1
|
Zhou W, Yang Y, Feng Z, Zhang Y, Chen Y, Yu T, Wang H. Inhibition of Caspase-1-dependent pyroptosis alleviates myocardial ischemia/reperfusion injury during cardiopulmonary bypass (CPB) in type 2 diabetic rats. Sci Rep 2024; 14:19420. [PMID: 39169211 PMCID: PMC11339408 DOI: 10.1038/s41598-024-70477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Cardiovascular complications pose a significant burden in type 2 diabetes mellitus (T2DM), driven by the intricate interplay of chronic hyperglycemia, insulin resistance, and lipid metabolism disturbances. Myocardial ischemia/reperfusion (MI/R) injury during cardiopulmonary bypass (CPB) exacerbates cardiac vulnerability. This study aims to probe the role of Caspase-1-dependent pyroptosis in global ischemia/reperfusion injury among T2DM rats undergoing CPB, elucidating the mechanisms underlying heightened myocardial injury in T2DM. This study established a rat model of T2DM and compared Mean arterial pressure (MAP), heart rate (HR), and hematocrit (Hct) between T2DM and normal rats. Myocardial cell morphology, infarction area, mitochondrial ROS and caspase-1 levels, NLRP3, pro-caspase-1, caspase-1 p10, GSDMD expressions, plasma CK-MB, cTnI, IL-1β, and IL-18 levels were assessed after reperfusion in both T2DM and normal rats. The role of Caspase-1-dependent pyroptosis in myocardial ischemia/reperfusion injury during CPB in T2DM rats was examined using the caspase-1 inhibitor VX-765 and the ROS scavenger NAC. T2DM rats demonstrated impaired glucose tolerance but stable hemodynamics during CPB, while showing heightened vulnerability to MI/R injury. This was marked by substantial lipid deposition, disrupted myocardial fibers, and intensified cellular apoptosis. The activation of caspase-1-mediated pyroptosis and increased reactive oxygen species (ROS) production further contributed to tissue damage and the ensuing inflammatory response. Notably, myocardial injury was mitigated by inhibiting caspase-1 through VX-765, which also attenuated the inflammatory cascade. Likewise, NAC treatment reduced oxidative stress and partially suppressed ROS-mediated caspase-1 activation, resulting in diminished myocardial injury. This study proved that Caspase-1-dependent pyroptosis significantly contributes to the inflammation and injury stemming from global MI/R in T2DM rats under CPB, which correlate with the surplus ROS generated by oxidative stress during reperfusion.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Yingya Yang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China
| | - Zhouheng Feng
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Yiman Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, People's Republic of China
| | - Haiying Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Chen Y, Wu H, Yu HH, Ma L. Slit2-Robo4 signal pathway and tight junction in intestine mediate LPS-induced inflammation in mice. Eur J Med Res 2024; 29:349. [PMID: 38937814 PMCID: PMC11209965 DOI: 10.1186/s40001-024-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Sepsis is one of the most common clinical diseases, which is characterized by a serious and uncontrollable inflammatory response. LPS-induced inflammation is a critical pathological event in sepsis, but the underlying mechanism has not yet been fully elucidated. METHODS The animal model was established for two batches. In the first batch of experiments, Adult C57BL/6J mice were randomly divided into control group and LPS (5 mg/kg, i.p.)group . In the second batch of experiments, mice were randomly divided into control group, LPS group, and LPS+VX765(10 mg/kg, i.p., an inhibitor of NLRP3 inflammasome) group. After 24 hours, mice were anesthetized with isoflurane, blood and intestinal tissue were collected for tissue immunohistochemistry, Western blot analysis and ELISA assays. RESULTS The C57BL/6J mice injected with LPS for twenty-four hours could exhibit severe inflammatory reaction including an increased IL-1β, IL-18 in serum and activation of NLRP3 inflammasome in intestine. The injection of VX765 could reverse these effects induced by LPS. These results indicated that the increased level of IL-1β and IL-18 in serum induced by LPS is related to the increased intestinal permeability and activation of NLRP3 inflammasome. In the second batch of experiments, results of western blot and immunohistochemistry showed that Slit2 and Robo4 were significant decreased in intestine of LPS group, while the expression of VEGF was significant increased. Meanwhile, the protein level of tight junction protein ZO-1, occludin, and claudin-5 were significantly lower than in control group, which could also be reversed by VX765 injection. CONCLUSIONS In this study, we revealed that Slit2-Robo4 signaling pathway and tight junction in intestine may be involved in LPS-induced inflammation in mice, which may account for the molecular mechanism of sepsis.
Collapse
Affiliation(s)
- Lv Wang
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Yingtai Chen
- Emergency Department, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200444, People's Republic of China
| | - Hao Wu
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - He-Hua Yu
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China.
| | - Linhao Ma
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
3
|
Cohen MV, Downey JM. Initial Despair and Current Hope of Identifying a Clinically Useful Treatment of Myocardial Reperfusion Injury: Insights Derived from Studies of Platelet P2Y 12 Antagonists and Interference with Inflammation and NLRP3 Assembly. Int J Mol Sci 2024; 25:5477. [PMID: 38791515 PMCID: PMC11122283 DOI: 10.3390/ijms25105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Myocardial necrosis following the successful reperfusion of a coronary artery occluded by thrombus in a patient presenting with ST-elevation myocardial infarction (STEMI) continues to be a serious problem, despite the multiple attempts to attenuate the necrosis with agents that have shown promise in pre-clinical investigations. Possible reasons include confounding clinical risk factors, the delayed application of protective agents, poorly designed pre-clinical investigations, the possible effects of routinely administered agents that might unknowingly already have protected the myocardium or that might have blocked protection, and the biological differences of the myocardium in humans and experimental animals. A better understanding of the pathobiology of myocardial infarction is needed to stem this reperfusion injury. P2Y12 receptor antagonists minimize platelet aggregation and are currently part of the standard treatment to prevent thrombus formation and propagation in STEMI protocols. Serendipitously, these P2Y12 antagonists also dramatically attenuate reperfusion injury in experimental animals and are presumed to provide a similar protection in STEMI patients. However, additional protective agents are needed to further diminish reperfusion injury. It is possible to achieve additive protection if the added intervention protects by a mechanism different from that of P2Y12 antagonists. Inflammation is now recognized to be a critical factor in the complex intracellular response to ischemia and reperfusion that leads to tissue necrosis. Interference with cardiomyocyte inflammasome assembly and activation has shown great promise in attenuating reperfusion injury in pre-clinical animal models. And the blockade of the executioner protease caspase-1, indeed, supplements the protection already seen after the administration of P2Y12 antagonists. Importantly, protective interventions must be applied in the first minutes of reperfusion, if protection is to be achieved. The promise of such a combination of protective strategies provides hope that the successful attenuation of reperfusion injury is attainable.
Collapse
Affiliation(s)
- Michael V. Cohen
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
- The Departments of Medicine, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA
| | - James M. Downey
- The Departments of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA;
| |
Collapse
|
4
|
Sagris M, Apostolos A, Theofilis P, Ktenopoulos N, Katsaros O, Tsalamandris S, Tsioufis K, Toutouzas K, Tousoulis D. Myocardial Ischemia-Reperfusion Injury: Unraveling Pathophysiology, Clinical Manifestations, and Emerging Prevention Strategies. Biomedicines 2024; 12:802. [PMID: 38672157 PMCID: PMC11048318 DOI: 10.3390/biomedicines12040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) remains a challenge in the context of reperfusion procedures for myocardial infarction (MI). While early revascularization stands as the gold standard for mitigating myocardial injury, recent insights have illuminated the paradoxical role of reperfusion, giving rise to the phenomenon known as ischemia-reperfusion injury. This comprehensive review delves into the intricate pathophysiological pathways involved in MIRI, placing a particular focus on the pivotal role of endothelium. Beyond elucidating the molecular intricacies, we explore the diverse clinical manifestations associated with MIRI, underscoring its potential to contribute substantially to the final infarct size, up to 50%. We further navigate through current preventive approaches and highlight promising emerging strategies designed to counteract the devastating effects of the phenomenon. By synthesizing current knowledge and offering a perspective on evolving preventive interventions, this review serves as a valuable resource for clinicians and researchers engaged in the dynamic field of MIRI.
Collapse
Affiliation(s)
- Marios Sagris
- Correspondence: ; Tel.: +30-213-2088099; Fax: +30-2132088676
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Azhar G, Nagano K, Patyal P, Zhang X, Verma A, Wei JY. Deletion of Interleukin-1β Converting Enzyme Alters Mouse Cardiac Structure and Function. BIOLOGY 2024; 13:172. [PMID: 38534442 DOI: 10.3390/biology13030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Interleukin-1β converting enzyme (ICE, caspase-1) is a thiol protease that cleaves the pro-inflammatory cytokine precursors of IL-1β and IL-18 into active forms. Given the association between caspase-1 and cardiovascular pathology, we analyzed the hearts of ICE knockout (ICE KO) mice to test the hypothesis that caspase-1 plays a significant role in cardiac morphology and function. We characterized the histological and functional changes in the hearts of ICE KO mice compared to the Wild type. The cardiomyocytes from the neonatal ICE KO mice showed an impaired response to oxidative stress. Subsequently, the hearts from the ICE KO mice were hypertrophied, with a significant increase in the left ventricular and septal wall thickness and a greater LV mass/body weight ratio. The ICE KO mice hearts exhibited irregular myofibril arrangements and disruption of the cristae in the mitochondrial structure. Proapoptotic proteins that were significantly increased in the hearts of ICE KO versus the Wild type included pErk, pJNK, p53, Fas, Bax, and caspase 3. Further, the antiapoptotic proteins Bag-1 and Bcl-2 are activated in ICE KO hearts. Functionally, there was an increase in the left ventricular epicardial diameter and volume in ICE KO. In conclusion, our findings support the important role of caspase-1 in maintaining cardiac health; specifically, a significant decrease in caspase-1 is detrimental to the cardiovascular system.
Collapse
Affiliation(s)
- Gohar Azhar
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Koichiro Nagano
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Carmo HRP, Bonilha I, Barreto J, Tognolini M, Zanotti I, Sposito AC. High-Density Lipoproteins at the Interface between the NLRP3 Inflammasome and Myocardial Infarction. Int J Mol Sci 2024; 25:1290. [PMID: 38279290 PMCID: PMC10816227 DOI: 10.3390/ijms25021290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.
Collapse
Affiliation(s)
- Helison R. P. Carmo
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | | | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Andrei C. Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| |
Collapse
|
7
|
Kubica J, Adamski P, Dobrzycki S, Gajda R, Gąsior M, Gierlotka M, Jaguszewski M, Legutko J, Lesiak M, Navarese EP, Niezgoda P, Ostrowska M, Pawłowski T, Tycińska A, Umińska JM, Witkowski A, Gil R. Cangrelor - Expanding therapeutic options in patients with acute coronary syndrome. Cardiol J 2023; 31:133-146. [PMID: 37964649 PMCID: PMC10919555 DOI: 10.5603/cj.96076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/24/2023] [Accepted: 09/24/2023] [Indexed: 11/16/2023] Open
Abstract
Cangrelor is the only intravenous P2Y12 receptor antagonist. It is an adenosine triphosphate analog that selectively, directly, and reversibly binds to the platelet P2Y12 receptors exerting its antiaggregatory effect. Cangrelor is characterized by linear, dose-dependent pharmacokinetics and rapid onset of action providing potent platelet inhibition exceeding 90%. Cangrelor is rapidly metabolized by endothelial endonucleotidase; thus, its half-life is 2.9 to 5.5 min, and its antiplatelet effect subsides within 60 to 90 min. Data originating from three pivotal cangrelor trials (CHAMPION PLATFORM, CHAMPION PCI, and CHAMPION PHOENIX) indicate that cangrelor reduces the risk of periprocedural thrombotic complications during percutaneous coronary intervention at the expense of mild bleedings. Its unique pharmacological properties allow it to overcome the limitations of oral P2Y12 receptor inhibitors, mainly related to the delayed and decreased bioavailability and antiplatelet effect of these agents, which are often observed in the setting of acute coronary syndrome. Subgroups of patients who could theoretically benefit the most from cangrelor include those in whom pharmacokinetics and pharmacodynamics of oral P2Y12 receptor antagonists are most disturbed, namely patients with ST-segment elevation myocardial infarction, those treated with opioids, with mild therapeutic hypothermia, or in cardiogenic shock. Cangrelor could also be useful if bridging is required in patients undergoing surgery. According to the current guidelines cangrelor may be considered in P2Y12 receptor inhibitor-naïve patients undergoing percutaneous coronary intervention in both acute and stable settings.
Collapse
Affiliation(s)
- Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Piotr Adamski
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, Poland
| | | | - Mariusz Gąsior
- 3rd Department of Cardiology, Silesian Center for Heart Diseases, Medical University of Silesia, Zabrze, Poland
| | - Marek Gierlotka
- Department of Cardiology, Institute of Medical Sciences, University of Opole, Poland
| | | | - Jacek Legutko
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, Krakow, Poland
| | - Maciej Lesiak
- Chair and 1st Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Eliano P Navarese
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Piotr Niezgoda
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Małgorzata Ostrowska
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Pawłowski
- Department of Cardiology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
| | | | - Julia M Umińska
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Robert Gil
- Department of Cardiology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
| |
Collapse
|
8
|
Yarovinsky TO, Su M, Chen C, Xiang Y, Tang WH, Hwa J. Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin Immunol 2023; 69:101809. [PMID: 37478801 PMCID: PMC10528349 DOI: 10.1016/j.smim.2023.101809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Pyroptosis is a form of programmed cell death associated with activation of inflammasomes and inflammatory caspases, proteolytic cleavage of gasdermin proteins (forming pores in the plasma membrane), and selective release of proinflammatory mediators. Induction of pyroptosis results in amplification of inflammation, contributing to the pathogenesis of chronic cardiovascular diseases such as atherosclerosis and diabetic cardiomyopathy, and acute cardiovascular events, such as thrombosis and myocardial infarction. While engagement of pyroptosis during sepsis-induced cardiomyopathy and septic shock is expected and well documented, we are just beginning to understand pyroptosis involvement in the pathogenesis of cardiovascular diseases with less defined inflammatory components, such as atrial fibrillation. Due to the danger that pyroptosis represents to cells within the cardiovascular system and the whole organism, multiple levels of pyroptosis regulation have evolved. Those include regulation of inflammasome priming, post-translational modifications of gasdermins, and cellular mechanisms for pore removal. While pyroptosis in macrophages is well characterized as a dramatic pro-inflammatory process, pyroptosis in other cell types within the cardiovascular system displays variable pathways and consequences. Furthermore, different cells and organs engage in local and distant crosstalk and exchange of pyroptosis triggers (oxidized mitochondrial DNA), mediators (IL-1β, S100A8/A9) and antagonists (IL-9). Development of genetic tools, such as Gasdermin D knockout animals, and small molecule inhibitors of pyroptosis will not only help us fully understand the role of pyroptosis in cardiovascular diseases but may result in novel therapeutic approaches inhibiting inflammation and progression of chronic cardiovascular diseases to reduce morbidity and mortality from acute cardiovascular events.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Meiling Su
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chaofei Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, the Hong Kong Special Administrative Region of China
| | - John Hwa
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Thapa P, Upadhyay SP, Singh V, Boinpelly VC, Zhou J, Johnson DK, Gurung P, Lee ES, Sharma R, Sharma M. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 7:100100. [PMID: 37033416 PMCID: PMC10081147 DOI: 10.1016/j.ejmcr.2022.100100] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overactivated NLRP3 inflammasome has been shown to associate with an increasing number of disease conditions. Activation of the NLRP3 inflammasome results in caspase-1-catalyzed formation of active pro-inflammatory cytokines (IL-1β and IL-18) resulting in pyroptosis. The multi-protein composition of the NLRP3 inflammasome and its sensitivity to several damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) make this extensively studied inflammasome an attractive target to treat chronic conditions. However, none of the known NLRP3 inhibitors has been approved for clinical use. Sulfonylurea and covalent inhibitors with electrophilic warhead (Michael acceptor) are among the prominent classes of compounds explored for their NLRP3 inhibitory effects. Chalcone, a small molecule with α, β unsaturated carbonyl group (Michael acceptor), has also been studied as a promising scaffold for the development of NLRP3 inhibitors. Low molecular weight, easy to manipulate lipophilicity and cost-effectiveness have attracted many to use chalcone scaffold for drug development. In this review, we highlight chalcone derivatives with NLRP3 inflammasome inhibitory activities. Recent developments and potential new directions summarized here will, hopefully, serve as valuable perspectives for investigators including medicinal chemists and drug discovery researchers to utilize chalcone as a scaffold for developing novel NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Pritam Thapa
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Sunil P. Upadhyay
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Vikas Singh
- Division of Neurology, KCVA Medical Center, Kansas City, MO, USA
| | - Varun C. Boinpelly
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - David K. Johnson
- Department of Computational Chemical Biology Core, Molecular Graphics and Modeling Core, University of Kansas, KS, 66047, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Ram Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Mukut Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
10
|
Jiao M, Wang J, Liu W, Zhao X, Qin Y, Zhang C, Yin H, Zhao C. VX-765 inhibits pyroptosis and reduces inflammation to prevent acute liver failure by upregulating PPARα expression. Ann Hepatol 2023; 28:101082. [PMID: 36893888 DOI: 10.1016/j.aohep.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION AND OBJECTIVES As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS With the progression of ALF, the expression levels of interleukin (IL) -1β, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Mingjing Jiao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanjun Qin
- Emergency Department, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunhuan Zhang
- Research Department, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongzhu Yin
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
11
|
Yang XM, Cohen MV, Sayner S, Audia JP, Downey JM. Lethal Caspase-1/4-Dependent Injury Occurs in the First Minutes of Coronary Reperfusion and Requires Calpain Activity. Int J Mol Sci 2023; 24:3801. [PMID: 36835212 PMCID: PMC9960231 DOI: 10.3390/ijms24043801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
To study the relationship between caspase-1/4 and reperfusion injury, we measured infarct size (IS) in isolated mouse hearts undergoing 50 min global ischemia/2 h reperfusion. Starting VRT-043198 (VRT) at reperfusion halved IS. The pan-caspase inhibitor emricasan duplicated VRT's protection. IS in caspase-1/4-knockout hearts was similarly reduced, supporting the hypothesis that caspase-1/4 was VRT's only protective target. NLRC4 inflammasomes activate caspase-1. NLRC4 knockout hearts were not protected, eliminating NLRC4 as caspase-1/4's activator. The amount of protection that could be achieved by only suppressing caspase-1/4 activity was limited. In wild-type (WT) hearts, ischemic preconditioning (IPC) was as protective as caspase-1/4 inhibitors. Combining IPC and emricasan in these hearts or preconditioning caspase-1/4-knockout hearts produced an additive IS reduction, indicating that more protection could be achieved by combining treatments. We determined when caspase-1/4 exerted its lethal injury. Starting VRT after 10 min of reperfusion in WT hearts was no longer protective, revealing that caspase-1/4 inflicted its injury within the first 10 min of reperfusion. Ca++ influx at reperfusion might activate caspase-1/4. We tested whether Ca++-dependent soluble adenylyl cyclase (AC10) could be responsible. However, IS in AC10-/- hearts was not different from that in WT control hearts. Ca++-activated calpain has been implicated in reperfusion injury. Calpain could be releasing actin-bound procaspase-1 in cardiomyocytes, which would explain why caspase-1/4-related injury is confined to early reperfusion. The calpain inhibitor calpeptin duplicated emricasan's protection. Unlike IPC, adding calpain to emricasan offered no additional protection, suggesting that caspase-1/4 and calpain may share the same protective target.
Collapse
Affiliation(s)
- Xi-Ming Yang
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Michael V. Cohen
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Medicine, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Sarah Sayner
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Jonathon P. Audia
- Department of Microbiology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - James M. Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
12
|
Flammer J, Neziraj T, Rüegg S, Pröbstel AK. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs 2023; 83:135-158. [PMID: 36696027 PMCID: PMC9875200 DOI: 10.1007/s40265-022-01826-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Collapse
Affiliation(s)
- Julia Flammer
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland. .,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Król M, Kupnicka P, Bosiacki M, Chlubek D. Mechanisms Underlying Anti-Inflammatory and Anti-Cancer Properties of Stretching-A Review. Int J Mol Sci 2022; 23:ijms231710127. [PMID: 36077525 PMCID: PMC9456560 DOI: 10.3390/ijms231710127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
Stretching is one of the popular elements in physiotherapy and rehabilitation. When correctly guided, it can help minimize or slow down the disabling effects of chronic health conditions. Most likely, the benefits are associated with reducing inflammation; recent studies demonstrate that this effect from stretching is not just systemic but also local. In this review, we present the current body of knowledge on the anti-inflammatory properties of stretching at a molecular level. A total of 22 papers, focusing on anti-inflammatory and anti-cancer properties of stretching, have been selected and reviewed. We show the regulation of oxidative stress, the expression of pro- and anti-inflammatory genes and mediators, and remodeling of the extracellular matrix, expressed by changes in collagen and matrix metalloproteinases levels, in tissues subjected to stretching. We point out that a better understanding of the anti-inflammatory properties of stretching may result in increasing its importance in treatment and recovery from diseases such as osteoarthritis, systemic sclerosis, and cancer.
Collapse
Affiliation(s)
- Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| | - Mateusz Bosiacki
- Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
14
|
Su XL, Wang SH, Komal S, Cui LG, Ni RC, Zhang LR, Han SN. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressing the IL-1β/p38 MAPK pathway. Acta Pharmacol Sin 2022; 43:2289-2301. [PMID: 35132192 PMCID: PMC9433445 DOI: 10.1038/s41401-021-00845-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Connexin 43 (Cx43) is the most important protein in the gap junction channel between cardiomyocytes. Abnormalities of Cx43 change the conduction velocity and direction of cardiomyocytes, leading to reentry and conduction block of the myocardium, thereby causing arrhythmia. It has been shown that IL-1β reduces the expression of Cx43 in astrocytes and cardiomyocytes in vitro. However, whether caspase-1 and IL-1β affect connexin 43 after myocardial infarction (MI) is uncertain. In this study we investigated the effects of VX765, a caspase-1 inhibitor, on the expression of Cx43 and cell-to-cell communication after MI. Rats were treated with VX765 (16 mg/kg, i.v.) 1 h before the left anterior descending artery (LAD) ligation, and then once daily for 7 days. The ischemic heart was collected for histochemical analysis and Western blot analysis. We showed that VX765 treatment significantly decreased the infarct area, and alleviated cardiac dysfunction and remodeling by suppressing the NLRP3 inflammasome/caspase-1/IL-1β expression in the heart after MI. In addition, VX765 treatment markedly raised Cx43 levels in the heart after MI. In vitro experiments were conducted in rat cardiac myocytes (RCMs) stimulated with the supernatant from LPS/ATP-treated rat cardiac fibroblasts (RCFs). Pretreatment of the RCFs with VX765 (25 μM) reversed the downregulation of Cx43 expression in RCMs and significantly improved intercellular communication detected using a scrape-loading/dye transfer assay. We revealed that VX765 suppressed the activation of p38 MAPK signaling in the heart tissue after MI as well as in RCMs stimulated with the supernatant from LPS/ATP-treated RCFs. Taken together, these data show that the caspase-1 inhibitor VX765 upregulates Cx43 expression and improves cell-to-cell communication in rat heart after MI via suppressing the IL-1β/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui-Cong Ni
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Jiang W, He F, Ding G, Wu J. Topotecan Reduces Neuron Death after Spinal Cord Injury by Suppressing Caspase-1-Dependent Pyroptosis. Mol Neurobiol 2022; 59:6033-6048. [DOI: 10.1007/s12035-022-02960-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
|
16
|
Abstract
![]()
The
SARS-CoV-2 main protease is among the most attractive targets
for the development of therapeutic interventions for COVID-19. Successful
candidate agents will not only possess potent on-target activity versus
SARS-CoV-2 Mpro but also minimal polypharmacology versus
human cysteine proteases. This Viewpoint explores the activity profile
of the first approved SARS-CoV-2 Mpro inhibitor (Nirmatrelvir)
versus a panel of cysteine proteases and considers the therapeutic
implications of the data.
Collapse
Affiliation(s)
- Damien Y Duveau
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland 20850, United States
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland 20850, United States.,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Lyu H, Ni H, Huang J, Yu G, Zhang Z, Zhang Q. VX-765 prevents intestinal ischemia-reperfusion injury by inhibiting NLRP3 inflammasome. Tissue Cell 2022; 75:101718. [PMID: 35131633 DOI: 10.1016/j.tice.2021.101718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal ischemia-reperfusion injury (IIRI) is a common clinical event that can cause serious consequences. The study aimed to investigated the effect of VX-765 in IIRI and its mechanism. METHODS The hypoxia-reoxygenation (H/R) cell model and IIRI mouse model were generated to examine the in vitro and in vivo effects of VX-765 on IIRI. IIRI was evaluated by histological assessment. ELISA was performed to determine the levels of IL-6, TNF-α, IL-1β, caspase-1, and GSDMD in intestinal tissues as well as the levels of MDA, SOD, CAT, caspase-1, and GSDMD in Caco-2 cells. Relative protein levels of NLRP3, ASC, IL-18, IL-1β, cleaved Caspase1, and GSDMD-N were analyzed by Western blotting. CCK-8 Assay was conducted to determine the optimal concentration of VX-765 for the in vitro studies. Flow cytometry, fluorescence microscopy and real-time PCR (RT-PCR) were used to assess ROS levels and the mRNA levels of IL-18 and IL-1β, respectively. Immunofluorescence staining was performed to examine the subcellular localization of P65 and NLRP3. RESULTS VX-765 reduced IIRI-induced oxidative stress and inflammatory response both in vivo and in vitro, while it decreased the levels of TNF-α, IL-6, IL-1β as well as the modified Park/Chiu scores. The optimal concentration of VX-765 for the in vitro studies was 10 μM. Moreover, VX-765 inhibited the nuclear translocation of P65, reduced oxidative stress and down-regulated the activation of NLRP3 inflammasome. CONCLUSION VX-765 prevents IIRI presumably by inhibiting the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Heping Lyu
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Haizhen Ni
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Jingyong Huang
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Guanfeng Yu
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Zhongjing Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|
18
|
Penna C, Comità S, Tullio F, Alloatti G, Pagliaro P. Challenges facing the clinical translation of cardioprotection: 35 years after the discovery of ischemic preconditioning. Vascul Pharmacol 2022; 144:106995. [DOI: 10.1016/j.vph.2022.106995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/19/2022]
|
19
|
Shen S, Wang Z, Sun H, Ma L. Role of NLRP3 Inflammasome in Myocardial Ischemia-Reperfusion Injury and Ventricular Remodeling. Med Sci Monit 2022; 28:e934255. [PMID: 35042840 PMCID: PMC8790935 DOI: 10.12659/msm.934255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reperfusion therapy is the optimal therapy for acute myocardial infarction (AMI), but acute inflammatory injury and chronic heart failure (HF) after myocardial ischemia and reperfusion (MI/R) remain the leading cause of death after AMI. Pyroptosis, a newly discovered form of cell death, has been proven to play a significant role in the acute reperfusion process and the subsequent chronic process of ventricular remodeling. Current research shows that multiple stimuli activate the pyroptotic signaling pathway and contribute to cell death and nonbacterial inflammation after MI/R. These stimuli promote the assembly of the nucleotide-binding and oligomerization-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome by activating NLRP3. The mature NLRP3 inflammasome cleaves procaspase-1 to active caspase-1, which leads to mature processing of interleukin (IL)-18, IL-1β, and gasdermin D (GSDMD) protein. That eventually results in cell lysis and generation of nonbacterial inflammation. The present review summarizes the mechanism of NLRP3 inflammasome activation after MI/R and discusses the role that NLRP3-mediated pyroptosis plays in the pathophysiology of MI/R injury and ventricular remodeling. We also discuss potential mechanisms and targeted therapy for which there is evidence supporting treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Zhen Wang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Haozhong Sun
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| |
Collapse
|
20
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Derkachev IA, Ryabov VV, Boshchenko AA, Prasad NR, Sufianova GZ, Khlestkina MS, Gareev I. Pharmacological Approaches to Limit Ischemic and Reperfusion Injuries of the Heart. Analysis of Experimental and Clinical Data on P2Y 12 Receptor Antagonists. Korean Circ J 2022; 52:737-754. [PMID: 36217596 PMCID: PMC9551227 DOI: 10.4070/kcj.2022.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
High mortality among people with acute myocardial infarction is one of the most urgent problems of modern cardiology. And in recent years, much attention has been paid to the search for pharmacological approaches to prevent heart damage. In this review, we tried to analyze data on the effect of P2Y12 receptor antagonists on the ischemia/reperfusion tolerance of the heart. Ischemic and reperfusion injuries of the heart underlie the pathogenesis of acute myocardial infarction (AMI) and sudden cardiac death. The mortality rate is still high and is 5–7% in patients with ST-segment elevation myocardial infarction. The review is devoted to pharmacological approaches to limitation of ischemic and reperfusion injuries of the heart. The article analyzes experimental evidence and the clinical data on the effects of P2Y12 receptor antagonists on the heart’s tolerance to ischemia/reperfusion in animals with coronary artery occlusion and reperfusion and also in patients with AMI. Chronic administration of ticagrelor prevented adverse remodeling of the heart. There is evidence that sphingosine-1-phosphate is the molecule that mediates the infarct-reducing effect of P2Y12 receptor antagonists. It was discussed a role of adenosine in the cardioprotective effect of ticagrelor.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Ivan A. Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Vyacheslav V. Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | |
Collapse
|
21
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Naryzhnaya NV, Voronkov NS, Ryabov VV, Boshchenko AA, Khaliulin I, Prasad NR, Fu F, Pei JM, Logvinov SV, Oeltgen PR. Reperfusion Cardiac Injury: Receptors and the Signaling Mechanisms. Curr Cardiol Rev 2022; 18:63-79. [PMID: 35422224 PMCID: PMC9896422 DOI: 10.2174/1573403x18666220413121730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2021; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
23
|
Popov SV, Maslov LN, Naryzhnaya NV, Mukhomezyanov AV, Krylatov AV, Tsibulnikov SY, Ryabov VV, Cohen MV, Downey JM. The Role of Pyroptosis in Ischemic and Reperfusion Injury of the Heart. J Cardiovasc Pharmacol Ther 2021; 26:562-574. [PMID: 34264787 DOI: 10.1177/10742484211027405] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While ischemia itself can kill heart muscle, much of the infarction after a transient period of coronary artery occlusion has been found to result from injury during reperfusion. Here we review the role of inflammation and possible pyroptosis in myocardial reperfusion injury. Current evidence suggests pyroptosis's contribution to infarction may be considerable. Pyroptosis occurs when inflammasomes activate caspases that in turn cleave off an N-terminal fragment of gasdermin D. This active fragment makes large pores in the cell membrane thus killing the cell. Inhibition of inflammation enhances cardiac tolerance to ischemia and reperfusion injury. Stimulation of the purinergic P2X7 receptor and the β-adrenergic receptor and activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) by toll-like receptor (TLR) agonists are all known to contribute to ischemia/reperfusion (I/R) cardiac injury through inflammation, potentially by pyroptosis. In contrast, stimulation of the cannabinoid CB2 receptor reduces I/R cardiac injury and inhibits this pathway. MicroRNAs, Akt, the phosphate and tension homology deleted on chromosome 10 protein (PTEN), pyruvate dehydrogenase and sirtuin-1 reportedly modulate inflammation in cardiomyocytes during I/R. Cryopyrin and caspase-1/4 inhibitors are reported to increase cardiac tolerance to ischemic and reperfusion cardiac injury, presumably by suppressing inflammasome-dependent inflammation. The ambiguity surrounding the role of pyroptosis in reperfusion injury arises because caspase-1 also activates cytotoxic interleukins and proteolytically degrades a surprisingly large number of cytosolic enzymes in addition to activating gasdermin D.
Collapse
Affiliation(s)
- Sergey V Popov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Alexandr V Mukhomezyanov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Vyacheslav V Ryabov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Michael V Cohen
- Department of Physiology and Cell Biology, 12214University of South Alabama College of Medicine, Mobile, AL, USA
| | - James M Downey
- Department of Physiology and Cell Biology, 12214University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
24
|
Deng J. Advanced research on the regulated necrosis mechanism in myocardial ischemia-reperfusion injury. Int J Cardiol 2021; 334:97-101. [PMID: 33930510 DOI: 10.1016/j.ijcard.2021.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Myocardial ischemia-reperfusion injury is an important factor that seriously affects the prognosis of patients with myocardial infarction. It can cause myocardial stun, no-reflow phenomenon, reperfusion arrhythmia, and even irreversible cardiomyocyte death. Regulated necrosis is a newly discovered type of regulatory cell death that is different from apoptosis, including necroptosis, pyrolysis, iron death and other forms. Regulated necrosis plays an important role in myocardial infarction, heart failure and other cardiovascular diseases, as well as myocardial ischemia-reperfusion injury and other pathophysiological processes, and is expected to become a new target for intervention in this type of disease.
Collapse
Affiliation(s)
- Jianying Deng
- Department of Cardiovascular Surgery,Chongqing Kanghua Zhonglian Cardiovascular Hospital, Chong Qing, China.
| |
Collapse
|
25
|
Chen H, Guan B, Chen S, Yang D, Shen J. Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med 2021; 165:171-183. [PMID: 33515754 DOI: 10.1016/j.freeradbiomed.2021.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
This study aims to test the hypothesis that peroxynitrite-mediated inflammasome activation could be a crucial player in the blood-brain barrier (BBB) disruption, hemorrhagic transformation (HT) and poor outcome in ischemic stroke with hyperglycemia. We used an experimental rat stroke model subjected to 90 min of middle cerebral artery occlusion plus 24 h or 7 days of reperfusion with or without acute hyperglycemia. We detected the production of peroxynitrite, the expression of NADPH oxidase, iNOS, MMPs and NLRP3 inflammasome in the ischemic brains, and evaluated infarct volume, brain edema, HT, neurological deficit score and survival rates. Our results show that: (1) Hyperglycemia increased the expression of NADPH oxidase subunits p47phox and p67phox, and iNOS, and the production of peroxynitrite. (2) Hyperglycemia increased infarct volume, aggravated the BBB hyperpermeability, induced brain edema and HT, and worsened neurological outcomes. These brain damages and poor outcome were reversed by the treatments of FeTmPyP (a representative peroxynitrite decomposition catalyst, PDC), peroxynitrite scavenger uric acid, and iNOS inhibitor 1400W. Furthermore, the activations of MMPs and NLRP3 inflammasome including pro/active-caspase-1 and IL-1β were inhibited both PDC and 1400W, indicating the roles of peroxynitrite in the inductions of MMPs and NLRP3 inflammasome in the ischemic brains under hyperglycemia. (3) NLRP3 inflammasome inhibitor MCC950, caspase-1 inhibitor VX-765 and IL-1β inhibitor diacerein attenuated brain edema, minimized hemorrhagic transformation and improved neurological outcome, demonstrating the roles of NLRP3 inflammasome in the hyperglycemia-mediated HT and poor outcome in the ischemic stroke rats with acute hyperglycemia. In conclusion, peroxynitrite could mediate activations of MMPs and NLRP3 inflammasome, aggravate the BBB damage and HT, and induce poor outcome in ischemic stroke with hyperglycemia. Therefore, targeting peroxynitrite-mediated NLRP3 inflammasome could be a promising strategy for ischemic stroke with hyperglycemia.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Binghe Guan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Dan Yang
- Department of Chemistry, Morningside Laboratory for Chemical Biology, The University of Hong Kong, Hong Kong, SAR, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, SAR, China; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China.
| |
Collapse
|
26
|
The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev 2021; 20:102785. [PMID: 33621698 DOI: 10.1016/j.autrev.2021.102785] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The interleukin (IL) 1 family of cytokines is noteworthy to have pleiotropic functions in inflammation and acquired immunity. Over the last decades, several progresses have been made in understanding the function and regulation of the prototypical inflammatory cytokine (IL-1) in human diseases. IL-1α and IL-1β deregulated signaling causes devastating diseases manifested by severe acute or chronic inflammation. In this review, we examine and compare the key aspects of IL-1α and IL-1β biology and regulation and discuss their importance in the initiation and maintenance of inflammation that underlie the pathology of many human diseases. We also report the current and ongoing inhibitors of IL-1 signaling, targeting IL-1α, IL-1β, their receptor or other molecular compounds as effective strategies to prevent or treat the onset and progression of various inflammatory disorders.
Collapse
|
27
|
Mezzaroma E, Abbate A, Toldo S. NLRP3 Inflammasome Inhibitors in Cardiovascular Diseases. Molecules 2021; 26:976. [PMID: 33673188 PMCID: PMC7917621 DOI: 10.3390/molecules26040976] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virtually all types of cardiovascular diseases are associated with pathological activation of the innate immune system. The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a protein complex that functions as a platform for rapid induction of the inflammatory response to infection or sterile injury. NLRP3 is an intracellular sensor that is sensitive to danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is regulated by the presence of damage-associated molecular patterns and initiates or amplifies inflammatory response through the production of interleukin-1β (IL-1β) and/or IL-18. NLRP3 activation regulates cell survival through the activity of caspase-1 and gasdermin-D. The development of NLRP3 inflammasome inhibitors has opened the possibility to targeting the deleterious effects of NLRP3. Here, we examine the scientific evidence supporting a role for NLRP3 and the effects of inhibitors in cardiovascular diseases.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
- Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| |
Collapse
|
28
|
Chen J, Chen YQ, Shi YJ, Ding SQ, Shen L, Wang R, Wang QY, Zha C, Ding H, Hu JG, Lü HZ. VX-765 reduces neuroinflammation after spinal cord injury in mice. Neural Regen Res 2021; 16:1836-1847. [PMID: 33510091 PMCID: PMC8328782 DOI: 10.4103/1673-5374.306096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a major cause of neuronal injury after spinal cord injury. We hypothesized that inhibiting caspase-1 activation may reduce neuroinflammation after spinal cord injury, thus producing a protective effect in the injured spinal cord. A mouse model of T9 contusive spinal cord injury was established using an Infinite Horizon Impactor, and VX-765, a selective inhibitor of caspase-1, was administered for 7 successive days after spinal cord injury. The results showed that: (1) VX-765 inhibited spinal cord injury-induced caspase-1 activation and interleukin-1β and interleukin-18 secretion. (2) After spinal cord injury, an increase in M1 cells mainly came from local microglia rather than infiltrating macrophages. (3) Pro-inflammatory Th1Th17 cells were predominant in the Th subsets. VX-765 suppressed total macrophage infiltration, M1 macrophages/microglia, Th1 and Th1Th17 subset differentiation, and cytotoxic T cells activation; increased M2 microglia; and promoted Th2 and Treg differentiation. (4) VX-765 reduced the fibrotic area, promoted white matter myelination, alleviated motor neuron injury, and improved functional recovery. These findings suggest that VX-765 can reduce neuroinflammation and improve nerve function recovery after spinal cord injury by inhibiting caspase-1/interleukin-1β/interleukin-18. This may be a potential strategy for treating spinal cord injury. This study was approved by the Animal Care Ethics Committee of Bengbu Medical College (approval No. 2017-037) on February 23, 2017.
Collapse
Affiliation(s)
- Jing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Qing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Jiao Shi
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Qi-Yi Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Cheng Zha
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hai Ding
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jian-Guo Hu
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - He-Zuo Lü
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
29
|
Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats. Proc Natl Acad Sci U S A 2020; 117:28939-28949. [PMID: 33106404 DOI: 10.1073/pnas.2003352117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1β and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1β activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1β cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1β, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration.
Collapse
|
30
|
Wang S, Su X, Xu L, Chang C, Yao Y, Komal S, Cha X, Zang M, Ouyang X, Zhang L, Han S. Glycogen synthase kinase-3β inhibition alleviates activation of the NLRP3 inflammasome in myocardial infarction. J Mol Cell Cardiol 2020; 149:82-94. [PMID: 32991876 DOI: 10.1016/j.yjmcc.2020.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Inflammasome-promoted sterile inflammation following cardiac damage is critically implicated in heart dysfunction after myocardial infarction (MI). Glycogen synthase kinase-3 (GSK-3β) is a prominent mediator of the inflammatory response, and high GSK-3 activity is associated with various heart diseases. We investigated the regulatory mechanisms of GSK-3β in activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in a rat model with successful induction of MI on days 2-28. An in vitro investigation was performed using newborn rat/human cardiomyocytes and fibroblast cultures under typical inflammasome stimulation and hypoxia treatment. GSK-3β inhibition markedly improved myocardial dysfunction and prevented remodeling, with parallel reduction in the parameters of NLRP3 inflammasome activation after MI. GSK-3β inhibition reduced NLRP3 inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes. GSK-3β's interaction with activating signal cointegrator (ASC) as well as GSK-3β inhibition reduced ASC phosphorylation and oligomerization at the tissues and cellular levels. Taken together, these data show that GSK-3β directly mediates NLRP3 inflammasome activation, causing cardiac dysfunction in MI.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lina Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cheng Chang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Yao
- Undergraduate, Student of Class 2015, Department of Clinical Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuexiang Cha
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingxi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
31
|
Ticagrelor Conditioning Effects Are Not Additive to Cardioprotection Induced by Direct NLRP3 Inflammasome Inhibition: Role of RISK, NLRP3, and Redox Cascades. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9219825. [PMID: 32832010 PMCID: PMC7424511 DOI: 10.1155/2020/9219825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 μM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 μM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.
Collapse
|
32
|
Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang S, Sun N, Chen H, Duan K, Zeng G. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta 2020; 510:62-72. [PMID: 32622968 DOI: 10.1016/j.cca.2020.06.044] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/12/2023]
Abstract
Pyroptosis is a pro-inflammatory type of regulated cell death (RCD) characterized by gasdermin D (GSDMD)-mediated membrane pore formation, cell swelling and rapid lysis, followed by the massive release of pro-inflammatory mediators such as interleukin-1β and interleukin-18. There are two main pathways of pyroptosis: the caspase-1-mediated canonical pathway and the caspase-4/5/11-mediated noncanonical pathway. However, the caspase-3-gasdermin E (GSDME) pathway and caspase-8-GSDMD pathway also induce pyroptosis. Pyroptosis can not only cause local inflammation but also lead to amplification of the inflammatory response. Recent studies have suggested that pyroptosis is closely related with cardiovascular disease (CVD); for example, in atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure, coronary calcification and aortic aneurysm, study results have promoted the development of inhibitors targeting the components related to pyroptosis, and some agents have been clinically proven to have cardiovascular benefits. In this review, we summarize emerging evidence to discuss the progressive understanding of pyroptosis and the pathways, effect and effectors of pyroptosis, as well as the role of pyroptosis in CVD. Additionally, we summarize pyroptosis-related pathway inhibitors and classic cardiovascular drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Qun Wang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Jianfeng Wu
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yicheng Zeng
- Hengyang Medical College, University of South China, 421001 Hunan Province, China
| | - Kong Chen
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Chuangxin Wang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Shiqi Yang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Nisi Sun
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Hao Chen
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Kang Duan
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China.
| |
Collapse
|
33
|
Abstract
The NLRP3 inflammasome may contribute to infarct development during acute cardiac ischemia-reperfusion (IR). Because infarct size strongly correlates with the degree of heart failure in the long term, therapies that reduce reperfusion injury are still needed as first primary care against heart failure development. Inhibition of the NLRP3 inflammasome is currently viewed as such a potential therapy. However, previous research studies directed at inhibition of various inflammatory pathways in acute cardiac IR injury were often disappointing. This is because inflammation is a double-edged sword, detrimental when hyperactive, but beneficial at lower activity, with activity critically dependent on time of reperfusion and cellular location. Moreover, several inflammatory mediators can also mediate cardioprotective signaling. It is reasonable that this also applies to the NLRP3 inflammasome, although current literature has mainly focused on its detrimental effects in the context of acute cardiac IR. Therefore, in this review, we focus on beneficial, cardioprotective properties of the NLRP3 inflammasome and its components NLRP3, ASC, and caspase-1. The results show that (1) NLRP3 deficiency prevents cardioprotection in isolated heart by ischemic preconditioning and in vivo heart by TLR2 activation, associated with impaired STAT3 or Akt signaling, respectively; (2) ASC deficiency also prevents in vivo TLR2-mediated protection; and (3) caspase-1 inhibition results in decreased infarction but impaired protection through the Akt pathway during mild ischemic insults. In conclusion, the NLRP3 inflammasome is not only detrimental, it can also be involved in cardioprotective signaling, thus fueling the future challenge to acquire a full understanding of NLRP3 inflammasome role in cardiac IR before embarking on clinical trials using NLRP3 inhibitors.
Collapse
|
34
|
Abstract
Acute occlusion of a coronary artery can result in myocardial infarction-a leading cause of premature death. Prompt restoration of blood flow to the myocardium can prevent excessive death of cardiomyocytes and improve clinical outcome. Although the major mechanism of cell death after reperfusion is necrosis, it is now recognized that many other cell death pathways may be involved in ischemia-reperfusion (I/R) injury. Pyroptosis is one such cell death pathway that is caspase-1-dependent and induced in response to cellular insult. The activated caspase-1 protease cleaves and activates specific cellular targets including gasdermin D and the proinflammatory cytokines interleukin-1β and interleukin-18. The N-terminal fragment of gasdermin D forms plasma membrane pores resulting in cytosolic leakage and cell rupture, releasing interleukin-1β and interleukin-18. Evidence suggests that inflammation induced by I/R through the pyroptotic pathway contributes to cardiomyocyte death, excessive scar formation, and poor ventricular remodeling. For this reason, there is growing interest in targeting components of the pyroptotic pathway as a means of reducing I/R injury.
Collapse
|
35
|
Zuurbier CJ, Abbate A, Cabrera-Fuentes HA, Cohen MV, Collino M, De Kleijn DPV, Downey JM, Pagliaro P, Preissner KT, Takahashi M, Davidson SM. Innate immunity as a target for acute cardioprotection. Cardiovasc Res 2020; 115:1131-1142. [PMID: 30576455 DOI: 10.1093/cvr/cvy304] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and remove the injured cells which, paradoxically, can further exacerbate myocardial injury. Furthermore, although cardiac remodelling may initially preserve some function to the heart, it can lead over time to adverse remodelling and eventually heart failure. Since the size of the infarct corresponds to the subsequent risk of developing heart failure, it is important to find ways to limit initial infarct development. In this review, we focus on the role of the innate immune system in the acute response to ischaemia-reperfusion (IR) and specifically its contribution to cell death and myocardial infarction. Numerous danger-associated molecular patterns are released from dying cells in the myocardium, which can stimulate pattern recognition receptors including toll like receptors and NOD-like receptors (NLRs) in resident cardiac and immune cells. Activation of the NLRP3 inflammasome, caspase 1, and pyroptosis may ensue, particularly when the myocardium has been previously aggravated by the presence of comorbidities. Evidence will be discussed that suggests agents targeting innate immunity may be a promising means of protecting the hearts of STEMI patients against acute IR injury. However, the dosing and timing of such agents should be carefully determined because innate immunity pathways may also be involved in cardioprotection. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Antonio Abbate
- VCU Pauley Heart Center and Wright Center for Clinical and Translational Research, Richmond, VA, USA
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, Nuevo León, México.,Department of Microbiology, Kazan Federal University, Kazan, Russian Federation.,Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Michael V Cohen
- Department of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA.,Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Torino, Italy
| | - Dominique P V De Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Torino, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
| |
Collapse
|
36
|
Jiang H, Gong T, Zhou R. The strategies of targeting the NLRP3 inflammasome to treat inflammatory diseases. Adv Immunol 2019; 145:55-93. [PMID: 32081200 DOI: 10.1016/bs.ai.2019.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The NLRP3 inflammasome is a cytoplasmic multiprotein complex, the assembly of which can be initiated in response to various exogenous or endogenous danger signals. Excessive activation of the NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human inflammatory diseases, suggesting that the NLRP3 inflammasome is a potential target for the treatment of these diseases. However, clinical drugs targeting the NLRP3 inflammasome are still not available. Recent data have elucidated the different signaling pathways or events that can control NLRP3 inflammasome activation and have provided some potential compounds with anti-NLRP3 inflammasome activity. Here, we summarize the molecular mechanisms and diseases involved in NLRP3 inflammasome activation and discuss the potential strategies targeting different aspects of the NLRP3 inflammasome and its implications for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hua Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Tao Gong
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China; CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
37
|
Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice. Life Sci 2019; 233:116631. [PMID: 31278945 DOI: 10.1016/j.lfs.2019.116631] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
AIMS Prior to reperfusion, Calpains remain inactive due to the acidic pH and elevated ionic strength in the ischemic myocardium; but Calpain is activated during myocardial reperfusion. The underlying mechanism of Calpain activation in the ischemia-reperfusion (I/R) is yet to be determined. Therefore, the present study aims to investigate the mechanism of Calpain in I/R-induced mice. MAIN METHODS In order to detect the function of Calpain and the NLRP3/ASC/Caspase-1 axis in cardiomyocyte pyroptosis, endoplasmic reticulum (ER) stress and myocardial function, the cardiomyocytes were treated with hypoxia-reoxygenation (H/R), and NLRP3 were silenced, Calpain was overexpressed and Caspase-1 inhibitors were used to determine cardiomyocyte pyroptosis. The results obtained from the cell experiments were then verified with an animal experiment in I/R mice. KEY FINDINGS There was an overexpression in Calpain, ASC, NLRP3, GRP78 and C/EBP homologous protein (CHOP) in cardiomyocytes following H/R. A significant increase was witnessed in lactic acid dehydrogenase (LDH) activity, cardiomyocyte pyroptosis rate, Calpain activity, reactive oxygen species (ROS) concentration, as well as activation of ER stress in cardiomyocytes after H/R. However, opposing results were observed in H/R cardiomyocytes that received siRNA Calpain, siRNA NLRP3 or Caspase-1 inhibitor treatment. Overall, the results obtained from the animal experiment were consistent with the results from the cell experiment. SIGNIFICANCE The silencing of Calpain suppresses the activation of the NLRP3/ASC/Caspase-1 axis, thus inhibiting ER stress in mice and improving myocardial dysfunction induced by I/R, providing a novel therapeutic pathway for I/R.
Collapse
|
38
|
Xu S, Li X, Liu Y, Xia Y, Chang R, Zhang C. Inflammasome inhibitors: promising therapeutic approaches against cancer. J Hematol Oncol 2019; 12:64. [PMID: 31242947 PMCID: PMC6595574 DOI: 10.1186/s13045-019-0755-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has long been accepted as a key component of carcinogenesis. During inflammation, inflammasomes are potent contributors to the activation of inflammatory cytokines that lead to an inflammatory cascade. Considering the contributing role of inflammasomes in cancer progression, inflammasome inhibitors seem to have a promising future in cancer treatment and prevention. Here, we summarize the structures and signaling pathways of inflammasomes and detail some inflammasome inhibitors used to treat various forms of cancer, which we expect to be used in novel anticancer approaches. However, the practical application of inflammasome inhibitors is limited in regard to specific types of cancer, and the associated clinical trials have not yet been completed. Therefore, additional studies are required to explore more innovative and effective medicines for future clinical treatment of cancer.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yu Xia
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
39
|
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39:12. [PMID: 31182982 PMCID: PMC6551897 DOI: 10.1186/s41232-019-0101-5] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological significances and play an important role in health and disease. In this decade, interleukin-1 family members have been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the definition of "inflammation" in traditional general pathology and discuss new insights into interleukin-1 in view of its history and the molecular bases of diseases, as well as current progress in therapeutics.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|
40
|
Audia JP, Yang XM, Crockett ES, Housley N, Haq EU, O'Donnell K, Cohen MV, Downey JM, Alvarez DF. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y 12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 2018; 113:32. [PMID: 29992382 DOI: 10.1007/s00395-018-0692-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Patients with acute myocardial infarction receive a P2Y12 receptor antagonist prior to reperfusion, a treatment that has reduced, but not eliminated, mortality, or heart failure. We tested whether the caspase-1 inhibitor VX-765 given at reperfusion (a requirement for clinical use) can provide sustained reduction of infarction and long-term preservation of ventricular function in a pre-clinical model of ischemia/reperfusion that had been treated with a P2Y12 receptor antagonist. To address, the hypothesis open-chest rats were subjected to 60-min left coronary artery branch occlusion/120-min reperfusion. Vehicle or inhibitors were administered intravenously immediately before reperfusion. With vehicle only, 60.3 ± 3.8% of the risk zone suffered infarction. Ticagrelor, a P2Y12 antagonist, and VX-765 decreased infarct size to 42.8 ± 3.3 and 29.2 ± 4.9%, respectively. Combining ticagrelor with VX-765 further decreased infarction to 17.5 ± 2.3%. Similar to recent clinical trials, combining ticagrelor and ischemic postconditioning did not result in additional cardioprotection. VX-765 plus another P2Y12 antagonist, cangrelor, also decreased infarction and preserved ventricular function when reperfusion was increased to 3 days. In addition, VX-765 reduced infarction in blood-free, isolated rat hearts indicating at least a portion of injurious caspase-1 activation originates in cardiac tissue. While the pro-drug VX-765 only protected isolated hearts when started prior to ischemia, its active derivative VRT-043198 provided the same amount of protection when started at reperfusion, indicating that even in blood-free hearts, caspase-1 appears to exert its injury only at reperfusion. Moreover, VX-765 decreased circulating IL-1β, prevented loss of cardiac glycolytic enzymes, preserved mitochondrial complex I activity, and decreased release of lactate dehydrogenase, a marker of pyroptosis. Our results are the first demonstration of a clinical-grade drug given at reperfusion providing additional, sustained infarct size reduction when added to a P2Y12 receptor antagonist.
Collapse
Affiliation(s)
- Jonathon P Audia
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA. .,Center for Lung Biology, University of South Alabama College of Medicine, Medical Sciences Building, Mobile, AL, 36688, USA.
| | - Xi-Ming Yang
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Edward S Crockett
- Center for Lung Biology, University of South Alabama College of Medicine, Medical Sciences Building, Mobile, AL, 36688, USA.,Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Nicole Housley
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA.,Center for Lung Biology, University of South Alabama College of Medicine, Medical Sciences Building, Mobile, AL, 36688, USA
| | - Ehtesham Ul Haq
- Department of Medicine, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Kristen O'Donnell
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Michael V Cohen
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA.,Department of Medicine, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | - Diego F Alvarez
- Center for Lung Biology, University of South Alabama College of Medicine, Medical Sciences Building, Mobile, AL, 36688, USA. .,Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA.
| |
Collapse
|
41
|
Scott TE, Kemp-Harper BK, Hobbs AJ. Inflammasomes: a novel therapeutic target in pulmonary hypertension? Br J Pharmacol 2018; 176:1880-1896. [PMID: 29847700 DOI: 10.1111/bph.14375] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare, progressive pulmonary vasculopathy characterized by increased mean pulmonary arterial pressure, pulmonary vascular remodelling and right ventricular failure. Current treatments are not curative, and new therapeutic strategies are urgently required. Clinical and preclinical evidence has established that inflammation plays a key role in PH pathogenesis, and recently, inflammasomes have been suggested to be central to this process. Inflammasomes are important regulators of inflammation, releasing the pro-inflammatory cytokines IL-1β and IL-18 in response to exogenous pathogen- and endogenous damage-associated molecular patterns. These cytokines are elevated in PH patients, but whether this is a consequence of inflammasome activation remains to be determined. This review will briefly summarize current PH therapies and their pitfalls, introduce inflammasomes and the mechanisms by which they promote inflammation and, finally, highlight the preclinical and clinical evidence for the potential involvement of inflammasomes in PH pathobiology and how they may be targeted therapeutically. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Tara Elizabeth Scott
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK.,Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
42
|
Basalay MV, Davidson SM, Gourine AV, Yellon DM. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 2018; 113:25. [PMID: 29858664 PMCID: PMC5984640 DOI: 10.1007/s00395-018-0684-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.
Collapse
Affiliation(s)
- Marina V Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Andrey V Gourine
- Department of Cardiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
43
|
Do Carmo H, Arjun S, Petrucci O, Yellon DM, Davidson SM. The Caspase 1 Inhibitor VX-765 Protects the Isolated Rat Heart via the RISK Pathway. Cardiovasc Drugs Ther 2018; 32:165-168. [PMID: 29582211 PMCID: PMC5958154 DOI: 10.1007/s10557-018-6781-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Protecting the heart from ischaemia-reperfusion (IR) injury is a major goal in patients presenting with an acute myocardial infarction. Pyroptosis is a novel form of cell death in which caspase 1 is activated and cleaves interleukin 1β. VX-785 is a highly selective, prodrug caspase 1 inhibitor that is also clinically available. It has been shown to be protective against acute IR in vivo rat model, and therefore might be a promising possibility for future cardioprotective therapy. However, it is not known whether protection by VX-765 involves the reperfusion injury salvage kinase (RISK) pathway. We therefore investigated whether VX-765 protects the isolated, perfused rat heart via the PI3K/Akt pathway and whether protection was additive with ischaemic preconditioning (IPC). METHODS Langendorff-perfused rat hearts were subject to ischaemia and reperfusion injury in the presence of 30 μM VX-765, with precedent IPC, or the combination of VX-765 and IPC. RESULTS VX-765 reduced infarct size (28 vs 48% control; P < 0.05) to a similar extent as IPC (30%; P < 0.05). The PI3 kinase inhibitor, wortmannin, abolished the protective effect of VX-765. Importantly in the model used, we were unable to show additive protection with VX-765 + IPC. CONCLUSIONS The caspase 1 inhibitor, VX-765, was able to reduce myocardial infarction in a model of IR injury. However, the addition of IPC did not demonstrate any further protection.
Collapse
Affiliation(s)
- Helison Do Carmo
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sapna Arjun
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Orlando Petrucci
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| | - Sean M Davidson
- Laboratory of Myocardial Ischemia/Reperfusion, Faculty of Medical Science, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
44
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
45
|
Cohen MV, Downey JM. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res Cardiol 2017; 112:64. [DOI: 10.1007/s00395-017-0653-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
|