1
|
Lin L, Gao Z, Peng Y, Li S, Chen L, Lin Y. The Relationship Between Poor Sleep and Memory Impairment Among Shift Nurses in China: A Cross-Sectional Study. Nat Sci Sleep 2024; 16:1653-1663. [PMID: 39440275 PMCID: PMC11495186 DOI: 10.2147/nss.s474113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Many shift nurses experience poor sleep quality, and the effect on nurses' cognitive function remains unclear. The study aims to investigate sleep status and explore its association with cognitive function. Methods This descriptive cross-sectional study was conducted in a tertiary care hospital in Fujian, China between March and September 2022. By convenience sampling method, 588 shift nurses participated in this study. The Pittsburgh Sleep Quality Index (PSQI) and Bergen Shift Work Sleep Questionnaire (BSWSQ) were used to assess sleep quality, while the Chinese version of Ascertain Dementia-8 (AD-8) was used to evaluate cognitive function. A PSQI score ≤7 is classified as good sleep quality, and a score >7 indicates poor sleep quality. An AD-8 score≥ 2 is considered indicative of memory impairment. Multivariate logistic regression analysis was conducted to explore the association between sleep status and memory impairment. Results A total of 310 (52.6%) participants presented poor sleep quality. Among them, 52.2% of participants had day shift-related sleep problems, 45.9% had evening shift-related sleep problems, 61.9% had night shift-related sleep problems, and 15.0% reported rest-day/vacation-related sleep problems. The prevalence of poor sleep quality and each shift-related sleep problem in the memory impairment group were higher than in the normal memory group (P<0.05). Multivariate logistic regression analysis indicated that poor sleep quality (OR=2.073, 95% CI: 1.398~3.072), evening shift-related sleep problems (OR=1.707, 95% CI: 1.028~2.835), night shift-related sleep problems (OR=1.859, 95% CI:1.104~3.129), and rest-day/vacation-related sleep problems (OR=2.069, 95% CI:1.170~3.659) was significantly associated with memory impairment. Conclusion This study highlights the prevalence of poor sleep quality among clinical nurses and identifies poor sleep quality and shift-related sleep problems (excluding day shift) as risk factors for memory impairment. Nurse managers should prioritize sleep quality and focus on cognitive function to enhance nurses' occupational health.
Collapse
Affiliation(s)
- Lingyu Lin
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Zhuling Gao
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Yanchun Peng
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Sailan Li
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
- Key Laboratory of Cardio-Thoracic Surgery(Fujian Medical University), Fujian Province University, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Yanjuan Lin
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| |
Collapse
|
2
|
Golmohammadi M, Attari VE, Salimi Y, Nachvak SM, Samadi M. The effect of MIND diet on sleep status, anxiety, depression, and cardiometabolic indices in obese diabetic women with insomnia: study protocol for a randomized controlled clinical trial {1}. Trials 2024; 25:660. [PMID: 39370509 PMCID: PMC11457347 DOI: 10.1186/s13063-024-08486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet is a plant-based and anti-inflammatory diet that has the ability to protect and manage cardiovascular and nervous system diseases. Regarding that insomnia and cardiovascular problems are x`common in type 2 diabetes mellitus (T2DM), the present study will assess the effectiveness of the MIND dietary pattern on sleep quality, cardiometabolic indicators, and other psychological indicators. METHODS Forty-four overweight/obese T2DM women with insomnia, aged 30-65 years, will voluntarily participate in this randomized controlled trial and will be randomized to receive either a MIND low-calorie diet (MLCD) or a low-calorie diet (LCD) over a 3-month period. Before and after the study, sleep quality, some biochemical and cardiometabolic indices, cortisol, brain-derived neurotrophic factor (BDNF), high-sensitivity C-reactive protein (hs-CRP), and oxidative stress indicators will be assessed. DISCUSSION The use of dietary interventions in the management of T2DM complications is practical and safe. This research seeks to investigate the capacity of the MIND diet in the management of insomnia and cardiovascular problems of DM. It is expected that the results of this research will provide new perspectives on using an ideal dietary regimen to treat these health conditions. TRIAL REGISTRATION IRCT20181111041611N8. Registered on August 7, 2023. https://www.irct.ir/trial/71772.
Collapse
Affiliation(s)
- Mona Golmohammadi
- Student Research Committee, Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahideh Ebrahimzadeh Attari
- Department of Biochemistry and Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Salimi
- Social Development & Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehnoosh Samadi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
4
|
Wang H, Zhao M, Zhen Wu Z, Qin N, Fu Y, Guo S. Nutrient composition and functional constituents of daylily from different producing areas based on widely targeted metabolomics. Food Chem X 2024; 21:101239. [PMID: 38420502 PMCID: PMC10900758 DOI: 10.1016/j.fochx.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
Daylily is a functional food with high nutritional value in China. Datong (DT) in Shanxi Province is one of the four main production areas of daylily. Therefore, Linfen (LF), Lvliang (LL), and Yangquan (YQ) in Shanxi Province have also introduced daylily from DT. However, geographical and climatic conditions and producing patterns cause variations in the daylily quality. In the present study, we found that the nutrient composition of daylilies from different producing areas of Shanxi Province varied. The key environmental factors affecting the nutrition of daylily in different regions were altitude and temperature. The widely targeted metabolomics results showed that 1642 metabolites were found in daylily. The differential metabolites between DT and YQ, LL and LF were 557, 667, and 359, respectively. Notably, 9 metabolic pathways and 59 metabolite markers were associated with daylily from different areas. This study provides a theoretical basis for the quality maintenance and health efficacy research of daylily.
Collapse
Affiliation(s)
- Haizhen Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Mengying Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Zhen Zhen Wu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Nannan Qin
- Department of Development Planning and Cooperation, Shanxi Agricultural University, Taiyuan, China
| | - Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Shang Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Javelle F, Schlagheck ML, Broos HC, Timpano KR, Joormann J, Zimmer P, Johnson SL. On the impulsivity path: Examining the unique and conjoint relations between emotion- and non-emotion-related impulsivity, internalizing symptoms, alcohol use, and physical health parameters. J Clin Psychol 2024; 80:339-354. [PMID: 37883120 PMCID: PMC11170548 DOI: 10.1002/jclp.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Researchers have increasingly differentiated trait-like tendencies toward impulsivity occurring during emotional states (emotion-related impulsivity [ERI]) from impulsivity not tied to emotion (non-ERI). Relative to non-ERI, ERI has shown robust correlations with psychopathology and mild to moderate associations with physical health parameters (e.g., physical activity, poor sleep quality, body mass index [BMI]). Therefore, we first aimed to investigate the unique contributions of ERI and non-ERI to psychopathology symptoms while controlling for neuroticism. Second, we sought to explore the combined associations of physical health parameters with several impulsivity forms. METHODS German-speaking adults (N = 350, 35.9 ± 14.6 years, 69.1% female, BMI: 24.0 ± 4.8 kg/m2 , mostly students or employees) completed measures of impulsivity, psychopathology symptoms, neuroticism, and physical health. We gathered measures of two ERI forms: Feelings Trigger Action and Pervasive Influence of Feelings. As a control comparison, we gathered a measure of non-ERI, the Lack of Follow-Through scale. We conducted separate path models for Aims 1 and 2. RESULTS For Aim 1, Pervasive Influence of Feelings showed strong links with internalizing symptoms. Feelings Trigger Action and Lack of Follow-Through showed small links with alcohol use. For Aim 2, poor sleep quality was related to all three impulsivity factors, while physical activity was only related to Pervasive Influence of Feelings and Lack of Follow-Through. BMI showed a curvilinear association with impulsivity. CONCLUSIONS ERI is more directly relevant than non-ERI for psychopathology symptoms, emphasizing the need to differentiate between the two ERI types. The association of ERI and non-ERI with physical activity and poor sleep quality may serve as potential treatment targets for impulsivity-related problems.
Collapse
Affiliation(s)
- Florian Javelle
- NeuroPsychoImmunology Research Unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Marit L. Schlagheck
- Division of Performance and Health, Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - Hannah C. Broos
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Kiara R. Timpano
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Philipp Zimmer
- Division of Performance and Health, Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - Sheri L. Johnson
- Department of Psychology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
6
|
Akhlaghi M, Kohanmoo A. Sleep deprivation in development of obesity, effects on appetite regulation, energy metabolism, and dietary choices. Nutr Res Rev 2023:1-21. [PMID: 37905402 DOI: 10.1017/s0954422423000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Sleep deprivation, which is a decrease in duration and quality of sleep, is a common problem in today's life. Epidemiological and interventional investigations have suggested a link between sleep deprivation and overweight/obesity. Sleep deprivation affects homeostatic and non-homoeostatic regulation of appetite, with the food reward system playing a dominant role. Factors such as sex and weight status affect this regulation; men and individuals with excess weight seem to be more sensitive to reward-driven and hedonistic regulation of food intake. Sleep deprivation may also affect weight through affecting physical activity and energy expenditure. In addition, sleep deprivation influences food selection and eating behaviours, which are mainly managed by the food reward system. Sleep-deprived individuals mostly crave for palatable energy-dense foods and have low desire for fruit and vegetables. Consumption of meals may not change but energy intake from snacks increases. The individuals have more desire for snacks with high sugar and saturated fat content. The relationship between sleep and the diet is mutual, implying that diet and eating behaviours also affect sleep duration and quality. Consuming healthy diets containing fruit and vegetables and food sources of protein and unsaturated fats and low quantities of saturated fat and sugar may be used as a diet strategy to improve sleep. Since the effects of sleep deficiency differ between animals and humans, only evidence from human subject studies has been included, controversies are discussed and the need for future investigations is highlighted.
Collapse
Affiliation(s)
- Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Aghelan Z, Karima S, Abtahi SH, Khazaie H, Salimi Y, Khodarahmi R. The imbalance of circulating pro-inflammatory cytokines interleukin-12 and interferon gamma and anti-inflammatory cytokine interleukin-1ra in chronic insomnia disorder. Sleep Med 2023; 112:194-196. [PMID: 39492247 DOI: 10.1016/j.sleep.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
A growing body of literature suggests that cytokines can play an important role in chronic insomnia disorder (CID); however, the underlying mechanisms are still unknown. Here we show that serum levels of pro-inflammatory mediators including IL-12, IFN-γ and ICAM-1 are elevated in CID group when compared with healthy controls, and that the REM sleep duration diminishes with increased concentrations of IL-12 and IFN-γ in individuals with CID. Furthermore, we find that lowered serum concentration of IL-1ra is negatively correlated with severity of insomnia in CID group. These data add to the evidence that the imbalance of circulating pro-inflammatory mediators IL-12, IFN-γ, and ICAM-1 and anti-inflammatory cytokine IL-1ra is important in CID pathogenesis.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Behehshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Hosein Abtahi
- Department of Laboratory Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Salimi
- Department of Epidemiology, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
De la Fuente Muñoz M, Román-Carmena M, Amor S, García-Villalón ÁL, Espinel AE, González-Hedström D, Granado García M. Effects of Supplementation with the Standardized Extract of Saffron (affron ®) on the Kynurenine Pathway and Melatonin Synthesis in Rats. Antioxidants (Basel) 2023; 12:1619. [PMID: 37627614 PMCID: PMC10451224 DOI: 10.3390/antiox12081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Melatonin is a hormone that regulates sleep-wake cycles and is mainly synthesized in the pineal gland from tryptophan after its conversion into serotonin. Under normal conditions, less than 5% of tryptophan is reserved for the synthesis of serotonin and melatonin. The remaining 95% is metabolized in the liver through the kynurenine pathway. Increased levels of proinflammatory cytokines and cortisol increase the metabolism of tryptophan through the kynurenine pathway and reduce its availability for the synthesis of melatonin and serotonin, which may cause alterations in mood and sleep. The standardized saffron extract (affron®) has shown beneficial effects on mood and sleep disorders in humans, but the underlying mechanisms are not well understood. Thus, the aim of this work was to study the effects of affron® supplementation on the kynurenine pathway and the synthesis of melatonin in rats. For this purpose, adult male Wistar rats were supplemented for 7 days with 150 mg/kg of affron® or vehicle (2 mL/kg water) administered by gavage one hour before sleep. Affron® supplementation reduced body weight gain and increased the circulating levels of melatonin, testosterone, and c-HDL. Moreover, animals supplemented with affron® showed decreased serum levels of kynurenine, ET-1, and c-LDL. In the pineal gland, affron® reduced Il-6 expression and increased the expression of Aanat, the key enzyme for melatonin synthesis. In the liver, affron® administration decreased the mRNA levels of the enzymes of the kynurenine pathway Ido-2, Tod-2, and Aadat, as well as the gene expression of Il-1β and Tnf-α. Finally, rats treated with affron® showed increased mRNA levels of the antioxidant enzymes Ho-1, Sod-1, Gsr, and Gpx-3, both in the liver and in the pineal gland. In conclusion, affron® supplementation reduces kynurenine levels and promotes melatonin synthesis in rats, possibly through its antioxidant and anti-inflammatory effects, making this extract a possible alternative for the treatment and/or prevention of mood and sleep disorders.
Collapse
Affiliation(s)
- Mario De la Fuente Muñoz
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.D.l.F.M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Marta Román-Carmena
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.D.l.F.M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.D.l.F.M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Ángel Luís García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.D.l.F.M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Alberto E. Espinel
- Pharmactive Biotech Products S.L.U., Parque Científico de Madrid, Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Spain; (A.E.E.); (D.G.-H.)
| | - Daniel González-Hedström
- Pharmactive Biotech Products S.L.U., Parque Científico de Madrid, Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Spain; (A.E.E.); (D.G.-H.)
| | - Miriam Granado García
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.D.l.F.M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Schmidt MA, Jones JA, Mason CE. Optimizing human performance in extreme environments through precision medicine: From spaceflight to high-performance operations on Earth. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e27. [PMID: 38550927 PMCID: PMC10953751 DOI: 10.1017/pcm.2023.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 04/12/2024]
Abstract
Humans operating in extreme environments often conduct their operations at the edges of the limits of human performance. Sometimes, they are required to push these limits to previously unattained levels. As a result, their margins for error in execution are much smaller than that found in the general public. These same small margins for error that impact execution may also impact risk, safety, health, and even survival. Thus, humans operating in extreme environments have a need for greater refinement in their preparation, training, fitness, and medical care. Precision medicine (PM) is uniquely suited to address the needs of those engaged in these extreme operations because of its depth of molecular analysis, derived precision countermeasures, and ability to match each individual (and his or her specific molecular phenotype) with any given operating context (environment). Herein, we present an overview of a systems approach to PM in extreme environments, which affords clinicians one method to contextualize the inputs, processes, and outputs that can form the basis of a formal practice. For the sake of brevity, this overview is focused on molecular dynamics, while providing only a brief introduction to the also important physiologic and behavioral phenotypes in PM. Moreover, rather than a full review, it highlights important concepts, while using only selected citations to illustrate those concepts. It further explores, by demonstration, the basic principles of using functionally characterized molecular networks to guide the practical application of PM in extreme environments. At its core, PM in extreme environments is about attention to incremental gains and losses in molecular network efficiency that can scale to produce notable changes in health and performance. The aim of this overview is to provide a conceptual overview of one approach to PM in extreme environments, coupled with a selected suite of practical considerations for molecular profiling and countermeasures.
Collapse
Affiliation(s)
- Michael A. Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Jeffrey A. Jones
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
11
|
Ye M, Lee S, Yu HJ, Kim KR, Park HJ, Kang IC, Kang SA, Chung YS, Shim I. Sedative-Hypnotic Effects of Glycine max Merr. Extract and Its Active Ingredient Genistein on Electric-Shock-Induced Sleep Disturbances in Rats. Int J Mol Sci 2023; 24:ijms24087043. [PMID: 37108207 PMCID: PMC10138376 DOI: 10.3390/ijms24087043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Glycine max Merr. (GM) is a functional food that provides many beneficial phytochemicals. However, scientific evidence of its antidepressive and sedative activities is scarce. The present study was designed to investigate the antidepressive and calmative effects of GM and its biologically active compound, genistein (GE), using electroencephalography (EEG) analysis in an electric foot shock (EFS)-stressed rat. The underlying neural mechanisms of their beneficial effects were determined by assessing corticotropin-releasing factor (CRF), serotonin (5-HT), and c-Fos immunoreactivity in the brain using immunohistochemical methods. In addition, the 5-HT2C receptor binding assay was performed because it is considered a major target of antidepressants and sleep aids. In the binding assay, GM displayed binding affinity to the 5-HT2C receptor (IC50 value of 14.25 ± 11.02 µg/mL). GE exhibited concentration-dependent binding affinity, resulting in the binding of GE to the 5-HT2C receptor (IC50, 77.28 ± 26.57 mg/mL). Administration of GM (400 mg/kg) increased non-rapid eye movement (NREM) sleep time. Administration of GE (30 mg/kg) decreased wake time and increased rapid eye movement (REM) and NREM sleep in EPS-stressed rats. In addition, treatment with GM and GE significantly decreased c-Fos and CRF expression in the paraventricular nucleus (PVN) and increased 5-HT levels in the dorsal raphe in the brain. Overall, these results suggest that GM and GE have antidepressant-like effects and are effective in sleep maintenance. These results will benefit researchers in developing alternatives to decrease depression and prevent sleep disorders.
Collapse
Affiliation(s)
- Minsook Ye
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - SunYoung Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo Jeong Yu
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyu-Ri Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Jung Park
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwanggyosan-ro, Youngtong-gu, Suwon 17104, Republic of Korea
| | - In-Cheol Kang
- BioChip Research Center, Department of Biological Science, College of Biological Science, Hoseo University, Asan 31499, Republic of Korea
- Innopharma screen Inc., Incheon 21988, Republic of Korea
| | - Soon Ah Kang
- Department of Conversing Technology, Graduate School of Venture, Hoseo University, Seoul 06724, Republic of Korea
| | - Young-Shin Chung
- Department of Biotechnology and The Research Institute for Basic Sciences, Hoseo University, Asan 31499, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Suárez-Torres I, García-García F, Morales-Romero J, Melgarejo-Gutiérrez M, Demeneghi-Marini VP, Luna-Ceballos RI, Hernández-Trejo C, Carmona-Cortés DA. Poor quality of sleep in Mexican patients with type 2 diabetes and its association with lack of glycemic control. Prim Care Diabetes 2023; 17:155-160. [PMID: 36781364 DOI: 10.1016/j.pcd.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/13/2023]
Abstract
AIMS To determine the association between sleep quality and lack of glycemic control in a Mexican population of type 2 diabetes patients. METHODS Cross-sectional study. Two hundred two patients between 20 and 60 years old with a previous diagnosis of diabetes were included. Sleep quality was assessed with the Pittsburgh Sleep Quality Index and lack of glycemic control as a glycated hemoglobin A1c level ≥ 7 %. Univariate and multivariate analyses using logistic regression were performed. RESULTS The study population showed poor sleep quality and a lack of glycemic control of 70.3 % and 69.8 %, respectively. The prevalence of patients with both conditions was 52.5 %. In multivariate analysis, poor sleep quality was significantly associated with a lack of glycemic control (OR = 2.3, p = 0.030). Other associated variables were napping (p = 0.015), diabetes duration (p = 0.011), insulin use (p = 0.024), and diastolic blood pressure ≥ 85 mmHg (p = 0.029). CONCLUSIONS The prevalence of lack of glycemic control in the study population is high. Poor sleep quality significantly doubles the risk of lack of glycemic control, even in the presence of other risk factors.
Collapse
Affiliation(s)
- Irene Suárez-Torres
- Health Sciences Ph.D. Program, Health Sciences Institute, University of Veracruz, Mexico
| | | | | | | | | | | | - Cirenia Hernández-Trejo
- Clinical Analysis Laboratory of the University Clinic for Reproductive and Sexual Health, University of Veracruz, Mexico
| | - Diana Aurora Carmona-Cortés
- Clinical Analysis Laboratory of the University Clinic for Reproductive and Sexual Health, University of Veracruz, Mexico
| |
Collapse
|
14
|
Si Y, Wei W, Chen X, Xie X, Guo T, Sasaki Y, Zhang Y, Wang L, Zhang F, Feng S. A comprehensive study on the relieving effect of Lilium brownii on the intestinal flora and metabolic disorder in p-chlorphenylalanine induced insomnia rats. PHARMACEUTICAL BIOLOGY 2022; 60:131-143. [PMID: 34978949 PMCID: PMC8725957 DOI: 10.1080/13880209.2021.2019283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT The bulb of Lilium brownii F. E. Brown (Liliaceae) (LB) is a common Chinese medicine to relieve insomnia. OBJECTIVE To investigate the molecular mechanism of LB relieving insomnia. MATERIALS AND METHODS Insomnia model was induced by intraperitoneally injection p-chlorophenylalanine (PCPA) in Wistar rats. Rats were divided into three groups: Control, PCPA (400 mg/kg, i.p. 2 days), LB (598.64 mg/kg, oral 7 days). The levels of 5-hydroxytryptamine (5-HT), norepinephrine (NE), melatonin (MT), and the expression of GABAA, 5-HT1A and MT receptors, as well as pathological changes in hypothalamus, were evaluated. 16S rDNA sequencing and UPLC-MS/MS were used to reveal the change of the intestinal flora and metabolic profile. RESULTS The adverse changes in the abundance and diversity of intestinal flora and faecal metabolic phenotype altered by PCPA in rats were reversed after LB treatment, accompanied by the up-regulated levels of 5-HT as 8.14 ng/mL, MT as 16.16 pg/mL, 5-HT1A R and GABAA R, down-regulated level of NE as 0.47 ng/mL, and the improvement of pathological phenomena of cells in the hypothalamus. And the arachidonic acid metabolism and tryptophan metabolism pathway most significantly altered by PCPA were markedly regulated by LB. Besides, it was also found that LB reduced the levels of kynurenic acid related to psychiatric disorders and trimethylamine-N-oxide associated with cardiovascular disease. CONCLUSION The mechanism of LB relieving insomnia involves regulating flora and metabolites to resemble the control group. As a medicinal and edible herb, LB could be considered for development as a health-care food to relieve increasing insomniacs in the future.
Collapse
Affiliation(s)
- Yanpo Si
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenjun Wei
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Chen
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaolong Xie
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yohei Sasaki
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa City, Japan
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lili Wang
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fei Zhang
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
15
|
Bartoli F, Cioni RM, Cavaleri D, Callovini T, Crocamo C, Misiak B, Savitz JB, Carrà G. The association of kynurenine pathway metabolites with symptom severity and clinical features of bipolar disorder: An overview. Eur Psychiatry 2022; 65:e82. [PMID: 36366795 PMCID: PMC9724221 DOI: 10.1192/j.eurpsy.2022.2340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The balance between neurotoxic and neuroprotective effects of kynurenine pathway (KP) components has been recently proposed as a key element in the pathophysiology of bipolar disorder (BD) and related mood episodes. This comprehensive overview explored the link of KP with symptom severity and other clinical features of BD. METHODS We searched Medline, Embase, and PsycInfo electronic databases for studies assessing the association of peripheral and/or central concentrations of KP metabolites with putative clinical features, including symptom severity and other clinical domains in BD. RESULTS We included the findings of 13 observational studies investigating the possible variations of KP metabolites according to symptom severity, psychotic features, suicidal behaviors, and sleep disturbances in BD. Studies testing the relationship between KP metabolites and depression severity generated mixed and inconsistent findings. No statistically significant correlations with manic symptoms were found. Moreover, heterogeneous variations of the KP across different clinical domains were shown. Few available studies found (a) higher levels of cerebrospinal fluid kynurenic acid and lower of plasma quinolinic acid in BD with psychotic features, (b) lower central and peripheral picolinic acid levels in BD with suicide attempts, and (c) no significant correlations between KP metabolites and BD-related sleep disturbances. CONCLUSIONS An imbalance of KP metabolism toward the neurotoxic branches is likely to occur in people with BD, though evidence on variations according to specific clinical features of BD is less clear. Additional research is needed to clarify the role of KP in the etiopathogenesis of BD and related clinical features.
Collapse
Affiliation(s)
- Francesco Bartoli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Riccardo M Cioni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Daniele Cavaleri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tommaso Callovini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Crocamo
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Błażej Misiak
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Jonathan B Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Psychiatry, University College London, London, United Kingdom
| |
Collapse
|
16
|
Harding BN, Skene DJ, Espinosa A, Middleton B, Castaño-Vinyals G, Papantoniou K, Navarrete JM, Such P, Torrejón A, Kogevinas M, Baker MG. Metabolic profiling of night shift work - The HORMONIT study. Chronobiol Int 2022; 39:1508-1516. [PMID: 36210507 PMCID: PMC10482506 DOI: 10.1080/07420528.2022.2131562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/08/2023]
Abstract
Mechanistic studies are needed to understand how rotating shift work perturbs metabolic processing. We collected plasma samples (n = 196) from 49 males, rotating car factory shift workers at the beginning and end of a night-shift (22:00-06:00 h) and day-shift (06:00 h-14:00 h). Samples underwent targeted LC-MS/MS metabolomics and concentrations of 130 metabolites were log2-transformed and pareto-scaled. An elastic net selected the most influential metabolites for linear mixed models examining within-person variation in metabolite levels at night-shift end (06:00 h) compared to day-shift start (06:00 h). Quantitative enrichment analysis explored differentially enriched biological pathways between sample time points. We included 20 metabolites (amino acids, biogenic amines, acylcarnitines, glycerophospholipids) in mixed models. Night-shift was associated with changes in concentrations of arginine (geometric mean ratio [GMR] 2.30, 95%CI 1.25, 4.23), glutamine (GMR 2.22, 95%CI 1.53, 3.24), kynurenine (GMR 3.22, 95%CI 1.05, 9.87), lysoPC18:2 (GMR 1.86, 95%CI 1.11, 3.11), lysoPC20:3 (GMR 2.48, 95%CI 1.05, 5.83), PCaa34:2 (GMR 2.27, 95%CI 1.16, 4.44), and PCae38:5 (GMR 1.66, 95%CI 1.02, 2.68). Tryptophan metabolism, glutathione metabolism, alanine metabolism, glycine and serine metabolism, and urea cycle were pathways differing between shifts. Night shift work was associated with changes in metabolites and the perturbation of metabolic and biochemical pathways related to a variety of health outcomes.
Collapse
Affiliation(s)
- Barbara N. Harding
- Department of Non-Communicable Diseases and Environment, Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Ana Espinosa
- Department of Non-Communicable Diseases and Environment, Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Benita Middleton
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Gemma Castaño-Vinyals
- Department of Non-Communicable Diseases and Environment, Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Kyriaki Papantoniou
- Department of Epidemiology, Center of Public Health, Medical University of Vienna, Vienna, Austria
| | - José Maria Navarrete
- Health, Safety and Emergencies of SEAT, CUPRA and the Volkswagen Group Companies in Spain
| | - Patricia Such
- Health, Safety and Emergencies of SEAT, CUPRA and the Volkswagen Group Companies in Spain
| | - Antonio Torrejón
- Health, Safety and Emergencies of SEAT, CUPRA and the Volkswagen Group Companies in Spain
| | - Manolis Kogevinas
- Department of Non-Communicable Diseases and Environment, Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Marissa G. Baker
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Rogando AC, Weber KM, Xing J, Xue X, Yohannes T, Morack R, Qi Q, Clish C, Bullock K, Gustafson D, Anastos K, Sharma A, Burgess HJ, French AL. The IDOze Study: The Link Between Sleep Disruption and Tryptophan-Kynurenine Pathway Activation in Women With Human Immunodeficiency Virus. J Infect Dis 2022; 226:1451-1460. [PMID: 35801535 PMCID: PMC9989737 DOI: 10.1093/infdis/jiac287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/07/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Poor sleep is associated with human immunodeficiency virus (HIV), particularly among women with HIV (WWH), although mechanisms are unclear. We explored cross-sectional associations between sleep disruption and tryptophan-kynurenine (T/K) pathway activation, measured by the kynurenine-to-tryptophan ratio (K:T). METHODS HIV-uninfected women (HIV-) and WWH aged 35-70 years and on stable antiretroviral therapy were included. Sleep metrics were measured using wrist actigraphy. Plasma T/K pathway metabolites were measured using liquid chromatography-tandem mass spectrometry. Multivariate linear regression models examined relationships between K:T and actigraphy-based sleep metrics by HIV status. RESULTS WWH (n = 153) and HIV- women (n = 151) were demographically similar. Among WWH, median CD4 was 751 cells/µL; 92% had undetectable HIV RNA. Compared to HIV- women, WWH had higher K:T (P < .001) and kynurenine (P = .01) levels but similar tryptophan levels (P = .25). Higher K:T was associated with more wake bouts (P = .001), more time awake after sleep onset (P = .01), and lower sleep efficiency (P = .03) in WWH only. CONCLUSIONS HIV infection was associated with T/K pathway activation; this activation was associated with poorer sleep efficiency and more fragmented sleep. While longitudinal studies are needed to elucidate the directionality of these associations, these findings may help identify treatments to reduce sleep disruption in WWH by targeting residual inflammation and T/K pathway activation.
Collapse
Affiliation(s)
- Andrea C Rogando
- College of Science and Health at Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
- Hektoen Institute of Medicine/CORE Center of Cook County Health, Chicago, Illinois, USA
| | - Kathleen M Weber
- Hektoen Institute of Medicine/CORE Center of Cook County Health, Chicago, Illinois, USA
| | - Jiaqian Xing
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tsion Yohannes
- Hektoen Institute of Medicine/CORE Center of Cook County Health, Chicago, Illinois, USA
| | - Ralph Morack
- Hektoen Institute of Medicine/CORE Center of Cook County Health, Chicago, Illinois, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Clary Clish
- Metabolomics Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Kevin Bullock
- Metabolomics Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Audrey L French
- Department of Medicine, Stroger Hospital of Cook County Health, Chicago, Illinois, USA
| |
Collapse
|
18
|
Grant CW, Wilton AR, Kaddurah-Daouk R, Skime M, Biernacka J, Mayes T, Carmody T, Wang L, Lazaridis K, Weinshilboum R, Bobo WV, Trivedi MH, Croarkin PE, Athreya AP. Network science approach elucidates integrative genomic-metabolomic signature of antidepressant response and lifetime history of attempted suicide in adults with major depressive disorder. Front Pharmacol 2022; 13:984383. [PMID: 36263124 PMCID: PMC9573988 DOI: 10.3389/fphar.2022.984383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD. Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 'Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)' and 103 'Combining Medications to Enhance Depression Outcomes (CO-MED)' patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with (N = 46) and without (N = 302) a self-reported lifetime history of suicide attempt. Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL-associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt. Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Angelina R. Wilton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taryn Mayes
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Konstantinos Lazaridis
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States
| | - Madhukar H. Trivedi
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Cheon J, Kim M. Comprehensive effects of various nutrients on sleep. Sleep Biol Rhythms 2022; 20:449-458. [PMID: 38468613 PMCID: PMC10899959 DOI: 10.1007/s41105-022-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
Sleep problems have become common among people today. Sleep disorders are closely associated with physiological and psychological diseases. Among the ways of improving objective or subjective sleep quality, controlling elements associated with food intake can be more efficient than other methods in terms of time and cost. Therefore, the purpose of this study was to understand the effects of nutrients and natural products on sleep. An extensive literature search was conducted, and related articles were identified through online databases, such as Elsevier, Google Scholar, PubMed, Springer, and Web of Science. Expert opinion, conference abstracts, unpublished studies, and studies published in languages other than English were excluded from this review. The effects of macronutrients and diet adjustment on sleep differed. Although not all nutrients independently affect sleep, they comprehensively affect it through tryptophan metabolism. Furthermore, natural foods related to GABA have an effect on sleep similar to that of sleeping pills. Taken together, our results suggest that humans can control both their objective and subjective sleep quality based on their lifestyle and food consumption. However, until now, direct studies on the relationship between human sleep and nutrition, such as clinical trials, have been insufficient. As both objective and subjective sleep quality are the factors determining the quality of life of individuals, further studies on those are needed to improve it.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Chemistry & Life Science, BioScience Research Institute, Sahmyook University, Hwarangro 815, Nowongu, 01795 Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, BioScience Research Institute, Sahmyook University, Hwarangro 815, Nowongu, 01795 Seoul, Republic of Korea
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Hwarangro 815, Nowongu, Seoul, 01795 Republic of Korea
| |
Collapse
|
20
|
Melatonin ameliorates disease severity in a mouse model of multiple sclerosis by modulating the kynurenine pathway. Sci Rep 2022; 12:15963. [PMID: 36153399 PMCID: PMC9509376 DOI: 10.1038/s41598-022-20164-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMelatonin (MT), a neurohormone with immunomodulatory properties, is one of the metabolites produced in the brain from tryptophan (TRP) that has already strong links with the neuropathogenesis of Multiple sclerosis (MS). However, the exact molecular mechanisms behind that are not fully understood. There is some evidence showing that MS and MT are interconnected via different pathways: Relapses of MS has a direct correlation with a low level of MT secretion and a growing body of evidence suggest that MT be therapeutic in Experimental Autoimmune Encephalomyelitis (EAE, a recognise animal model of MS) severity. Previous studies have demonstrated that the kynurenine pathway (KP), the main pathway of TRP catabolism, plays a key role in the pathogenesis of MS in humans and in EAE. The present study aimed to investigate whether MT can improve clinical signs in the EAE model by modulating the KP. C57BL/6 mice were induced with EAE and received different doses of MT. Then the onset and severity of EAE clinical symptoms were recorded. Two biological factors, aryl hydrocarbon receptor (AhR) and NAD+ which closely interact in the KP were also assessed. The results indicated that MT treatment at all tested doses significantly decrease the EAE clinical scores and the number of demyelinating plaques. Furthermore, MT treatment reduced the mRNA expression of the KP regulatory enzyme indoleamine 2,3-dioxygenase 1(IDO-1) and other KP enzymes. We also found that MT treatment reduces the mRNA expression of the AhR and inhibits the enzyme Nicotinamide N-Methyltransferase (Nnmt) overexpression leading to an increase in NAD+ levels. Collectively, this study suggests that MT treatment may significantly attenuates the severity of EAE by altering the KP, AhR and NAD+ metabolism.
Collapse
|
21
|
Melatonin and the Brain–Heart Crosstalk in Neurocritically Ill Patients—From Molecular Action to Clinical Practice. Int J Mol Sci 2022; 23:ijms23137094. [PMID: 35806098 PMCID: PMC9267006 DOI: 10.3390/ijms23137094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain–heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.
Collapse
|
22
|
Roflumilast, a Phosphodiesterase-4 Inhibitor, Ameliorates Sleep Deprivation-Induced Cognitive Dysfunction in C57BL/6J Mice. ACS Chem Neurosci 2022; 13:1938-1947. [PMID: 35736514 DOI: 10.1021/acschemneuro.2c00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sleep deprivation (SD) interferes with long-term memory and cognitive functions by overactivation of phosphodiesterase (PDEs) enzymes. PDE4, a nonredundant regulator of the cyclic nucleotides (cAMP), is densely expressed in the hippocampus and is involved in learning and memory processes. In the present study, we investigated the effects of Roflumilast (ROF), a PDE4B inhibitor, on sleep deprivation-induced cognitive dysfunction in a mouse model. Memory assessment was performed using a novel object recognition task, and the hippocampal cAMP level was estimated by the ELISA method. The alterations in the expressions of PDE4B, amyloid-β (Aβ), CREB, BDNF, and synaptic proteins (Synapsin I, SAP 97, PSD 95) were assessed to gain insights into the possible mechanisms of action of ROF using the Western blot technique. Results show that ROF reversed SD-induced cognitive decline in mice. ROF downregulated PDE4B and Aβ expressions in the brain. Additionally, ROF improved the cAMP level and the protein expressions of synapsin I, SAP 97, and PSD 95 in the hippocampal region of SD mice. Taken together, these results suggest that ROF can suppress the deleterious effects of SD-induced cognitive dysfunction via the PDE4B-mediated cAMP/CREB/BDNF signaling cascade.
Collapse
|
23
|
Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnol Adv 2022; 59:107961. [DOI: 10.1016/j.biotechadv.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
|
24
|
Mahalakshmi AM, Paneyala S, Ray B, Essa MM, Dehhaghi M, Heng B, Guillemin GJ, Babu Chidambaram S. Alterations in Tryptophan Metabolism Affect Vascular Functions: Connected to Ageing Population Vulnerability to COVID-19 Infection? Int J Tryptophan Res 2022; 15:11786469221083946. [PMID: 35645571 PMCID: PMC9133873 DOI: 10.1177/11786469221083946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Visiting Professor, Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA
| | - Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.org
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.org
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.org
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
25
|
Sharma VK, Singh TG, Prabhakar NK, Mannan A. Kynurenine Metabolism and Alzheimer's Disease: The Potential Targets and Approaches. Neurochem Res 2022; 47:1459-1476. [PMID: 35133568 DOI: 10.1007/s11064-022-03546-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
L-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson's disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | | | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
26
|
Wang Z, Yuan K, Ji YB, Li SX, Shi L, Wang Z, Zhou XY, Bao YP, Xie W, Han Y, Shi J, Lu L, Yan W, Chen WH. Alterations of the Gut Microbiota in Response to Total Sleep Deprivation and Recovery Sleep in Rats. Nat Sci Sleep 2022; 14:121-133. [PMID: 35115853 PMCID: PMC8800865 DOI: 10.2147/nss.s334985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Accumulating evidence suggests that both sleep loss and gut dysbiosis can lead to metabolic disorders. However, less is known about the impact of total sleep deprivation (SD) and sleep recovery on the composition, function, and metabolic dynamics of the gut microbiota. METHODS Specific-pathogen free Sprague-Dawley rats were subjected to 48 h of SD with gentle handling and then allowed to recover for 1 week. Taxonomic profiles of fecal microbiota were obtained at baseline, 24 h of SD, 48 h of SD, and 1 week of recovery. We used 16S rRNA gene sequencing to analyze the gut microbial composition and function and further characterize microbiota-derived metabolites in rats. RESULTS The microbiota composition analysis revealed that gut microbial composition and metabolites did not change in the rats after 24 h of SD but were significantly altered after 48 h of SD. These changes were reversible after 1 week of sleep recovery. A functional analysis was performed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, indicating that 19 KEGG pathways were significantly altered in the gut microbiota in SD rats. These functional changes occurred within 24 h of SD, were more apparent after 48 h of SD, and did not fully recover after 1 week of sleep recovery. CONCLUSION These results indicate that acute total SD leads to significant compositional and functional changes in the gut microbiota, and these changes are reversible.
Collapse
Affiliation(s)
- Zhong Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, People's Republic of China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Zhe Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Xin-Yu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Wen Xie
- Mental Health Center of Anhui Province, Hefei, 230032, People's Republic of China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, People's Republic of China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| | - Wen-Hao Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
27
|
Metabolomic and pharmacologic analyses of brain substances associated with sleep pressure in mice. Neurosci Res 2021; 177:16-24. [PMID: 34856199 DOI: 10.1016/j.neures.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Sleep pressure, the driving force of the homeostatic sleep regulation, is accumulated during wakefulness and dissipated during sleep. Sleep deprivation (SD) has been used as a method to acutely increase animal's sleep pressure for investigating the molecular changes under high sleep pressure. However, SD induces changes not only reflecting increased sleep pressure but also inevitable stresses and prolonged wake state itself. The Sik3Sleepy mutant mice (Sleepy) exhibit constitutively high sleep pressure despite sleeping longer, and have been useful as a model of increased sleep pressure. Here we conducted a cross-comparison of brain metabolomic profiles between SD versus ad lib slept mice, as well as Sleepy mutant versus littermate wild-type mice. Targeted metabolome analyses of whole brains quantified 203 metabolites in total, of which 43 metabolites showed significant changes in SD, whereas three did in Sleepy mutant mice. The large difference in the number of differential metabolites highlighted limitations of SD as methodology. The cross-comparison revealed that a decrease in betaine and an increase in imidazole dipeptides are associated with high sleep pressure in both models. These metabolites may be novel markers of sleep pressure at the whole-brain level. Furthermore, we found that intracerebroventricular injection of imidazole dipeptides increased subsequent NREM sleep time, suggesting the possibility that imidazole dipeptides may participate in the regulation of sleep in mice.
Collapse
|
28
|
Wyckelsma VL, Trepci A, Schwieler L, Venckunas T, Brazaitis M, Kamandulis S, Paulauskas H, Gapeyeva H, Pääsuke M, Gastaldello S, Imbeault S, Westerblad H, Erhardt S, Andersson DC. Vitamin C and E Treatment Blocks Changes in Kynurenine Metabolism Triggered by Three Weeks of Sprint Interval Training in Recreationally Active Elderly Humans. Antioxidants (Basel) 2021; 10:antiox10091443. [PMID: 34573075 PMCID: PMC8465740 DOI: 10.3390/antiox10091443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
The kynurenine pathway (KP) is gaining attention in several clinical fields. Recent studies show that physical exercise offers a therapeutic way to improve ratios of neurotoxic to neuroprotective KP metabolites. Antioxidant supplementation can blunt beneficial responses to physical exercise. We here studied the effects of endurance training in the form of sprint interval training (SIT; three sessions of 4–6 × 30 s cycling sprints per week for three weeks) in elderly (~65 years) men exposed to either placebo (n = 9) or the antioxidants vitamin C (1 g/day) and E (235 mg/day) (n = 11). Blood samples and muscle biopsies were taken under resting conditions in association with the first (untrained state) and last (trained state) SIT sessions. In the placebo group, the blood plasma level of the neurotoxic quinolinic acid was lower (~30%) and the neuroprotective kynurenic acid to quinolinic acid ratio was higher (~50%) in the trained than in the untrained state. Moreover, muscle biopsies showed a training-induced increase in kynurenine aminotransferase (KAT) III in the placebo group. All these training effects were absent in the vitamin-treated group. In conclusion, KP metabolism was shifted towards neuroprotection after three weeks of SIT in elderly men and this shift was blocked by antioxidant treatment.
Collapse
Affiliation(s)
- Victoria L. Wyckelsma
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
| | - Ada Trepci
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (T.V.); (M.B.); (S.K.); (H.P.)
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
| | - Tomas Venckunas
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (T.V.); (M.B.); (S.K.); (H.P.)
| | - Marius Brazaitis
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (T.V.); (M.B.); (S.K.); (H.P.)
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (T.V.); (M.B.); (S.K.); (H.P.)
| | - Henrikas Paulauskas
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (T.V.); (M.B.); (S.K.); (H.P.)
| | - Helena Gapeyeva
- Clinic of Medical Rehabilitation, Inpatient Rehabilitation Centre, East Tallinn Central Hospital, 10138 Tallinn, Estonia;
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 50090 Tartu, Estonia;
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 50090 Tartu, Estonia;
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
| | - Sophie Imbeault
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (T.V.); (M.B.); (S.K.); (H.P.)
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
| | - Daniel C. Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.L.W.); (A.T.); (L.S.); (S.G.); (S.I.); (H.W.); (S.E.)
- Cardiology Unit, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
29
|
Papaverine, a Phosphodiesterase 10A Inhibitor, Ameliorates Quinolinic Acid-Induced Synaptotoxicity in Human Cortical Neurons. Neurotox Res 2021; 39:1238-1250. [PMID: 33914237 DOI: 10.1007/s12640-021-00368-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 01/07/2023]
Abstract
Phosphodiesterase-10A (PDE10A) hydrolyse the secondary messengers cGMP and cAMP, two molecules playing important roles in neurodevelopment and brain functions. PDE10A is associated to progression of neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's diseases, and a critical role in cognitive functions. The present study was undertaken to determine the possible neuroprotective effects and the associated mechanism of papaverine (PAP), a PDE10A isoenzyme inhibitor, against quinolinic acid (QUIN)-induced excitotoxicity using human primary cortical neurons. Cytotoxicity potential of PAP was analysed using MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC10 staining, respectively. Caspase 3/7 and cAMP levels were measured using ELISA kits. Effect of PAP on the CREB, BNDF and synaptic proteins such as SAP-97, synaptophysin, synapsin-I, and PSD-95 expression was analysed by Western blot. Pre-treatment with PAP increased intracellular cAMP and nicotinamide adenine dinucleotide (NAD+) levels, restored mitochondrial membrane potential (ΔΨm), and decreased ROS and caspase 3/7 content in QUIN exposed neurons. PAP up-regulated CREB and BDNF, and synaptic protein expression. In summary, these data indicate that PDE10A is involved in QUIN-mediated synaptotoxicity and its inhibition elicit neuroprotection by reducing the oxidative stress and protecting synaptic proteins via up-regulation of cAMP signalling cascade.
Collapse
|