1
|
Wang Y, Long L, Luo Q, Huang X, Zhang Y, Meng X, Chen D. Aflatoxin B1 induces ROS-dependent mitophagy by modulating the PINK1/Parkin pathway in HepG2 cells. Basic Clin Pharmacol Toxicol 2024; 135:195-209. [PMID: 38804152 DOI: 10.1111/bcpt.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to both humans and animals. Mitophagy is a selective process of self-elimination and has an important role in controlling mitochondrial quality. The present study aimed to investigate the effect of reactive oxygen species (ROS) accumulation on AFB1-induced mitophagy in HepG2 cells to provide a new perspective from which to design novel therapeutic strategies to treat AFB1 poisoning. ROS release was induced in HepG2 cells with AFB1 (10 μmol/L). Cell autophagy activity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, Parkin translocation and both the transcription and expression of mitophagy-related proteins were measured when N-acetyl-L-cysteine (NAC) partially decreased the ROS level, while the knockdown of nuclear factor erythroid 2-related factor 2 (Nrf2) resulted in a large accumulation of ROS. The results reveal that NAC pretreatment ameliorated the decline in both the MMP and the ATP levels while also activating phosphoglycerate mutase 5 (PGAM5)-PTEN-induced kinase 1 (PINK1)/Parkin, while the Nrf2 knockdown group exhibited the opposite trend. These results suggest that AFB1-induced mitophagy in HepG2 cells depends on ROS, and proper ROS activates mitophagy to play a protective role.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Long
- Deyang Center for Disease Control and Prevention, Deyang, China
| | - Qian Luo
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Huang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Yang M, Yao X, Xia F, Xiang S, Tang W, Zhou B. Hugan Qingzhi tablets attenuates endoplasmic reticulum stress in nonalcoholic fatty liver disease rats by regulating PERK and ATF6 pathways. BMC Complement Med Ther 2024; 24:36. [PMID: 38216941 PMCID: PMC10785447 DOI: 10.1186/s12906-024-04336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Shijian Xiang
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Waijiao Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
3
|
Liu W, Li Z, Li X, Cao H, Jiang H, Niu Q, Hu B. Influence of tumor mycobiome on cancer pathogenesis (Review). Oncol Lett 2023; 26:541. [PMID: 38020300 PMCID: PMC10660446 DOI: 10.3892/ol.2023.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer tissues harbor a large microbiome. There is growing evidence that the tumor microbiome is significantly correlated with the prognosis of cancer patients, but the exact underlying mechanisms have remained elusive. Although the tumor mycobiome is less abundant than the biome of bacteria, it is prevalent in most cancers in humans. The present review describes in detail the impact of the tumor mycobiome on cancer pathogenesis. The tumor mycobiome promotes tumor progression and metastasis by affecting the human immune system, maintaining a pro-inflammatory environment, producing aflatoxins, attenuating cell adhesion mechanisms and fungal-bacterial interactions. Furthermore, the tumor mycobiome likewise has great potential for cancer prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Weipeng Liu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Zongrui Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xiaopeng Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Haiyang Cao
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - He Jiang
- Breast Treatment Center, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Qingbin Niu
- Department of Gastrointestinal Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
4
|
Rassouli A, Shihmani B, Mehrzad J, Shokrpoor S. The immunomodulatory effect of minocycline on gene expression of inflammation related cytokines in lipopolysaccharide-treated human peripheral blood mononuclear cells. Anim Biotechnol 2023; 34:2159-2165. [PMID: 35622407 DOI: 10.1080/10495398.2022.2077743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To evaluate the immunomodulatory effect of minocycline, the present study was carried out on the gene expression of toll-like receptor type-4 (TLR4) and some pro-inflammatory (IL-1β, IL-6) and anti-inflammatory cytokines (IL-10) associated with lipopolysaccharide (LPS) -induced inflammation in human peripheral blood mononuclear cells (PBMCs). The PBMCs were collected and then 5.4 × 106 PBMCs/mL were used in eight groups as follows: control group (only media), LPS group (only LPS), methylprednisolone (Pred) group (LPS plus Pred), meloxicam (Melo) group (LPS plus Melo), three minocycline groups [M1, M5 and M25] (LPS plus 1, 5, and 25 µg/mL minocycline, respectively) and minocycline control (MC) group (5 µg/mL minocycline). After incubation for 24 h, the PBMCs were subjected to quantitative PCR assays. Gene expression levels of TLR4 were not changed in any groups. The IL-1β levels were increased in the LPS group but the increases were much more intense in the other groups except Pred group. Compared with control group, IL-6 levels increased significantly in Melo, M1 and M25 groups. Significant increases of IL-10 levels were also observed in Melo, M25 and MC groups. It can be concluded that minocycline had dual pro- and anti-inflammatory activities with potential clinical immunomodulatory effects.
Collapse
Affiliation(s)
- Ali Rassouli
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Basim Shihmani
- Department of Comparative Biosciences, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Shahbazi Asil M, Zarifian N, Valafar A, Shirani D, Mehrzad J. Noticeable immune dysregulation-and-suppression in parvovirus affected dogs. Vet Immunol Immunopathol 2023; 265:110663. [PMID: 37939594 DOI: 10.1016/j.vetimm.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Canine parvovirus type 2 (CPV-2) is one of the most common causes of infectious diarrhea in small animals, with high mortality and morbidity. Information on the specific treatment option(s) for CPV diseases (CPVD) is unachievably little. So, the treatment is mainly supportive one. Disruption of dog's innate immune system in viral diseases simply occurs; presumably, the CPV-2 may change the level of some TLRs, interleukins, CD4 and CD8 in the leukocytes of CPVD dogs, and disruptive activities of these immune molecules might be attributable to severe CPVD in dogs. Study on the role of the key immune molecules in CPVD is rare. Herein, by conducting and relating the clinical, para-clinical, immunological and molecular diagnostic tests, we tried to establish how some key immune molecules behave in blood of parvovirus affected dogs. As such, in the 1st study, the mRNA levels of TLR2, TLR4, TLR9, IL-1β, IL-6, CD4 and CD8 genes in the leukocytes of CPVD were assessed with quantitative (q)RT-PCR along with CPV-2 detection by rapid immunochromatography and PCR tests. In a 2nd study, the same measurements as in the 1st study were evaluated in two groups of mild versus severe clinical signs of CPVD. Both in the 1st and the 2nd studies leukopenia, much more pronounced in the severe CPVD, and immune dysregulation were observed. In the 1st study, a noticeable increase in the mRNA levels of TLR2 and TLR4 was detected with a slight decrease in TLR9 and a significant decrease in the expression of IL-1β, IL-6, CD4 and CD8 in leukocytes of CPV-infected dogs. Compared to the mild CPVD, the intense of downregulating effects on those immune molecules in the 2nd study was remarkably much more pronounced in the severe CPVD. Overall, it proves strong immune dysregulation and suppression/incompetence and potential T-cells exhaustion in severely CPV-2-affected dogs. Technically and clinically, this would be substantially applicable in canine medicine. By targeting those key immune molecules and their signaling pathways, new clinicodiagnostic approaches for CPVD can be evolved, and biotechnicoclinically this would be substantially applicable in all physiopathological conditions of dogs.
Collapse
Affiliation(s)
- Milad Shahbazi Asil
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Niloofar Zarifian
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Valafar
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Darioush Shirani
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Iqbal S, Jabeen F, Kahwa I, Omara T. Suberosin Alleviates Thiazolidinedione-Induced Cardiomyopathy in Diabetic Rats by Inhibiting Ferroptosis via Modulation of ACSL4-LPCAT3 and PI3K-AKT Signaling Pathways. Cardiovasc Toxicol 2023; 23:295-304. [PMID: 37676618 DOI: 10.1007/s12012-023-09804-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023]
Abstract
Thiazolidinediones are useful antidiabetic medications. However, their use is associated with adverse side effects like edema, heart failure and bone fractures. In this study, we investigated the anti-ferroptosis effects of suberosin (SBR; a prenylated coumarin) in diabetic Sprague Dawley rats. Further, we assessed the effects of co-administration of SBR (30 and 90 mg/kg/day) with thiazolidinedione (TZ at 15 mg/kg) to mitigate TZ-induced cardiomyopathy in diabetic rats. Our results showed that cardiac output, stroke volume, left ventricle systolic and diastolic pressures were aggravated in diabetic rats treated with TZ alone after 4 weeks. TZ treatments induced ferroptosis as well as marked histoarchitecture disarrangements in rat cardiomyocytes. The study found that optimizing volume overload alleviated cardiac hypertrophy and mitigated left ventricular dysfunction in diabetic rats co-treated with SBR. SBR co-administration with TZ reduced MDA levels in heart tissue and serum iron concentration (biomarkers of ferroptosis), downregulated mRNA expressions of LOX, ACSL4, LPCAT3, and promoted GPX4 activity as well as upregulated mRNA levels of AKT/PI3K/GSK3β as compared to the group administered with TZ at 15 mg/kg. SBR co-administration also helped to retain the normal histoarchitecture of cardiomyocytes in diabetic rats. Hence, our results suggested that SBR is an effective supplement and could be prescribed to diabetic patients along with TZ but this requires further clinical trials.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Government College University Faisalabad, Pakistan Government College University, Faisalabad, Pakistan.
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Pakistan Government College University, Faisalabad, Pakistan
| | - Ivan Kahwa
- Pharma-Biotechnology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Timothy Omara
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900, Eldoret, Kenya
| |
Collapse
|
7
|
Shihmani B, Rassouli A, Mehrzad J, Shokrpoor S. The anti-inflammatory effects of minocycline on lipopolysaccharide-induced paw oedema in rats: a histopathological and molecular study. Inflammopharmacology 2023:10.1007/s10787-023-01236-7. [PMID: 37119392 DOI: 10.1007/s10787-023-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/10/2023] [Indexed: 05/01/2023]
Abstract
Minocycline is a semi-synthetic antimicrobial agent with claimed anti-inflammatory properties reported from different experimental models. This study was aimed to evaluate the anti-inflammatory effects of minocycline, compared to the actions of two common anti-inflammatory agents, on lipopolysaccharide (LPS)-induced paw oedema through some clinical, histopathological, haematological and molecular analyses. Forty-eight rats were divided into eight groups (n = 6). In control group (Ctrl), each animal was injected with normal saline into its sub-plantar region of hind paw. In groups 2-7, hind paw oedema was induced by injection of LPS. One hour before injections, groups 1 (Ctrl) and 2 (LPS) were treated orally with distilled water, 3 and 4 with methylprednisolone (Pred) and meloxicam (Melo) and 5-7 with minocycline in doses of 50, 150 and 450 mg/kg (M50, M150 and M450, respectively). The 8th group (MC) was given minocycline (150 mg/kg) orally and normal saline was injected into sub-plantar region. Paw swelling and body temperature were assessed at 0, 2, 4, 6 and 24 h post-injections. At 24 h, samples of blood and liver, kidney, spleen and hind paw tissues were taken for haematological and histopathological examinations. Some samples of the paw were also obtained for molecular analysis of some inflammatory-related cytokines at mRNA level. Paw swelling and body temperature increased in all LPS-injected groups 2 h post-injection. In LPS group, they remained significantly increased up to 24 h; however, these parameters decreased to normal in Pred, Melo and all minocycline groups. The histological findings showed mild-to-moderate signs of inflammation in tissue samples of groups 2-6, but not in group M450. Additionally, gene expression of pro-inflammatory cytokines (IL-1β and IL-6) increased significantly in LPS group compared to other groups. In conclusion, this study supports the role of minocycline as an anti-inflammatory agent with effects comparable to those of meloxicam and methylprednisolone.
Collapse
Affiliation(s)
- Basim Shihmani
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1419963114, Iran
| | - Ali Rassouli
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1419963114, Iran.
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Deng Y, Chen H, Wu Y, Yuan J, Shi Q, Tong P, Gao J. Aflatoxin B 1 can aggravate BALB/c mice allergy to ovalbumin through changing their Th2 cells immune responses. Toxicon 2023; 228:107121. [PMID: 37062343 DOI: 10.1016/j.toxicon.2023.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Foods contaminated by Aflatoxin B1 (AFB1) frequently happen in the world and can cause a lot healthy damages to human beings, meanwhile, some of these foods are easily irritate food allergy. To investigate the effect of AFB1 exposure on food allergy, three doses of AFB1 were set, including 0.3 μg/kg · bw (LDAF), 7.5 μg/kg · bw (MDAF), and 100.0 μg/kg · bw (HDAF), respectively; food allergy model was constructed by the BALB/c mice allergy to ovalbumin (OVA). The changes of titer in OVA-specific immunoglobulin E (IgE), IgG, IgG1, IgG2a, as well as level of the mMCP-1 in sera were determined by enzyme linked immunosorbent assay (ELISA), respectively; the levels of interleukin (IL-4, IL-5, IL-13) and interferon (IFN)-γ in spleen were separately assessed using ELISA kits, and their relative genes expression were verified by Real-time fluorescence quantitative PCR (Q-PCR); the population of Th1/Th2/Treg cells were analyzed by flow cytometry. Results showed that when OVA-allergic mice were exposed to AFB1, the production of OVA-specific IgE, IL-4, IL-5 and IL-13, and mMCP-1 were all increased, whereas the level of IFN-γ was decreased; the Th1/Th2 balance was disrupted and the development of Th cells tilted to the Th2 phenotype. The study would contribute to further understand the risk of fungal toxins in food allergy.
Collapse
Affiliation(s)
- Yujue Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang, 330031, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Yong Wu
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Jin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang, 330031, PR China
| | - Qiang Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang, 330031, PR China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
9
|
Braga ACM, Souto NS, Cabral FL, Dassi M, Rosa ÉVF, Guarda NDS, Royes LFF, Fighera MR, Moresco RN, Oliveira MS, Sari MHM, Furian AF. Intermittent Exposure to Aflatoxin B1 Did Not Affect Neurobehavioral Parameters and Biochemical Markers of Oxidative Stress. Brain Sci 2023; 13:brainsci13030386. [PMID: 36979196 PMCID: PMC10046455 DOI: 10.3390/brainsci13030386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Aflatoxin B1 (AFB1) is the most common toxic mycotoxin that contaminates food. The treatment of its intoxication and the management of contaminations are a constant subject of health agendas worldwide. However, such efforts are not always enough to avoid population intoxication. Our objective was to investigate whether intermittent exposure to AFB1 would cause any impairment in biochemical and behavioral parameters, intending to simulate an irregular consumption. Male Wistar rats received four AFB1 administrations (250 μg/kg) by intragastric route separated by a 96-h interval. Toxicity was evaluated using behavioral tests (open field, object recognition, nest construction, marble burying, and splash test), biochemical markers of oxidative stress (cerebral cortex, hippocampus, liver, and kidneys), and plasma parameters of hepatic and renal functions. The intermittent exposure caused no modification in body weight gain as well as in organ weight. Both control and AFB1 groups presented similar profiles of behavior to all tests performed. Furthermore, AFB1 administrations alter neither antioxidant defenses nor markers of oxidation in all assayed tissues and in the plasma markers of hepatic and renal functions. Therefore, AFB1 intermittent administration did not cause its common damage from exposure to this toxicant, which must be avoided, and additional studies are required.
Collapse
Affiliation(s)
- Ana Claudia Monteiro Braga
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Naieli Schiefelbein Souto
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Fernanda Licker Cabral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Micheli Dassi
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Érica Vanessa Furlan Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Naiara dos Santos Guarda
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Marcel Henrique Marcondes Sari
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
- Correspondence: ; Tel.: +55-55-3220-8254
| |
Collapse
|
10
|
Lin Y, Lau HCH, Liu Y, Kang X, Wang Y, Ting NLN, Kwong TNY, Han J, Liu W, Liu C, She J, Wong SH, Sung JJY, Yu J. Altered Mycobiota Signatures and Enriched Pathogenic Aspergillus rambellii Are Associated With Colorectal Cancer Based on Multicohort Fecal Metagenomic Analyses. Gastroenterology 2022; 163:908-921. [PMID: 35724733 DOI: 10.1053/j.gastro.2022.06.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The enteric mycobiota is a major component of the human gut microbiota, but its role in colorectal cancer (CRC) remains largely elusive. We conducted a meta-analysis to uncover the contribution of the fungal mycobiota to CRC. METHODS We retrieved fecal metagenomic data sets from 7 previous publications and established an additional in-house cohort, totaling 1329 metagenomes (454 with CRC, 350 with adenoma, and 525 healthy individuals). Mycobiota composition and microbial interactions were analyzed. Candidate CRC-enriched fungal species (Aspergillus rambellii) was functionally validated in vitro and in vivo. RESULTS Multicohort analysis revealed that the enteric mycobiota was altered in CRC. We identified fungi that were associated with patients with CRC or adenoma from multiple cohorts. Signature CRC-associated fungi included 6 enriched (A rambellii, Cordyceps sp. RAO-2017, Erysiphe pulchra, Moniliophthora perniciosa, Sphaerulina musiva, and Phytophthora capsici) and 1 depleted species (A kawachii). Co-occurrent interactions among CRC-enriched fungi became stronger in CRC compared with adenoma and healthy individuals. Moreover, we reported the transkingdom interactions between enteric fungi and bacteria in CRC progression, of which A rambellii was closely associated with CRC-enriched bacteria Fusobacterium nucleatum. A rambellii promoted CRC cell growth in vitro and tumor growth in xenograft mice. We further identified that combined fungal and bacterial biomarkers were more accurate than panels with pure bacterial species to discriminate patients with CRC from healthy individuals (the area under the curve relative change increased by 1.44%-10.60%). CONCLUSIONS This study reveals enteric mycobiota signatures and pathogenic fungi in stages of colorectal tumorigenesis. Fecal fungi can be used, in addition to bacteria, for noninvasive diagnosis of patients with CRC.
Collapse
Affiliation(s)
- Yufeng Lin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yali Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xing Kang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yiwei Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nick Lung-Ngai Ting
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Thomas Ngai-Yeung Kwong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jing Han
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Changan Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sunny Hei Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
11
|
Iori S, Pauletto M, Bassan I, Bonsembiante F, Gelain ME, Bardhi A, Barbarossa A, Zaghini A, Dacasto M, Giantin M. Deepening the Whole Transcriptomics of Bovine Liver Cells Exposed to AFB1: A Spotlight on Toll-like Receptor 2. Toxins (Basel) 2022; 14:toxins14070504. [PMID: 35878242 PMCID: PMC9323327 DOI: 10.3390/toxins14070504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle. The bovine fetal hepatocyte cell line (BFH12) was exposed for 48 h to three different AFB1 concentrations (0.9 µM, 1.8 µM and 3.6 µM). Whole-transcriptomic changes were measured by RNA-seq analysis, showing significant differences in the expression of genes mainly involved in inflammatory response, oxidative stress, drug metabolism, apoptosis and cancer. As a confirmatory step, post-translational investigations on genes of interest were implemented. Cell death associated with necrosis rather than apoptosis events was noted. As far as the toxicity mechanism is concerned, a molecular pathway linking inflammatory response and oxidative stress was postulated. Toll-Like Receptor 2 (TLR2) activation, consequent to AFB1 exposure, triggers an intracellular signaling cascade involving a kinase (p38β MAPK), which in turn allows the nuclear translocation of the activator protein-1 (AP-1) and NF-κB, finally leading to the release of pro-inflammatory cytokines. Furthermore, a p38β MAPK negative role in cytoprotective genes regulation was postulated. Overall, our investigations improved the actual knowledge on the molecular effects of this worldwide relevant natural toxin in cattle.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Correspondence: ; Tel.: +39-049-827-2946
| |
Collapse
|
12
|
Guo C, Liu Y, Wang Y, Wang Q, Huo S, Zhang X, Cao Z, Song M, Li Y. PINK1/Parkin-mediated mitophagy is activated to protect against AFB 1-induced immunosuppression in mice spleen. Toxicol Lett 2022; 366:33-44. [PMID: 35810998 DOI: 10.1016/j.toxlet.2022.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022]
Abstract
Aflatoxin B1 (AFB1) can cause mitochondrial malfunction and immunosuppression in spleen. Mitochondrial damage can lead to oxidative stress and aggravate immune cell dysfunction. Phosphatase and tensin homolog (PTEN)-induced putative kinase1 (PINK1)/ E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy can scavenge damaged mitochondria and alleviate oxidative stress to maintain cellular homeostasis. However, the role of PINK1/Parkin-mediated mitophagy in AFB1-induced immunosuppression in spleen is unclear. In this study, sixty male mice were sensibilized orally with AFB1 at different concentrations [0, 0.5, 0.75, and 1 mg/kg body weight (BW)] for 28 days, and AFB1 caused splenic structure injury and immunosuppression, also led to upregulation of PINK1/Parkin-mediated mitophagy in a dose-dependent manner. Subsequently, thirty male WT C57BL/6 N mice and thirty male Parkin knockout (Parkin-/-) C57BL/6 N mice were sensibilized orally with AFB1 at 0 or 1 mg/kg BW for 28 days, and Parkin-/- inhibited mitophagy and further aggravated AFB1-induced splenic structure injury, immunosuppression, mitochondrial damage and oxidative stress. Collectively, these results indicate that AFB1 exposure activates PINK1/Parkin-mediated mitophagy, which protects against immunosuppression in spleen.
Collapse
Affiliation(s)
- Chen Guo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China
| | - Yanfen Liu
- Liaoning Agricultural Technical College, Yingkou 115009, China
| | - Yuping Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin 150030, China.
| |
Collapse
|
13
|
Malvandi AM, Shahba S, Mehrzad J, Lombardi G. Metabolic Disruption by Naturally Occurring Mycotoxins in Circulation: A Focus on Vascular and Bone Homeostasis Dysfunction. Front Nutr 2022; 9:915681. [PMID: 35811967 PMCID: PMC9263741 DOI: 10.3389/fnut.2022.915681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring food/feed contaminants have become a significant global issue due to animal and human health implications. Despite risk assessments and legislation setpoints on the mycotoxins' levels, exposure to lower amounts occurs, and it might affect cell homeostasis. However, the inflammatory consequences of this possible everyday exposure to toxins on the vascular microenvironment and arterial dysfunction are unexplored in detail. Circulation is the most accessible path for food-borne toxins, and the consequent metabolic and immune shifts affect systemic health, both on vascular apparatus and bone homeostasis. Their oxidative nature makes mycotoxins a plausible underlying source of low-level toxicity in the bone marrow microenvironment and arterial dysfunction. Mycotoxins could also influence the function of cardiomyocytes with possible injury to the heart. Co-occurrence of mycotoxins can modulate the metabolic pathways favoring osteoblast dysfunction and bone health losses. This review provides a novel insight into understanding the complex events of coexposure to mixed (low levels) mycotoxicosis and subsequent metabolic/immune disruptions contributing to chronic alterations in circulation.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Amir Mohammad Malvandi ; orcid.org/0000-0003-1243-2372
| | - Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
14
|
LONG L, MENG X, SUN J, JING L, CHEN D, YU R. Ameliorated effect of Lactobacillus plantarum SCS2 on the oxidative stress in HepG2 cells induced by AFB1. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lan LONG
- Chengdu University of Traditional Chinese Medicine, China
| | - Xiao MENG
- Chengdu University of Traditional Chinese Medicine, China
| | - Jiayi SUN
- Chengdu University of Traditional Chinese Medicine, China
| | - Lin JING
- Chengdu University of Traditional Chinese Medicine, China
| | - Dayi CHEN
- Chengdu University of Traditional Chinese Medicine, China
| | - Rong YU
- Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
15
|
Mehrzad J, Zahraei Salehi T, Khosravi A, Hosseinkhani S, Tahamtani Y, Hajizadeh-Saffar E, Moazenchi M, Malvandi AM. Environmentally occurring aflatoxins B1 and M1 notifyably harms pancreatic islets. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2010758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Khosravi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
16
|
Food-Origin Mycotoxin-Induced Neurotoxicity: Intend to Break the Rules of Neuroglia Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9967334. [PMID: 34621467 PMCID: PMC8492254 DOI: 10.1155/2021/9967334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
Mycotoxins are key risk factors in human food and animal feed. Most of food-origin mycotoxins could easily enter the organism and evoke systemic toxic effects, such as aflatoxin B1 (AFB1), ochratoxin A (OTA), T-2 toxin, deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), and 3-nitropropionic acid (3-NPA). For the last decade, the researches have provided much evidences in vivo and in vitro that the brain is an important target organ on mycotoxin-mediated neurotoxic phenomenon and neurodegenerative diseases. As is known to all, glial cells are the best regulator and defender of neurons, and a few evaluations about the effects of mycotoxins on glial cells such as astrocytes or microglia have been conducted. The fact that mycotoxin contamination may be a key factor in neurotoxicity and glial dysfunction is exactly the reason why we reviewed the activation, oxidative stress, and mitochondrial function changes of glial cells under mycotoxin infection and summarized the mycotoxin-mediated glial cell proliferation disorders, death pathways, and inflammatory responses. The purpose of this paper is to analyze various pathways in which common food-derived mycotoxins can induce glial toxicity and provide a novel perspective for future research on the neurodegenerative diseases.
Collapse
|
17
|
Madeen EP, Maldarelli F, Groopman JD. Environmental Pollutants, Mucosal Barriers, and Pathogen Susceptibility; The Case for Aflatoxin B 1 as a Risk Factor for HIV Transmission and Pathogenesis. Pathogens 2021; 10:1229. [PMID: 34684180 PMCID: PMC8537633 DOI: 10.3390/pathogens10101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
HIV transmission risk is dependent on the infectivity of the HIV+ partner and personal susceptibility risk factors of the HIV- partner. The mucosal barrier, as the internal gatekeeper between environment and self, concentrates and modulates the internalization of ingested pathogens and pollutants. In this review, we summarize the localized effects of HIV and dietary toxin aflatoxin B1 (AFB1), a common pollutant in high HIV burden regions, e.g., at the mucosal barrier, and evidence for pollutant-viral interactions. We compiled literature on HIV and AFB1 geographic occurrences, mechanisms of action, related co-exposures, personal risk factors, and HIV key determinants of health. AFB1 exposure and HIV sexual transmission hotspots geographically co-localize in many low-income countries. AFB1 distributes to sexual mucosal tissues generating inflammation, microbiome changes and a reduction of mucosal barrier integrity, effects that are risk factors for increasing HIV susceptibility. AFB1 exposure has a positive correlation to HIV viral load, a risk factor for increasing the infectivity of the HIV+ partner. The AFB1 exposure and metabolism generates inflammation that recruits HIV susceptible cells and generates chemokine/cytokine activation in tissues exposed to HIV. Although circumstantial, the available evidence makes a compelling case for studies of AFB1 exposure as a risk factor for HIV transmission, and a modifiable new component for combination HIV prevention efforts.
Collapse
Affiliation(s)
- Erin P. Madeen
- Department of Cancer Prevention, National Institute of Health, Shady Grove, MD 21773, USA
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - John D. Groopman
- Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
18
|
Aflatoxin Biosynthesis, Genetic Regulation, Toxicity, and Control Strategies: A Review. J Fungi (Basel) 2021; 7:jof7080606. [PMID: 34436145 PMCID: PMC8397101 DOI: 10.3390/jof7080606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are highly toxic and cancer-causing compounds, predominantly synthesized by the Aspergillus species. AFs biosynthesis is a lengthy process that requires as minimum as 30 genes grouped inside 75 kilobytes (kB) of gene clusters, which are regulated by specific transcription factors, including aflR, aflS, and some general transcription factors. This paper summarizes the status of research on characterizing structural and regulatory genes associated with AF production and their roles in aflatoxigenic fungi, particularly Aspergillus flavus and A. parasiticus, and enhances the current understanding of AFs that adversely affect humans and animals with a great emphasis on toxicity and preventive methods.
Collapse
|
19
|
Najafi S, Mohammadi G, Mohri M, Hosseinkhani S, Mehrzad J. Colostrum fails to prevent bovine/camelid neonatal neutrophil damage from AFB 1. J Immunotoxicol 2021; 17:43-50. [PMID: 32124641 DOI: 10.1080/1547691x.2020.1725693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Exposure to environmental toxicants that affect the immune system and overall health of many mammals is mostly unavoidable. One of the more common substances is the mycotoxins, especially carcinogenic aflatoxin (AF)B1 which also causes immune suppression/dysregulation in exposed hosts. The present study analyzed the effects of naturally occurring levels of AFB1 on apoptosis of healthy bovine and camelid neonatal neutrophils (PMN) that were isolated both before and after host consumption of colostrum. Cells from bovine and camel neonates (n = 12 sets of PMN/mammal/timepoint) were exposed for 24 h to a low level of AFB1 (i.e. 10 ng AFB1/ml) and then intracellular ATP content and caspase-3, -7, and -9 activities (determined by bioluminescence) were assessed. The results indicated a significant lessening of intracellular ATP content and equivalents of luminescence intensity in AFB1-treated PMN in all studied samples, i.e. isolated pre-and post-colostrum consumption. In contrast, caspase-3, -7, and -9 activities in both pre- and post-colostrum consumption bovine and camelid PMN were noticeably increased (∼>2-fold). The damaging effects of AFB1 were more pronounced in bovine neonate PMN than in camelid ones. These results showed that camelid or bovine neonatal PMN collected pre- and post-colostrum are sensitive (moreso after consumption) to naturally occurring levels of AFB1. While merits of colostrum are well known, its failure to mitigate toxic effects of AFB1 in what would translate into a critical period in the development of immune competence (i.e. during the first few days of life in bovine and camelid calves) is surprising. The observed in vitro toxicities can help clarify underlying mechanisms of immune disorders caused by AFs in animals/humans.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Mohammadi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Mohri
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
21
|
Brown R, Priest E, Naglik JR, Richardson JP. Fungal Toxins and Host Immune Responses. Front Microbiol 2021; 12:643639. [PMID: 33927703 PMCID: PMC8076518 DOI: 10.3389/fmicb.2021.643639] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Fungi are ubiquitous organisms that thrive in diverse natural environments including soils, plants, animals, and the human body. In response to warmth, humidity, and moisture, certain fungi which grow on crops and harvested foodstuffs can produce mycotoxins; secondary metabolites which when ingested have a deleterious impact on health. Ongoing research indicates that some mycotoxins and, more recently, peptide toxins are also produced during active fungal infection in humans and experimental models. A combination of innate and adaptive immune recognition allows the host to eliminate invading pathogens from the body. However, imbalances in immune homeostasis often facilitate microbial infection. Despite the wide-ranging effects of fungal toxins on health, our understanding of toxin-mediated modulation of immune responses is incomplete. This review will explore the current understanding of fungal toxins and how they contribute to the modulation of host immunity.
Collapse
Affiliation(s)
| | | | | | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
22
|
Mehrzad J. Environmentally relevant level of aflatoxin B1 and the role of (non)oxidative immuno-/neurodysregulation and toxicity. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Bahari A, Shahabi-Ghahfarrokhi I, Koolivand D. Kefiran ameliorates malfunctions in primary and functional immune cells caused by lipopolysaccharides. Int J Biol Macromol 2020; 165:619-624. [PMID: 33007323 DOI: 10.1016/j.ijbiomac.2020.09.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022]
Abstract
Kefiran is a water-soluble polysaccharide well recognized as a bioactive ingredient to enhance nutritional and health-promoting features. Also, some therapeutic properties have made this macromolecule an active ingredient in ointments and oral anti-inflammatory drugs. However, the details of the molecular and cellular aspects of these effects have not been addressed. In this study, lipopolysaccharides (LPS)-induced monocytes, lymphocytes, and monocyte-derived dendritic cells (MDDCs) as representative cells for both innate and adaptive immunity were treated with kefiran for 2 h. Kefiran had an anti-inflammatory effect on monocytes to reduce pro-inflammatory cytokines, interleukin 1 β (IL-1β) & tumor necrosis factor α (TNF-α), as well as nuclear factor kappa b (NF-kb). However, it did not affect lymphocytes. Overexpression of Toll-like receptor 4 (TLR4) in LPS-induced cells was not reduced after kefiran treatment. Kefiran balanced MDDCs secretion of pro/anti-inflammatory cytokines by reducing and enhancing the expression of IL-1β and interleukin 10 (IL-10), respectively. Also, kefiran decreased the number of apoptotic immature MDDCs and promoted dose-dependent phagocytosis capacity of MDDCs. According to the results of the current study, it may be concluded that the immunomodulatory effects of kefiran are due to antagonist against innate immune receptors especially TLR4. The results of this study can be used as a guide to developing kefiran-based non-aggressive anti-inflammatory drugs. Furthermore, understanding the immunobiological effects of kefiran on monocytes and lymphocytes was another outcome of this study.
Collapse
Affiliation(s)
- Abbas Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan, 45371-38791 Zanjan, Iran.
| | - Iman Shahabi-Ghahfarrokhi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Davoud Koolivand
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, 45371-38791 Zanjan, Iran
| |
Collapse
|
24
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Involvement of hepatic lipid droplets and their associated proteins in the detoxification of aflatoxin B 1 in aflatoxin-resistance BALB/C mouse. Toxicol Rep 2020; 7:795-804. [PMID: 32642446 PMCID: PMC7334552 DOI: 10.1016/j.toxrep.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The highly potent carcinogen, Aflatoxin B1, induces liver cancer in many animals including humans but some mice strains are highly resistant. This murine resistance is due to a rapid detoxification of AFB1. Hepatic lipid droplets (LDs) ultimately impact the liver functions but their potential role in AFB1 detoxification has not been addressed. This study describes the structural and functional impacts on hepatic LDs in BALB/C mice after exposure to 44 (low dose) or 663 (high dose) μg AFB1/kg of body weight. After 7 days, the liver of AFB1-dosed mice did not accumulate any detectable AFB1 or its metabolites and this was associated with a net increase in gene transcripts of the AhR-mediating pathway. Of particular interest, the livers of high-dose mice accumulated many more LDs than those of low-dose mice. This was accompanied with a net increase in transcript levels of LD-associated protein-encoding genes including Plin2, Plin3 and Cideb and an alteration in the LDs lipid profiles that could be likely due to the induction of lipoxygenase and cyclooxygenase genes. Interestingly, our data suggest that hepatic LDs catalyze the in vitro activation of AFB1 into AFB1-exo-8,9-epoxide and subsequent hydrolysis of this epoxide into its corresponding dihydrodiol. Finally, transcript levels of CYP1A2, CYP1B1, GSTA3 and EH1 genes were elevated in livers of high-dose mice. These data suggest new roles for hepatic LDs in the trapping and detoxifying of aflatoxins.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| |
Collapse
|
25
|
Spencer JV, Religa P, Lehmann MH. Editorial: Cytokine-Mediated Organ Dysfunction and Tissue Damage Induced by Viruses. Front Immunol 2020; 11:2. [PMID: 32038654 PMCID: PMC6987404 DOI: 10.3389/fimmu.2020.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Juliet V Spencer
- Department of Biology, Texas Woman's University, Denton, TX, United States
| | - Piotr Religa
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
26
|
Benkerroum N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E423. [PMID: 31936320 PMCID: PMC7013914 DOI: 10.3390/ijerph17020423] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
Abstract
There are presently more than 18 known aflatoxins most of which have been insufficiently studied for their incidence, health-risk, and mechanisms of toxicity to allow effective intervention and control means that would significantly and sustainably reduce their incidence and adverse effects on health and economy. Among these, aflatoxin B1 (AFB1) has been by far the most studied; yet, many aspects of the range and mechanisms of the diseases it causes remain to be elucidated. Its mutagenicity, tumorigenicity, and carcinogenicity-which are the best known-still suffer from limitations regarding the relative contribution of the oxidative stress and the reactive epoxide derivative (Aflatoxin-exo 8,9-epoxide) in the induction of the diseases, as well as its metabolic and synthesis pathways. Additionally, despite the well-established additive effects for carcinogenicity between AFB1 and other risk factors, e.g., hepatitis viruses B and C, and the hepatotoxic algal microcystins, the mechanisms of this synergy remain unclear. This study reviews the most recent advances in the field of the mechanisms of toxicity of aflatoxins and the adverse health effects that they cause in humans and animals.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
27
|
Mehrzad J, Fazel F, Pouyamehr N, Hosseinkhani S, Dehghani H. Naturally Occurring Level of Aflatoxin B 1 Injures Human, Canine and Bovine Leukocytes Through ATP Depletion and Caspase Activation. Int J Toxicol 2019; 39:30-38. [PMID: 31868052 DOI: 10.1177/1091581819892613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aflatoxin (AF) B1 is a potent hepatotoxic, mutagenic, teratogenic mycotoxin and may cause immune suppression/dysregulation in humans and animals. Toxic effects of AFB1 on key mammalian immune cells (ie, leukocytes) needs to be mechanistically elucidated. In this study, along with the determination of AFB1's LC50 for certain leukocytes, we analyzed the effect of naturally occurring levels of AFB1 on apoptosis/necrosis of neutrophils, lymphocytes, and monocytes from healthy young humans (20- to 25-year-old male), dogs (1- to 2-year-old Persian/herd breed), and cattle (1- to 2-year-old cattle). Leukocytes were incubated for approximately 24 hours with naturally occurring levels of AFB1 (10 ng/mL). Intracellular adenosine triphosphate (ATP) depletion and caspase-3/7 activity were then determined by luciferase-dependent bioluminescence (BL). Furthermore, the necrotic leukocytes were measured using propidium iodide (PI)-related flow cytometry. A significant decrease (24%-45%, 33.2% ± 2.7%) in intracellular ATP content was observed in AFB1-treated neutrophils, lymphocytes, and monocytes in all studied mammals. Also, with such a low level (10 ng/mL) of AFB1, BL-based caspase-3/7 activity (BL intensity) in all 3 tested mammalian leukocyte lineages was noticeably increased (∼>2-fold). Flow cytometry-based PI staining (for viability assay) of the AFB1-treated leukocytes showed slightly/insignificantly more increase of necrotic (PI+) neutrophils, lymphocytes, and monocytes in human, dogs, and cattle. Even though in vitro LC50s for AFB1' (∼20,000-40,000 ng/mL) were approximately 2,000 to 4,000 times higher than background, these studies demonstrate leukocytes from human and farm/companion animals are sensitive to naturally occurring levels of AFB1. The observed in vitro ATP depletion and caspase activation in AFB1-exposed leukocytes can partially explain the underlying mechanisms of AFB1-induced immune disorders in mammals.
Collapse
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Fazel
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nazaninzeynam Pouyamehr
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
28
|
Huang L, Zhao Z, Duan C, Wang C, Zhao Y, Yang G, Gao L, Niu C, Xu J, Li S. Lactobacillus plantarum C88 protects against aflatoxin B 1-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis. BMC Microbiol 2019; 19:170. [PMID: 31357935 PMCID: PMC6664579 DOI: 10.1186/s12866-019-1525-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
Background Probiotics play an important role in the human and animal defense against liver damage. However, the protective mechanism of Lactobacillus plantarum C88 on chronic liver injury induced by mycotoxin remains unclear. Results In this study, the addition of L. plantarum C88 obviously ameliorated the increased contents of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total cholesterol and triglyceride, the diminish contents of total protein and albumin in serum of mice challenged with AFB1. Simultaneously, L. plantarum C88 attenuated the inflammatory response via significantly reducing the levels of pro-inflammatory factors, including interleukin-1β (IL-1β), IL-6, IL-8, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in serum. Furthermore, L. plantarum C88 remarkably down-regulated the nuclear factor kappa B (NF-κB) signaling pathways by weakening the expression of toll-like receptor 2 (TLR2) and TLR4, and inhibited NF-κB nuclear translocation through enhancing the expression of NF-κB inhibitor (IκB). Neutralization experiments confirmed that L. plantarum C88 decreased the levels of some pro-inflammatory factors due to the suppression of the NF-κB signaling pathways. Besides, L. plantarum C88 decreased the levels of Bax and Caspase-3, elevated the level of Bcl-2, and reduced mRNA expressions of Fatty acid synthetase receptor (Fas), FAS-associated death domain (FADD), TNF receptor associated death domain (TRADD) and Caspase-8 in the liver. Conclusions Probiotic L. plantarum C88 prevented AFB1-induced secretion of pro-inflammatory cytokines by modulating TLR2/NF-κB and TLR4/NF-κB pathways. The molecular mechanisms of L. plantarum C88 in ameliorating AFB1-induced excessive apoptosis included regulating the mitochondrial pathway and cell death receptor pathways. Electronic supplementary material The online version of this article (10.1186/s12866-019-1525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Huang
- School of Environment, Northeast Normal University, No. 2555 Jing-Yue Street, Changchun, Jilin Province, 130117, People's Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Cuicui Duan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Chao Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Lei Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Chunhua Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Jingbo Xu
- School of Environment, Northeast Normal University, No. 2555 Jing-Yue Street, Changchun, Jilin Province, 130117, People's Republic of China.
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China.
| |
Collapse
|
29
|
Sun Y, Su J, Yang S, Liu Z, Liu D, Gan F, Chen X, Huang K. Mannan Oligosaccharide Protects against the Aflatoxin-B 1-Promoted Influenza Replication and Tissue Damages in a Toll-Like-Receptor-4-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:735-745. [PMID: 30586993 DOI: 10.1021/acs.jafc.8b05829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our previous study reported that aflatoxin B1 (AFB1) promoted influenza replication. Mannan oligosaccharide (MOS), derived from the cell walls of yeast, is a potent immunomodulator. Here, we investigated the role of MOS in AFB1-promoted influenza replication and further explored the underlying mechanisms. In vitro and in vivo, the exposure to AFB1 alone resulted in significantly decreased weight gain and increased viral replication as well as lung and spleen damages. Increased influenza replication coupled with increases in toll-like receptor 4 (TLR4), phosphorylated nuclear factor κB, and tumor necrosis factor α (TNF-α) levels. However, MOS given in conjunction with exposure to AFB1 significantly reversed these above changes. A further study indicated that MOS activity was abolished by TLR4 knockout or TLR4 overexpression. Surprisingly, TNF-α played no role in the MOS-mediated protective effects. Collectively, our data suggest that MOS alleviates the AFB1-promoted influenza replication, inflammation, and tissue damages in a TLR4-dependent manner.
Collapse
|
30
|
Chen Y, Li R, Chang Q, Dong Z, Yang H, Xu C. Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB₁-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis? Toxins (Basel) 2019; 11:E17. [PMID: 30621122 PMCID: PMC6356522 DOI: 10.3390/toxins11010017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Aflatoxin B₁ (AFB₁), a mycotoxin found in food and feed, is immunotoxic to animals and poses significant threat to the food industry and animal production. The primary target of AFB₁ is the liver. To overcome aflatoxin toxicity, probiotic-mediated detoxification has been proposed. In the present study, to investigate the protective effects and molecular mechanisms of Lactobacillus bulgaricus or Lactobacillus rhamnosus against liver inflammatory responses to AFB₁, mice were administered with AFB₁ (300 μg/kg) and/or Lactobacillus intragastrically for 8 weeks. AML12 cells were cultured and treated with AFB₁, BAY 11-7082 (an NF-κB inhibitor), and different concentrations of L. bulgaricus or L. rhamnosus. The body weight, liver index, histopathological changes, biochemical indices, cytokines, cytotoxicity, and activation of the NF-κB signaling pathway were measured. AFB₁ exposure caused changes in liver histopathology and biochemical functions, altered inflammatory response, and activated the NF-κB pathway. Supplementation of L. bulgaricus or L. rhamnosus significantly prevented AFB₁-induced liver injury and alleviated histopathological changes and inflammatory response by decreasing NF-κB p65 expression. The results of in vitro experiments revealed that L.rhamnosus evidently protected against AFB₁-induced inflammatory response and decreased NF-κB p65 expression when compared with L. bulgaricus. These findings indicated that AFB₁ exposure can cause inflammatory response by inducing hepatic injury, and supplementation of L. bulgaricus or L. rhamnosus can produce significant protective effect against AFB₁-induced liver damage and inflammatory response by regulating the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing 163319, China.
| | - Ruirui Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing 163319, China.
| | - Qiaocheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing 163319, China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing 100071, China.
| | - Zhihao Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing 163319, China.
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing 163319, China.
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing 163319, China.
| |
Collapse
|
31
|
Mehrzad J, Bahari A, Bassami MR, Mahmoudi M, Dehghani H. Immunobiologically relevant level of aflatoxin B1 alters transcription of key functional immune genes, phagocytosis and survival of human dendritic cells. Immunol Lett 2018; 197:44-52. [DOI: 10.1016/j.imlet.2018.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023]
|
32
|
Data on environmentally relevant level of aflatoxin B 1-induced human dendritic cells' functional alteration. Data Brief 2018; 18:1576-1580. [PMID: 29904659 PMCID: PMC5999520 DOI: 10.1016/j.dib.2018.04.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 02/01/2023] Open
Abstract
We assessed the effects of naturally occurring levels of AFB1 on the expression of key immune molecules and function of human monocyte-derived dendritic cells (MDDCs) by cell culture, RT-qPCR, and flow cytometry. Data here revealed that an environmentally relevant level of AFB1 led to remarkably weakened key functional capacity of DCs, up-regulation of key transcripts and DCs apoptosis, down-regulation of key phagocytic element, CD64, and creation of pseudolicensing direction of DCs. Flow cytometry data confirmed a damage towards DCs, i.e., increased apoptosis. The detailed data and their mechanistic effects and the outcome are available in this research article (Mehrzad et al., 2018) [1]. The impaired phagocytosis capacity with triggered pseudolicensing direction of MDDCs caused by AFB1 and dysregulation of the key functional genes could provide a mechanistic explanation for the observed in vivo immunotoxicity associated with this mycotoxin.
Collapse
|
33
|
Zhou H, George S, Li C, Gurusamy S, Sun X, Gong Z, Qian H. Combined toxicity of prevalent mycotoxins studied in fish cell line and zebrafish larvae revealed that type of interactions is dose-dependent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:60-71. [PMID: 29040830 DOI: 10.1016/j.aquatox.2017.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 05/19/2023]
Abstract
While, Aflatoxin B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEN) are the most prevalent mycotoxins co-existing in grain products and animal feeds, little is known about their combinatorial toxicities on aquatic life-forms. We studied the individual and combined effects of these mycotoxins in a fish cell line (BF-2) and zebrafish larvae (wild-type and transgenic). The types of interactions in mycotoxins combinations on cell viability were determined by using Chou-Talalay model. Induction of oxidative stress pathway in mycotoxins-exposed BF-2 cells was assessed using high content screening (HCS). Mycotoxin-exposed wild-type zebrafish larvae were examined for mortality and morphological abnormalities and transgenic zebrafish larvae (expressing DsRed in the liver) were imaged using HCS and examined for liver abnormalities. Results showed that the cytotoxicity of mycotoxins in a decreasing order was AFB1>DON>ZEN, however, the highest mortality rate and liver damage in zebrafish were observed for AFB1 followed by ZEN. AFB1+DON and AFB1+ZEN synergistically enhanced the toxic effects on BF-2 cells and zebrafish while DON+ZEN showed antagonism. Interestingly, in the tertiary combination, the synergism seen at lower individual concentrations of mycotoxins progressively turned to an overall antagonism at higher doses. The results provide a scientific basis for the necessity to consider co-exposure when formulating risk-management strategies.
Collapse
Affiliation(s)
- Hongyuan Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QuebecH9X3V9, Canada.
| | - Caixia Li
- Molecular Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Subramaniam Gurusamy
- Centre for Sustainable Nanotechnology, School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore 569830, Singapore
| | - Xiulan Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhiyuan Gong
- Molecular Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
34
|
Ishikawa AT, Hirooka EY, Alvares E Silva PL, Bracarense APFRL, Flaiban KKMDC, Akagi CY, Kawamura O, Costa MCD, Itano EN. Impact of a Single Oral Acute Dose of Aflatoxin B₁ on Liver Function/Cytokines and the Lymphoproliferative Response in C57Bl/6 Mice. Toxins (Basel) 2017; 9:E374. [PMID: 29149046 PMCID: PMC5705989 DOI: 10.3390/toxins9110374] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
Aflatoxin B₁ (AFB₁), a mycotoxin found in food and feed, exerts harmful effects on humans and animals. The liver is the earliest target of AFB₁, and its effects have been evaluated in animal models exposed to acute or chronic doses. Considering the possibility of sporadic ingestion of AFB₁-contaminated food, this study investigated the impact of a single oral dose of AFB₁ on liver function/cytokines and the lymphoproliferative response in mice. C57BL/6 mice were treated with a single oral AFB₁ dose (44, 442 or 663 μg AFB₁/kg of body weight) on the first day. Liver function (ALT, γ-GT, and total protein), cytokines (IL-4, IFN-γ, and IL-17), histopathology, and the spleen lymphoproliferative response to mitogens were evaluated on the 5th day. Although AFB₁ did not produce any significant changes in the biochemical parameters, 663 μg AFB₁/kg-induced hepatic upregulation of IL-4 and IFN-γ, along with liver tissue injury and suppression of the lymphoproliferative response to ConA (p < 0.05). In conclusion, a single oral dose of AFB₁ exposure can induce liver tissue lesions, liver cytokine modulation, and immune suppression in C57BL/6 mice.
Collapse
Affiliation(s)
- Angélica Tieme Ishikawa
- Department of Pathological Sciences, State University of Londrina, P.O. Box 10.011, Londrina 86057-970, Paraná, Brazil.
| | - Elisa Yoko Hirooka
- Department of Food Science and Technology, State University of Londrina, P.O. Box 10.011, Londrina 86057-970, Paraná, Brazil.
| | | | | | | | - Claudia Yuri Akagi
- Department of Pathological Sciences, State University of Londrina, P.O. Box 10.011, Londrina 86057-970, Paraná, Brazil.
| | - Osamu Kawamura
- Food Hygiene Laboratory, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Kagawa, Japan.
| | - Marcio Carvalho da Costa
- Department of Veterinary Biomedicine, University of Montreal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| | - Eiko Nakagawa Itano
- Department of Pathological Sciences, State University of Londrina, P.O. Box 10.011, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
35
|
Mehrzad J, Malvandi AM, Alipour M, Hosseinkhani S. Environmentally relevant level of aflatoxin B 1 elicits toxic pro-inflammatory response in murine CNS-derived cells. Toxicol Lett 2017; 279:96-106. [DOI: 10.1016/j.toxlet.2017.07.902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
|
36
|
|
37
|
Seasonally Feed-Related Aflatoxins B1 and M1 Spread in Semiarid Industrial Dairy Herd and Its Deteriorating Impacts on Food and Immunity. J FOOD QUALITY 2017. [DOI: 10.1155/2017/4067989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To comparatively determine the levels of aflatoxin (AF) B1 in feedstuffs and of AFM1 in milk from semiarid industrial cattle farms in northeastern Iran during four seasons and to elucidate the effects of mixed AFB1 and AFM1 on bovine granulocytes, 72 feedstuffs (concentrate, silage, and totally mixed ration (TMR)) and 200 bulk milk samples were simultaneously collected for ELISA-based AFs detection. Isolated blood and milk neutrophils (n=8/treatment) were also preincubated with mix of 10 ng/ml AFB1 and 10 ng/ml AFM1 for 12 h; the impact was assessed on neutrophils functions. AFB1 levels in feedstuffs averaged 28 μg/kg (4–127 μg/kg), with TMR maximal (38±6.3 μg/kg), concentrate (32±6.5 μg/kg), and silage (16±1.5 μg/kg). The levels of AFB1 and AFM1 in feedstuffs and milk averaged 42±9.3, 27±2.8, 26±4.1, and 18.5±2.8 μg/kg and 85±7.3, 62±6.1, 46±6.2, and 41±6.5 ppb μg/kg in winter (maximal), autumn, spring, and summer, respectively. Mix of AFB1 and AFM1 weakened various functions of granulocytes. It adds new reason why during winter semiarid raised food-producing animals show more immune-incompetence.
Collapse
|
38
|
Mohsenzadeh MS, Hedayati N, Riahi-Zanjani B, Karimi G. Immunosuppression following dietary aflatoxin B1 exposure: a review of the existing evidence. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1209523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Taheri M, Mehrzad J, Afshari R, Saleh-Moghaddam M, Mahmudy Gharaie MH. Inorganic arsenic can be potent granulotoxin in mammalian neutrophils in vitro. J Immunotoxicol 2016; 13:686-93. [PMID: 27416995 DOI: 10.3109/1547691x.2016.1159625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An important outcome arising out of occupational/environmental exposure to arsenic (As) is immunotoxicity. To determine the impact of inorganic As on innate immune cells, effects of a low dose of NaAsO2 (i.e. 20 ng As/ml) on select parameters associated with human and bovine neutrophils (PMN) were evaluated in vitro. PMN isolated from the blood of healthy individuals and cows (n = 8/treatment) were pre-incubated with NaAsO2 for 12 h before effects on PMN phagocytosis, transcription of TLR2, TLR4 and CD64 in human PMN - as well as on phagocytosis-dependent/-independent cell chemiluminescence (CL), phagocytosis and killing of Staphylococcus aureus and Escherichia coli, PMN H2O2 production and necrosis and TLR4 transcription in bovine PMN - were assessed. Relative to control (no As) PMN, treatment with As significantly decreased phagocytic capacity and CD64 mRNA, but increased TLR2 and TLR4 mRNA, in human PMN. In bovine PMN, while As also led to increased TLR4 mRNA abundance, it resulted in decreases in phagocytosis-dependent and -independent CL, PMN H2O2 production, PMN phagocytosis and killing of both E. coli and S. aureus by PMN. Considering the broad roles of PMN in immunology, the results of these studies increase our understanding of functional consequences of As exposure in inducing immunotoxicity and increasing susceptibility to (infectious) diseases in mammals.
Collapse
Affiliation(s)
- Masumeh Taheri
- a Biochemistry Section, Department of Biology , Payame Noor University of Mashhad , Mashhad , Iran
| | - Jalil Mehrzad
- b Department of Pathobiology , Immunology and Biotechnology Sections, Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Reza Afshari
- c Medical Toxicology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Massoud Saleh-Moghaddam
- a Biochemistry Section, Department of Biology , Payame Noor University of Mashhad , Mashhad , Iran
| | | |
Collapse
|
40
|
Bakheet SA, Attia SM, Alwetaid MY, Ansari MA, Zoheir KM, Nadeem A, Al-Shabanah OA, Al-Harbi MM, Ahmad SF. β-1,3-Glucan reverses aflatoxin B1-mediated suppression of immune responses in mice. Life Sci 2016; 152:1-13. [DOI: 10.1016/j.lfs.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/05/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
41
|
Taheri M, Mehrzad J, Mahmudy Gharaie MH, Afshari R, Dadsetan A, Hami S. High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:469-482. [PMID: 26100324 DOI: 10.1007/s10653-015-9733-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40-25,873.3 mg kg(-1), 7.10-1448.80 mg kg(-1) and 12-606 μg L(-1), respectively, arsenic concentrations in humans' hair and urine and sheep's wool and urine varied from 0.37-1.37 μg g(-1) and 9-271.4 μg L(-1) and 0.3-3.11 μg g(-1) and 29.1-1015 μg L(-1), respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals.
Collapse
Affiliation(s)
- Masumeh Taheri
- Department of Geology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jalil Mehrzad
- Department of Pathobiology, Sections Immunology and Biotechnology, Faculty of Veterinary Medicine, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Reza Afshari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Shakiba Hami
- Department of Geology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
42
|
Stressed (acute) mice display neuroimmunodysregulation and defective innate immune response against coliform infection. Int Immunopharmacol 2015; 28:168-74. [DOI: 10.1016/j.intimp.2015.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/01/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
|
43
|
Mohammadi A, Mehrzad J, Mahmoudi M, Schneider M, Haghparast A. Effect of culture and maturation on human monocyte-derived dendritic cell surface markers, necrosis and antigen binding. Biotech Histochem 2015; 90:445-52. [DOI: 10.3109/10520295.2015.1017536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|