1
|
Chen W, Jiang S, Li C, Li S, Wang J, Xu R. Potential association between COVID-19 and neurological disorders: analysis of common genes and therapeutics. Front Neurol 2024; 15:1417183. [PMID: 39469068 PMCID: PMC11513677 DOI: 10.3389/fneur.2024.1417183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024] Open
Abstract
As the COVID-19 pandemic persists, the increasing evidences suggest that the patients with COVID-19 may face the risks of the neurological complications and sequelae. To address this issue, we conducted a comprehensive study aimed at exploring the relationship between COVID-19 and various neurological disorders, with a particular focus on the shared dysregulated genes and the potential therapeutic targets. We selected six neurological disorders for investigation, including Alzheimer's disease, epilepsy, stroke, Parkinson's disease, and the sleep disorders. Through the bioinformatics analysis of the association between these disorders and COVID-19, we aimed to uncover the common molecular mechanisms and the potential treatment pathways. In this study, we utilized the publicly available RNA-Seq and microarray datasets, and employed tools such as Limma and DESeq2 for the differential gene analysis. Through the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, we explored the common biological features and pathways. Additionally, we focused on analyzing the regulatory roles of miRNA and transcription factors on the shared differentially expressed genes, and predicted the potential drugs interacting with these genes. These analyses contribute to a better understanding of the relationship between COVID-19 and the neurological disorders, and provide a theoretical basis for the future treatment strategies. Through this research, we aim to offer the deeper insights to the scientific community and present the new perspectives for the clinical practice in addressing the challenges of the neurological complications and sequelae faced by the COVID-19 patients.
Collapse
Affiliation(s)
- Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, China
| |
Collapse
|
2
|
Xu L, Barrett JG, Peng J, Li S, Messadi D, Hu S. ITGAV Promotes the Progression of Head and Neck Squamous Cell Carcinoma. Curr Oncol 2024; 31:1311-1322. [PMID: 38534932 PMCID: PMC10969037 DOI: 10.3390/curroncol31030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/26/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) refers to the malignancy of squamous cells in the head and neck region. Ranked as the seventh most common cancer worldwide, HNSCC has a very low survival rate, highlighting the importance of finding therapeutic targets for the disease. Integrins are cell surface receptors that play a crucial role in mediating cellular interactions with the extracellular matrix (ECM). Within this protein family, Integrin αV (ITGAV) has received attention for its important functional role in cancer progression. In this study, we first demonstrated the upregulation of ITGAV expression in HNSCC, with higher ITGAV expression levels correlating with significantly lower overall survival, based on TCGA (the Cancer Genome Atlas) and GEO datasets. Subsequent in vitro analyses revealed an overexpression of ITGAV in highly invasive HNSCC cell lines UM1 and UMSCC-5 in comparison to low invasive HNSCC cell lines UM2 and UMSCC-6. In addition, knockdown of ITGAV significantly inhibited the migration, invasion, viability, and colony formation of HNSCC cells. In addition, chromatin immunoprecipitation (ChIP) assays indicated that SOX11 bound to the promoter of ITGAV gene, and SOX11 knockdown resulted in decreased ITGAV expression in HNSCC cells. In conclusion, our studies suggest that ITGAV promotes the progression of HNSCC cells and may be regulated by SOX11 in HNSCC cells.
Collapse
Affiliation(s)
- Lingyi Xu
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Jeremy G Barrett
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Jiayi Peng
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Suk Li
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
| | - Diana Messadi
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA
| | - Shen Hu
- School of Dentistry, University of California, Los Angeles, CA 90095, USA; (L.X.); (J.G.B.); (J.P.); (D.M.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Khajeei A, Masoomzadeh S, Gholikhani T, Javadzadeh Y. The Effect of PEGylation on Drugs' Pharmacokinetic Parameters; from Absorption to Excretion. Curr Drug Deliv 2024; 21:978-992. [PMID: 37345248 DOI: 10.2174/1567201820666230621124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 06/23/2023]
Abstract
Until the drugs enter humans life, they may face problems in transportation, drug delivery, and metabolism. These problems can cause reducing drug's therapeutic effect and even increase its side effects. Together, these cases can reduce the patient's compliance with the treatment and complicate the treatment process. Much work has been done to solve or at least reduce these problems. For example, using different forms of a single drug molecule (like Citalopram and Escitalopram); slight changes in the drug's molecule like Meperidine and α-Prodine, and using carriers (like Tigerase®). PEGylation is a recently presented method that can use for many targets. Poly Ethylene Glycol or PEG is a polymer that can attach to drugs by using different methods and resulting sustained release, controlled metabolism, targeted delivery, and other cases. Although they will not necessarily lead to an increase in the effect of the drug, they will lead to the improvement of the treatment process in certain ways. In this article, the team of authors has tried to collect and carefully review the best cases based on the PEGylation of drugs that can help the readers of this article.
Collapse
Affiliation(s)
- Ali Khajeei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Masoomzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Gholikhani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Paindelli C, Casarin S, Wang F, Diaz-Gomez L, Zhang J, Mikos AG, Logothetis CJ, Friedl P, Dondossola E. Enhancing 223Ra Treatment Efficacy by Anti- β1 Integrin Targeting. J Nucl Med 2022; 63:1039-1045. [PMID: 34711616 PMCID: PMC9258579 DOI: 10.2967/jnumed.121.262743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
223Ra is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity toward PCa cells near the bone interface, whereas cells positioned in the core respond poorly because of short α-particle penetrance. β1 integrin (β1I) interference has been shown to increase radiosensitivity and significantly enhance external-beam radiation efficiency. We hypothesized that targeting β1I would improve 223Ra outcome. Methods: We tested the effect of combining 223Ra and anti-β1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low β1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo 3-dimensional imaging of bone lesions and by proteomic analysis and were further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Results: Interference with β1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, whereas no change was achieved in C4-2B tumors. Anti-β1I treatment decreased the PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects 2-fold, in vivo and in silico. Regression was paralleled by decreased expression of radioresistance mediators. Conclusion: Targeting β1I significantly improves 223Ra outcome and points toward combinatorial application in PCa tumors with high β1I expression.
Collapse
Affiliation(s)
- Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefano Casarin
- Center for Computational Surgery, Department of Surgery and Houston Methodist Academic Institute, Houston Methodist Research Institute, Houston, Texas
| | - Feng Wang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, Houston, Texas; and
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas; and
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Peter Friedl
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
- Cancer Genomics Centre, Utrecht, The Netherlands
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas M.D. Anderson Cancer Center, Houston, Texas;
| |
Collapse
|
5
|
Nada H, Elkamhawy A, Lee K. Structure Activity Relationship of Key Heterocyclic Anti-Angiogenic Leads of Promising Potential in the Fight against Cancer. Molecules 2021; 26:molecules26030553. [PMID: 33494492 PMCID: PMC7865909 DOI: 10.3390/molecules26030553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological angiogenesis is a hallmark of cancer; accordingly, a number of anticancer FDA-approved drugs act by inhibiting angiogenesis via different mechanisms. However, the development process of the most potent anti-angiogenics has met various hurdles including redundancy, multiplicity, and development of compensatory mechanisms by which blood vessels are remodeled. Moreover, identification of broad-spectrum anti-angiogenesis targets is proved to be required to enhance the efficacy of the anti-angiogenesis drugs. In this perspective, a proper understanding of the structure activity relationship (SAR) of the recent anti-angiogenics is required. Various anti-angiogenic classes have been developed over the years; among them, the heterocyclic organic compounds come to the fore as the most promising, with several drugs approved by the FDA. In this review, we discuss the structure–activity relationship of some promising potent heterocyclic anti-angiogenic leads. For each lead, a molecular modelling was also carried out in order to correlate its SAR and specificity to the active site. Furthermore, an in silico pharmacokinetics study for some representative leads was presented. Summarizing, new insights for further improvement for each lead have been reviewed.
Collapse
Affiliation(s)
- Hossam Nada
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| |
Collapse
|
6
|
Integrin alpha V (ITGAV) expression in esophageal adenocarcinoma is associated with shortened overall-survival. Sci Rep 2020; 10:18411. [PMID: 33110104 PMCID: PMC7591891 DOI: 10.1038/s41598-020-75085-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Valid biomarkers for a better prognostic prediction of the clinical course in esophageal adenocarcinoma (EAC) are still not implemented. Integrin alpha V (ITGAV), a transmembrane glycoprotein responsible for cell-to-matrix binding has been found to enhance tumor progression in several tumor entities. The expression pattern and biological role of ITGAV expression in esophageal adenocarcinoma (EAC) has not been analyzed so far. Aim of the study is to evaluate the expression level of ITGAV in a very large collective of EAC and its impact on individual patients´ prognosis. 585 patients with esophageal adenocarcinoma were analyzed immunohistochemically for ITGAV. The data was correlated with clinical, pathological and molecular data (TP53, HER2/neu, c-myc, GATA6, PIK3CA and KRAS). A total of 85 patients (14.3%) out of 585 analyzable tumors showed an ITGAV expression and intratumoral heterogeneity was low. ITGAV expression was correlated with a shortened overall-survival in the patients´ group that underwent primary surgery (p = 0.014) but not in the group of patients that received neoadjuvant treatment before surgery. No correlation between any of the analyzed molecular marker (mutations or amplifications) (TP53, HER2, c-myc, GATA6, PIK3CA and KRAS) and ITGAV expression could be observed. A multivariate cox-regression model was performed which showed tumor stage, lymph node metastasis and ITGAV expression as independent prognostic markers for overall-survival in the group of patients without neoadjuvant treatment. ITGAV expression is correlated with an impaired patient outcome in the group of patients without neoadjuvant therapy and serves as a prognostic factor in EAC.
Collapse
|
7
|
Huang YL, Liang CY, Ritz D, Coelho R, Septiadi D, Estermann M, Cumin C, Rimmer N, Schötzau A, Núñez López M, Fedier A, Konantz M, Vlajnic T, Calabrese D, Lengerke C, David L, Rothen-Rutishauser B, Jacob F, Heinzelmann-Schwarz V. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. eLife 2020; 9:59442. [PMID: 33026975 PMCID: PMC7541088 DOI: 10.7554/elife.59442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
Collapse
Affiliation(s)
- Yen-Lin Huang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ching-Yeu Liang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics core facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Ricardo Coelho
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Manuela Estermann
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Cécile Cumin
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Natalie Rimmer
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Schötzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Konantz
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Diego Calabrese
- Histology Core Facility, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Internal Medicine, Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Leonor David
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Gynecological Cancer Center, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Wongin S, Narkbunnam R, Waikakul S, Chotiyarnwong P, Aresanasuwan T, Roytrakul S, Viravaidya-Pasuwat K. Construction and Evaluation of Osteochondral-Like Tissue Using Chondrocyte Sheet and Cancellous Bone. Tissue Eng Part A 2020; 27:282-295. [PMID: 32718279 DOI: 10.1089/ten.tea.2020.0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The manipulation of human chondrocyte sheets in target areas frequently results in their tearing because they are thin and fragile. In this study, human cancellous bones were used as a supporting material to create chondrocyte sheet-cancellous bone tissues, and their properties were evaluated. Using cell sheet technology, human chondrocytes were constructed into triple-layered chondrocyte sheets that displayed chondrogenic properties. After transferring the chondrocyte sheets onto cancellous bones, the top area of the chondrocyte sheet-cancellous bone tissues exhibited a smooth surface topography without cell sheet floating within 7 days of culture. The immunofluorescence staining of collagen type II (COL2A1) and fibronectin (FN1) was also performed and examined. Using the shotgun proteomic analysis, the proteins associated with cell adhesion, extracellular matrix (ECM) organization, cell-substrate junction assembly, and cell adhesion mediated by integrin were observed in the chondrocyte sheets, cancellous bones, and chondrocyte sheet-cancellous bone tissues. Three integrin members, including integrin β4 (ITGB4), ITGB6, and ITGB8, were found in the chondrocyte sheets. Only ITGB8 was found in the chondrocyte sheets and chondrocyte sheet-cancellous bone tissues. During 48 h, the mean velocity of the individual cell migration was low, which did not affect the structure and chondrogenic properties of the chondrocyte sheets. Staining of the filamentous actin (F-actin) cytoskeleton in the migratory cells also provided a better understanding of the dynamic communication between the cell cytoskeleton and adhesion molecules through ITGB8, which may play a key role in the attachment of the chondrocyte sheets and the synthesis of the cartilage ECM. Therefore, we suggest that cancellous bone could be used as a supporting material to construct chondrocyte sheet-cancellous bone tissues for potential treatment of osteochondral lesions. Impact Statement We proposed a method to construct an osteochondral-like tissue by placing human chondrocyte sheets onto cancellous bone. The stationary chondrocyte sheets and the low mean velocity of the individual cell migration on the cancellous bone with the expression of COL2A1 indicated that the cancellous bone served as an appropriate supporting material. Moreover, the cellular mechanism for the adhesion of the chondrocyte sheets on the cancellous bone based on ITGB8-mediated adhesion through the rearrangement of filamentous actin provided a better understanding to improve the construction of osteochondral-like tissues, and to predict the repair mechanism in osteoarthritis therapy.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Rapeepat Narkbunnam
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saranatra Waikakul
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyawan Aresanasuwan
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
9
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
10
|
Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RYJ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers (Basel) 2020; 12:cancers12010238. [PMID: 31963677 PMCID: PMC7017214 DOI: 10.3390/cancers12010238] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal proteins, which consist of different sub-families of proteins including microtubules, actin and intermediate filaments, are essential for survival and cellular processes in both normal as well as cancer cells. However, in cancer cells, these mechanisms can be altered to promote tumour development and progression, whereby the functions of cytoskeletal proteins are co-opted to facilitate increased migrative and invasive capabilities, proliferation, as well as resistance to cellular and environmental stresses. Herein, we discuss the cytoskeletal responses to important intracellular stresses (such as mitochondrial, endoplasmic reticulum and oxidative stresses), and delineate the consequences of these responses, including effects on oncogenic signalling. In addition, we elaborate how the cytoskeleton and its associated molecules present themselves as therapeutic targets. The potential and limitations of targeting new classes of cytoskeletal proteins are also explored, in the context of developing novel strategies that impact cancer progression.
Collapse
Affiliation(s)
- Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- School of Medicine, College of Medicine, National Taiwan University, No. 1 Ren Ai Road Sec. 1, Taipei City 10617, Taiwan
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| |
Collapse
|
11
|
Haeger A, Alexander S, Vullings M, Kaiser FM, Veelken C, Flucke U, Koehl GE, Hirschberg M, Flentje M, Hoffman RM, Geissler EK, Kissler S, Friedl P. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med 2020; 217:e20181184. [PMID: 31658985 PMCID: PMC7037234 DOI: 10.1084/jem.20181184] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer fatalities result from metastatic dissemination and therapy resistance, both processes that depend on signals from the tumor microenvironment. To identify how invasion and resistance programs cooperate, we used intravital microscopy of orthotopic sarcoma and melanoma xenografts. We demonstrate that these tumors invade collectively and that, specifically, cells within the invasion zone acquire increased resistance to radiotherapy, rapidly normalize DNA damage, and preferentially survive. Using a candidate-based approach to identify effectors of invasion-associated resistance, we targeted β1 and αVβ3/β5 integrins, essential extracellular matrix receptors in mesenchymal tumors, which mediate cancer progression and resistance. Combining radiotherapy with β1 or αV integrin monotargeting in invading tumors led to relapse and metastasis in 40-60% of the cohort, in line with recently failed clinical trials individually targeting integrins. However, when combined, anti-β1/αV integrin dual targeting achieved relapse-free radiosensitization and prevented metastatic escape. Collectively, invading cancer cells thus withstand radiotherapy and DNA damage by β1/αVβ3/β5 integrin cross-talk, but efficient radiosensitization can be achieved by multiple integrin targeting.
Collapse
Affiliation(s)
- Anna Haeger
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Stephanie Alexander
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| | - Manon Vullings
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Fabian M.P. Kaiser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | - Uta Flucke
- Department of Pathology, Radboudumc, Nijmegen, Netherlands
| | - Gudrun E. Koehl
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Markus Hirschberg
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Germany
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Edward K. Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Stephan Kissler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Hurwitz SN, Meckes DG. Extracellular Vesicle Integrins Distinguish Unique Cancers. Proteomes 2019; 7:proteomes7020014. [PMID: 30979041 PMCID: PMC6630702 DOI: 10.3390/proteomes7020014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
The proteomic profile of extracellular vesicles (EVs) has been of increasing interest, particularly in understanding cancer growth, drug resistance, and metastatic behavior. Emerging data suggest that cancer-derived EVs carry an array of oncogenic cargo, including certain integrin proteins that may, in turn, promote cell detachment, migration, and selection of future metastatic sites. We previously reported a large comparison of secreted vesicle protein cargo across sixty diverse human cancer cell lines. Here, we analyze the distinct integrin profiles of these cancer EVs. We further demonstrate the enrichment of integrin receptors in cancer EVs compared to vesicles secreted from benign epithelial cells. The total EV integrin levels, including the quantity of integrins α6, αv, and β1 correlate with tumor stage across a variety of epithelial cancer cells. In particular, integrin α6 also largely reflects breast and ovarian progenitor cell expression, highlighting the utility of this integrin protein as a potential circulating biomarker of certain primary tumors. This study provides preliminary evidence of the value of vesicle-associated integrin proteins in detecting the presence of cancer cells and prediction of tumor stage. Differential expression of integrins across cancer cells and selective packaging of integrins into EVs may contribute to further understanding the development and progression of tumor growth and metastasis across a variety of cancer types.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
13
|
Manigandan A, Handi V, Sundaramoorthy NS, Dhandapani R, Radhakrishnan J, Sethuraman S, Subramanian A. Responsive Nanomicellar Theranostic Cages for Metastatic Breast Cancer. Bioconjug Chem 2018; 29:275-286. [DOI: 10.1021/acs.bioconjchem.7b00577] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amrutha Manigandan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Vandhana Handi
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Niranjana Sri Sundaramoorthy
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Ramya Dhandapani
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Janani Radhakrishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
14
|
Hosseini E, Hosseini SY, Hashempour T, Fattahi MR, Sadeghizadeh M. Effect of RGD coupled MDA-7/IL-24 on apoptosis induction in a hepatocellular carcinoma cell line. Mol Med Rep 2016; 15:495-501. [DOI: 10.3892/mmr.2016.6009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
|
15
|
Mammadova-Bach E, Zigrino P, Brucker C, Bourdon C, Freund M, De Arcangelis A, Abrams SI, Orend G, Gachet C, Mangin PH. Platelet integrin α6 β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight 2016; 1:e88245. [PMID: 27699237 DOI: 10.1172/jci.insight.88245] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metastatic dissemination of cancer cells, which accounts for 90% of cancer mortality, is the ultimate hallmark of malignancy. Growing evidence suggests that blood platelets have a predominant role in tumor metastasis; however, the molecular mechanisms involved remain elusive. Here, we demonstrate that genetic deficiency of integrin α6β1 on platelets markedly decreases experimental and spontaneous lung metastasis. In vitro and in vivo assays reveal that human and mouse platelet α6β1 supports platelet adhesion to various types of cancer cells. Using a knockdown approach, we identified ADAM9 as the major counter receptor of α6β1 on both human and mouse tumor cells. Static and flow-based adhesion assays of platelets binding to DC-9, a recombinant protein covering the disintegrin-cysteine domain of ADAM9, demonstrated that this receptor directly binds to platelet α6β1. In vivo studies showed that the interplay between platelet α6β1 and tumor cell-expressed ADAM9 promotes efficient lung metastasis. The integrin α6β1-dependent platelet-tumor cell interaction induces platelet activation and favors the extravasation process of tumor cells. Finally, we demonstrate that a pharmacological approach targeting α6β1 efficiently impairs tumor metastasis through a platelet-dependent mechanism. Our study reveals a mechanism by which platelets promote tumor metastasis and suggests that integrin α6β1 represents a promising target for antimetastatic therapies.
Collapse
Affiliation(s)
- Elmina Mammadova-Bach
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Paola Zigrino
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - Camille Brucker
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Catherine Bourdon
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Monique Freund
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Adèle De Arcangelis
- U964, INSERM, UMR 7104, CNRS, Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, Strasbourg, France
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Gertaud Orend
- INSERM U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, LabEx Medalis, Strasbourg, France
| | - Christian Gachet
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Pierre Henri Mangin
- UMR-S949, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, Strasbourg, France. Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
CD51 correlates with the TGF-beta pathway and is a functional marker for colorectal cancer stem cells. Oncogene 2016; 36:1351-1363. [PMID: 27593923 DOI: 10.1038/onc.2016.299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the top three most prevalent and deadly cancers. A cancer stem cell (CSC) sub-population that is characterized by the abilities of tumor initiation, self-renewal, metastasis and resistance to chemotherapy can suggest new therapeutic targets. However, no such sub-population has been conclusively identified for CRC, and we lack any marker to identify cells with all of the above characteristics. Here, we report that CD51+ CRC cells displayed greater sphere-forming and tumorigenic capacities, increased migratory and invasive potentials, and enhanced chemoresistance compared with CD51- CRC cells. CD51 knockdown reduced the side population, sphere formation, cell motility and inhibited tumor incidence and metastasis in an in vivo tumor model. Furthermore, CD51 could bind transforming growth factor beta (TGF-β) receptors, and that it upregulated TGF-β/Smad signaling. These results indicate that CD51 is a novel functional marker for colorectal CSCs which may provide an therapeutic target for the efficient elimination of colorectal CSCs.
Collapse
|
17
|
Hausner SH, Bauer N, Hu LY, Knight LM, Sutcliffe JL. The Effect of Bi-Terminal PEGylation of an Integrin αvβ₆-Targeted ¹⁸F Peptide on Pharmacokinetics and Tumor Uptake. J Nucl Med 2015; 56:784-90. [PMID: 25814519 DOI: 10.2967/jnumed.114.150680] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/13/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Radiotracers based on the peptide A20FMDV2 selectively target the cell surface receptor integrin αvβ6. This integrin has been identified as a prognostic indicator correlating with the severity of disease for several challenging malignancies. In previous studies of A20FMDV2 peptides labeled with 4-(18)F-fluorobenzoic acid ((18)F-FBA), we have shown that the introduction of poly(ethylene glycol) (PEG) improves pharmacokinetics, including increased uptake in αvβ6-expressing tumors. The present study evaluated the effect of site-specific C-terminal or dual (N- and C-terminal) PEGylation, yielding (18)F-FBA-A20FMDV2-PEG28 (4) and (18)F-FBA-PEG28-A20FMDV2-PEG28 (5), on αvβ6-targeted tumor uptake and pharmacokinetics. The results are compared with (18)F-FBA -labeled A20FMDV2 radiotracers (1- 3) bearing either no PEG or different PEG units at the N terminus. METHODS The radiotracers were prepared and radiolabeled on solid phase. Using 3 cell lines, DX3puroβ6 (αvβ6+), DX3puro (αvβ6-), and BxPC-3 (αvβ6+), we evaluated the radiotracers in vitro (serum stability; cell binding and internalization) and in vivo in mouse models bearing paired DX3puroβ6-DX3puro and, for 5, BxPC-3 xenografts. RESULTS The size and location of the PEG units significantly affected αvβ6 targeting and pharmacokinetics. Although the C-terminally PEGylated 4 showed some improvements over the un-PEGylated (18)F-FBA-A20FMDV2 (1), it was the bi-terminally PEGylated 5 that displayed the more favorable combination of high αvβ6 affinity, selectivity, and pharmacokinetic profile. In vitro, 5 bound to αvβ6-expressing DX3puroβ6 and BxPC-3 cells with 60.5% ± 3.3% and 48.8% ± 8.3%, respectively, with a significant fraction of internalization (37.2% ± 4.0% and 37.6% ± 4.1% of total radioactivity, respectively). By comparison, in the DX3puro control 5: showed only 3.0% ± 0.5% binding and 0.9% ± 0.2% internalization. In vivo, 5: maintained high, αvβ6-directed binding in the paired DX3puroβ6-DX3puro model (1 h: DX3puroβ6, 2.3 ± 0.2 percentage injected dose per gram [%ID/g]; DX3puroβ6/DX3puro ratio, 6.5:1; 4 h: 10.7:1). In the pancreatic BxPC-3 model, uptake was 4.7 ± 0.9 %ID/g (1 h) despite small tumor sizes (20-80 mg). CONCLUSION The bi-PEGylated radiotracer 5 showed a greatly improved pharmacokinetic profile, beyond what was predicted from individual N- or C-terminal PEGylation. It appears that the 2 PEG units acted synergistically to result in an improved metabolic profile including high αvβ6+ tumor uptake and retention.
Collapse
Affiliation(s)
- Sven H Hausner
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Nadine Bauer
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Lina Y Hu
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Leah M Knight
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Julie L Sutcliffe
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| |
Collapse
|
18
|
Ha SY, Shin J, Kim JH, Kang MS, Yoo HY, Kim HH, Um SH, Kim SH. Overexpression of integrin αv correlates with poor prognosis in colorectal cancer. J Clin Pathol 2014; 67:576-81. [PMID: 24695839 DOI: 10.1136/jclinpath-2013-202163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS Integrin αv subunits are involved in tumour angiogenesis and tumour progression in various types of cancers. Clinical trials evaluating agents targeting integrin αv are ongoing. Integrin αv expression has been reported in several cancers in association with tumour progression or poor survival. However, no study has addressed the prognostic influence of integrin αv expression on survival of patients with colorectal cancer (CRC). METHODS Immunohistochemical staining of integrin αv was performed in 198 CRC samples to evaluate its prognostic significance. RESULTS High expression of integrin αv was observed in 58.1% (115/189) of colorectal adenocarcinoma samples, while only in 11.5% (3/26) of tubular adenoma samples and in none of normal mucosa or hyperplastic polyp samples. It was more frequently found in female patients and less frequently observed in well differentiated tumours. The proportion of cases with high expression of integrin αv showed an increasing trend with increased T stage (p=0.032), N stage (p=0.006) and TNM stage (p=0.001). Patients displaying exuberant expression of integrin αv showed shorter overall survival (p=0.001) and disease-free survival (p=0.004). Elevated integrin αv expression was an independent prognostic factor for overall survival (HR: 2.04, 95% CI 1.16 to 3.56; p=0.013) and disease-free survival (HR: 2.19, 95% CI 1.16 to 4.13; p=0.015). CONCLUSIONS Overexpression of integrin αv is associated with advanced T and N stage and as an independent prognostic factor in CRC.
Collapse
Affiliation(s)
- Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Juyoun Shin
- Division of Cancer Biology, Comparative Biomedicine Research Branch, Research Institute of National Cancer Center, Goyang, Korea
| | - Jeong Hoon Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea Department of Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung Soo Kang
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea Department of Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae-Yong Yoo
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea Department of Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyeon-Ho Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea Department of Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Hee Um
- Department of Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea Department of Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Stampolidis P, Ullrich A, Iacobelli S. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, promotes oncogenic cellular events impeded by antibody intervention. Oncogene 2013; 34:39-52. [PMID: 24362527 DOI: 10.1038/onc.2013.548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 10/21/2013] [Accepted: 11/15/2013] [Indexed: 02/08/2023]
|
20
|
Kwon J, Lee TS, Lee HW, Kang MC, Yoon HJ, Kim JH, Park JH. Integrin alpha 6: a novel therapeutic target in esophageal squamous cell carcinoma. Int J Oncol 2013; 43:1523-30. [PMID: 24042193 DOI: 10.3892/ijo.2013.2097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/16/2013] [Indexed: 11/06/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), the most common subtype of esophageal cancer in East Asian countries, is a devastating disease characterized by distinctly high incidence and mortality rates. Our previous expression profile analysis showed that integrin alpha 6 (ITGA6) is highly expressed in ESCC tissues. To validate cell surface expression of ITGA6 as a novel target in ESCC, we investigated ITGA6 expression in tumor tissue samples and cell lines of ESCC and found that ITGA6 was upregulated in these cells. In vitro knockdown of ITGA6 in ESCC cells resulted in inhibition of cell proliferation, invasion and colony formation. In addition, we demonstrated that ITGA6 associates with integrin beta 4 (ITGB4), and that this heterodimer complex is upregulated in both ESCC tissues and cell lines. Moreover, our biodistribution results in an ESCC xenograft model indicated that ITGA6 is a possible target for antibody-related diagnostic and therapeutic modalities in ESCC. Thus, our findings suggest that ITGA6 plays an important role in tumorigenesis in ESCC and represents a potential therapeutic target in the treatment of ESCC.
Collapse
Affiliation(s)
- Junhye Kwon
- Department of Translational Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu WS, Dang YY, Chen XP, Lu JJ, Wang YT. Furanodiene presents synergistic anti-proliferative activity with paclitaxel via altering cell cycle and integrin signaling in 95-D lung cancer cells. Phytother Res 2013; 28:296-9. [PMID: 23554049 DOI: 10.1002/ptr.4984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 11/09/2022]
Abstract
Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma Curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Recently, we found that the combined treatment of FUR with paclitaxel (TAX) showed synergetic anti-proliferative activities in 95-D lung cancer cells. Herein, we showed that FUR reduced the cell numbers distributed in mitosis phase induced by TAX while increased those in G1 phase. The protein levels of cyclin D1, cyclin B1, CDK6 and c-Myc were all down-regulated in the group of combined treatment. The dramatically down-regulated expression of integrin β4, focal adhesion kinase and paxillin might partially contribute to the synergic effect. Though FUR alone obviously induced endoplasmic reticulum stress, this signaling pathway may not contribute to the synergetic anti-proliferative effect as the protein expression of CHOP and BIP was similar in FUR alone and combined treatment group.
Collapse
Affiliation(s)
- Wen-Shan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | |
Collapse
|
22
|
Revealing non-genetic adhesive variations in clonal populations by comparative single-cell force spectroscopy. Exp Cell Res 2012; 318:2155-67. [DOI: 10.1016/j.yexcr.2012.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 01/02/2023]
|
23
|
Branch KM, Hoshino D, Weaver AM. Adhesion rings surround invadopodia and promote maturation. Biol Open 2012; 1:711-22. [PMID: 23213464 PMCID: PMC3507228 DOI: 10.1242/bio.20121867] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/21/2012] [Indexed: 12/19/2022] Open
Abstract
Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM). At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD) of integrin-linked kinase (ILK) reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes.
Collapse
Affiliation(s)
- Kevin M Branch
- Department of Cancer Biology, Vanderbilt University School of Medicine , Nashville, TN 37232 , USA
| | | | | |
Collapse
|
24
|
Zhu J, Choi WS, McCoy JG, Negri A, Zhu J, Naini S, Li J, Shen M, Huang W, Bougie D, Rasmussen M, Aster R, Thomas CJ, Filizola M, Springer TA, Coller BS. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg²⁺ binding to the MIDAS. Sci Transl Med 2012; 4:125ra32. [PMID: 22422993 PMCID: PMC3390238 DOI: 10.1126/scitranslmed.3003576] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An integrin found on platelets, α(IIb)β(3) mediates platelet aggregation, and α(IIb)β(3) antagonists are effective antithrombotic agents in the clinic. Ligands bind to integrins in part by coordinating a magnesium ion (Mg(2+)) located in the β subunit metal ion-dependent adhesion site (MIDAS). Drugs patterned on the integrin ligand sequence Arg-Gly-Asp have a basic moiety that binds the α(IIb) subunit and a carboxyl group that coordinates the MIDAS Mg(2+) in the β(3) subunits. They induce conformational changes in the β(3) subunit that may have negative consequences such as exposing previously hidden epitopes and inducing the active conformation of the receptor. We recently reported an inhibitor of α(IIb)β(3) (RUC-1) that binds exclusively to the α(IIb) subunit; here, we report the structure-based design and synthesis of RUC-2, a RUC-1 derivative with a ~100-fold higher affinity. RUC-2 does not induce major conformational changes in β(3) as judged by monoclonal antibody binding, light scattering, gel chromatography, electron microscopy, and a receptor priming assay. X-ray crystallography of the RUC-2-α(IIb)β(3) headpiece complex in 1 mM calcium ion (Ca(2+))/5 mM Mg(2+) at 2.6 Å revealed that RUC-2 binds to α(IIb) the way RUC-1 does, but in addition, it binds to the β(3) MIDAS residue glutamic acid 220, thus displacing Mg(2+) from the MIDAS. When the Mg(2+) concentration was increased to 20 mM, however, Mg(2+) was identified in the MIDAS and RUC-2 was absent. RUC-2's ability to inhibit ligand binding and platelet aggregation was diminished by increasing the Mg(2+) concentration. Thus, RUC-2 inhibits ligand binding by a mechanism different from that of all other α(IIb)β(3) antagonists and may offer advantages as a therapeutic agent.
Collapse
Affiliation(s)
- Jieqing Zhu
- Immune Disease Institute, Children’s Hospital Boston, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53201, USA
| | - Won-Seok Choi
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY 10065, USA
| | - Joshua G. McCoy
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Negri
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jianghai Zhu
- Immune Disease Institute, Children’s Hospital Boston, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarasija Naini
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY 10065, USA
| | - Jihong Li
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY 10065, USA
| | - Min Shen
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenwei Huang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Bougie
- BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53201, USA
| | - Mark Rasmussen
- BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53201, USA
| | - Richard Aster
- BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53201, USA
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marta Filizola
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Timothy A. Springer
- Immune Disease Institute, Children’s Hospital Boston, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Barry S. Coller
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
25
|
Warram JM, Sorace AG, Saini R, Umphrey HR, Zinn KR, Hoyt K. A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:921-31. [PMID: 21705725 PMCID: PMC3140433 DOI: 10.7863/jum.2011.30.7.921] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Actively targeting ultrasound contrast agents to tumor vasculature improves contrast-enhanced sonography of tumor angiogenesis. This report summarizes an evaluation of multitargeted microbubbles, comparing single-, dual-, and triple-targeted motifs. METHODS Microbubbles were avidin-biotin linked to antibodies against mouse α(V)β(3)-integrin, P-selectin, and vascular endothelial growth factor receptor 2. These receptors are constitutively overexpressed in tumor vasculature. Binding comparisons between targeted microbubble groups were evaluated on mouse SVR angiosarcoma endothelial cells. Levels of the targeted receptors were characterized with flow cytometry. Targeted microbubble groups were administered to human MDA-MB-231 breast cancer tumor-bearing mice (n = 3) followed by contrast-enhanced sonography in a microbubble-sensitive harmonic imaging mode implemented on an ultrasound scanner equipped with a linear array transducer (5 MHz transmit and 10 MHz receive) to evaluate differences in microbubble accumulation in the tumor vasculature. RESULTS In vitro analysis showed a 50% increase (P < .001) in triple-targeted microbubble binding over dual-targeted microbubble groups in mouse SVR cells. Mice bearing MDA-MB-231 tumors showed a 40% increase in tumor image intensity after dosing with triple-targeted microbubbles compared with single- and dual-targeted microbubbles (P = .006). Histologic staining confirmed the presence of α(V)β(3)-integrin, P-selectin, and vascular endothelial growth factor receptor 2 in the tumors. CONCLUSIONS Microbubble accumulation in the tumor vasculature was improved using a triple-targeted microbubble approach.
Collapse
Affiliation(s)
- Jason M Warram
- University of Alabama at Birmingham, G082 Volker Hall, 1670 University Blvd, Birmingham, AL 35294 USA
| | | | | | | | | | | |
Collapse
|
26
|
Three rearrangements of chromosome 5 in a patient with myelodysplastic syndrome: an atypical deletion 5q, a complex intrachromosomal rearrangement of chromosome 5, and a paracentric inversion of chromosome 5. ACTA ACUST UNITED AC 2010; 203:303-8. [DOI: 10.1016/j.cancergencyto.2010.07.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/12/2010] [Accepted: 07/18/2010] [Indexed: 11/13/2022]
|
27
|
Fang Z, Yao W, Xiong Y, Zhang J, Liu L, Li J, Zhang C, Wan J. Functional elucidation and methylation-mediated downregulation of ITGA5 gene in breast cancer cell line MDA-MB-468. J Cell Biochem 2010; 110:1130-41. [DOI: 10.1002/jcb.22626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|