1
|
Shi Y, Liu C, Gui Y, Guo Y, Zhang Y, Pan J, Tang H, Gao C, Xing J, Han Y, Jiang W. A Nattokinase-Loaded Nanozyme for Alleviating Acute Myocardial Infarction via Thrombolysis and Antioxidation. Adv Healthc Mater 2024:e2402763. [PMID: 39676430 DOI: 10.1002/adhm.202402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Acute myocardial infarction (MI) induced by thrombus formation is a prevalent cardiovascular disorder, and thrombolytic therapy continues to be a principal treatment modality. Prior research indicates a substantial association among MI, thrombosis, and the activation of oxidative stress pathways. The effectiveness of current thrombolytic drugs is relatively constrained, and the need for innovative and versatile thrombolytic medications remains critical. Nattokinase (NK) is a naturally-occurring enzyme known for its thrombolytic characteristics. Nonetheless, nattokinase's limited stability and susceptibility to inactivation in biological systems have impeded its clinical utility. This study designs a manganese oxide nanozyme (MnOx) loaded with NK (MnOx@NK), which exhibits both antioxidant and thrombolytic function. The administration of MnOx@NK through tail vein injection significantly restores vascular function and further reduces myocardial injury in a mouse model of myocardial infarction, demonstrating a pronounced protective effect against oxidative stress. These findings indicate that nattokinase-loaded nanozymes can be a promising approach for treating acute myocardial infarction, providing a new strategy for clinical application.
Collapse
Affiliation(s)
- Yingchao Shi
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Chuanfen Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China
| | - Yuesheng Gui
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Yike Guo
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Yuanhao Zhang
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Jiangpeng Pan
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Hao Tang
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Chuanyu Gao
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Junyue Xing
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Yu Han
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| | - Wei Jiang
- Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Cardiovascular Aging Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 451464, China
| |
Collapse
|
2
|
Sun Q, Yang W, Song Z, Lu H, Shang W, Li H, Yang Z, Gao W, Li Y, Xu Y, Luo M, Liu K, Wu Q, Xuan Z, Shen W, Yang Y, Yin D. Precisely Controlling the Activation of an Iron-Locked Drug Generator in the Liver Sinusoid to Enhance Barrier Penetration and Reduction of Liver Fibrosis. J Am Chem Soc 2024; 146:33784-33803. [PMID: 39584725 DOI: 10.1021/jacs.4c11988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Complex physical barriers and the nanomaterial's clearance mechanism in the liver greatly hinder the feasibility of using a conventional liver-targeting nanoplatform to deliver antifibrotic drugs to pathological sites for the treatment of liver fibrosis. Here, a novel drug delivery strategy was designed to overcome drug penetration barriers in a fibrotic liver and cooperated with oral nattokinase (NKase)-mediated antifibrosis therapy as a proof of concept, which relies on the coadministration of a nanosized iron-locked drug generator (named Pro-HAase) and orally absorbed iron chelator deferasirox (DFX). Such a strategy starts from the rapid accumulation of intravenously injected Pro-HAase in the microcapillaries of the fibrotic liver followed by disrupting the polyphenol-iron coordination inside Pro-HAase by DFX, liberating antifibrotic components, including procyanidine (PA) and hyaluronidase (HAase). Attractively, absorption of DFX requires the sequential processes of traversing the intestinal mucosa and targeting the liver, which enable DFX to preferentially disassemble Pro-HAase accumulated in the liver sinusoid rather than in systemic circulation or other organs, thus avoiding the off-target activation of Pro-HAase and depletion of the normal iron pool. The in situ disassembly process decreases the sequestration of Pro-HAase by cells of the mononuclear phagocyte system and promotes gradient-driven permeation of therapeutic components to surrounding liver tissues within 2 h, accompanied by biliary excretion of the inactive iron-DFX complex. As a result, the cooperation of Pro-HAase and DFX not only allows NKase-mediated therapy to completely reverse liver fibrosis but also suppresses the chronic hepatotoxicity of residual liver iron after multiple doses of Pro-HAase. The high spatiotemporal precision, unique barrier-penetration mechanism, and self-detoxification ability of this strategy will inspire the rational design of analogous iron-locked nanosystems to improve the therapeutic outcomes of liver fibrosis or other liver diseases.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenshuo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zhengwei Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Huiyu Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Huihui Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Min Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Kang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM),, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM),, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei 230021, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM),, Hefei 230012, China
| |
Collapse
|
3
|
Yin X, Wang X, Xu L, Zhao J, Li C, Lin J. Widely Targeted Metabolomics Revealed the Metabolic Basis of Physiological Function and Flavor of Natto. Metabolites 2024; 14:663. [PMID: 39728444 DOI: 10.3390/metabo14120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Natto is a fermented product derived from soybeans through the action of Bacillus subtilis natto, possessing various pharmacological and health-promoting properties. However, due to the absence of large-scale and systematic investigations into its metabolite profile, the mechanisms governing the biological functions and flavor characteristics of natto remain incompletely elucidated. Methods: In this study, a comprehensive, widely targeted metabolome analysis was conducted using UHPLC-MS/MS to compare soybeans and natto. Results: A total of 569 metabolites were identified, of which 160 exhibited differential expression between natto and soybeans, including 28 amino acids and their derivatives, 19 flavonoids, 18 alkaloids, and 10 nucleotides and their derivatives. Pathway enrichment analysis further demonstrated significant differences in the metabolic pathways between natto and soybeans, with these 160 differentially expressed metabolites primarily distributed across 40 metabolic pathways. KEGG pathway enrichment analysis of natto metabolites revealed that the majority of these mapped to three key metabolic pathways. Variations in the content of flavonoids and alkaloids, as well as changes in amino acid and saccharide composition and abundance, were found to collectively contribute to the distinctive flavor and biological functionality of natto. Conclusions: This study lays the foundation for future efforts to enhance the quality of natto.
Collapse
Affiliation(s)
- Xiaolong Yin
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaona Wang
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China
| | - Lili Xu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianzhi Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| |
Collapse
|
4
|
Mahakalakar N, Mohariya G, Taksande B, Kotagale N, Umekar M, Vinchurney M. "Nattokinase as a potential therapeutic agent for preventing blood-brain barrier dysfunction in neurodegenerative disorders". Brain Res 2024; 1849:149352. [PMID: 39592088 DOI: 10.1016/j.brainres.2024.149352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/11/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by progressive destruction of neurons and cognitive impairment, and thorough studies have provided evidence that these pathologies have a close relationship to the failure of the blood-brain barrier (BBB). Nattokinase (NK), a protease found in fermented soybeans, has been extensively studied because it displays powerful neuroprotective abilities, which is why current research was reviewed in the present article. It was concluded that there is enough evidence in preclinical studies using experimental animals that NK supplementation can alleviate the condition related to BBB dysfunction, reduce brain inflammation, and improve cognitive ability. Furthermore, the study of NK on the cardiovascular system leads to certain assumptions, which include the impact on vasculature function and the ability to manage blood flow, which is the key feature of BBB integrity. Such assumed mechanisms are fibrinolytic action, anti-inflammatory and antioxidant action, and endothelium function modulation. There are many positive research findings, and it seems that NK may serve as an effective opponent for BBB breakdown; however, a new research level should be taken to disclose the application and therapeutic use of NK in brain neurodegenerative disease.
Collapse
Affiliation(s)
- Nivedita Mahakalakar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Gunjan Mohariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy (GCOP), Kathora Naka, V.M.V. Road, Amravati (M.S.) 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Madhura Vinchurney
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India.
| |
Collapse
|
5
|
Wang D, Kou Y, Guo T, Duan L, Chen J, Duzhou C, Huang T, Liu X, Deng Y, Song Y. Intravenous injection of nattokinase-heparin electrostatic complex improves the therapeutic effect of advanced tumors by dissolving cancer-related thrombosis. Life Sci 2024; 355:122935. [PMID: 39094906 DOI: 10.1016/j.lfs.2024.122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
AIMS Cancer-related thrombosis (CAT) is a common complication in cancer patients, significantly impacting their quality of life and survival prospects. Nattokinase (NK) has potent thrombolytic properties, however, its efficacy is limited by low oral bioavailability and the risk of severe allergic reactions with intravenous use. Heparin (HP) is a widely used anticoagulant in clinical settings. This study aimed to overcome the intravenous toxicity of NK and explore its effect on CAT in advanced tumors. MAIN METHODS In this study, NK-HP electrostatic complexes were constructed, and their safety and thrombolytic efficacy were verified through guinea pig allergy tests, mouse tail vein tests, and both in vivo and in vitro thrombolysis experiments. Additionally, an S180 advanced tumor model was developed and combined with sialic acid-modified doxorubicin liposomes (DOX-SAL) to investigate the impact of NK-HP on CAT and its antitumor effects in advanced tumors. KEY FINDINGS We observed that NK-HP can eliminate the intravenous injection toxicity of NK, has strong thrombolytic performance, and can prevent thrombosis formation. Intravenous injection of NK-HP can enhance the antitumor effect of DOX-SAL by reducing the fibrin content in advanced tumors and increasing the levels of the cross-linked protein degradation product D-dimer. SIGNIFICANCE This study developed a method to eliminate the intravenous injection toxicity of NK, proposing a promising therapeutic strategy for CAT treatment, particularly for CAT in advanced tumors, and improving the efficacy of nano-formulations in anti-tumor therapy.
Collapse
Affiliation(s)
- Dazhi Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanmei Kou
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tiantian Guo
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lili Duan
- Sungen Biotech Co., Ltd., Shantou 515000, China
| | | | - Chunxiao Duzhou
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tiancheng Huang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Granito M, Alvarenga L, Ribeiro M, Carvalhosa P, Andrade T, Mesquita CT, Stockler-Pinto MB, Mafra D, Cardozo LF. Nattokinase as an adjuvant therapeutic strategy for non-communicable diseases: a review of fibrinolytic, antithrombotic, anti-inflammatory, and antioxidant effects. Expert Rev Cardiovasc Ther 2024; 22:565-574. [PMID: 39404094 DOI: 10.1080/14779072.2024.2416663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/10/2024] [Indexed: 11/10/2024]
Abstract
INTRODUCTION Nattokinase (NK) is the primary ingredient of natto, a traditional Asian food made from fermented soybean by Bacillus subtilis natto. Studies have shown that natto reduces the risk of cardiovascular disease (CVD) mortality due to its fibrinolytic and antithrombotic properties. A new field of studies also demonstrates that NK can mitigate molecular pathways related to inflammation and oxidative stress and can be considered an adjuvant strategy for use in many non-communicable diseases (NCDs). This paper is a narrative review of the literature. A search was conducted in PubMed and ScienceDirect up to July 2024. AREAS COVERED This review discusses the possible effects of NK on mitigating the common complications of NCDs, such as inflammation and oxidative stress. In addition, it provides an update on the most addressed areas related to NK's fibrinolytic and antithrombotic activities. EXPERT OPINION Due to the fibrinolytic and antithrombotic activity of nattokinase, and more recently added to the anti-inflammatory and antioxidant effects, this enzyme can be used as a new adjuvant therapeutic strategy to mitigate inflammation and oxidative stress in NCDs, including CVD.
Collapse
Affiliation(s)
- Mariana Granito
- Graduate Program in Nutricional Sciences, Estácio de Sá University (UNESA), Rio de Janeiro, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Priscila Carvalhosa
- Graduate Program in Nutricional Sciences, Estácio de Sá University (UNESA), Rio de Janeiro, Brazil
| | - Thaysi Andrade
- Graduate Program in Nutricional Sciences, Estácio de Sá University (UNESA), Rio de Janeiro, Brazil
| | - Claudio Tinoco Mesquita
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Milena Barcza Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Darbandi A, Elahi Z, Dadgar-Zankbar L, Ghasemi F, Kakavandi N, Jafari S, Darbandi T, Ghanavati R. Application of microbial enzymes in medicine and industry: current status and future perspectives. Future Microbiol 2024; 19:1419-1437. [PMID: 39269849 PMCID: PMC11552484 DOI: 10.1080/17460913.2024.2398337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Microbes are a major source of enzymes due to their ability to be mass-cultivated and genetically modified. Compared with plant and animal enzymes, microbial enzymes are more stable and active. Enzymes are generally classified into six classes based on their reaction, substrate specificity and mechanism of action. In addition to their application in medicine for treating diseases, these compounds are used as anti-inflammatory, thrombolytic and digestive agents. However, challenges such as immunogenicity, tissue specificity and short in vivo half-life make clinical trials complex. Enzymes are metabolic catalysts in industry and their production and extraction must be optimized to preserve profitability due to rising demand. The present review highlights the increasing importance of bacterial enzymes in industry and medicine and explores methods for their production, extraction and purification.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Kakavandi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Jafari
- Department of Medical Microbiology & Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Talieh Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
8
|
Muric M, Nikolic M, Todorovic A, Jakovljevic V, Vucicevic K. Comparative Cardioprotective Effectiveness: NOACs vs. Nattokinase-Bridging Basic Research to Clinical Findings. Biomolecules 2024; 14:956. [PMID: 39199344 PMCID: PMC11352257 DOI: 10.3390/biom14080956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
The use of non-vitamin K antagonist oral anticoagulants (NOACs) has brought a significant progress in the management of cardiovascular diseases, considered clinically superior to vitamin K antagonists (VKAs) particularly in the prevention and treatment of thromboembolic events. In addition, numerous advantages such as fixed dosing, lack of laboratory monitoring, and fewer food and drug-to-drug interactions make the use of NOACs superior to VKAs. While NOACs are synthetic drugs prescribed for specific conditions, nattokinase (NK) is a natural enzyme derived from food that has potential health benefits. Various experimental and clinical studies reported the positive effects of NK on the circulatory system, including the thinning of blood and the dissolution of blood clots. This enzyme showed not only fibrinolytic activity due to its ability to degrade fibrin, but also an affinity as a substrate for plasmin. Recent studies have shown that NK has additional cardioprotective effects, such as antihypertensive and anti-atherosclerotic effects. In this narrative review, we presented the cardioprotective properties of two different approaches that go beyond anticoagulation: NOACs and NK. By combining evidence from basic research with clinical findings, we aim to elucidate the comparative cardioprotective efficacy of these interventions and highlight their respective roles in modern cardiovascular care.
Collapse
Affiliation(s)
- Maja Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Andreja Todorovic
- Department of Cardiology, General Hospital Ćuprija, 35230 Ćuprija, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Human Pathology, First Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| | - Ksenija Vucicevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Cuoghi S, Caraffi R, Anderlini A, Baraldi C, Enzo E, Vandelli MA, Tosi G, Ruozi B, Duskey JT, Ottonelli I. Challenges of enzyme therapy: Why two players are better than one. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1979. [PMID: 38955512 DOI: 10.1002/wnan.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Enzyme-based therapy has garnered significant attention for its current applications in various diseases. Despite the notable advantages associated with the use of enzymes as therapeutic agents, that could have high selectivity, affinity, and specificity for the target, their application faces challenges linked to physico-chemical and pharmacological properties. These limitations can be addressed through the encapsulation of enzymes in nanoplatforms as a comprehensive solution to mitigate their degradation, loss of activity, off-target accumulation, and immunogenicity, thus enhancing bioavailability, therapeutic efficacy, and circulation time, thereby reducing the number of administrations, and ameliorating patient compliance. The exploration of novel nanomedicine-based enzyme therapeutics for the treatment of challenging diseases stands as a paramount goal in the contemporary scientific landscape, but even then it is often not enough. Combining an enzyme with another therapeutic (e.g., a small molecule, another enzyme or protein, a monoclonal antibody, or a nucleic acid) within a single nanocarrier provides innovative multidrug-integrated therapy and ensures that both the actives arrive at the target site and exert their therapeutic effect, leading to synergistic action and superior therapeutic efficacy. Moreover, this strategic approach could be extended to gene therapy, a field that nowadays has gained increasing attention, as enzymes acting at genomic level and nucleic acids may be combined for synergistic therapy. This multicomponent therapeutic approach opens opportunities for promising future developments. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Sabrina Cuoghi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Anderlini
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Jain A, Sondhi N, Singh K, Kaur J. Heterologous expression of nattokinase in E. coli: Biochemical characterization and functional analysis of fibrin binding residues. Arch Biochem Biophys 2024; 757:110026. [PMID: 38718957 DOI: 10.1016/j.abb.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli. This study delves into the expression of nattokinase in E. coli as a soluble protein followed by its biochemical characterization and functional analysis for fibrinolytic activity. E. coli BL21C41 and pET32a vector host strain with pGro7 protein chaperone induced with IPTG at 16 °C 180 rpm for 16 h enabled the production of recombinant nattokinase in soluble fraction. Enzymatic assays demonstrated its protease activity, while characterization revealed optimal catalytic conditions at 37 °C and pH 8.0, with remarkable stability over a broad pH range (6.0-10.0) and up to 50 °C. The kinetic constants were determined as follows: Km = 25.83 ± 3.43 μM, Vmax = 62.91 ± 1.68 μM/s, kcat = 38.45 ± 1.06 s-1, and kcat/Km = 1.49 × 106 M-1 s-1. In addition, the fibrinolytic activity of NK, quantified by the fibrin plate hydrolysis assay was 1038 ± 156 U/ml, with a corresponding specific activity of 1730 ± 260 U/mg and the assessment of clot lysis time on an artificial clot (1 mg) was found to be 51.5 ± 2.5 min unveiling nattokinase's fibrinolytic potential. Through molecular docking, a substantial binding energy of -6.46 kcal/mol was observed between nattokinase and fibrin, indicative of a high binding affinity. Key fibrin binding residues, including Ser300, Leu302, and Asp303, were identified and confirmed. These mutants affected specifically the fibrin binding and not the proteolytic activity of NK. This comprehensive study provides crucial conditions for the expression of protein in soluble form in E. coli and biochemical properties paving the way for future research and potential applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Ankush Jain
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Nishi Sondhi
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Kashmir Singh
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Pinontoan R, Purnomo JS, Avissa EB, Tanojo JP, Djuan M, Vidian V, Samantha A, Jo J, Steven E. In-vitro and in-silico analyses of the thrombolytic potential of green kiwifruit. Sci Rep 2024; 14:13799. [PMID: 38877048 PMCID: PMC11178772 DOI: 10.1038/s41598-024-64160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Cardiovascular diseases (CVDs), mainly caused by thrombosis complications, are the leading cause of mortality worldwide, making the development of alternative treatments highly desirable. In this study, the thrombolytic potential of green kiwifruit (Actinidia deliciosa cultivar Hayward) was assessed using in-vitro and in-silico approaches. The crude green kiwifruit extract demonstrated the ability to reduce blood clots significantly by 73.0 ± 1.12% (P < 0.01) within 6 h, with rapid degradation of Aα and Bβ fibrin chains followed by the γ chain in fibrinolytic assays. Molecular docking revealed six favorable conformations for the kiwifruit enzyme actinidin (ADHact) and fibrin chains, supported by spontaneous binding energies and distances. Moreover, molecular dynamics simulation confirmed the binding stability of the complexes of these conformations, as indicated by the stable binding affinity, high number of hydrogen bonds, and consistent distances between the catalytic residue Cys25 of ADHact and the peptide bond. The better overall binding affinity of ADHact to fibrin chains Aα and Bβ may contribute to their faster degradation, supporting the fibrinolytic results. In conclusion, this study demonstrated the thrombolytic potential of the green kiwifruit-derived enzyme and highlighted its potential role as a natural plant-based prophylactic and therapeutic agent for CVDs.
Collapse
Affiliation(s)
- Reinhard Pinontoan
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia.
| | | | - Elvina Bella Avissa
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Jessica Pricilla Tanojo
- Center of Excellence Applied Science Academy, Sekolah Pelita Harapan Lippo Village, Tangerang, 15810, Indonesia
| | - Moses Djuan
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Valerie Vidian
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Ariela Samantha
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Juandy Jo
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Lippo Karawaci, Tangerang, 15810, Indonesia
| | - Eden Steven
- Center of Excellence Applied Science Academy, Sekolah Pelita Harapan Lippo Village, Tangerang, 15810, Indonesia
- Emmerich Research Center, Jakarta, 14450, Indonesia
| |
Collapse
|
12
|
Sheng Y, Zhang S, Li X, Wang S, Liu T, Wang C, Yan L. Phenotypic and genomic insights into mutant with high nattokinase-producing activity induced by carbon ion beam irradiation of Bacillus subtilis. Int J Biol Macromol 2024; 271:132398. [PMID: 38754670 DOI: 10.1016/j.ijbiomac.2024.132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xintong Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shicheng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
13
|
Liu C, Zhang K, Zhang S, Li X, Sun H, Ma L. Maggot Kinase and Natural Thrombolytic Proteins. ACS OMEGA 2024; 9:21768-21779. [PMID: 38799322 PMCID: PMC11112594 DOI: 10.1021/acsomega.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Huiting Sun
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
14
|
Liu M, Xu Z, Wang Z, Wang D, Yang M, Li H, Zhang W, He R, Cheng H, Guo P, Li Z, Liang H. Lipid-lowering, antihypertensive, and antithrombotic effects of nattokinase combined with red yeast rice in patients with stable coronary artery disease: a randomized, double-blinded, placebo-controlled trial. Front Nutr 2024; 11:1380727. [PMID: 38812930 PMCID: PMC11133624 DOI: 10.3389/fnut.2024.1380727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Nattokinase (NK) and red yeast rice (RYR) are both indicated for their potential in cardiovascular disease prevention and management, but their combined effects especially in coronary artery disease (CAD) are scarcely examined. This 90-day randomized, double-blind trial aims to investigate the effect of NK and RYR supplementations on cardiometabolic parameters in patients with stable CAD. 178 CAD patients were randomized to four groups: NK + RYR, NK, RYR, and placebo. No adverse effects due to the interventions were reported. In comparisons across groups, NK + RYR showed the maximum effect in reducing triglyceride (-0.39 mmol), total cholesterol (-0.66 mmol/L), diastolic blood pressure (-7.39 mmHg), and increase in high-density lipoprotein cholesterol (0.195 mmol/L) than other groups (all p for multiple groups comparison<0.01). Both NK + RYR and NK groups had significantly better-improved lactate dehydrogenase than the others (-29.1 U/L and - 26.4 U/L). NK + RYR group also showed more potent reductions in thromboxane B2 and increases in antithrombin III compared to placebo (both p < 0.01). These improved markers suggest that combined NK and RYR may preferably alter antithrombin and COX-1 pathways, potentially reducing thrombosis risks in CAD patients. Overall, the combined NK and RYR supplementation is safe and more effective than separately in improving cardiometabolic markers among CAD patients with multiple heart medications use.
Collapse
Affiliation(s)
- Man Liu
- The Institute of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| | - Ziyi Xu
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd., Guangzhou, China
| | - Zongling Wang
- Qingdao Fuwai Cardiovascular Disease Hospital, Qingdao, China
| | - Di Wang
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd., Guangzhou, China
| | - Mingzhe Yang
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd., Guangzhou, China
| | - Hui Li
- Songshan Hospital, Medical College of Qingdao University, Qingdao, China
| | - Wei Zhang
- Songshan Hospital, Medical College of Qingdao University, Qingdao, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd., Guangzhou, China
| | - Huimin Cheng
- The Institute of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| | - Peiyu Guo
- The Institute of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd., Guangzhou, China
| | - Hui Liang
- The Institute of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Chiu HW, Chou CL, Lee KT, Shih CC, Huang TH, Sung LC. Nattokinase attenuates endothelial inflammation through the activation of SRF and THBS1. Int J Biol Macromol 2024; 268:131779. [PMID: 38679250 DOI: 10.1016/j.ijbiomac.2024.131779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation. The transcriptional profiles of NK in endothelial cells (ECs) by RNA sequencing (RNA-seq) revealed that NK affected THBS1, SRF and SREBF1 mRNA expression. In Q-PCR analysis, SRF and THBS1 were upregulated but SREBF1 was unaffected in ECs treated with NK. NK treatment induced autophagy and inhibited NLRP3 inflammasome and necroptosis in ECs. Furthermore, the inhibition of SRF or THBS1 by siRNA suppressed autophagy and enhanced the NLRP3 inflammasome and necroptosis. In a mouse model, NK reduced vascular inflammation by activating autophagy and inhibiting NLRP3 inflammasome and necroptosis. Our findings provide the first evidence that NK upregulates SRF and THBS1 genes, subsequently increasing autophagy and decreasing necroptosis and NLRP3 inflammasome formation to reduce vascular inflammation. Therefore, NK could serve as nutraceuticals or adjuvant therapies to reduce vascular inflammation and possible atherosclerosis progression.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chu-Lin Chou
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chun-Che Shih
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsuan Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Chin Sung
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of General Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
16
|
Rocchi R, Zwinkels J, Kooijman M, Garre A, Smid EJ. Development of novel natto using legumes produced in Europe. Heliyon 2024; 10:e26849. [PMID: 38463896 PMCID: PMC10923668 DOI: 10.1016/j.heliyon.2024.e26849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Natto is a traditional Japanese fermented product consisting of cooked soybeans fermented with Bacillus subtilis var. natto. We assessed three different B. subtilis strains and investigated their impact on product quality aspects, such as microbial quality, textural quality (poly-γ-glutamate strand formation), free amino acids (FAA), and volatile organic compounds (VOCs), but also the vitamin K1, K2 and B1 content, and presence of nattokinase. Using Bayesian contrast analysis, we conclude that the quality attributes were influenced by both the substrate and strain used, without significant differences in bacterial growth between strain or substrate. Overall, all the tested European legumes, except for brown beans, are adequate substrates to produce natto, with comparable or higher qualities compared to the traditional soy. Out of all the tested legumes, red lentils were the most optimal fermentation substrate. They were fermented most consistently, with high concentrations of vitamin K2, VOCs, FAA.
Collapse
Affiliation(s)
- Rebecca Rocchi
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Jasper Zwinkels
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Merit Kooijman
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alberto Garre
- Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Spain
| | - Eddy J. Smid
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
17
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
18
|
Kawamata T, Wakimoto A, Nishikawa T, Ikezawa M, Hamada M, Inoue Y, Kulathunga K, Salim FN, Kanai M, Nishino T, Gentleman K, Liu C, Mathis BJ, Obana N, Fukuda S, Takahashi S, Taya Y, Sakai S, Hiramatsu Y. Natto consumption suppresses atherosclerotic plaque progression in LDL receptor-deficient mice transplanted with iRFP-expressing hematopoietic cells. Sci Rep 2023; 13:22469. [PMID: 38110459 PMCID: PMC10728071 DOI: 10.1038/s41598-023-48562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Natto, known for its high vitamin K content, has been demonstrated to suppress atherosclerosis in large-scale clinical trials through a yet-unknown mechanism. In this study, we used a previously reported mouse model, transplanting the bone marrow of mice expressing infra-red fluorescent protein (iRFP) into LDLR-deficient mice, allowing unique and non-invasive observation of foam cells expressing iRFP in atherosclerotic lesions. Using 3 natto strains, we meticulously examined the effects of varying vitamin K levels on atherosclerosis in these mice. Notably, high vitamin K natto significantly reduced aortic staining and iRFP fluorescence, indicative of decreased atherosclerosis. Furthermore, mice administered natto showed changes in gut microbiota, including an increase in natto bacteria within the cecum, and a significant reduction in serum CCL2 expression. In experiments with LPS-stimulated macrophages, adding natto decreased CCL2 expression and increased anti-inflammatory cytokine IL-10 expression. This suggests that natto inhibits atherosclerosis through suppression of intestinal inflammation and reduced CCL2 expression in macrophages.
Collapse
Affiliation(s)
- Takeshi Kawamata
- Tsukuba Medical Center Hospital, 1-3-1, Amakubo, Tsukuba, Ibaraki, 305-8558, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takanobu Nishikawa
- Department of Natto Research and Development, Takanofoods Corporation, 1542, Noda, Omitama, Ibaraki, 311-3411, Japan.
| | - Masaya Ikezawa
- Department of Natto Research and Development, Takanofoods Corporation, 1542, Noda, Omitama, Ibaraki, 311-3411, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuri Inoue
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Physiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, P.O. Box 01, Hidellana, Ratnapura, Sri Lanka
| | - Filiani Natalia Salim
- Centre for Medical Science and Technology and Healthcare Equity, Parahyangan Catholic University, Bandung, 40141, Indonesia
- Magister Program of Biomedical Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Teppei Nishino
- Tsukuba Medical Center Hospital, 1-3-1, Amakubo, Tsukuba, Ibaraki, 305-8558, Japan
| | - Kyle Gentleman
- Integrated Master of Science Natural Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, Hampshire, UK
| | - Chang Liu
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Bryan J Mathis
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka-shi, Yamagata, 997-0052, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8575, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuki Taya
- Department of Natto Research and Development, Takanofoods Corporation, 1542, Noda, Omitama, Ibaraki, 311-3411, Japan
| | - Satoshi Sakai
- Department of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Faculty of Health Sciences, Tsukuba University of Technology, 4-12-7, Kasuga, Tsukuba, Ibaraki, 305-8521, Japan.
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
19
|
Kobayashi J, Wen R, Nishikawa T, Nunomura Y, Suzuki T, Sejima Y, Gokan T, Furukawa M, Yokota T, Osawa N, Sato Y, Nibu Y, Mizutani T, Oba M. Natto extract inhibits infection caused by the Aujeszky's disease virus in mice. Microbiol Immunol 2023; 67:514-519. [PMID: 37815203 DOI: 10.1111/1348-0421.13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Aujeszky's disease virus (ADV), also known as Suid alphaherpesvirus 1, which mainly infects swine, causes life-threatening neurological disorders. This disease is a serious global risk factor for economic losses in the swine industry. The development of new anti-ADV drugs is highly anticipated and required. Natto, a traditional Japanese fermented food made from soybeans, is a well-known health food. In our previous study, we confirmed that natto has the potential to inhibit viral infections by severe acute respiratory syndrome coronavirus 2 and bovine alphaherpesvirus 1 through their putative serine protease(s). In this study, we found that an agent(s) in natto functionally impaired ADV infection in cell culture assays. In addition, ADV treated with natto extract lost viral infectivity in the mice. We conducted an HPLC gel-filtration analysis of natto extract and molecular weight markers and confirmed that Fraction No. 10 had ADV-inactivating ability. Furthermore, the antiviral activity of Fraction No. 10 was inhibited by the serine protease inhibitor 4-(2-Aminoethyl) benzene sulfonyl fluoride hydrochloride (AEBSF). These results also suggest that Fraction No. 10, adjacent to the 12.5 kDa peak of the marker in natto extract, may inactivate ADV by proteolysis. Our findings provide new avenues of research for the prevention of Aujeszky's disease.
Collapse
Affiliation(s)
- Junya Kobayashi
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Research Institute for Animal Science in Biochemistry and Toxicology (RIAS), Sagamihara, Kanagawa, Japan
| | - Rongduo Wen
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Yuka Nunomura
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | | | | | | | | | - Tomoko Yokota
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | - Nanako Osawa
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoko Sato
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | - Yutaka Nibu
- The University Research Administration Center (URAC), Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
20
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Huang Z, Chu WK, Ng TK, Chen S, Liang J, Chen C, Xu Y, Xie B, Ke S, Liu Q, Chen W, Huang D. Protective effects of nattokinase against microvasculopathy and neuroinflammation in diabetic retinopathy. J Diabetes 2023; 15:866-880. [PMID: 37403338 PMCID: PMC10590680 DOI: 10.1111/1753-0407.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
AIMS Diabetic retinopathy (DR) is a significant global public health concern. Alternative, safe, and cost-effective pharmacologic approaches are warranted. We aimed to investigate the therapeutic potential of nattokinase (NK) for early DR and the underlying molecular mechanism. METHODS A mouse model of diabetes induced by streptozotocin was utilized and NK was administered via intravitreal injection. Microvascular abnormities were evaluated by examining the leakage from blood-retinal barrier dysfunction and loss of pericytes. Retinal neuroinflammation was examined through the assessment of glial activation and leukostasis. The level of high mobility group box 1 (HMGB1) and its downstream signaling molecules was evaluated following NK treatment. RESULTS NK administration significantly improved the blood-retinal barrier function and rescued pericyte loss in the diabetic retinas. Additionally, NK treatment inhibited diabetes-induced gliosis and inflammatory response and protected retinal neurons from diabetes-induced injury. NK also improved high glucose-induced dysfunction in cultured human retinal micrangium endothelial cells. Mechanistically, NK regulated diabetes-induced inflammation partially by modulating HMGB1 signaling in the activated microglia. CONCLUSIONS This study demonstrated the protective effects of NK against microvascular damages and neuroinflammation in the streptozotocin-induced DR model, suggesting that NK could be a potential pharmaceutical agent for the treatment of DR.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Wai Kit Chu
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong KongHong KongChina
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong KongHong KongChina
- Shantou University Medical CollegeShantouChina
| | - Shaolang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Jiajian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Chong‐Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
- Shantou University Medical CollegeShantouChina
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
- Shantou University Medical CollegeShantouChina
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantouChina
| |
Collapse
|
22
|
Tanikawa T, Yu J, Hsu K, Chen S, Ishii A, Yokogawa T, Inoue Y, Kitamura M. Development of Novel Monoclonal Antibodies Against Nattokinase. Monoclon Antib Immunodiagn Immunother 2023; 42:153-156. [PMID: 37855913 DOI: 10.1089/mab.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Nattokinase is a protease produced by Bacillus subtilis var. natto that exhibits various beneficial biological effects. Thus, a reliable assay to determine nattokinase levels is needed. In this study, we developed novel mouse monoclonal antibodies (mAbs) that recognize nattokinase, and created a specific and sensitive enzyme-linked immunosorbent assay (ELISA) to measure nattokinase levels. The ELISA was developed using a combination of new mouse antinattokinase mAbs used as capture antibodies coated onto 96-well plates, with a peroxidase-conjugated antibody used for detection. This ELISA enabled detection of nattokinase at 1 ng/mL. We believe that the novel mAbs developed in this study will be useful in future for elucidating nattokinase function.
Collapse
Affiliation(s)
- Takashi Tanikawa
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - James Yu
- Contek Life Science Co., Ltd., Taipei, Taiwan
| | - Kate Hsu
- Contek Life Science Co., Ltd., Taipei, Taiwan
| | | | | | - Takami Yokogawa
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yutaka Inoue
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Masashi Kitamura
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| |
Collapse
|
23
|
Ni A, Li H, Wang R, Sun R, Zhang Y. Degradation of amyloid β-peptides catalyzed by nattokinase in vivo and in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
24
|
Anand Singh T, Nongthombam G, Goksen G, Singh HB, Rajauria G, Kumar Sarangi P. Hawaijar - An ethnic vegan fermented soybean food of Manipur, India: A comprehensive review. Food Res Int 2023; 170:112983. [PMID: 37316061 DOI: 10.1016/j.foodres.2023.112983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Hawaijar, ethnic vegan fermented soybean food of Manipur, India is culturally and gastronomically important indigenously produced food. It is alkaline, sticky, mucilaginous and slightly pungent and bears similar properties with many fermented soybean foods of Southeast Asia like natto of Japan, douchi of China, thua nao of Thailand, choongkook jang of Korea. The functional microorganism is Bacillus and has numerous health benefits like fibrinolytic enzyme, antioxidant, antidiabetic, and ACE inhibitory activities. It is also very rich in nutrients but unscrupulous production method and sale lead to food safety issues. Huge potential pathogen population upto the level of 107-10 cfu/g Bacillus cereus and Proteus mirabilis were detected. Recent studies revealed presence of enterotoxic and urease gene in microorganisms originated from hawaijar. Improved and regulated food chain will result in hygienic and safe hawaijar. It has scope for functional food and nutraceutical global market and hold potential to provide employment to enhance the overall socioeconomic status of the region. Scientific production of fermented soybean over the traditional methods is summarized in this paper along with food safety and health benefits. Microbiological aspects on fermented soybean along with nutritive values are critically explained inside the paper.
Collapse
Affiliation(s)
| | | | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Gaurav Rajauria
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92CX88, Ireland
| | | |
Collapse
|
25
|
Li X, Long J, Gao Q, Pan M, Wang J, Yang F, Zhang Y. Nattokinase Supplementation and Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Rev Cardiovasc Med 2023; 24:234. [PMID: 39076715 PMCID: PMC11266782 DOI: 10.31083/j.rcm2408234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 07/31/2024] Open
Abstract
Background As a fibrinolytic enzyme from fermented soybean, nattokinase has been shown to be potentially beneficial for cardiovascular health, but current clinical evidences regarding the nattokinase supplementation on cardiovascular risk factors are various. This study aims to evaluate the cardiovascular efficacy of nattokinase. Methods Four electronic databases were systematically searched to collect eligible randomized controlled trials. Data were extracted and summarized in a pre-designed form by two independent reviewers. Review Manager 5.4 software (Cochrane Library Software, Oxford, U.K.) was used for meta-analysis and bias risk assessment. Results Six studies were eligible for quantitative analysis with 546 participants. The overall methodological quality of included studies was high. Relatively low total dosage of nattokinase had a negative effect on blood total cholesterol (MD [mean difference] = 5.27, 95% CI [confidence intervals]: 3.74 to 6.81, p < 0.00001), high-density lipoprotein cholesterol (MD = -2.76, 95% CI: -3.88 to -1.64, p < 0.00001), and low-density lipoprotein cholesterol (MD = 6.49, 95% CI: 0.83 to 12.15, p = 0.02). Nattokinase supplementation significantly reduced systolic blood pressure (MD = -3.45, 95% CI: -4.37 to -2.18, p < 0.00001) and diastolic blood pressure (MD = -2.32, 95% CI: -2.72 to -1.92, p < 0.00001), and led a slight increase in blood glucose (MD = 0.40, 95% CI: 0.20 to 0.60, p < 0.0001) as compared to placebo. Nattokinase group with relatively high total dosage also had a higher total cholesterol (MD = 3.18, 95% CI: 2.29 to 4.06, p < 0.00001) than control interventions, but no significant differences were found in levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. No significant correlation was found between nattokinase supplementation and triglyceride (p = 0.71). No notable adverse events were reported in all studies due to intake of nattokinase. Conclusions This study further supports that nattokinase can be used as an effective adjunctive therapy for hypertension, but relatively low-dose supplementation of nattokinase may have no significant lipid-lowering effect. More work will need to be done to determine whether the positive efficacy of nattokinase on cardiovascular risk factors is dose-dependent. Systematic Review Registration This work has been registered on PROSPERO (CRD42022315020).
Collapse
Affiliation(s)
- Xinmin Li
- School of Traditional Chinese Medicine, Henan University of Chinese
Medicine, 450046 Zhengzhou, Henan, China
| | - Junzi Long
- School of Rehabilitation Medicine, Henan University of Chinese Medicine,
450046 Zhengzhou, Henan, China
| | - Qian Gao
- School of Rehabilitation Medicine, Henan University of Chinese Medicine,
450046 Zhengzhou, Henan, China
| | - Mengyang Pan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine,
450046 Zhengzhou, Henan, China
| | - Jing Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine,
450046 Zhengzhou, Henan, China
| | - Fangjie Yang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine,
450046 Zhengzhou, Henan, China
| | - Yasu Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine,
450046 Zhengzhou, Henan, China
| |
Collapse
|
26
|
Wu H, Zhang Q, Xu P, Chen J, Duan L, Xu F, Zhang F. Nattokinase Promotes Post-stroke Neurogenesis and Cognition Recovery via Increasing Circulating Irisin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466380 DOI: 10.1021/acs.jafc.2c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The therapeutic potential of treatments for post-stroke cognitive impairment (PSCI) is severely limited by the autonomic regeneration capacity of the adult brain. Nattokinase (NK), a serine protease from the traditional food natto, has many beneficial effects on the cardiovascular system by modulating the blood system. While the role of blood factors in neurogenesis and cognition is well-established, it remains unclear whether NK can serve as an anti-PSCI agent through these factors. Our study demonstrates that NK protects against acute ischemic stroke and impressively promotes neurogenesis in rat models by increasing peripheral blood irisin, leading to improved cognitive functions. Our findings demonstrate NK to be a promising candidate for treating PSCI, and we also highlight irisin as a novel target of NK, suggesting its potential role in the peripheral blood-to-brain axis.
Collapse
Affiliation(s)
- Hao Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Qian Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Pu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Jiepeng Chen
- Sungen Biotech Company, Limited, Shantou, Guangdong 515000, People's Republic of China
| | - Lili Duan
- Sungen Biotech Company, Limited, Shantou, Guangdong 515000, People's Republic of China
| | - Feng Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
| |
Collapse
|
27
|
Toul M, Slonkova V, Mican J, Urminsky A, Tomkova M, Sedlak E, Bednar D, Damborsky J, Hernychova L, Prokop Z. Identification, characterization, and engineering of glycosylation in thrombolyticsa. Biotechnol Adv 2023; 66:108174. [PMID: 37182613 DOI: 10.1016/j.biotechadv.2023.108174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.
Collapse
Affiliation(s)
- Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Slonkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Maria Tomkova
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - Erik Sedlak
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
28
|
Zhang Y, Pei P, Zhou H, Xie Y, Yang S, Shen W, Hu L, Zhang Y, Liu T, Yang K. Nattokinase-Mediated Regulation of Tumor Physical Microenvironment to Enhance Chemotherapy, Radiotherapy, and CAR-T Therapy of Solid Tumor. ACS NANO 2023; 17:7475-7486. [PMID: 37057972 DOI: 10.1021/acsnano.2c12463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The therapy of solid tumors is always hampered by the intrinsic tumor physical microenvironment (TPME) featured with compact and rigid extracellular matrix (ECM) microstructures. Herein, we introduce nattokinase (NKase), a thrombolytic healthcare drug, to comprehensively regulate the TPME for versatile enhancement of various therapy modalities. Intratumoral injection of NKase not only degrades the major ECM component fibronectin but also inhibits cancer-associated fibroblasts (CAFs) in generating fibrosis, resulting in decreased tumor stiffness, enhanced perfusion, and hypoxia alleviation. The NKase-mediated regulation of the TPME significantly promotes the tumoral accumulation of therapeutic agents, leading to efficient chemotherapy without inducing side effects. Additionally, the enhancement of tumor radiotherapy based on radiosensitizers was also achieved by the pretreatment of intratumorally injected NKase, which could be ascribed to the elevated oxygen saturation level in NKase-treated tumors. Moreover, a xenografted human breast MDB-MA-231 tumor model is established to evaluate the influence of NKase on chimeric antigen receptor (CAR)-T cell therapy, illustrating that the pretreatment of NKase could boost the infiltration of CAR-T cells into tumors and thus be a benefit for tumor inhibition. These findings demonstrate the great promise of the NKase-regulated TPME as a translational strategy for universal enhancement of therapeutic efficacy in solid tumors by various treatments.
Collapse
Affiliation(s)
- Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuyuan Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
30
|
Supplementation with Natto and Red Yeast Rice Alters Gene Expressions in Cholesterol Metabolism Pathways in ApoE -/- Mice with Concurrent Changes in Gut Microbiota. Nutrients 2023; 15:nu15040973. [PMID: 36839329 PMCID: PMC9961320 DOI: 10.3390/nu15040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
We aimed to examine the effect of natto and red yeast rice (NR) supplementation on lipid and lipoprotein profiles, gene expressions of cholesterol metabolism, and the composition of gut microbiota in ApoE-/- mice. Forty-one male ApoE-/- mice aged 7-8 wks old were randomly fed a control diet (CD), CD + NR (oral gavage at 0.3 g/kg BW/day), high-fat and high-cholesterol diet (HFD), or HFD + NR for 12 wks. Fasting blood samples, liver and intestine tissues and fecal samples were collected at week 12. Biochemical parameters, gene expressions in cholesterol metabolism and gut microbiota composition and diversity were measured using standard methods. NR supplementation had no significant effect on lipid and lipoprotein profiles. Compared with the HFD group, HFD + NR resulted in higher mRNA expressions of HMGCR and CYP7A1 (both P-NR < 0.05) and ABCA1 (P-diet*NR = 0.0134, P-NR = 0.0407), lower mRNA expression of PCSK9 (P-diet*NR = 0.0002), lower fasting glucose concentrations (P-diet*NR = 0.0011), and lower relative abundance of genera Bacteroides and Lactococcus (both P-NR < 0.01) and Coriobacteriaceae_UCG-002 (P-diet*NR = 0.0007). The relative abundance of Lactococcus was inversely correlated with HMGCR and CYP7A1, and the relative abundance of Coriobacteriaceae_UCG-002 was positively correlated with PCSK9 and inversely correlated with ABCA1 (all P < 0.05). These findings suggest that NR supplementation may regulate gene expressions in cholesterol metabolism via changes in the gut microbiota in HFD-fed ApoE-/- mice.
Collapse
|
31
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
32
|
El-Baky NA, Amara AAAF, Redwan EM. Nutraceutical and therapeutic importance of clots and their metabolites. NUTRACEUTICALS 2023:241-268. [DOI: 10.1016/b978-0-443-19193-0.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
33
|
Wang Y, Wang H, Zhang Y, Xu F, Wang J, Zhang F. Stepwise Strategy to Identify Thrombin as a Hydrolytic Substrate for Nattokinase. J Chem Inf Model 2022; 62:5780-5793. [PMID: 36330712 DOI: 10.1021/acs.jcim.2c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nattokinase (NK) is a serine protease with a potent thrombolytic activity that possesses multiple cardiovascular disease (CVD) preventative and treatment activities. In light of its advanced beneficial cardiovascular effects and its nature as a serine protease, characterizing its biological substrates is essential for informing and ultimately delineating the molecular mechanism of its thrombolytic and anticoagulant activities that will unlock the powerful strategic design of effective therapies for CVDs. Given the efficacy of NK to break the vicious loop between inflammation, oxidative stress, and thrombosis, and the extensive role of thrombin in the loop, a stepwise computational strategy was developed to investigate the cleavage events of NK, including both a protein-protein complex model for protein substrate recognition and a protease-peptide complex model for the cleavage site identification, whereby their contact region was sited to allow for the prediction of the corresponding cleavage site that was successfully verified by both mass spectrometry (MS)-based N-terminal sequencing and various functional assays. Collectively, thrombin was predicted and identified to be a novel biological substrate of NK, which expanded the comprehensive antithrombus mechanism of NK via breaking the vicious loop between inflammation, oxidative stress, and thrombosis. This study not only provided insight into the interaction characteristics between NK and its hydrolytic substrate for a better understanding toward its catalytic mechanism but also developed a comprehensive computational strategy to elucidate the proteolytic targets of NK for the breakthrough of feature drug development.
Collapse
Affiliation(s)
- Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Huan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Yupeng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Feng Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| |
Collapse
|
34
|
Liang M, Zhang J, Yang Y, Xia Y, Liu L, Liu L, Wang Q, Gao X. Nattokinase enhances the preventive effects of Escherichia coli Nissle 1917 on dextran sulfate sodium-induced colitis in mice. World J Microbiol Biotechnol 2022; 39:8. [PMID: 36350434 DOI: 10.1007/s11274-022-03452-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Nattokinase with excellent anti-thrombotic, anti-inflammatory, anti-tumor, and anti-hypertension properties has been used in the development of several healthcare products in many countries. The probiotic Escherichia coli Nissle 1917 (EcN) with anti-inflammatory effect is commonly used to treat inflammatory bowel disease. To determine whether nattokinase could enhance the therapeutic efficacy of EcN in colitis, a recombinant E. coli Nissle 1917 strain (EcNnatto) with nattokinase-expressing ability was successfully constructed, and the protective effect of the engineered strain on mice with experimental chronic colitis was investigated. Although both EcN and EcNnatto strains substantially alleviated the clinical symptoms and pathological abnormalities in colitis mice by regulating gut flora and maintaining intestinal barrier function, the EcNnatto strain was found to perform better than the control strain, based on a further increase in colon length and a downregulation in pro-inflammatory cytokines (IL-6 and TNF-α). Nattokinase expressed in EcN attenuated DSS-induced epithelial damage and restored the mucosal integrity by upregulating the levels of tight junction proteins, including ZO-1 and occludin. The expression level of Lgr5, a marker of intestinal stem cells, was also increased. Moreover, constitutively expressed nattokinase in EcN reversed the gut microbial richness and diversity in colitis mice. Based on our findings, nattokinase could strengthen the capacity of EcN to treat intestinal inflammation.
Collapse
Affiliation(s)
- Manyu Liang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanhong Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi Xia
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lintao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
35
|
Jamali N, Vahedi F, Soltani Fard E, Taheri-Anganeh M, Taghvimi S, Khatami SH, Ghasemi H, Movahedpour A. Nattokinase: Structure, applications and sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Yao M, Yang Y, Fan J, Ma C, Liu X, Wang Y, Wang B, Sun Z, McClements DJ, Zhang J, Liu L, Xia G, Zhang N, Sun Q. Production, purification, and functional properties of microbial fibrinolytic enzymes produced by microorganism obtained from soy-based fermented foods: developments and challenges. Crit Rev Food Sci Nutr 2022; 64:3725-3750. [PMID: 36315047 DOI: 10.1080/10408398.2022.2134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
According to the World Health Organization, cardiovascular disease (CVD) has become a major cause of chronic illness around the globe. It has been reported that soy-based fermented food (SFF) is very effective in preventing thrombus (one of the most important contributing factors to CVD), which are mainly attributed to the bioactive substances, especially the fibrinolytic enzymes (FE) generated by microorganisms during the fermentation process of soybean food. This paper therefore mainly reviewed the microbial fibrinolytic enzymes (MFE) from SFF. We first discuss the use of microbial fermentation to produce FE, with an emphasis on the strains involved. The production, purification, physicochemical properties, structure-functional attributes, functional properties and possible application of MFE from SFF are then discussed. Finally, current limitations and future perspectives for the production, purification, and the practical application of MFE are discussed. MFE from SFF pose multiple health benefits, including thrombolysis, antihypertension, anti-inflammatory, anti-hyperlipidemia, anticancer, neuroprotective, antiviral and other activities. Therefore, they exhibit great potential for functional foods and nutraceutical applications, especially foods with CVDs prevention potential.
Collapse
Affiliation(s)
- Mingjing Yao
- School of Food Engineering, Harbin University of Commerce, Harbin, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Yang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Zhihui Sun
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | | | - Jiaxiang Zhang
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liping Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanghua Xia
- College of Food Science and Technology, Hainan University, Hainan, China
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
37
|
Arwanto V, Buschle-Diller G, Mukti YP, Dewi ADR, Mumpuni C, Purwanto MGM, Sukweenadhi J. The state of plant-based food development and its prospects in the Indonesia market. Heliyon 2022; 8:e11062. [PMID: 36303902 PMCID: PMC9593187 DOI: 10.1016/j.heliyon.2022.e11062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Innovations in food biotechnology reflect the increasing demand for healthy food and the change in conventional dietary patterns to plant-based diets, encouraging the development of functional products and opening new perspectives for industry interests. In addition, the development of vegetable-based products is supported by several studies that state that plant-based diets help reduce the risk of diseases, reduce stress, and even help maintain healthy body weight, making this diet a promising development for the future. The industry mainly uses fermentation techniques to obtain plant-based foodstuffs. However, fermentation is just one method that can develop probiotic products. Other methods include high moisture extrusion cooking and applying shear cells, for instance, for developing vegetable meats. This article summarizes trends and shifts in eating preferences, the response of the respective industry, and the future potential of plant-based products.
Collapse
|
38
|
Xiao Z, Shen J, Li Y, Wang Z, Zhao Y, Chen Y, Zhao JY. High and Economical Nattokinase Production with Acetoin as a Useful Byproduct from Soybean Milk and Glucose. Probiotics Antimicrob Proteins 2022; 14:792-803. [PMID: 34387855 DOI: 10.1007/s12602-021-09831-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Nattokinase (NK) is a potent fibrinolytic enzyme with wide pharmaceutical and nutraceutical applications. Safe and high NK-yielding strains are urgently needed. In this study, the best strain NDF was isolated from one of the 11 natto samples and then identified as Bacillus subtilis. The effects of carbon and nitrogen sources on NK production were investigated, and glucose and soybean milk were finally selected as the optimal carbon and nitrogen sources, respectively. Acetoin, a valuable compound with versatile usages, was detected as the main byproduct of carbon overflow. In a 6-L fermenter, NK and acetoin reached their peak concentrations simultaneously (10,220 IU/mL and 25.9 g/L, respectively) at 25 h in a culture medium containing 180 g/L of soybean milk and 105 g/L of glucose. The NK product was verified by sequencing of the aprN gene and SDS-PAGE analysis. Only very limited kinds of proteins were found in the supernatant of the fermentation broth, and NK was one of the main bands. This study has developed an economical and high NK production method with acetoin as a useful byproduct.
Collapse
Affiliation(s)
- Zijun Xiao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jie Shen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yang Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhuo Wang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yanshuang Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yong Chen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jing-Yi Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
39
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
40
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
41
|
Tanikawa T, Kiba Y, Yu J, Hsu K, Chen S, Ishii A, Yokogawa T, Suzuki R, Inoue Y, Kitamura M. Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2. Molecules 2022; 27:molecules27175405. [PMID: 36080170 PMCID: PMC9458005 DOI: 10.3390/molecules27175405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a pandemic and has inflicted enormous damage on the lives of the people and economy of many countries worldwide. However, therapeutic agents against SARS-CoV-2 remain unclear. SARS-CoV-2 has a spike protein (S protein), and cleavage of the S protein is essential for viral entry. Nattokinase is produced by Bacillus subtilis var. natto and is beneficial to human health. In this study, we examined the effect of nattokinase on the S protein of SARS-CoV-2. When cell lysates transfected with S protein were incubated with nattokinase, the S protein was degraded in a dose- and time-dependent manner. Immunofluorescence analysis showed that S protein on the cell surface was degraded when nattokinase was added to the culture medium. Thus, our findings suggest that nattokinase exhibits potential for the inhibition of SARS-CoV-2 infection via S protein degradation.
Collapse
Affiliation(s)
- Takashi Tanikawa
- Laboratory of Nutri-Pharmacotherapeutics Management, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yuka Kiba
- Laboratory of Pharmacognocy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - James Yu
- Contek Life Science Co., Ltd., Taipei City 100007, Taiwan
| | - Kate Hsu
- Contek Life Science Co., Ltd., Taipei City 100007, Taiwan
| | - Shinder Chen
- Contek Life Science Co., Ltd., Taipei City 100007, Taiwan
| | | | - Takami Yokogawa
- Laboratory of Pharmacognocy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Ryuichiro Suzuki
- Laboratory of Natural Products & Phytochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yutaka Inoue
- Laboratory of Nutri-Pharmacotherapeutics Management, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Masashi Kitamura
- Laboratory of Pharmacognocy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| |
Collapse
|
42
|
Chen Z, Zhao Y, Liu Y. Advanced Strategies in Enzyme Activity Regulation for Biomedical Applications. Chembiochem 2022; 23:e202200358. [PMID: 35896516 DOI: 10.1002/cbic.202200358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Enzymes are important macromolecular biocatalysts that accelerate chemical and biochemical reactions in living organisms. Most human diseases are related to alterations in enzyme activity. Moreover, enzymes are potential therapeutic tools for treating different diseases, such as cancer, infections, and cardiovascular and cerebrovascular diseases. Precise remote enzyme activity regulation provides new opportunities to combat diseases. This review summarizes recent advances in the field of enzyme activity regulation, including reversible and irreversible regulation. It also discusses the mechanisms and approaches for on-demand control of these activities. Furthermore, a range of stimulus-responsive inhibitors, polymers, and nanoparticles for regulating enzyme activity and their prospective biomedical applications are summarized. Finally, the current challenges and future perspectives on enzyme activity regulation are discussed.
Collapse
Affiliation(s)
- Zihan Chen
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yu Zhao
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yang Liu
- Nankai University, College of Chemistry, 94 Weijin Rd., Mengminwei Bldg 412, 300071, Tianjin, CHINA
| |
Collapse
|
43
|
Yao Z, Jeon HS, Yoo JY, Kang YJ, Kim MJ, Kim TJ, Kim JH. DNA Shuffling of aprE Genes to Increase Fibrinolytic Activity and Thermostability. J Microbiol Biotechnol 2022; 32:800-807. [PMID: 35484964 PMCID: PMC9628911 DOI: 10.4014/jmb.2202.02017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
Four aprE genes encoding alkaline serine proteases from B. subtilis strains were used as template genes for family gene shuffling. Shuffled genes obtained by DNase I digestion followed by consecutive primerless and regular PCR reactions were ligated with pHY300PLK, an E. coli-Bacillus shuttle vector. The ligation mixture was introduced into B. subtilis WB600 and one transformant (FSM4) showed higher fibrinolytic activity. DNA sequencing confirmed that the shuffled gene (aprEFSM4) consisted of DNA mostly originated from either aprEJS2 or aprE176 in addition to some DNA from either aprE3-5 or aprESJ4. Mature AprEFSM4 (275 amino acids) was different from mature AprEJS2 in 4 amino acids and mature AprE176 in 2 amino acids. aprEFSM4 was overexpressed in E. coli BL21 (DE3) by using pET26b(+) and recombinant AprEFSM4 was purified. The optimal temperature and pH of AprEFSM4 were similar to those of parental enzymes. However, AprEFM4 showed better thermostability and fibrinogen hydrolytic activity than the parental enzymes. The results indicated that DNA shuffling could be used to improve fibrinolytic enzymes from Bacillus sp. for industrial applications.
Collapse
Affiliation(s)
- Zhuang Yao
- Division of Applied Life Science (BK21 4), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye Sung Jeon
- Division of Applied Life Science (BK21 4), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Yeon Yoo
- Division of Applied Life Science (BK21 4), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yun Ji Kang
- Division of Applied Life Science (BK21 4), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Jae Kim
- Division of Applied Life Science (BK21 4), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Jin Kim
- Division of Applied Life Science (BK21 4), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Hwan Kim
- Division of Applied Life Science (BK21 4), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding author Phone: +82-55-772-1904 Fax: +82-55-772-1909 E-mail:
| |
Collapse
|
44
|
Recent Advances in Nattokinase-Enriched Fermented Soybean Foods: A Review. Foods 2022; 11:foods11131867. [PMID: 35804683 PMCID: PMC9265860 DOI: 10.3390/foods11131867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
With the dramatic increase in mortality of cardiovascular diseases (CVDs) caused by thrombus, this has sparked an interest in seeking more effective thrombolytic drugs or dietary nutriments. The dietary consumption of natto, a traditional Bacillus-fermented food (BFF), can reduce the risk of CVDs. Nattokinase (NK), a natural, safe, efficient and cost-effective thrombolytic enzyme, is the most bioactive ingredient in natto. NK has progressively been considered to have potentially beneficial cardiovascular effects. Microbial synthesis is a cost-effective method of producing NK. Bacillus spp. are the main production strains. While microbial synthesis of NK has been thoroughly explored, NK yield, activity and stability are the critical restrictions. Multiple optimization strategies are an attempt to tackle the current problems to meet commercial demands. We focus on the recent advances in NK, including fermented soybean foods, production strains, optimization strategies, extraction and purification, activity maintenance, biological functions, and safety assessment of NK. In addition, this review systematically discussed the challenges and prospects of NK in actual application. Due to the continuous exploration and rapid progress of NK, NK is expected to be a natural future alternative to CVDs.
Collapse
|
45
|
Acosta GA, Fonseca MI, Fariña JI, Zapata PD. Exploring Agaricomycetes from the Paranaense rainforest (Misiones, Argentina) as an unconventional source of fibrinolytic enzymes. Mycologia 2022; 114:242-253. [PMID: 35394849 DOI: 10.1080/00275514.2022.2035148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fungal fibrinolytic enzymes, secreted by some Agaricomycetes, are recognized as important thrombolytic agents due to their ability to rapidly dissolve thromboembolic clots. The present work evaluated fibrinolytic and proteolytic secretion abilities of 35 Agaricomycetes isolates from the Paranaense rainforest (Misiones, Argentina). We detected proteolytic activity in 40% of the strains while nine strains showed fibrinolytic activity. Schizophyllum commune LBM 026, Schizophyllum commune LBM 223, and Hornodermoporus martius LBM 224 exhibited the highest levels of fibrinolytic activity. Fibrin zymography from S. commune LBM 026 and LBM 223 showed an enzyme of 27.5 kDa, while H. martius LBM 224 presented an enzyme of 29 kDa. The evaluation of the enzymatic stability of culture supernatant of these strains revealed that the fibrinolytic activity was highly stable over a wide temperature and pH range. Long-term stability of fibrinolytic activity at physiological conditions evidenced that the strains had a half-life of at least 72 h. Fibrinolytic enzymes produced by S. commune LBM 026 and LBM 223 were inhibited in the presence of EDTA indicating that they are metalloproteases. This work reveals the potential of S. commune LBM 026, S. commune LBM 223, and H. martius LBM 224 as an unconventional source of thrombolytic agents.
Collapse
Affiliation(s)
- Gabriela Alejandra Acosta
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones 3300, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - María Isabel Fonseca
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones 3300, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Julia Inés Fariña
- Laboratorio de Micodiversidad y Micoprospección, Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas (PROIMI-CONICET), S.M. Tucumán, Tucumán 4001, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones 3300, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| |
Collapse
|
46
|
Yuan H, Luo Z, Ban Z, Reiter RJ, Ma Q, Liang Z, Yang M, Li X, Li L. Bioactive peptides of plant origin: distribution, functionality, and evidence of benefits in food and health. Food Funct 2022; 13:3133-3158. [PMID: 35244644 DOI: 10.1039/d1fo04077d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The multiple functions of peptides released from proteins have immense potential in food and health. In the past few decades, research interest in bioactive peptides of plant origin has surged tremendously, and new plant-derived peptides are continually discovered with advances in extraction, purification, and characterization technology. Plant-derived peptides are mainly extracted from dicot plants possessing bioactive functions, including antioxidant, cholesterol-lowering, and antihypertensive activities. Although the distinct functions are said to depend on the composition and structure of amino acids, the practical or industrial application of plant-derived peptides with bioactive features is still a long way off. In summary, the present review mainly focuses on the state-of-the-art extraction, separation, and analytical techniques, functional properties, mechanism of action, and clinical study of plant-derived peptides. Special emphasis has been placed on the necessity of more pre-clinical and clinical trials to authenticate the health claims of plant-derived peptides.
Collapse
Affiliation(s)
- Hemao Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhaojun Ban
- School of Biological and chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, USA
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Ze Liang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Mingyi Yang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Xihong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China. .,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Kapoor R, Khowal S, Panda BP, Wajid S. Comparative genomic analyses of Bacillus subtilis strains to study the biochemical and molecular attributes of nattokinases. Biotechnol Lett 2022; 44:485-502. [PMID: 35099650 DOI: 10.1007/s10529-022-03226-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022]
Abstract
The present research work explores the Nattokinase (NK) producing capacity of five Bacillus subtilis strains (MTCC 2616, MTCC 2756, MTCC 2451, MTCC 1427, and MTCC 7164) using soybean varieties as substrate under solid-state fermentation conditions. Subsequently, the biochemical attributes of NKs were analyzed. Soybean variety didn't affect the production of NK to a significant extent; however, the five strains differed substantially for their NK producing capacity. NK produced by MTCC 2451 (R3) showed a low Kmvalue implying its higher specificity for fibrin but this strain (MTCC 2451) didn't produce NK in sufficient quantity. The low Km of MTCC 2451 NK implicates its potential candidature for treating blood clots in cardiovascular patients. The NK produced by MTCC 2616 (R1) was produced in sufficient quantity and showed good fibrin dissolving potential. The aprN of MTCC 2616 substantially varied from the other four strains. The aprN of MTCC 2756 (R2), MTCC 2451 (R3), MTCC 1427 (R4), and MTCC 7164 (R5) shared > 99% sequence identity, but the encoded NKs had significant variations in their Km values. The biochemical-molecular analyses indicate the co-presence of three critical residues (Thr130, Asp140, and Tyr217) as a quintessential attribute in determining the low Km of NK enzymes, and the absence of any one of the three critical residues may affect (highly increase) the Km.
Collapse
Affiliation(s)
- Rohit Kapoor
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, 110062, India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
48
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
49
|
Mukherjee AK, Chattopadhyay DJ. Potential clinical applications of phytopharmaceuticals for the in-patient management of coagulopathies in COVID-19. Phytother Res 2022; 36:1884-1913. [PMID: 35147268 PMCID: PMC9111032 DOI: 10.1002/ptr.7408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Thrombotic complications occur in many cardiovascular pathologies and have been demonstrated in COVID‐19. The currently used antithrombotic drugs are not free of adverse reactions, and COVID‐19 patients in particular, when treated with a therapeutic dose of an anticoagulant do not receive mortality benefits. The clinical management of COVID‐19 is one of the most difficult tasks for clinicians, and the search for safe, potent, and effective antithrombotic drugs may benefit from exploring naturally bioactive molecules from plant sources. This review describes recent advances in understanding the antithrombotic potential of herbal drug prototypes and points to their future clinical use as potent antithrombotic drugs. Although natural products are perceived to be safe, their clinical and therapeutic applications are not always apparent or accepted. More in‐depth studies are necessary to demonstrate the clinical usefulness of plant‐derived, bioactive compounds. In addition, holistic approaches in systematic investigations and the identification of antithrombotic mechanisms of the herbal bioactive molecule(s) need to be conducted in pre‐clinical studies. Moreover, rigorous studies are needed to compare the potency of herbal drugs to that of competitor chemical antithrombotic drugs, and to examine their interactions with Western antithrombotic medicines. We have also proposed a road map to improve the commercialization of phytopharmaceuticals.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, India
| | | |
Collapse
|
50
|
Minh NH, Trang HTQ, Van TB, Loc NH. Production and purification of nattokinase from Bacillus subtilis. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2021.2005622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Nguyen Hoang Minh
- Clinical Skills Laboratory, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | | | - Tran Bao Van
- Department of Biotechnology, University of Sciences, Hue University, Hue, Vietnam
| | - Nguyen Hoang Loc
- Department of Biotechnology, University of Sciences, Hue University, Hue, Vietnam
| |
Collapse
|