-158,809 treatment did not alter the effects of radiation on the number and activation of microglia in the perirhinal cortex and hippocampus, nor did it prevent the radiation-induced decrease in proliferating cells and immature neurons in the hippocampus. These findings suggest that L-158,809 does not prevent or ameliorate radiation-induced cognitive deficits by modulation of chronic inflammatory mechanisms, but rather may reduce radiation-induced changes that occur earlier in the postirradiation period and that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Kelly R Conner
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | | | |
Collapse
|
29
|
Cuadra AE, Shan Z, Sumners C, Raizada MK. A current view of brain renin-angiotensin system: Is the (pro)renin receptor the missing link? Pharmacol Ther 2010; 125:27-38. [PMID: 19723538 PMCID: PMC2815255 DOI: 10.1016/j.pharmthera.2009.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) plays a central role in the brain to regulate blood pressure (BP). This role includes the modulation of sympathetic nerve activity (SNA) that regulates vascular tone; the regulation of secretion of neurohormones that have a critical role in electrolyte as well as fluid homeostasis; and by influencing behavioral processes to increase salt and water intake. Based on decades of research it is clear that angiotensin II (Ang II), the major bioactive product of the RAS, mediates these actions largely via its Ang II type 1 receptor (AT1R), located within hypothalamic and brainstem control centers. However, the mechanisms of brain RAS function have been questioned, due in large part to low expression levels of the rate limiting enzyme renin within the central nervous system. Tissue localized RAS has been observed in heart, kidney tubules and vascular cells. Studies have also given rise to the hypothesis for localized RAS function within the brain, so that Ang II can act in a paracrine manner to influence neuronal activity. The recently discovered (pro)renin receptor (PRR) may be key in this mechanism as it serves to sequester renin and prorenin for localized RAS activity. Thus, the PRR can potentially mitigate the low levels of renin expression in the brain to propagate Ang II action. In this review we examine the regulation, expression and functional properties of the various RAS components in the brain with particular focus on the different roles that PRR may have in BP regulation and hypertension.
Collapse
Affiliation(s)
- Adolfo E Cuadra
- University of Florida College of Medicine, Department of Physiology and Functional Genomics, 100274 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
30
|
Wright JW, Harding JW. The brain angiotensin IV/AT4receptor system as a new target for the treatment of Alzheimer's disease. Drug Dev Res 2009. [DOI: 10.1002/ddr.20328] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Small but powerful: short peptide hormones and their role in autoimmune inflammation. J Neuroimmunol 2009; 217:1-7. [PMID: 19748684 DOI: 10.1016/j.jneuroim.2009.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/19/2009] [Indexed: 12/31/2022]
Abstract
In the recent years, it has become increasingly clear that the immune response is also influenced by mediators which were first discovered as regulators in the nervous or also cardiovascular system. Here, small peptide hormones may play an important role. Kinins like bradykinins act on the endothelium and play a role for trafficking of lymphocytes over the blood-brain barrier. Neuropeptides like vasoactive intestinal peptide or neuropeptide Y also directly act on T cells and favour the differentiation of Th2 cells or regulatory T cell populations. Recently, the renin-angiotensin system (RAS) came into the focus of interest. Inhibition of the RAS at different levels may influence autoimmune responses and involve T cells as well as antigen-presenting cells, probably via different signalling pathways. Inhibitors of angiotensin converting enzyme and antagonists of the angiotensin 1 receptors are used in the treatment of hypertension, kidney disease or stroke by millions of people worldwide. These inexpensive and safe pharmaceuticals may also represent an interesting and innovative approach for the (combination) treatment of autoimmune diseases like multiple sclerosis.
Collapse
|
32
|
De Bundel D, Smolders I, Vanderheyden P, Michotte Y. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 2009; 14:315-39. [PMID: 19040556 DOI: 10.1111/j.1755-5949.2008.00057.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The central angiotensin system plays a crucial role in cardiovascular regulation. More recently, angiotensin peptides have been implicated in stress, anxiety, depression, cognition, and epilepsy. Angiotensin II (Ang II) exerts its actions through AT(1) and AT(2) receptors, while most actions of its metabolite Ang IV were believed to be independent of AT(1) or AT(2) receptor activation. A specific binding site with high affinity for Ang IV was discovered and denominated "AT(4) receptor". The beneficiary effects of AT(4) ligands in animal models for cognitive impairment and epileptic seizures initiated the search for their mechanism of action. This proved to be a challenging task, and after 20 years of research, the nature of the "AT(4) receptor" remains controversial. Insulin-regulated aminopeptidase (IRAP) was first identified as the high-affinity binding site for AT(4) ligands. Recently, the hepatocyte growth factor receptor c-MET was also proposed as a receptor for AT(4) ligands. The present review focuses on the effects of Ang II and Ang IV on synaptic transmission and plasticity, learning, memory, and epileptic seizure activity. Possible interactions of Ang IV with the classical AT(1) and AT(2) receptor subtypes are evaluated, and other potential mechanisms by which AT(4) ligands may exert their effects are discussed. Identification of these mechanisms may provide a valuable target in the development in novel drugs for the treatment of cognitive disorders and epilepsy.
Collapse
Affiliation(s)
- Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
33
|
Akhavan MM, Emami-Abarghoie M, Sadighi-Moghaddam B, Safari M, Yousefi Y, Rashidy-Pour A. Hippocampal angiotensin II receptors play an important role in mediating the effect of voluntary exercise on learning and memory in rat. Brain Res 2008; 1232:132-8. [PMID: 18687315 DOI: 10.1016/j.brainres.2008.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022]
Abstract
The beneficial effects of physical activity and exercise on brain functions such as improvement in learning and memory are well documented. The aim of this study was to examine the possible role of hippocampal angiotensin II receptors in voluntary exercise-induced enhancement of learning and memory in rat. In order to block the hippocampal angiotension II receptors, the animals received a single injection of latex microbeads for delivery of [Sar1 Thr8]-Angiotensin II into the hippocampus. The animals were exposed to five consecutive nights of exercise and then their learning and memory were tested on the Morris water maze (MWM) task using a two-trial-per-day for five consecutive days. A probe trial was performed 2 days after the last training day. Our results showed that hippocampal angiotensin II receptor blockade reversed the exercise-induced improvement in learning and memory in rat.
Collapse
Affiliation(s)
- Maziar M Akhavan
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Damghan road, Faculty of Medicine, Semnan, 35198-99951 Iran.
| | | | | | | | | | | |
Collapse
|
34
|
Rabkin SW. Endogenous kappa opioids mediate the action of brain angiotensin II to increase blood pressure. Neuropeptides 2007; 41:411-9. [PMID: 17980907 DOI: 10.1016/j.npep.2007.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
Abstract
UNLABELLED The objectives of this study were to determine whether endogenous opioids are operative in modulating the CNS action of angiotensin II (ang II) on blood pressure and to determine whether this is mediated by endogenous mu or kappa opioid receptor agonists. The study design was: unanesthetized Wistar rats, 300-400g, previously instrumented with a cannula in the lateral cerebral ventricle and a catheter in the femoral artery, had ang II, 0.5microg, injected into the lateral cerebral ventricle (ICV). Groups were allocated to receive naloxone, a mu opioid receptor antagonist or MR 2266 a selective kappa opioid receptor antagonist prior to ang II. In other experiments in unanesthetized rats, baroreceptor reflex function was assessed by intravenous injection of phenylephrine or nitroprusside and the interaction of endogenous opioids and ang II ascertained with use of the mu or kappa opioid receptor antagonist . RESULTS Ang II significantly (p<0.05) increased systolic and diastolic blood pressure. The kappa opioid antagonist, MR 2266, 25microg/kg ICV, significantly (p<0.05) reduced and MR 2266, 50microg/kg ICV, completely prevented the increase in blood pressure produced by ang II. In contrast, the mu opioid receptor antagonist, naloxone, 50microg/kg, ICV, did not significantly attenuate the blood pressure responses to ang II. Ang II induced alteration in baroreceptor function. The effect of ang II on baroreceptor function was significantly antagonized by the kappa opioid receptor antagonist MR 2266. In conclusion, these data indicate that: (a) endogenous opioids modulate the pressor response to intracerebral ang II, (b) this effect is mediated mainly through endogenous kappa opioid agonists and kappa rather than mu opioid receptors, (c) alteration of baroreceptor sensitivity by ang II is modulated by endogenous kappa opioids.
Collapse
Affiliation(s)
- Simon W Rabkin
- University of British Columbia, 9th Floor 2775 Laurel St.,Vancouver, BC, Canada V5Z 1M9.
| |
Collapse
|
35
|
Eccles MJ, Gutowski NJ. Precipitation of long duration hypnic headaches after ACE inhibitor withdrawal. J Neurol 2007; 254:1597-8. [PMID: 17965960 DOI: 10.1007/s00415-007-0542-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/30/2006] [Accepted: 01/06/2007] [Indexed: 11/25/2022]
|
36
|
Nicotine modulates the renin-angiotensin system of cultured neurons and glial cells from cardiovascular brain areas of Wistar Kyoto and spontaneously hypertensive rats. J Mol Neurosci 2007; 33:284-93. [PMID: 17952638 DOI: 10.1007/s12031-007-9006-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Considering the importance of the renin-angiotensin system (RAS) for the central control of blood pressure and that nicotine increases the probability of development of hypertension associated to genetic predisposition, our aims are (1) to determine RAS in cultured neurons and glia from the brainstem and hypothalamus of spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats; (2) to analyze the possibility of nicotine to interact with brain RAS; and (3) to hypothesize any contribution of nicotine and RAS to the development of neurogenic hypertension. This study demonstrated physiological differences in RAS between cultured neuronal and glial cells from the brainstem and hypothalamus of SHR and WKY neonate rats. Our study also featured evidences of direct modulation of the RAS by nicotine in neurons and glia of brainstem and hypothalamus, which seems to be differential between the two rat strains. Such modulation gives us a clue about the mechanisms possibly involved in the genesis of neurogenic hypertension in vivo, for example, increase in angiotensin II type 1 receptor binding and decrease in angiotensin-converting enzyme 2. In conclusion, we demonstrated that neuronal and glial RAS from the brainstem and hypothalamus of SHR differ from WKY rats and nicotine differentially modulates the brain RAS in SHR and WKY.
Collapse
|
37
|
Heshmatian B, Parviz M, Karimian SM, Keshavarz M, Sohanaki H. Cardiovascular response to renin substrate microinjection into the central nucleus of the amygdala of rats. Neuroreport 2007; 18:675-8. [PMID: 17426597 DOI: 10.1097/wnr.0b013e3280ba49d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Central nucleus of the amygdala is involved in cardiovascular regulation. Although most components of the renin-angiotensin system have been found to be distributed in amygdala, renin expression in brain has remained controversial. This work was undertaken to elucidate the extent of renin presence in this nucleus. A cannula was implanted bilaterally into the central nucleus of the amygdala. Mean arterial pressure and heart rate were directly measured via indwelling femoral artery cannula post bilateral intra central nucleus of the amygdala microinjection of renin substrate. Renin substrate microinjection dose-dependently increased mean arterial pressure and heart rate, whereas captopril, saralasin and losartan pretreatment inhibited these effects. The results suggest the presence of local renin or similar proteases in this nucleus.
Collapse
Affiliation(s)
- Behnam Heshmatian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran
| | | | | | | | | |
Collapse
|
38
|
Abstract
Angiotensin II (Ang II), the active principle of the renin-angiotensin system (RAS), was discovered as a vasoconstrictive, fluid retentive circulating hormone. It was revealed later that there are local RAS in many organs, including the brain. The physiological receptor for Ang II, the AT(1) receptor type, was found to be highly expressed in many tissues and brain areas involved in the hypothalamic-pituitary-adrenal axis response to stress and in the sympathoadrenal system. The production of circulating and local Ang II, and the expression of AT(1) receptors increase during stress. Blockade of peripheral and brain AT(1) receptors with receptor antagonists administered peripherally prevented the hormonal and sympathoadrenal response to isolation stress, the stress-related alterations in cortical CRF(1) and benzodiazepine receptors, part of the GABA(A) complex, and reduced anxiety in rodents. AT(1) receptor blockade prevented the ulcerations of the gastric mucosa produced by cold-restraint stress, by preservation of the gastric blood flow, prevention of the stress-induced inflammatory response of the gastric mucosa, and partial blockade of the sympathoadrenal response to the stress. Our observations demonstrate that Ang II is an important stress hormone, and that blockade of AT(1) receptors could be proposed as a potentially useful therapy for stress-induced disorders.
Collapse
Affiliation(s)
- Juan M Saavedra
- Section on Pharmacology, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
39
|
Fry M, Ferguson AV. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 2007; 91:413-23. [PMID: 17531276 DOI: 10.1016/j.physbeh.2007.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensory circumventricular organs (CVOs) are specialized areas of the brain that lack a normal blood-brain barrier, and therefore are in constant contact with signaling molecules circulating in the bloodstream. Neurons of the CVOs are well endowed with a wide spectrum of receptors for hormones and other signaling molecules, and they have strong connections to hypothalamic and brainstem nuclei. Therefore, lying at the blood-brain interface, the sensory CVOs are in a unique position of being able to detect and integrate humoral and neural information and relay the resulting signals to autonomic control centers of the hypothalamus and medulla. This review focuses primarily on the roles played by the sensory CVOs in fluid balance and energy metabolism.
Collapse
Affiliation(s)
- Mark Fry
- Department of Physiology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
40
|
Thomas MA, Lemmer B. The use of heat-induced hydrolysis in immunohistochemistry on angiotensin II (AT1) receptors enhances the immunoreactivity in paraformaldehyde-fixed brain tissue of normotensive Sprague–Dawley rats. Brain Res 2006; 1119:150-64. [PMID: 17010318 DOI: 10.1016/j.brainres.2006.08.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/10/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
The research on components of the renin-angiotensin system delivered a broad image of angiotensin II-binding sites. Especially, immunohistochemistry (IHC) provided an exact anatomical localization of the AT(1) receptor in the rat brain. Yet, controversial results between in vitro receptor autoradiography and IHC as well as between immunohistochemical studies using various antisera started a vehement discussion concerning specificity and cross-reactivity of these antisera. In particular the magnocellular subdivision of the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) provided controversial results on the localization of AT(1) receptors. Both areas are known for angiotensin II-induced release of vasopressin (VP) and oxytocin (OXT). To evaluate the significance of the appropriate method of antigen retrieval and its relevance for the detection of AT(1) receptors we performed IHC on AT(1) receptors in paraformaldehyde-fixed and paraffin-embedded brain tissue of Sprague-Dawley rats using either the detergent Triton X-100 or microwave oven heating. This study demonstrates that heat-induced hydrolysis enhances the quality and quantity of immunoreactivity (IR) in IHC on AT(1) receptors. In the organum vasculosum lamina terminalis and in the parvocellular subdivisions of the PVN we report a distribution of AT(1)-like-IR similar to that observed with other methods. However, in addition, we provide evidence that distinct AT(1)-like-IR is also localized in few magnocellular neurons of the PVN and in few parvocellular neurons of the dorsal SON but not in magnocellular neurons of the SON. Moreover, parallel IHC indicates that few magnocellular OXT- or VP-releasing neurons of the PVN as well as parvocellular OXT-releasing neurons of the SON do also contain AT(1) receptors.
Collapse
Affiliation(s)
- Martin Alexander Thomas
- Institute of Pharmacology and Toxicology, Ruprecht-Karls University of Heidelberg, 68169 Mannheim, Germany.
| | | |
Collapse
|
41
|
von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006; 326:599-616. [PMID: 16555051 DOI: 10.1007/s00441-006-0190-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 01/24/2023]
Abstract
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1-8) [Ang II], angiotensin-(3-8) [Ang IV], and angiotensin-(1-7) [Ang-(1-7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1-7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1-7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | | |
Collapse
|
42
|
|
43
|
Gomes CM, Donadio MVF, Franskoviaki I, Anselmo-Franci JA, Franci CR, Lucion AB, Sanvitto GL. Neonatal handling reduces angiotensin II receptor density in the medial preoptic area and paraventricular nucleus but not in arcuate nucleus and locus coeruleus of female rats. Brain Res 2006; 1067:177-80. [PMID: 16337927 DOI: 10.1016/j.brainres.2005.10.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/20/2005] [Accepted: 10/20/2005] [Indexed: 11/25/2022]
Abstract
Neonatal handling alters the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonads axis (HPG) in adult animals, and angiotensin II (Ang II) modulates the functions in these axes. We tested whether neonatal handling could change the density of Ang II receptors in some central areas in female rats. Results showed decreased density of the Ang II receptors in the medial preoptic area (MPOA) and hypothalamic paraventricular nucleus (PVN) of the neonatal handled group.
Collapse
Affiliation(s)
- Cármen Marilei Gomes
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre, RS 90050-170, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-Garcia JL. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res 2005; 81:865-73. [PMID: 16015598 DOI: 10.1002/jnr.20598] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is now established that the brain possesses a local renin-angiotensin system and that angiotensin II exerts multiple actions in the nervous system, including regulation of striatal dopamine release. Furthermore, angiotensin activates NADPH-dependent oxidases, which are a major source of superoxide, and angiotensin-converting enzyme inhibitors, commonly used in the treatment of hypertension and chronic heart failure, have shown antioxidant properties in several tissues. Oxidative stress is a key contributor to the pathogenesis and progression of Parkinson's disease. In the present study, we treated rats with intraventricular injections of the dopaminergic neurotoxin 6-hydroxydopamine and subcutaneous injections of the angiotensin-converting enzyme inhibitor Captopril to study the possible neuroprotective effect of the latter on the dopaminergic system and on 6-hydroxydopamine-induced oxidative stress. Rats treated with Captopril and 6-hydroxydopamine showed significantly less reduction in the number of dopaminergic neurons (i.e., immunoreactive to tyrosine hydroxylase) in the substantia nigra and in the density of striatal dopaminergic terminals than 6-hydroxydopamine-lesioned rats not treated with Captopril. In addition, Captopril reduced the levels of major oxidative stress indicators (i.e., lipid peroxidation and protein oxidation) in the ventral midbrain and the striatum of 6-hydroxydopamine-lesioned rats. Our results suggest that angiotensin-converting enzyme inhibitors may be useful for treatment of Parkinson's disease and that further investigation should focus on the neuroprotective capacity of these compounds.
Collapse
Affiliation(s)
- A Lopez-Real
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
45
|
Li DP, Pan HL. Angiotensin II attenuates synaptic GABA release and excites paraventricular-rostral ventrolateral medulla output neurons. J Pharmacol Exp Ther 2005; 313:1035-45. [PMID: 15681656 DOI: 10.1124/jpet.104.082495] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) neurons regulate sympathetic outflow through projections to the spinal cord and rostral ventrolateral medulla (RVLM). Although the PVN-RVLM pathway is important for the action of brain angiotensin II (Ang II) on autonomic control, the cellular mechanisms involved are not fully known. In this study, we examined the effect of Ang II on the excitability and synaptic inputs to RVLM-projecting PVN neurons. PVN neurons were retrogradely labeled by FluoSpheres injected into the RVLM of rats. Whole-cell patch-clamp recordings were performed on labeled PVN neurons in brain slices. Ang II significantly increased the firing rate of PVN neurons from 3.63 +/- 0.65 to 6.10 +/- 0.75 Hz (P < 0.05, n = 9), and such an effect was eliminated by an AT(1) receptor antagonist, losartan. Furthermore, inclusion of a G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate, in the pipette internal solution did not alter the excitatory effect of Ang II on labeled PVN neurons. Application of 0.5 to 5 microM Ang II significantly decreased the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs) in a dose-dependent manner. Also, 2 microM Ang II significantly decreased the frequency of miniature IPSCs (mIPSCs) from 3.89 +/- 0.84 to 2.06 +/- 0.45 Hz (P < 0.05, n = 11), but did not change the amplitude and decay time constant of mIPSCs. By contrast, Ang II had no significant effect on glutamatergic excitatory postsynaptic currents at the concentrations that inhibited IPSCs. In addition, Ang II failed to excite PVN neurons in the presence of bicuculline. Collectively, this study provides important new information that Ang II excites RVLM-projecting PVN neurons through attenuation of GABAergic synaptic inputs.
Collapse
Affiliation(s)
- De-Pei Li
- Department of Anesthesiology, Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | |
Collapse
|