1
|
Rudroff T. Decoding thoughts, encoding ethics: A narrative review of the BCI-AI revolution. Brain Res 2024; 1850:149423. [PMID: 39719191 DOI: 10.1016/j.brainres.2024.149423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
OBJECTIVES This narrative review aims to analyze mechanisms underlying Brain-Computer Interface (BCI) and Artificial Intelligence (AI) integration, evaluate recent advances in signal acquisition and processing techniques, and assess AI-enhanced neural decoding strategies. The review identifies critical research gaps and examines emerging solutions across multiple domains of BCI-AI integration. METHODS A narrative review was conducted using major biomedical and scientific databases including PubMed, Web of Science, IEEE Xplore, and Scopus (2014-2024). Literature was analyzed to identify key developments in BCI-AI integration, with particular emphasis on recent advances (2019-2024). The review process involved thematic analysis of selected publications focusing on practical applications, technical innovations, and emerging challenges. RESULTS Recent advances demonstrate significant improvements in BCI-AI systems: 1) High-density electrode arrays achieve spatial resolution up to 5 mm, with stable recordings over 15 months; 2) Deep learning decoders show 40 % improvement in information transfer rates compared to traditional methods; 3) Adaptive algorithms maintain >90 % success rates in motor control tasks over 200-day periods without recalibration; 4) Novel closed-loop optimization frameworks reduce user training time by 55 % while improving accuracy. Latest developments in flexible neural interfaces and self-supervised learning approaches show promise in addressing long-term stability and cross-user generalization challenges. CONCLUSIONS BCI-AI integration shows remarkable progress in improving signal quality, decoding accuracy, and user adaptation. While challenges remain in long-term stability and user training, advances in adaptive algorithms and feedback mechanisms demonstrate the technology's growing viability for clinical applications. Recent innovations in electrode technology, AI architectures, and closed-loop systems, combined with emerging standardization frameworks, suggest accelerating progress toward widespread therapeutic use and human augmentation applications.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Kaviri SM, Vinjamuri R. Integrating Electroencephalography Source Localization and Residual Convolutional Neural Network for Advanced Stroke Rehabilitation. Bioengineering (Basel) 2024; 11:967. [PMID: 39451342 PMCID: PMC11504048 DOI: 10.3390/bioengineering11100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Motor impairments caused by stroke significantly affect daily activities and reduce quality of life, highlighting the need for effective rehabilitation strategies. This study presents a novel approach to classifying motor tasks using EEG data from acute stroke patients, focusing on left-hand motor imagery, right-hand motor imagery, and rest states. By using advanced source localization techniques, such as Minimum Norm Estimation (MNE), dipole fitting, and beamforming, integrated with a customized Residual Convolutional Neural Network (ResNetCNN) architecture, we achieved superior spatial pattern recognition in EEG data. Our approach yielded classification accuracies of 91.03% with dipole fitting, 89.07% with MNE, and 87.17% with beamforming, markedly surpassing the 55.57% to 72.21% range of traditional sensor domain methods. These results highlight the efficacy of transitioning from sensor to source domain in capturing precise brain activity. The enhanced accuracy and reliability of our method hold significant potential for advancing brain-computer interfaces (BCIs) in neurorehabilitation. This study emphasizes the importance of using advanced EEG classification techniques to provide clinicians with precise tools for developing individualized therapy plans, potentially leading to substantial improvements in motor function recovery and overall patient outcomes. Future work will focus on integrating these techniques into practical BCI systems and assessing their long-term impact on stroke rehabilitation.
Collapse
Affiliation(s)
| | - Ramana Vinjamuri
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| |
Collapse
|
3
|
Bazarek SF, Krenn MJ, Shah SB, Mandeville RM, Brown JM. Novel Technologies to Address the Lower Motor Neuron Injury and Augment Reconstruction in Spinal Cord Injury. Cells 2024; 13:1231. [PMID: 39056812 PMCID: PMC11274462 DOI: 10.3390/cells13141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within a limited time window. The distal nerve deprived of axons also undergoes degeneration and fibrosis making it less receptive to axons. In this review, we describe the LMN injury associated with SCI and its clinical consequences. The process of degeneration of the muscle and nerve is broken down into the primary components of the neuromuscular circuit and reviewed, including the nerve and Schwann cells, the neuromuscular junction, and the muscle. Finally, we discuss three promising strategies to reverse denervation atrophy. These include providing surrogate axons from local sources; introducing stem cell-derived spinal motor neurons into the nerve to provide the missing axons; and finally, instituting a training program of high-energy electrical stimulation to directly rehabilitate these muscles. Successful interventions for denervation atrophy would significantly expand reconstructive options for cervical SCI and could be transformative for the predominantly LMN injuries of the conus medullaris and cauda equina.
Collapse
Affiliation(s)
- Stanley F. Bazarek
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurological Surgery, University Hospitals-Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthias J. Krenn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216, USA
- Spinal Cord Injury Medicine and Research Services, VA Medical Center, Jackson, MS 39216, USA
| | - Sameer B. Shah
- Departments of Orthopedic Surgery and Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA;
- Research Division, VA San Diego Medical Center, San Diego, CA 92161, USA
| | - Ross M. Mandeville
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| | - Justin M. Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.F.B.); (M.J.K.); (R.M.M.)
| |
Collapse
|
4
|
Jang M, Hays M, Yu WH, Lee C, Caragiulo P, Ramkaj A, Wang P, Phillips AJ, Vitale N, Tandon P, Yan P, Mak PI, Chae Y, Chichilnisky EJ, Murmann B, Muratore DG. A 1024-Channel 268 nW/pixel 36×36 μm 2/channel Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2024; 59:1123-1136. [PMID: 39391047 PMCID: PMC11463976 DOI: 10.1109/jssc.2023.3344798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This paper presents a data-compressive neural recording IC for single-cell resolution high-bandwidth brain-computer interfaces. The IC features wired-OR lossy compression during digitization, thus preventing data deluge and massive data movement. By discarding unwanted baseline samples of the neural signals, the output data rate is reduced by 146× on average while allowing the reconstruction of spike samples. The recording array consists of pulse position modulation-based active digital pixels with a global single-slope analog-to-digital conversion scheme, which enables a low-power and compact pixel design with significantly simple routing and low array readout energy. Fabricated in a 28-nm CMOS process, the neural recording IC features 1024 channels (i.e., 32 × 32 array) with a pixel pitch of 36 μm that can be directly matched to a high-density microelectrode array. The pixel achieves 7.4 μVrms input-referred noise with a -3 dB bandwidth of 300-Hz to 5-kHz while consuming only 268 nW from a single 1-V supply. The IC achieves the smallest area per channel (36 × 36 μm2) and the highest energy efficiency among the state-of-the-art neural recording ICs published to date.
Collapse
Affiliation(s)
- MoonHyung Jang
- Department of Electrical Engineering, Stanford University, CA 94305 USA
| | - Maddy Hays
- Department of Bioengineering, Stanford University, CA 94305 USA
| | - Wei-Han Yu
- Institute of Microelectronics, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Changuk Lee
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, CA 94720, USA
| | - Pietro Caragiulo
- Department of Electrical Engineering, Stanford University, CA 94305 USA
| | - Athanasios Ramkaj
- Department of Electrical Engineering, Stanford University, CA 94305 USA
| | - Pingyu Wang
- Department of Materials Science and Engineering, Stanford University, CA 94305 USA
| | - A J Phillips
- Department of Electrical Engineering, Stanford University, CA 94305 USA
| | - Nick Vitale
- Department of Electrical Engineering, Stanford University, CA 94305 USA
| | - Pulkit Tandon
- Department of Electrical Engineering, Stanford University, CA 94305 USA
| | - Pumiao Yan
- Department of Electrical Engineering, Stanford University, CA 94305 USA
| | - Pui-In Mak
- Institute of Microelectronics, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Youngcheol Chae
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - E J Chichilnisky
- Hansen Experimental Physics Laboratory, Department of Neurosurgery and Ophthalmology, Stanford University, CA 94305 USA
| | - Boris Murmann
- Department of Electrical Engineering, Stanford University; Department of Electrical & Computer Engineering, University of Hawaii at Mānoa, HI 96822
| | - Dante G Muratore
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
Juan JV, Martínez R, Iáñez E, Ortiz M, Tornero J, Azorín JM. Exploring EEG-based motor imagery decoding: a dual approach using spatial features and spectro-spatial Deep Learning model IFNet. Front Neuroinform 2024; 18:1345425. [PMID: 38486923 PMCID: PMC10937463 DOI: 10.3389/fninf.2024.1345425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction In recent years, the decoding of motor imagery (MI) from electroencephalography (EEG) signals has become a focus of research for brain-machine interfaces (BMIs) and neurorehabilitation. However, EEG signals present challenges due to their non-stationarity and the substantial presence of noise commonly found in recordings, making it difficult to design highly effective decoding algorithms. These algorithms are vital for controlling devices in neurorehabilitation tasks, as they activate the patient's motor cortex and contribute to their recovery. Methods This study proposes a novel approach for decoding MI during pedalling tasks using EEG signals. A widespread approach is based on feature extraction using Common Spatial Patterns (CSP) followed by a linear discriminant analysis (LDA) as a classifier. The first approach covered in this work aims to investigate the efficacy of a task-discriminative feature extraction method based on CSP filter and LDA classifier. Additionally, the second alternative hypothesis explores the potential of a spectro-spatial Convolutional Neural Network (CNN) to further enhance the performance of the first approach. The proposed CNN architecture combines a preprocessing pipeline based on filter banks in the frequency domain with a convolutional neural network for spectro-temporal and spectro-spatial feature extraction. Results and discussion To evaluate the approaches and their advantages and disadvantages, EEG data has been recorded from several able-bodied users while pedalling in a cycle ergometer in order to train motor imagery decoding models. The results show levels of accuracy up to 80% in some cases. The CNN approach shows greater accuracy despite higher instability.
Collapse
Affiliation(s)
- Javier V. Juan
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Center for Clinical Neuroscience HLM, Hospital Los Madroños, Brunete, Spain
| | - Rubén Martínez
- Center for Clinical Neuroscience HLM, Hospital Los Madroños, Brunete, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- INNTEGRA, Hospital Los Madroños, Brunete, Spain
| | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Mario Ortiz
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Jesús Tornero
- Center for Clinical Neuroscience HLM, Hospital Los Madroños, Brunete, Spain
- INNTEGRA, Hospital Los Madroños, Brunete, Spain
| | - José M. Azorín
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Universidad Miguel Hernández de Elche, Elche, Spain
- ValGRAI: Valencian Graduated School and Research Network of Artificial Intelligence, Valencia, Spain
| |
Collapse
|
6
|
Shokri M, Gogliettino AR, Hottowy P, Sher A, Litke AM, Chichilnisky EJ, Pequito S, Muratore D. Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach. J Neural Eng 2024; 21:016022. [PMID: 38271715 PMCID: PMC10853761 DOI: 10.1088/1741-2552/ad228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective. Bi-directional electronic neural interfaces, capable of both electrical recording and stimulation, communicate with the nervous system to permit precise calibration of electrical inputs by capturing the evoked neural responses. However, one significant challenge is that stimulation artifacts often mask the actual neural signals. To address this issue, we introduce a novel approach that employs dynamical control systems to detect and decipher electrically evoked neural activity despite the presence of electrical artifacts.Approach. Our proposed method leverages the unique spatiotemporal patterns of neural activity and electrical artifacts to distinguish and identify individual neural spikes. We designed distinctive dynamical models for both the stimulation artifact and each neuron observed during spontaneous neural activity. We can estimate which neurons were active by analyzing the recorded voltage responses across multiple electrodes post-stimulation. This technique also allows us to exclude signals from electrodes heavily affected by stimulation artifacts, such as the stimulating electrode itself, yet still accurately differentiate between evoked spikes and electrical artifacts.Main results. We applied our method to high-density multi-electrode recordings from the primate retina in anex vivosetup, using a grid of 512 electrodes. Through repeated electrical stimulations at varying amplitudes, we were able to construct activation curves for each neuron. The curves obtained with our method closely resembled those derived from manual spike sorting. Additionally, the stimulation thresholds we estimated strongly agreed with those determined through manual analysis, demonstrating high reliability (R2=0.951for human 1 andR2=0.944for human 2).Significance. Our method can effectively separate evoked neural spikes from stimulation artifacts by exploiting the distinct spatiotemporal propagation patterns captured by a dense, large-scale multi-electrode array. This technique holds promise for future applications in real-time closed-loop stimulation systems and for managing multi-channel stimulation strategies.
Collapse
Affiliation(s)
- Mohammad Shokri
- Delft Center for Systems and Control, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, CA 94305, United States of America
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - E J Chichilnisky
- Departments of Neurosurgery and Ophthalmology, Stanford University, Stanford, CA 94305, United States of America
| | - Sérgio Pequito
- Division of Systems and Control, Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden
| | - Dante Muratore
- Microelectronics Department, Delft University of Technology, Delft 2628 CN, The Netherlands
| |
Collapse
|
7
|
Liu H, Wei P, Wang H, Lv X, Duan W, Li M, Zhao Y, Wang Q, Chen X, Shi G, Han B, Hao J. An EEG motor imagery dataset for brain computer interface in acute stroke patients. Sci Data 2024; 11:131. [PMID: 38272904 PMCID: PMC10811218 DOI: 10.1038/s41597-023-02787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/24/2023] [Indexed: 01/27/2024] Open
Abstract
The brain-computer interface (BCI) is a technology that involves direct communication with parts of the brain and has evolved rapidly in recent years; it has begun to be used in clinical practice, such as for patient rehabilitation. Patient electroencephalography (EEG) datasets are critical for algorithm optimization and clinical applications of BCIs but are rare at present. We collected data from 50 acute stroke patients with wireless portable saline EEG devices during the performance of two tasks: 1) imagining right-handed movements and 2) imagining left-handed movements. The dataset consists of four types of data: 1) the motor imagery instructions, 2) raw recording data, 3) pre-processed data after removing artefacts and other manipulations, and 4) patient characteristics. This is the first open dataset to address left- and right-handed motor imagery in acute stroke patients. We believe that the dataset will be very helpful for analysing brain activation and designing decoding methods that are more applicable for acute stroke patients, which will greatly facilitate research in the field of motor imagery-BCI.
Collapse
Affiliation(s)
- Haijie Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Penghu Wei
- National Center for Neurological Disorders, Beijing, 100053, China
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Haochong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Xiaodong Lv
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Wei Duan
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Yan Zhao
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Qingmei Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xinyuan Chen
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaige Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Center for Neurological Disorders, Beijing, 100053, China.
- Chinese Institute for Brain Research, Beijing, 100053, China.
| |
Collapse
|
8
|
Narayanan RP, Khaleghi A, Veletić M, Balasingham I. Multiphysics simulation of magnetoelectric micro core-shells for wireless cellular stimulation therapy via magnetic temporal interference. PLoS One 2024; 19:e0297114. [PMID: 38271467 PMCID: PMC10834063 DOI: 10.1371/journal.pone.0297114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This paper presents an innovative approach to wireless cellular stimulation therapy through the design of a magnetoelectric (ME) microdevice. Traditional electrophysiological stimulation techniques for neural and deep brain stimulation face limitations due to their reliance on electronics, electrode arrays, or the complexity of magnetic induction. In contrast, the proposed ME microdevice offers a self-contained, controllable, battery-free, and electronics-free alternative, holding promise for targeted precise stimulation of biological cells and tissues. The designed microdevice integrates core shell ME materials with remote coils which applies magnetic temporal interference (MTI) signals, leading to the generation of a bipolar local electric stimulation current operating at low frequencies which is suitable for precise stimulation. The nonlinear property of the magnetostrictive core enables the demodulation of remotely applied high-frequency electromagnetic fields, resulting in a localized, tunable, and manipulatable electric potential on the piezoelectric shell surface. This potential, triggers electrical spikes in neural cells, facilitating stimulation. Rigorous computational simulations support this concept, highlighting a significantly high ME coupling factor generation of 550 V/m·Oe. The high ME coupling is primarily attributed to the operation of the device in its mechanical resonance modes. This achievement is the result of a carefully designed core shell structure operating at the MTI resonance frequencies, coupled with an optimal magnetic bias, and predetermined piezo shell thickness. These findings underscore the potential of the engineered ME core shell as a candidate for wireless and minimally invasive cellular stimulation therapy, characterized by high resolution and precision. These results open new avenues for injectable material structures capable of delivering effective cellular stimulation therapy, carrying implications across neuroscience medical devices, and regenerative medicine.
Collapse
Affiliation(s)
- Ram Prasadh Narayanan
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Khaleghi
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Mladen Veletić
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Ilangko Balasingham
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Coughlin B, Muñoz W, Kfir Y, Young MJ, Meszéna D, Jamali M, Caprara I, Hardstone R, Khanna A, Mustroph ML, Trautmann EM, Windolf C, Varol E, Soper DJ, Stavisky SD, Welkenhuysen M, Dutta B, Shenoy KV, Hochberg LR, Mark Richardson R, Williams ZM, Cash SS, Paulk AC. Modified Neuropixels probes for recording human neurophysiology in the operating room. Nat Protoc 2023; 18:2927-2953. [PMID: 37697108 DOI: 10.1038/s41596-023-00871-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/08/2023] [Indexed: 09/13/2023]
Abstract
Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.
Collapse
Affiliation(s)
- Brian Coughlin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Yoav Kfir
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Michael J Young
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Domokos Meszéna
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mohsen Jamali
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Irene Caprara
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Richard Hardstone
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Arjun Khanna
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Martina L Mustroph
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University Medical Center, New York, NY, USA
| | - Charlie Windolf
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Computer Science and Engineering, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Dan J Soper
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sergey D Stavisky
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | | | - Krishna V Shenoy
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - R Mark Richardson
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Angelique C Paulk
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Jeakle EN, Abbott JR, Usoro JO, Wu Y, Haghighi P, Radhakrishna R, Sturgill BS, Nakajima S, Thai TTD, Pancrazio JJ, Cogan SF, Hernandez-Reynoso AG. Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex. MICROMACHINES 2023; 14:680. [PMID: 36985087 PMCID: PMC10054633 DOI: 10.3390/mi14030680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Implantable microelectrode arrays (MEAs) enable the recording of electrical activity of cortical neurons, allowing the development of brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic conditions, prompting the development of novel MEAs that can improve long-term performance. Conventional planar, silicon-based devices and ultra-thin amorphous silicon carbide (a-SiC) MEAs were implanted in the motor cortex of female Sprague-Dawley rats, and weekly anesthetized recordings were made for 16 weeks after implantation. The spectral density and bandpower between 1 and 500 Hz of recordings were compared over the implantation period for both device types. Initially, the bandpower of the a-SiC devices and standard MEAs was comparable. However, the standard MEAs showed a consistent decline in both bandpower and power spectral density throughout the 16 weeks post-implantation, whereas the a-SiC MEAs showed substantially more stable performance. These differences in bandpower and spectral density between standard and a-SiC MEAs were statistically significant from week 6 post-implantation until the end of the study at 16 weeks. These results support the use of ultra-thin a-SiC MEAs to develop chronic, reliable brain-machine interfaces.
Collapse
Affiliation(s)
- Eleanor N. Jeakle
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Justin R. Abbott
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joshua O. Usoro
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Yupeng Wu
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Pegah Haghighi
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Shido Nakajima
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Teresa T. D. Thai
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
11
|
Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. MATERIALS HORIZONS 2023; 10:808-828. [PMID: 36597872 DOI: 10.1039/d2mh01125e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
12
|
Sokołowska B. Impact of Virtual Reality Cognitive and Motor Exercises on Brain Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4150. [PMID: 36901160 PMCID: PMC10002333 DOI: 10.3390/ijerph20054150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Innovative technologies of the 21st century have an extremely significant impact on all activities of modern humans. Among them, virtual reality (VR) offers great opportunities for scientific research and public health. The results of research to date both demonstrate the beneficial effects of using virtual worlds, and indicate undesirable effects on bodily functions. This review presents interesting recent findings related to training/exercise in virtual environments and its impact on cognitive and motor functions. It also highlights the importance of VR as an effective tool for assessing and diagnosing these functions both in research and modern medical practice. The findings point to the enormous future potential of these rapidly developing innovative technologies. Of particular importance are applications of virtual reality in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Beata Sokołowska
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Bibliometric analysis on Brain-computer interfaces in a 30-year period. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Functional Reconstruction of Denervated Muscle by Xenotransplantation of Neural Cells from Porcine to Rat. Int J Mol Sci 2022; 23:ijms23158773. [PMID: 35955906 PMCID: PMC9368947 DOI: 10.3390/ijms23158773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Neural cell transplantation targeting peripheral nerves is a potential treatment regime for denervated muscle atrophy. This study aimed to develop a new therapeutic technique for intractable muscle atrophy by the xenotransplantation of neural stem cells derived from pig fetuses into peripheral nerves. In this study, we created a denervation model using neurotomy in nude rats and transplanted pig-fetus-derived neural stem cells into the cut nerve stump. Three months after transplantation, the survival of neural cells, the number and area of regenerated axons, and the degree of functional recovery by electrical stimulation of peripheral nerves were compared among the gestational ages (E 22, E 27, E 45) of the pigs. Transplanted neural cells were engrafted at all ages. Functional recovery by electric stimulation was observed at age E 22 and E 27. This study shows that the xenotransplantation of fetal porcine neural stem cells can restore denervated muscle function. When combined with medical engineering, this technology can help in developing a new therapy for paralysis.
Collapse
|
15
|
Flint RD, Li Y, Wang P, Vaidya M, Barry A, Ghassemi M, Tomic G, Brkic N, Ripley D, Liu C, Kamper D, Do A, Slutzky MW. Noninvasively recorded high-gamma signals improve synchrony of force feedback in a novel neurorehabilitation brain-machine interface for brain injury. J Neural Eng 2022; 19. [PMID: 35576911 PMCID: PMC9728942 DOI: 10.1088/1741-2552/ac7004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Brain injury is the leading cause of long-term disability worldwide, often resulting in impaired hand function. Brain-machine interfaces (BMIs) offer a potential way to improve hand function. BMIs often target replacing lost function, but may also be employed in neurorehabilitation (nrBMI) by facilitating neural plasticity and functional recovery. Here, we report a novel nrBMI capable of acquiring high-γ (70-115 Hz) information through a unique post-TBI hemicraniectomy window model, and delivering sensory feedback that is synchronized with, and proportional to, intended grasp force. APPROACH We developed the nrBMI to use electroencephalogram recorded over a hemicraniectomy (hEEG) in individuals with traumatic brain injury (TBI). The nrBMI empowered users to exert continuous, proportional control of applied force, and provided continuous force feedback. We report the results of an initial testing group of three human participants with TBI, along with a control group of three skull- and motor-intact volunteers. MAIN RESULTS All participants controlled the nrBMI successfully, with high initial success rates (2 of 6 participants) or performance that improved over time (4 of 6 participants). We observed high-γ modulation with force intent in hEEG but not skull-intact EEG. Most significantly, we found that high-γ control significantly improved the timing synchronization between neural modulation onset and nrBMI output/haptic feedback (compared to low-frequency nrBMI control). SIGNIFICANCE These proof-of-concept results show that high-γ nrBMIs can be used by individuals with impaired ability to control force (without immediately resorting to invasive signals like ECoG). Of note, the nrBMI includes a parameter to change the fraction of control shared between decoded intent and volitional force, to adjust for recovery progress. The improved synchrony between neural modulations and force control for high-γ signals is potentially important for maximizing the ability of nrBMIs to induce plasticity in neural circuits. Inducing plasticity is critical to functional recovery after brain injury.
Collapse
Affiliation(s)
- Robert D Flint
- Department of Physiology, Northwestern University, Northwestern University, The Feinberg School of Medicine, 303 E. Chicago Ave. , Chicago, IL 60611, USA, Chicago, Illinois, 60611, UNITED STATES
| | - Yongcheng Li
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Po Wang
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Mukta Vaidya
- Northwestern University Feinberg School of Medicine, 320 E Superior St, Chicago, Illinois, 60611-3008, UNITED STATES
| | - Alex Barry
- Shirley Ryan AbilityLab, 355 E Erie St, Chicago, Illinois, 60611-2654, UNITED STATES
| | - Mohammad Ghassemi
- North Carolina State University, Engineering Building III, 4130, Raleigh, North Carolina, 27695, UNITED STATES
| | - Goran Tomic
- Department of Physiology, Northwestern University, Northwestern University, The Feinberg School of Medicine, 303 E. Chicago Ave. , Chicago, IL 60611, USA, Chicago, Illinois, 60611, UNITED STATES
| | - Nenad Brkic
- Shirley Ryan AbilityLab, 355 E Erie St, Chicago, Illinois, 60611-2654, UNITED STATES
| | - David Ripley
- Shirley Ryan AbilityLab, 355 E Erie St, Chicago, Illinois, 60611-2654, UNITED STATES
| | - Charles Liu
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Derek Kamper
- North Carolina State University, Engineering Building III, 4130, Raleigh, North Carolina, 27695, UNITED STATES
| | - An Do
- University of California Irvine, 402 E Peltason Dr, Irvine, California, 92617, UNITED STATES
| | - Marc W Slutzky
- Department of Physiology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois, 60611, UNITED STATES
| |
Collapse
|
16
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Farkhondeh Tale Navi F, Heysieattalab S, Ramanathan DS, Raoufy MR, Nazari MA. Closed-loop Modulation of the Self-regulating Brain: A Review on Approaches, Emerging Paradigms, and Experimental Designs. Neuroscience 2021; 483:104-126. [PMID: 34902494 DOI: 10.1016/j.neuroscience.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
Closed-loop approaches, setups, and experimental designs have been applied within the field of neuroscience to enhance the understanding of basic neurophysiology principles (closed-loop neuroscience; CLNS) and to develop improved procedures for modulating brain circuits and networks for clinical purposes (closed-loop neuromodulation; CLNM). The contents of this review are thus arranged into the following sections. First, we describe basic research findings that have been made using CLNS. Next, we provide an overview of the application, rationale, and therapeutic aspects of CLNM for clinical purposes. Finally, we summarize methodological concerns and critics in clinical practice of neurofeedback and novel applications of closed-loop perspective and techniques to improve and optimize its experiments. Moreover, we outline the theoretical explanations and experimental ideas to test animal models of neurofeedback and discuss technical issues and challenges associated with implementing closed-loop systems. We hope this review is helpful for both basic neuroscientists and clinical/ translationally-oriented scientists interested in applying closed-loop methods to improve mental health and well-being.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Chen X, Wang Y, Zhou G, Hu X, Han S, Gao J. The combination of nanoscaffolds and stem cell transplantation: Paving a promising road for spinal cord injury regeneration. Biomed Pharmacother 2021; 143:112233. [PMID: 34649357 DOI: 10.1016/j.biopha.2021.112233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI), one of the most devastating traumas, has caused long-term disability in millions of people worldwide. The pathophysiology of SCI primarily occurs in two stages classified as primary injury and secondary injury. Due to the rupture of axons and the apoptosis of neurons, patients lose their motor, sensory, and reflex functions, which also imposes a huge burden on families and society. However, traditional surgery does not facilitate neuronal regeneration. Although neural stem cells (NSCs) have the potential for multidirectional differentiation, the probability of differentiation into neurons and survival are still low. Surprisingly, the unique properties of nanotechnologies enable targeted drug delivery while reducing adverse reactions, assisting NSCs in differentiating into neurons. Here, recent studies on promising nanoscaffolds are highlighted, and their strengths and drawbacks are evaluated. Although the treatment of SCI remains fraught with challenges, the combination of nanoscaffolds and NSCs pave a promising road for SCI regeneration.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyang Wang
- School of Medicine, Tsinghua University, Haidian District, Beijing, China
| | - Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianghui Hu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
The Influence of Frequency Bands and Brain Region on ECoG-Based BMI Learning Performance. SENSORS 2021; 21:s21206729. [PMID: 34695942 PMCID: PMC8541475 DOI: 10.3390/s21206729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022]
Abstract
Numerous brain–machine interface (BMI) studies have shown that various frequency bands (alpha, beta, and gamma bands) can be utilized in BMI experiments and modulated as neural information for machine control after several BMI learning trial sessions. In addition to frequency range as a neural feature, various areas of the brain, such as the motor cortex or parietal cortex, have been selected as BMI target brain regions. However, although the selection of target frequency and brain region appears to be crucial in obtaining optimal BMI performance, the direct comparison of BMI learning performance as it relates to various brain regions and frequency bands has not been examined in detail. In this study, ECoG-based BMI learning performances were compared using alpha, beta, and gamma bands, respectively, in a single rodent model. Brain area dependence of learning performance was also evaluated in the frontal cortex, the motor cortex, and the parietal cortex. The findings indicated that BMI learning performance was best in the case of the gamma frequency band and worst in the alpha band (one-way ANOVA, F = 4.41, p < 0.05). In brain area dependence experiments, better BMI learning performance appears to be shown in the primary motor cortex (one-way ANOVA, F = 4.36, p < 0.05). In the frontal cortex, two out of four animals failed to learn the feeding tube control even after a maximum of 10 sessions. In conclusion, the findings reported in this study suggest that the selection of target frequency and brain region should be carefully considered when planning BMI protocols and for performing optimized BMI.
Collapse
|
20
|
Wittevrongel B, Holmes N, Boto E, Hill R, Rea M, Libert A, Khachatryan E, Van Hulle MM, Bowtell R, Brookes MJ. Practical real-time MEG-based neural interfacing with optically pumped magnetometers. BMC Biol 2021; 19:158. [PMID: 34376215 PMCID: PMC8356471 DOI: 10.1186/s12915-021-01073-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Brain-computer interfaces decode intentions directly from the human brain with the aim to restore lost functionality, control external devices or augment daily experiences. To combine optimal performance with wide applicability, high-quality brain signals should be captured non-invasively. Magnetoencephalography (MEG) is a potent candidate but currently requires costly and confining recording hardware. The recently developed optically pumped magnetometers (OPMs) promise to overcome this limitation, but are currently untested in the context of neural interfacing. RESULTS In this work, we show that OPM-MEG allows robust single-trial analysis which we exploited in a real-time 'mind-spelling' application yielding an average accuracy of 97.7%. CONCLUSIONS This shows that OPM-MEG can be used to exploit neuro-magnetic brain responses in a practical and flexible manner, and opens up new avenues for a wide range of new neural interface applications in the future.
Collapse
Affiliation(s)
- Benjamin Wittevrongel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium. .,Leuven Institute for Artificial Intelligence (Leuven.AI), Leuven, Belgium. .,Leuven Brain Institute (LBI), Leuven, Belgium.
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Arno Libert
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Elvira Khachatryan
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Institute for Artificial Intelligence (Leuven.AI), Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Samejima S, Khorasani A, Ranganathan V, Nakahara J, Tolley NM, Boissenin A, Shalchyan V, Daliri MR, Smith JR, Moritz CT. Brain-Computer-Spinal Interface Restores Upper Limb Function After Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1233-1242. [PMID: 34138712 DOI: 10.1109/tnsre.2021.3090269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain-computer interfaces (BCIs) are an emerging strategy for spinal cord injury (SCI) intervention that may be used to reanimate paralyzed limbs. This approach requires decoding movement intention from the brain to control movement-evoking stimulation. Common decoding methods use spike-sorting and require frequent calibration and high computational complexity. Furthermore, most applications of closed-loop stimulation act on peripheral nerves or muscles, resulting in rapid muscle fatigue. Here we show that a local field potential-based BCI can control spinal stimulation and improve forelimb function in rats with cervical SCI. We decoded forelimb movement via multi-channel local field potentials in the sensorimotor cortex using a canonical correlation analysis algorithm. We then used this decoded signal to trigger epidural spinal stimulation and restore forelimb movement. Finally, we implemented this closed-loop algorithm in a miniaturized onboard computing platform. This Brain-Computer-Spinal Interface (BCSI) utilized recording and stimulation approaches already used in separate human applications. Our goal was to demonstrate a potential neuroprosthetic intervention to improve function after upper extremity paralysis.
Collapse
|
22
|
Nguyen D, Valet M, Dégardin J, Boucherit L, Illa X, de la Cruz J, Del Corro E, Bousquet J, Garrido JA, Hébert C, Picaud S. Novel Graphene Electrode for Retinal Implants: An in vivo Biocompatibility Study. Front Neurosci 2021; 15:615256. [PMID: 33746697 PMCID: PMC7969870 DOI: 10.3389/fnins.2021.615256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Evaluating biocompatibility is a core essential step to introducing a new material as a candidate for brain-machine interfaces. Foreign body reactions often result in glial scars that can impede the performance of the interface. Having a high conductivity and large electrochemical window, graphene is a candidate material for electrical stimulation with retinal prosthesis. In this study, non-functional devices consisting of chemical vapor deposition (CVD) graphene embedded onto polyimide/SU-8 substrates were fabricated for a biocompatibility study. The devices were implanted beneath the retina of blind P23H rats. Implants were monitored by optical coherence tomography (OCT) and eye fundus which indicated a high stability in vivo up to 3 months before histology studies were done. Microglial reconstruction through confocal imaging illustrates that the presence of graphene on polyimide reduced the number of microglial cells in the retina compared to polyimide alone, thereby indicating a high biocompatibility. This study highlights an interesting approach to assess material biocompatibility in a tissue model of central nervous system, the retina, which is easily accessed optically and surgically.
Collapse
Affiliation(s)
- Diep Nguyen
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Manon Valet
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Julie Dégardin
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Leyna Boucherit
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Jose de la Cruz
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Jessica Bousquet
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Clément Hébert
- Catalan Institute of Nanoscience and Nanotechnology, Barcelona, Spain
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Ahmadi N, Constandinou T, Bouganis CS. Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. J Neural Eng 2021; 18. [PMID: 33477128 DOI: 10.1088/1741-2552/abde8a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs. APPROACH We propose entire spiking activity (ESA) -an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique- as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks. MAIN RESULTS Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data. SIGNIFICANCE Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs.
Collapse
Affiliation(s)
- Nur Ahmadi
- Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Timothy Constandinou
- Electrical & Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Christos-Savvas Bouganis
- Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
24
|
Affiliation(s)
- Marc W Slutzky
- Departments of Neurology, Physiology, Physical Medicine & Rehabilitation, and Biomedical Engineering, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Wilson GH, Stavisky SD, Willett FR, Avansino DT, Kelemen JN, Hochberg LR, Henderson JM, Druckmann S, Shenoy KV. Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus. J Neural Eng 2020; 17:066007. [PMID: 33236720 PMCID: PMC8293867 DOI: 10.1088/1741-2552/abbfef] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To evaluate the potential of intracortical electrode array signals for brain-computer interfaces (BCIs) to restore lost speech, we measured the performance of decoders trained to discriminate a comprehensive basis set of 39 English phonemes and to synthesize speech sounds via a neural pattern matching method. We decoded neural correlates of spoken-out-loud words in the 'hand knob' area of precentral gyrus, a step toward the eventual goal of decoding attempted speech from ventral speech areas in patients who are unable to speak. APPROACH Neural and audio data were recorded while two BrainGate2 pilot clinical trial participants, each with two chronically-implanted 96-electrode arrays, spoke 420 different words that broadly sampled English phonemes. Phoneme onsets were identified from audio recordings, and their identities were then classified from neural features consisting of each electrode's binned action potential counts or high-frequency local field potential power. Speech synthesis was performed using the 'Brain-to-Speech' pattern matching method. We also examined two potential confounds specific to decoding overt speech: acoustic contamination of neural signals and systematic differences in labeling different phonemes' onset times. MAIN RESULTS A linear decoder achieved up to 29.3% classification accuracy (chance = 6%) across 39 phonemes, while an RNN classifier achieved 33.9% accuracy. Parameter sweeps indicated that performance did not saturate when adding more electrodes or more training data, and that accuracy improved when utilizing time-varying structure in the data. Microphonic contamination and phoneme onset differences modestly increased decoding accuracy, but could be mitigated by acoustic artifact subtraction and using a neural speech onset marker, respectively. Speech synthesis achieved r = 0.523 correlation between true and reconstructed audio. SIGNIFICANCE The ability to decode speech using intracortical electrode array signals from a nontraditional speech area suggests that placing electrode arrays in ventral speech areas is a promising direction for speech BCIs.
Collapse
Affiliation(s)
- Guy H Wilson
- Neurosciences Graduate Program, Stanford University, Stanford, CA, United States of America
| | - Sergey D Stavisky
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Francis R Willett
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, United States of America
| | - Donald T Avansino
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Jessica N Kelemen
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Leigh R Hochberg
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
- Center for Neurotechnology and Neurorecovery, Dept. of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, United States of America
- Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI, United States of America
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, United States of America
| | - Shaul Druckmann
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, United States of America
- Department of Neurobiology, Stanford University, Stanford, CA, United States of America
| | - Krishna V Shenoy
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, United States of America
- Department of Neurobiology, Stanford University, Stanford, CA, United States of America
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
26
|
Even-Chen N, Muratore DG, Stavisky SD, Hochberg LR, Henderson JM, Murmann B, Shenoy KV. Power-saving design opportunities for wireless intracortical brain-computer interfaces. Nat Biomed Eng 2020; 4:984-996. [PMID: 32747834 PMCID: PMC8286886 DOI: 10.1038/s41551-020-0595-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
The efficacy of wireless intracortical brain-computer interfaces (iBCIs) is limited in part by the number of recording channels, which is constrained by the power budget of the implantable system. Designing wireless iBCIs that provide the high-quality recordings of today's wired neural interfaces may lead to inadvertent over-design at the expense of power consumption and scalability. Here, we report analyses of neural signals collected from experimental iBCI measurements in rhesus macaques and from a clinical-trial participant with implanted 96-channel Utah multielectrode arrays to understand the trade-offs between signal quality and decoder performance. Moreover, we propose an efficient hardware design for clinically viable iBCIs, and suggest that the circuit design parameters of current recording iBCIs can be relaxed considerably without loss of performance. The proposed design may allow for an order-of-magnitude power savings and lead to clinically viable iBCIs with a higher channel count.
Collapse
Affiliation(s)
- Nir Even-Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Dante G Muratore
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sergey D Stavisky
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Leigh R Hochberg
- Department of Veterans Affairs Medical Center, Center for Neurorestoration and Neurotechnology, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie M Henderson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Boris Murmann
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- The Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
The Representation of Finger Movement and Force in Human Motor and Premotor Cortices. eNeuro 2020; 7:ENEURO.0063-20.2020. [PMID: 32769159 PMCID: PMC7438059 DOI: 10.1523/eneuro.0063-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to grasp and manipulate objects requires controlling both finger movement kinematics and isometric force in rapid succession. Previous work suggests that these behavioral modes are controlled separately, but it is unknown whether the cerebral cortex represents them differently. Here, we asked the question of how movement and force were represented cortically, when executed sequentially with the same finger. We recorded high-density electrocorticography (ECoG) from the motor and premotor cortices of seven human subjects performing a movement-force motor task. We decoded finger movement [0.7 ± 0.3 fractional variance accounted for (FVAF)] and force (0.7 ± 0.2 FVAF) with high accuracy, yet found different spatial representations. In addition, we used a state-of-the-art deep learning method to uncover smooth, repeatable trajectories through ECoG state space during the movement-force task. We also summarized ECoG across trials and participants by developing a new metric, the neural vector angle (NVA). Thus, state-space techniques can help to investigate broad cortical networks. Finally, we were able to classify the behavioral mode from neural signals with high accuracy (90 ± 6%). Thus, finger movement and force appear to have distinct representations in motor/premotor cortices. These results inform our understanding of the neural control of movement, as well as the design of grasp brain-machine interfaces (BMIs).
Collapse
|
28
|
Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020; 11:439. [PMID: 32513969 PMCID: PMC7280216 DOI: 10.1038/s41419-020-2620-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Due to the disconnection of surviving neural elements after spinal cord injury (SCI), such patients had to suffer irreversible loss of motor or sensory function, and thereafter enormous economic and emotional burdens were brought to society and family. Despite many strategies being dealing with SCI, there is still no effective regenerative therapy. To date, significant progress has been made in studies of SCI repair strategies, including gene regulation of neural regeneration, cell or cell-derived exosomes and growth factors transplantation, repair of biomaterials, and neural signal stimulation. The pathophysiology of SCI is complex and multifaceted, and its mechanisms and processes are incompletely understood. Thus, combinatorial therapies have been demonstrated to be more effective, and lead to better neural circuits reconstruction and functional recovery. Combinations of biomaterials, stem cells, growth factors, drugs, and exosomes have been widely developed. However, simply achieving axon regeneration will not spontaneously lead to meaningful functional recovery. Therefore, the formation and remodeling of functional neural circuits also depend on rehabilitation exercises, such as exercise training, electrical stimulation (ES) and Brain-Computer Interfaces (BCIs). In this review, we summarize the recent progress in biological and engineering strategies for reconstructing neural circuits and promoting functional recovery after SCI, and emphasize current challenges and future directions.
Collapse
Affiliation(s)
- Biao Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Liwei Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhe Gong
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Cao Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
29
|
Zhang X, Ma Z, Zheng H, Li T, Chen K, Wang X, Liu C, Xu L, Wu X, Lin D, Lin H. The combination of brain-computer interfaces and artificial intelligence: applications and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:712. [PMID: 32617332 PMCID: PMC7327323 DOI: 10.21037/atm.2019.11.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-computer interfaces (BCIs) have shown great prospects as real-time bidirectional links between living brains and actuators. Artificial intelligence (AI), which can advance the analysis and decoding of neural activity, has turbocharged the field of BCIs. Over the past decade, a wide range of BCI applications with AI assistance have emerged. These "smart" BCIs including motor and sensory BCIs have shown notable clinical success, improved the quality of paralyzed patients' lives, expanded the athletic ability of common people and accelerated the evolution of robots and neurophysiological discoveries. However, despite technological improvements, challenges remain with regard to the long training periods, real-time feedback, and monitoring of BCIs. In this article, the authors review the current state of AI as applied to BCIs and describe advances in BCI applications, their challenges and where they could be headed in the future.
Collapse
Affiliation(s)
- Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ziyue Ma
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huaijin Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tongkeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chenting Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linxi Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center of Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Yang SH, Wang HL, Lo YC, Lai HY, Chen KY, Lan YH, Kao CC, Chou C, Lin SH, Huang JW, Wang CF, Kuo CH, Chen YY. Inhibition of Long-Term Variability in Decoding Forelimb Trajectory Using Evolutionary Neural Networks With Error-Correction Learning. Front Comput Neurosci 2020; 14:22. [PMID: 32296323 PMCID: PMC7136463 DOI: 10.3389/fncom.2020.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: In brain machine interfaces (BMIs), the functional mapping between neural activities and kinematic parameters varied over time owing to changes in neural recording conditions. The variability in neural recording conditions might result in unstable long-term decoding performance. Relevant studies trained decoders with several days of training data to make them inherently robust to changes in neural recording conditions. However, these decoders might not be robust to changes in neural recording conditions when only a few days of training data are available. In time-series prediction and feedback control system, an error feedback was commonly adopted to reduce the effects of model uncertainty. This motivated us to introduce an error feedback to a neural decoder for dealing with the variability in neural recording conditions. Approach: We proposed an evolutionary constructive and pruning neural network with error feedback (ECPNN-EF) as a neural decoder. The ECPNN-EF with partially connected topology decoded the instantaneous firing rates of each sorted unit into forelimb movement of a rat. Furthermore, an error feedback was adopted as an additional input to provide kinematic information and thus compensate for changes in functional mapping. The proposed neural decoder was trained on data collected from a water reward-related lever-pressing task for a rat. The first 2 days of data were used to train the decoder, and the subsequent 10 days of data were used to test the decoder. Main Results: The ECPNN-EF under different settings was evaluated to better understand the impact of the error feedback and partially connected topology. The experimental results demonstrated that the ECPNN-EF achieved significantly higher daily decoding performance with smaller daily variability when using the error feedback and partially connected topology. Significance: These results suggested that the ECPNN-EF with partially connected topology could cope with both within- and across-day changes in neural recording conditions. The error feedback in the ECPNN-EF compensated for decreases in decoding performance when neural recording conditions changed. This mechanism made the ECPNN-EF robust against changes in functional mappings and thus improved the long-term decoding stability when only a few days of training data were available.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Lai
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kuan-Yu Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yu-Hao Lan
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ching-Chia Kao
- Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
| | - Chin Chou
- Department of Regulatory & Quality Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheng-Huang Lin
- Buddhist Tzu Chi Medical Foundation, Department of Neurology, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyun-We Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Chao-Hung Kuo
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Stavisky SD, Willett FR, Avansino DT, Hochberg LR, Shenoy KV, Henderson JM. Speech-related dorsal motor cortex activity does not interfere with iBCI cursor control. J Neural Eng 2020; 17:016049. [PMID: 32023225 PMCID: PMC8288044 DOI: 10.1088/1741-2552/ab5b72] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Speech-related neural modulation was recently reported in 'arm/hand' area of human dorsal motor cortex that is used as a signal source for intracortical brain-computer interfaces (iBCIs). This raises the concern that speech-related modulation might deleteriously affect the decoding of arm movement intentions, for instance by affecting velocity command outputs. This study sought to clarify whether or not speaking would interfere with ongoing iBCI use. APPROACH A participant in the BrainGate2 iBCI clinical trial used an iBCI to control a computer cursor; spoke short words in a stand-alone speech task; and spoke short words during ongoing iBCI use. We examined neural activity in all three behaviors and compared iBCI performance with and without concurrent speech. MAIN RESULTS Dorsal motor cortex firing rates modulated strongly during stand-alone speech, but this activity was largely attenuated when speaking occurred during iBCI cursor control using attempted arm movements. 'Decoder-potent' projections of the attenuated speech-related neural activity were small, explaining why cursor task performance was similar between iBCI use with and without concurrent speaking. SIGNIFICANCE These findings indicate that speaking does not directly interfere with iBCIs that decode attempted arm movements. This suggests that patients who are able to speak will be able to use motor cortical-driven computer interfaces or prostheses without needing to forgo speaking while using these devices.
Collapse
Affiliation(s)
- Sergey D. Stavisky
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Francis R. Willett
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Leigh R Hochberg
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Dept. of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Krishna V. Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jaimie M. Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
32
|
Vaughan TM. Brain-computer interfaces for people with amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:33-38. [DOI: 10.1016/b978-0-444-63934-9.00004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Muratore DG, Tandon P, Wootters M, Chichilnisky EJ, Mitra S, Murmann B. A Data-Compressive Wired-OR Readout for Massively Parallel Neural Recording. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1128-1140. [PMID: 31425051 DOI: 10.1109/tbcas.2019.2935468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neural interfaces of the future will be used to help restore lost sensory, motor, and other capabilities. However, realizing this futuristic promise requires a major leap forward in how electronic devices interface with the nervous system. Next generation neural interfaces must support parallel recording from tens of thousands of electrodes within the form factor and power budget of a fully implanted device, posing a number of significant engineering challenges. In this paper, we exploit sparsity and diversity of neural signals to achieve simultaneous data compression and channel multiplexing for neural recordings. The architecture uses wired-OR interactions within an array of single-slope A/D converters to obtain massively parallel digitization of neural action potentials. The achieved compression is lossy but effective at retaining the critical samples belonging to action potentials, enabling efficient spike sorting and cell type identification. Simulation results of the architecture using data obtained from primate retina ex-vivo with a 512-channel electrode array show average compression rates up to ∼ 40× while missing less than 5% of cells. In principle, the techniques presented here could be used to design interfaces to other parts of the nervous system.
Collapse
|
34
|
Sikder KU, Shivdasani MN, Fallon JB, Seligman P, Ganesan K, Villalobos J, Prawer S, Garrett DJ. Electrically conducting diamond films grown on platinum foil for neural stimulation. J Neural Eng 2019; 16:066002. [DOI: 10.1088/1741-2552/ab2e79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Vaidya M, Flint RD, Wang PT, Barry A, Li Y, Ghassemi M, Tomic G, Yao J, Carmona C, Mugler EM, Gallick S, Driver S, Brkic N, Ripley D, Liu C, Kamper D, Do AH, Slutzky MW. Hemicraniectomy in Traumatic Brain Injury: A Noninvasive Platform to Investigate High Gamma Activity for Brain Machine Interfaces. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1467-1472. [PMID: 31021800 DOI: 10.1109/tnsre.2019.2912298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brain-machine interfaces (BMIs) translate brain signals into control signals for an external device, such as a computer cursor or robotic limb. These signals can be obtained either noninvasively or invasively. Invasive recordings, using electrocorticography (ECoG) or intracortical microelectrodes, provide higher bandwidth and more informative signals. Rehabilitative BMIs, which aim to drive plasticity in the brain to enhance recovery after brain injury, have almost exclusively used non-invasive recordings, such electroencephalography (EEG) or magnetoencephalography (MEG), which have limited bandwidth and information content. Invasive recordings provide more information and spatiotemporal resolution, but do incur risk, and thus are not usually investigated in people with stroke or traumatic brain injury (TBI). Here, in this paper, we describe a new BMI paradigm to investigate the use of higher frequency signals in brain-injured subjects without incurring significant risk. We recorded EEG in TBI subjects who required hemicraniectomies (removal of a part of the skull). EEG over the hemicraniectomy (hEEG) contained substantial information in the high gamma frequency range (65-115 Hz). Using this information, we decoded continuous finger flexion force with moderate to high accuracy (variance accounted for 0.06 to 0.52), which at best approaches that using epidural signals. These results indicate that people with hemicraniectomies can provide a useful resource for developing BMI therapies for the treatment of brain injury.
Collapse
|
36
|
Mugler EM, Tate MC, Livescu K, Templer JW, Goldrick MA, Slutzky MW. Differential Representation of Articulatory Gestures and Phonemes in Precentral and Inferior Frontal Gyri. J Neurosci 2018; 38:9803-9813. [PMID: 30257858 PMCID: PMC6234299 DOI: 10.1523/jneurosci.1206-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
Abstract
Speech is a critical form of human communication and is central to our daily lives. Yet, despite decades of study, an understanding of the fundamental neural control of speech production remains incomplete. Current theories model speech production as a hierarchy from sentences and phrases down to words, syllables, speech sounds (phonemes), and the actions of vocal tract articulators used to produce speech sounds (articulatory gestures). Here, we investigate the cortical representation of articulatory gestures and phonemes in ventral precentral and inferior frontal gyri in men and women. Our results indicate that ventral precentral cortex represents gestures to a greater extent than phonemes, while inferior frontal cortex represents both gestures and phonemes. These findings suggest that speech production shares a common cortical representation with that of other types of movement, such as arm and hand movements. This has important implications both for our understanding of speech production and for the design of brain-machine interfaces to restore communication to people who cannot speak.SIGNIFICANCE STATEMENT Despite being studied for decades, the production of speech by the brain is not fully understood. In particular, the most elemental parts of speech, speech sounds (phonemes) and the movements of vocal tract articulators used to produce these sounds (articulatory gestures), have both been hypothesized to be encoded in motor cortex. Using direct cortical recordings, we found evidence that primary motor and premotor cortices represent gestures to a greater extent than phonemes. Inferior frontal cortex (part of Broca's area) appears to represent both gestures and phonemes. These findings suggest that speech production shares a similar cortical organizational structure with the movement of other body parts.
Collapse
Affiliation(s)
| | | | - Karen Livescu
- Toyota Technological Institute at Chicago, Chicago, Illinois 60637
| | | | | | - Marc W Slutzky
- Departments of Neurology,
- Physiology
- Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois 60611, and
| |
Collapse
|
37
|
Tariq M, Trivailo PM, Simic M. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots. Front Hum Neurosci 2018; 12:312. [PMID: 30127730 PMCID: PMC6088276 DOI: 10.3389/fnhum.2018.00312] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
Over recent years, brain-computer interface (BCI) has emerged as an alternative communication system between the human brain and an output device. Deciphered intents, after detecting electrical signals from the human scalp, are translated into control commands used to operate external devices, computer displays and virtual objects in the real-time. BCI provides an augmentative communication by creating a muscle-free channel between the brain and the output devices, primarily for subjects having neuromotor disorders, or trauma to nervous system, notably spinal cord injuries (SCI), and subjects with unaffected sensorimotor functions but disarticulated or amputated residual limbs. This review identifies the potentials of electroencephalography (EEG) based BCI applications for locomotion and mobility rehabilitation. Patients could benefit from its advancements such as wearable lower-limb (LL) exoskeletons, orthosis, prosthesis, wheelchairs, and assistive-robot devices. The EEG communication signals employed by the aforementioned applications that also provide feasibility for future development in the field are sensorimotor rhythms (SMR), event-related potentials (ERP) and visual evoked potentials (VEP). The review is an effort to progress the development of user's mental task related to LL for BCI reliability and confidence measures. As a novel contribution, the reviewed BCI control paradigms for wearable LL and assistive-robots are presented by a general control framework fitting in hierarchical layers. It reflects informatic interactions, between the user, the BCI operator, the shared controller, the robotic device and the environment. Each sub layer of the BCI operator is discussed in detail, highlighting the feature extraction, classification and execution methods employed by the various systems. All applications' key features and their interaction with the environment are reviewed for the EEG-based activity mode recognition, and presented in form of a table. It is suggested to structure EEG-BCI controlled LL assistive devices within the presented framework, for future generation of intent-based multifunctional controllers. Despite the development of controllers, for BCI-based wearable or assistive devices that can seamlessly integrate user intent, practical challenges associated with such systems exist and have been discerned, which can be constructive for future developments in the field.
Collapse
Affiliation(s)
| | | | - Milan Simic
- School of Engineering, RMIT University Melbourne, Melbourne, VIC, Australia
| |
Collapse
|