1
|
Berg I, Härvelid P, Zürrer WE, Rosso M, Reich DS, Ineichen BV. Which experimental factors govern successful animal-to-human translation in multiple sclerosis drug development? A systematic review and meta-analysis. EBioMedicine 2024; 110:105434. [PMID: 39515028 PMCID: PMC11582441 DOI: 10.1016/j.ebiom.2024.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Despite successes in multiple sclerosis (MS) drug development, the effectiveness of animal studies in predicting successful bench-to-bedside translation is uncertain. Our goal was to identify predictors of successful animal-to-human translation for MS by systematically comparing animal studies of approved disease-modifying therapies (DMTs) with those that failed in clinical trials due to efficacy or safety concerns. METHODS Systematic review of animal studies testing MS DMTs, identified from searches in PubMed and EMBASE. A random effect meta-analysis was fitted to the data to compare outcome effect sizes for approved versus failed DMTs. Effect sizes and testing under diverse experimental conditions were assessed as potential predictors for successful translation. FINDINGS We included 497 animal studies, covering 15 approved and 11 failed DMTs, tested in approximately 30'000 animals. DMTs were tested in a small repertoire of experimental parameters: about 86% of studies used experimental autoimmune encephalomyelitis (EAE), 80% used mice, and 76% used female animals. There was no association between animal study outcomes or testing DMTs under varied conditions (e.g., different laboratories or models) and successful approval. Surprisingly, 91% of animal studies were published after first-in-MS trial and 91% after official regulatory approval. INTERPRETATION Our findings emphasize the complexity in carrying drugs from animals to clinical practice. Specific challenges include limited experimental methods in animal research and a disconnect between preclinical and clinical research. We advocate for efforts to streamline drug development for MS to improve animal research's relevance for patients. FUNDING NIH, Swiss National Science Foundation, Universities Federation for Animal Welfare.
Collapse
Affiliation(s)
- Ingrid Berg
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Pia Härvelid
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Wolfgang Emanuel Zürrer
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Marianna Rosso
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Victor Ineichen
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Vlad B, Neidhart S, Hilty M, Asplund Högelin K, Reichen I, Ziegler M, Khademi M, Lutterotti A, Regeniter A, Martin R, Al Nimer F, Jelcic I. Intrathecal immune reactivity against Measles-, Rubella-, and Varicella Zoster viruses is associated with cerebrospinal fluid inflammation in multiple sclerosis. Mult Scler 2024; 30:1598-1608. [PMID: 39377663 PMCID: PMC11568678 DOI: 10.1177/13524585241279645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND/OBJECTIVES We aimed to determine in multiple sclerosis (MS) whether intrathecal immunoglobulin G (IgG) production against measles- (M), rubella- (R), and varicella zoster (Z) viruses, which is called MRZ reaction (MRZR) and considered the most specific soluble biomarker for MS, is associated with demographic and basic cerebrospinal fluid (CSF) parameters reflecting inflammation. METHODS We analyzed the presence of positive MRZR and associations with demographic and clinical routine CSF parameters in 513 patients with MS and 182 non-MS patients. RESULTS Comparing MS patients versus non-MS patients, positive MRZR (38.8% versus 2.2%; specificity 97.8%; positive likelihood ratio, PLR 17.7) had a better specificity and PLR for MS than CSF-specific OCB (89.5% versus 22.0%; specificity 78.0%; PLR 4.1). A positive MRZR in MS patients was associated with female sex (p = 0.0001), pleocytosis (p < 0.0001), higher frequency of presence of plasma cells in CSF (p = 0.0248), normal CSF/serum albumin ratio (p = 0.0005), and intrathecal production of total IgG or CSF-specific OCB (both p < 0.0001), but not with intrathecal production of total IgA or IgM. CONCLUSIONS This study confirms the MRZR as a highly specific marker of MS and shows that MRZR-positive MS patients more frequently are female and show inflammatory changes of basic CSF parameters than MRZR-negative MS patients.
Collapse
Affiliation(s)
- Benjamin Vlad
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
| | - Stephan Neidhart
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland; Swiss Epilepsy Center (Klinik Lengg), Zurich, Switzerland
| | - Marc Hilty
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Department of Neurology, Hirslanden Klinik Zurich, Zurich, Switzerland
| | - Klara Asplund Högelin
- Center for Molecular Medicine, Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ina Reichen
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Neuroimmunology Outpatient Clinic, Center for Multiple Sclerosis, Neurocenter Bellevue, Zurich, Switzerland
| | - Mario Ziegler
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
| | - Mohsen Khademi
- Center for Molecular Medicine, Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lutterotti
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Clinical Research Priority Program MS (CRPP), PrecisionMS of the University of Zurich, Zurich, Switzerland
- Neuroimmunology Outpatient Clinic, Center for Multiple Sclerosis, Neurocenter Bellevue, Zurich, Switzerland
| | - Axel Regeniter
- Infectious Disease Serology and Immunology, Medica Medizinische Laboratorien Dr. F. Kaeppeli AG, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Clinical Research Priority Program MS (CRPP), PrecisionMS of the University of Zurich, Zurich, Switzerland
- Center for Molecular Medicine, Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Center for Molecular Medicine, Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich and University Hospital, Zurich, Switzerland
- Clinical Research Priority Program MS (CRPP), PrecisionMS of the University of Zurich, Zurich, Switzerland
- Neuroimmunology Outpatient Clinic, Center for Multiple Sclerosis, Neurocenter Bellevue, Zurich, Switzerland
| |
Collapse
|
3
|
Meier P, Glasmacher S, Salmen A, Chan A, Gertsch J. Comparative targeted lipidomics between serum and cerebrospinal fluid of multiple sclerosis patients shows sex and age-specific differences of endocannabinoids and glucocorticoids. Acta Neuropathol Commun 2024; 12:160. [PMID: 39385315 PMCID: PMC11465707 DOI: 10.1186/s40478-024-01864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024] Open
Abstract
Multiple sclerosis (MS) is a complex chronic neuroinflammatory disease characterized by demyelination leading to neuronal dysfunction and neurodegeneration manifested by various neurological impairments. The endocannabinoid system (ECS) is a lipid signalling network, which plays multiple roles in the central nervous system and the periphery, including synaptic signal transmission and modulation of inflammation. The ECS has been identified as a potential target for the development of novel therapeutic interventions in MS patients. It remains unclear whether ECS-associated metabolites are changed in MS and could serve as biomarkers in blood or cerebrospinal fluid (CSF). In this retrospective study we applied targeted lipidomics to matching CSF and serum samples of 74 MS and 80 non-neuroinflammatory control patients. We found that MS-associated lipidomic changes overall did not coincide between CSF and serum. While glucocorticoids correlated positively, only the endocannabinoid (eCB) 2-arachidonoyl glycerol (2-AG) showed a weak positive correlation (r = 0.3, p < 0.05) between CSF and serum. Peptide endocannabinoids could be quantified for the first time in CSF but did not differ between MS and controls. MS patients showed elevated levels of prostaglandin E2 and steaorylethanolamide in serum, and 2-oleoylglycerol and cortisol in CSF. Sex-specific differences were found in CSF of MS patients showing increased levels of 2-AG and glucocorticoids in males only. Overall, arachidonic acid was elevated in CSF of males. Interestingly, CSF eCBs correlated positively with age only in the control patients due to the increased levels of eCBs in young relapsing-remitting MS patients. Our findings reveal significant discrepancies between CSF and serum, underscoring that measuring eCBs in blood matrices is not optimal for detecting MS-associated changes in the central nervous system. The identified sex and age-specific changes of analytes of the stress axis and ECS specifically in the CSF of MS patients supports the role of the ECS in MS and may be relevant for drug development strategies.
Collapse
Affiliation(s)
- Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, 3012, Switzerland
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, 3012, Switzerland
- Synendos Therapeutics AG, Barfuesserplatz 3, Basel, 4051, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 16, Bern, 3010, Switzerland
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 16, Bern, 3010, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, 3012, Switzerland.
| |
Collapse
|
4
|
Thévoz G, Phillips NE, Rebeaud J, Lim-Dubois-Ferriere P, Revaz A, Gauthier-Jaques A, Théaudin M, Du Pasquier R, Panda S, Pot C, Collet TH. Increased central obesity correlates with physical activity and food processing in recently diagnosed multiple sclerosis. Mult Scler Relat Disord 2024; 90:105808. [PMID: 39128162 DOI: 10.1016/j.msard.2024.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Environmental and lifestyle factors are associated with an increased risk of Multiple Sclerosis (MS). Metabolic syndrome (MetS) contributes to systemic inflammation, which is associated with poorer MS disease evolution. We compared persons with MS (PwMS) and controls to assess metabolic and lifestyle parameters associated with MS. METHODS We pooled data from two prospective observational studies with the same eligibility criteria, matching PwMS and controls (1:2 ratio) by sex, age, and body mass index (BMI). We compared anthropometric, biological and lifestyle parameters, including sleep and physical activity. RESULTS We included 53 PwMS and 106 controls with a median age of 35 years and 79% of women. PwMS had low Expanded Disability Status Scale (median 1.5). Compared to controls, PwMS had increased waist-to-hip (p<0.001) and waist-to-height (p=0.007) ratios, and practiced less physical activity (p=0.03). In regression models, lifestyle factors with the strongest factor loadings to predict central obesity were processed food consumption, and vigorous physical activity. DISCUSSION Although both groups were matched by age, sex, and BMI, we found increased central obesity in PwMS. Even with minimal neurological impairment, PwMS practiced less physical activity. This suggests that improvement of lifestyle and metabolic parameters should be targeted in MS.
Collapse
Affiliation(s)
- Guillaume Thévoz
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Nicholas Edward Phillips
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland; Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Jessica Rebeaud
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Pansy Lim-Dubois-Ferriere
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Albane Revaz
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Aude Gauthier-Jaques
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Marie Théaudin
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Renaud Du Pasquier
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | | | - Caroline Pot
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, Lausanne 1011, Switzerland.
| | - Tinh-Hai Collet
- Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland.; Diabetes Centre, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
5
|
Fairweather D, Beetler DJ, McCabe EJ, Lieberman SM. Mechanisms underlying sex differences in autoimmunity. J Clin Invest 2024; 134:e180076. [PMID: 39286970 PMCID: PMC11405048 DOI: 10.1172/jci180076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott M Lieberman
- Division of Rheumatology, Allergy, and Immunology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Wicks TR, Jakimovski D, Reeves J, Bergsland N, Dwyer MG, Weinstock-Guttman B, Zivadinov R. Comorbid onset of cardiovascular diagnosis and long-term confirmed disability progression in multiple sclerosis: A 15-year follow-up study. J Neurol Sci 2024; 464:123156. [PMID: 39096837 DOI: 10.1016/j.jns.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND People with multiple sclerosis (pwMS) have greater prevalence of comorbid cardiovascular diseases (CVD) when compared to the general population despite similar frequency of CV risk factors. OBJECTIVE Determine the impact of comorbid-onset of CVD diagnosis on long-term confirmed disability progression (CDP). METHODS 276 pwMS (29 clinically isolated syndrome, 130 relapsing-remitting and 117 progressive) were clinically followed an average of 14.9 years, with a mean of 14.4 clinical visits. Retrospective electronic medical records (EMR) review determined CVD diagnoses (hypertension, hyperlipidemia, diabetes, and heart disease) at baseline and over the follow-up. CDP was determined with ≥1.0 point Expanded Disability Status Scale (EDSS) increase from EDSS <5.5, or ≥ 0.5-point increase from ≥5.5, and was sustained on next clinical visit. RESULTS A significantly shorter time to overall CDP was detected in 213 pwMS who had an existing (28 pwMS) or developed new onset (185 pwMS) of CVD, compared to 63 CVD-healthy pwMS over the follow-up (13.4 vs 15.9 years, Mantel-Cox p < 0.001), independent of baseline age and EDSS score. The CVD diagnosis preceded the CDP in 103 pwMS (55.7%), occurred after CDP in 71 pwMS (38.4%) and was concurrent in 11 pwMS (5.9%). Using mixed-effect models adjusted for significant age (F = 56.5, p < 0.001) and time effects (F = 67.8, p < 0.001), the CVD-onset diagnosis was associated with greater accrual of disability, as measured by longitudinal increase in EDSS score (F = 4.207, p = 0.04). Sex was not significant predictor of future disability in our cohort. CONCLUSION PwMS with an existing or new onset of comorbid CVD diagnosis showed accelerated disability worsening over long-term. There was no temporal relationship between the onset of CVD and CDP within the group that had CVD-onset diagnosis.
Collapse
Affiliation(s)
- Taylor R Wicks
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jack Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
7
|
Tayefeh-Gholami S, Akbarzadeh S, Rajabi A, Najari P, Ghasemzadeh T, HosseinpourFeizi M, Safaralizadeh R. Investigating SNHG3 and BCYRN1 lncRnas expression in the peripheral blood cells of multiple sclerosis patients. Neurol Res 2024; 46:876-882. [PMID: 38832630 DOI: 10.1080/01616412.2024.2362585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND MS (Multiple sclerosis) is a progressive neurologic disorder often appearing in the third decade of life. MS is the most frequent demyelinating disease of the central nervous system. The development of MS is influenced by environmental, genetic, and epigenetic factors. The bulk of the human transcriptome comprises lncRNAs, which play crucial regulatory roles. We aimed to assess the SNHG3 and BCYRN1 lncRNA expression in blood samples from MS patients and how these lncRNAs and disease activity are related. METHODS A total of 100 MS patients, including 8 primary progressive (PP), 82 relapsing-remitting (RR), and 10 secondary progressive (SP) MS, as well as 100 healthy controls, had their blood samples taken. Gene expression was assessed using quantitative real-time PCR. Recognizing the receiver operating characteristic (ROC) curve analysis, the diagnostic potential of lncRNA levels was evaluated. RESULTS Expressions of SNHG3 and BCYRN1 were found to have significantly increased (p < 0.0001). SNHG3 expression level showed significant differences compared to age groups and MS subtypes (p value = 0.001 and p value = 0.02).Furthermore, patients with a family history showed elevated BCYRN1 expression with a p value of 0.01. Considering the age factor, BCYRN1 exhibits altered expression levels in patient groups compared to healthy controls (p value 0.04). Additionally, the novel biomarkers SNHG3 and BCYRN1 can be used to diagnose MS (AUC = 0.97 and AUC = 0.88, respectively). DISCUSSION Increased levels of SNHG3 and BCYRN1 in the serum may serve as potential molecular biomarkers for the MS diagnosis.
Collapse
Affiliation(s)
- Samaneh Tayefeh-Gholami
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Sama Akbarzadeh
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Parisa Najari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Tooraj Ghasemzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
9
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
10
|
Wilkins JM, Mangalaparthi KK, Netzel BC, Sherman WA, Guo Y, Kalinowska-Lyszczarz A, Pandey A, Lucchinetti CF. Proteomics analysis of periplaque and chronic inactive multiple sclerosis lesions. Front Mol Neurosci 2024; 17:1448215. [PMID: 39234409 PMCID: PMC11371774 DOI: 10.3389/fnmol.2024.1448215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is a demyelinating disease of the central nervous system characterized by increased inflammation and immune responses, oxidative injury, mitochondrial dysfunction, and iron dyshomeostasis leading to demyelination and axonal damage. In MS, incomplete remyelination results in chronically demyelinated axons and degeneration coinciding with disability. This suggests a failure in the ability to remyelinate in MS, however, the precise underlying mechanisms remain unclear. We aimed to identify proteins whose expression was altered in chronic inactive white matter lesions and periplaque white matter in MS tissue to reveal potential pathophysiological mechanisms. Methods Laser capture microdissection coupled to proteomics was used to interrogate spatially altered changes in formalin-fixed paraffin-embedded brain tissue from three chronic MS individuals and three controls with no apparent neurological complications. Histopathological maps guided the capture of inactive lesions, periplaque white matter, and cortex from chronic MS individuals along with corresponding white matter and cortex from control tissue. Label free quantitation by liquid chromatography tandem mass spectrometry was used to discover differentially expressed proteins between the various brain regions. Results In addition to confirming loss of several myelin-associated proteins known to be affected in MS, proteomics analysis of chronic inactive MS lesions revealed alterations in myelin assembly, metabolism, and cytoskeletal organization. The top altered proteins in MS inactive lesions compared to control white matter consisted of PPP1R14A, ERMN, SIRT2, CARNS1, and MBLAC2. Conclusion Our findings highlight proteome changes in chronic inactive MS white matter lesions and periplaque white matter, which may be crucial for proper myelinogenesis, bioenergetics, focal adhesions, and cellular function. This study highlights the importance and feasibility of spatial approaches such as laser capture microdissection-based proteomics analysis of pathologically distinct regions of MS brain tissue. Identification of spatially resolved changes in the proteome of MS brain tissue should aid in the understanding of pathophysiological mechanisms and the development of novel therapies.
Collapse
Affiliation(s)
- Jordan M Wilkins
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Brian C Netzel
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
| | - William A Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Alicja Kalinowska-Lyszczarz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Claudia F Lucchinetti
- Department of Neurology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
11
|
Arenaza‐Urquijo EM, Boyle R, Casaletto K, Anstey KJ, Vila‐Castelar C, Colverson A, Palpatzis E, Eissman JM, Kheng Siang Ng T, Raghavan S, Akinci M, Vonk JMJ, Machado LS, Zanwar PP, Shrestha HL, Wagner M, Tamburin S, Sohrabi HR, Loi S, Bartrés‐Faz D, Dubal DB, Vemuri P, Okonkwo O, Hohman TJ, Ewers M, Buckley RF. Sex and gender differences in cognitive resilience to aging and Alzheimer's disease. Alzheimers Dement 2024; 20:5695-5719. [PMID: 38967222 PMCID: PMC11350140 DOI: 10.1002/alz.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Sex and gender-biological and social constructs-significantly impact the prevalence of protective and risk factors, influencing the burden of Alzheimer's disease (AD; amyloid beta and tau) and other pathologies (e.g., cerebrovascular disease) which ultimately shape cognitive trajectories. Understanding the interplay of these factors is central to understanding resilience and resistance mechanisms explaining maintained cognitive function and reduced pathology accumulation in aging and AD. In this narrative review, the ADDRESS! Special Interest Group (Alzheimer's Association) adopted a multidisciplinary approach to provide the foundations and recommendations for future research into sex- and gender-specific drivers of resilience, including a sex/gender-oriented review of risk factors, genetics, AD and non-AD pathologies, brain structure and function, and animal research. We urge the field to adopt a sex/gender-aware approach to resilience to advance our understanding of the intricate interplay of biological and social determinants and consider sex/gender-specific resilience throughout disease stages. HIGHLIGHTS: Sex differences in resilience to cognitive decline vary by age and cognitive status. Initial evidence supports sex-specific distinctions in brain pathology. Findings suggest sex differences in the impact of pathology on cognition. There is a sex-specific change in resilience in the transition to clinical stages. Gender and sex factors warrant study: modifiable, immune, inflammatory, and vascular.
Collapse
Affiliation(s)
- Eider M. Arenaza‐Urquijo
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Rory Boyle
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kaitlin Casaletto
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kaarin J. Anstey
- University of New South Wales Ageing Futures InstituteSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Psychology, University of New South WalesSidneyNew South WalesAustralia
| | | | - Aaron Colverson
- University of Florida Center for Arts in Medicine Interdisciplinary Research LabUniversity of Florida, Center of Arts in MedicineGainesvilleFloridaUSA
| | - Eleni Palpatzis
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jaclyn M. Eissman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ted Kheng Siang Ng
- Rush Institute for Healthy Aging and Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Muge Akinci
- Environment and Health Over the Life Course Programme, Climate, Air Pollution, Nature and Urban Health ProgrammeBarcelona Institute for Global Health (ISGlobal)BarcelonaSpain
- University of Pompeu FabraBarcelonaBarcelonaSpain
| | - Jet M. J. Vonk
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luiza S. Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul, FarroupilhaPorto AlegreBrazil
| | - Preeti P. Zanwar
- Jefferson College of Population Health, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- The Network on Life Course and Health Dynamics and Disparities, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Maude Wagner
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Hamid R. Sohrabi
- Centre for Healthy AgeingHealth Future InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- School of Psychology, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha Loi
- Neuropsychiatry Centre, Royal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
| | - David Bartrés‐Faz
- Department of MedicineFaculty of Medicine and Health Sciences & Institut de NeurociènciesUniversity of BarcelonaBarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques (IDIBAPS)BarcelonaBarcelonaSpain
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de BarcelonaBadalonaBarcelonaSpain
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of NeurosciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Biomedical and Neurosciences Graduate ProgramsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Ozioma Okonkwo
- Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig Maximilians Universität (LMU)MunichGermany
- German Center for Neurodegenerative Diseases (DZNE, Munich)MunichGermany
| | - Rachel F. Buckley
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
12
|
Ala S, Amirkafi A, Kohandel K, Shahmohammadi S, Sahraian MA. Switching from injectable to other Disease Modifying Therapies may improve sexual dysfunction in people with Multiple Sclerosis. BMC Neurol 2024; 24:255. [PMID: 39048953 PMCID: PMC11267863 DOI: 10.1186/s12883-024-03765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) a central nervous system autoimmune disorder, mainly affecting young adults and more prevalent among women, can lead to sexual dysfunction (SD) among both males and females with MS. Female sexual dysfunction can be defined as dyspareunia, a lack of sexual desire, disorders in the arousal and orgasm phases, and sexual pain disorders. The purpose of this study is to investigate the changes in sexual function among females with MS whose treatment was switched from first-line injectable medications to other agents after a six-month duration. And assess the changes in all three domains of SD. METHODS In this longitudinal study females diagnosed with MS, aged between 18 and 50 years old, and were candidates for switching their treatment from interferon beta-1a (intra-muscular and subcutaneous), and Glatiramer Acetate (GA), to Fingolimod, Dimethyl Fumarate (DMF), or Natalizumab (NTZ) due to patients' convenience and tolerability and adverse events were included. "Multiple Sclerosis Intimacy and Sexuality Questionnaire-19" was used to evaluate the SD changes before and six months after the new treatment initiation. Statistical analysis was conducted using SPSS V.24 software. Histograms and the Shapiro-Wilk test were used to assess the normality of the variables; due to the non-normal distribution of quantitative variables (except for age), the Wilcoxon signed-rank test was used to compare the scores, before and six months after the medication change. The level of significance was considered less than 0.05. RESULTS Out of 107 female participants (average age: 35.09 ± 5.61), The mean of overall MSISQ-19 scores, before and six months after the medication change were not significant (p-value = 0.091). However, considering the subdomains, the medication changes only affected the tertiary subdomain of MSISQ-19 (p-value = 0.017). Still, the scores of other subdomains did not change significantly (p-value = 0.761 for primary SD and 0.479 for secondary SD). Also, there wasn't any significant difference between EDSS before and after the medication change (p-value = 0.461). CONCLUSIONS To our knowledge, this was the first study, assessing the effect of MS medication change on the improvement of SD among patients. According to the results of the presented cross-sectional study, we found that during a six-month period, the tertiary subdomain of MSISQ-19 symptoms improved significantly, while the changes in other SD domains were not significant.
Collapse
Affiliation(s)
- Sara Ala
- Multiple Sclerosis Research Center,Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Amirkafi
- Iran University of Medical Sciences, Tehran, Iran
| | - Kosar Kohandel
- Multiple Sclerosis Research Center,Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Shahmohammadi
- Multiple Sclerosis Research Center,Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center,Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Leavitt VM, Dworkin JD, Kalina T, Ratzan AS. Sex differences in brain resilience of individuals with multiple sclerosis. Mult Scler Relat Disord 2024; 87:105646. [PMID: 38718749 DOI: 10.1016/j.msard.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Brain resilience allows maintenance of neurocognitive function in the face of age or disease-related neural changes. OBJECTIVE Test the hypothesis that women and men with MS differ in brain resilience. METHODS This cross-sectional analysis of prospective cohort data included 11,297 patients. Linear mixed effects models predicted performance outcomes on tasks of fine motor dexterity and cognitive processing speed for MRI proxies of disease burden: brain parenchymal fraction (BPF), T2 lesion volume, volumes of deep gray, thalamus, white and cortical gray matter. Covariates were age, sex, age-by-sex, current disease-modifying therapy, disease phenotype, education, total brain volume, and total brain volume-by-sex. Sex-by-MRI metric terms tested primary hypothesis of differential brain-behavior relationships between men and women. RESULTS Final sample included 10,286 participants. Lower BPF was associated with worse performance (p's<0.001) in men and women; association was smaller for women than men for processing speed (βetaWomen-Men=-0.044, 95 % CI=[-0.087, -0.002], p = 0.041) and manual dexterity (βetaWomen-Men=-0.073, 95 % CI=[-0.124, -0.023], p = 0.005). For each MRI variable, women demonstrated better neurocognitive function controlling for disease burden. DISCUSSION Sex differences in brain metric-neurofunctional performance relationships of people with MS suggest women have higher resilience than men in the face of increased disease burden. Future work exploring mechanism is warranted.
Collapse
Affiliation(s)
- Victoria M Leavitt
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States; Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, United States.
| | - Jordan D Dworkin
- Department of Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, New York 100324, United States
| | - Tamar Kalina
- Biogen Inc, Cambridge, Massachusetts 02142, United States
| | - Alexander S Ratzan
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
14
|
Candeloro R, Ferri C, Bellini T, Pugliatti M, Castellazzi M. Breaking Barriers: Unveiling Sex-Related Differences in Cerebrospinal Fluid Analysis-A Narrative Review. BIOLOGY 2024; 13:420. [PMID: 38927300 PMCID: PMC11200519 DOI: 10.3390/biology13060420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
(1) Background: The recent emphasis on sexual and gender diversity's impact on human health underscores the need for tailored diagnostic and therapeutic approaches in neurology. The aim of this article is to conduct a narrative review of the available scientific literature on sex differences in cerebrospinal fluid analysis. (2) Methods: The literature search encompassed PubMed databases, focusing on cerebrospinal fluid analysis and sex differences, considering parameters like cerebrospinal fluid protein content, cell count, albumin quotient (QAlb) and intrathecal IgG synthesis. (3) Results: Nine articles from the past two decades were identified, revealing limited research in this area. Males consistently exhibited higher cerebrospinal fluid protein content and albumin quotient values across various pathologies and age groups. Consequently, males more frequently manifested blood-cerebrospinal fluid barrier dysfunction than females. No significant sex differences were observed in cerebrospinal fluid leukocyte count or intrathecal IgG synthesis. (4) Conclusions: This review highlights the dearth of research on sex differences in cerebrospinal fluid analysis, despite consistent findings of higher protein content and albumin quotient values in males. Revisiting current diagnostic thresholds based on sex is crucial for accurate prognosis and personalised treatment strategies in neurological disorders. Moving towards sex-specific approaches in clinical practice is imperative for advancing personalised medicine.
Collapse
Affiliation(s)
- Raffaella Candeloro
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (T.B.); (M.P.)
| | - Caterina Ferri
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy;
| | - Tiziana Bellini
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (T.B.); (M.P.)
| | - Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Holt EA, Tyler A, Lakusta-Wong T, Lahue KG, Hankes KC, Teuscher C, Lynch RM, Ferris MT, Mahoney JM, Krementsov DN. Probing the basis of disease heterogeneity in multiple sclerosis using genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597205. [PMID: 38895248 PMCID: PMC11185616 DOI: 10.1101/2024.06.03.597205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The thirty-two CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary (AR)-EAE, accompanied by distinct immunopathology. Sex differences in EAE severity were observed in six strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity ( Abcc4 and Gpc6 ) and AR-EAE ( Yap1 and Dync2h1 ). This work expands the EAE phenotypic repertoire and identifies novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation. Summary The genetic basis of disease heterogeneity in multiple sclerosis (MS) remains elusive. We leveraged the Collaborative Cross to expand the phenotypic repertoire of the experimental autoimmune encephalomyelitis (EAE) model of MS and identify loci controlling EAE severity, trajectory, and presentation.
Collapse
|
16
|
Winschel I, Willing A, Engler JB, Walkenhorst M, Meurs N, Binkle-Ladisch L, Woo MS, Pfeffer LK, Sonner JK, Borgmeyer U, Hagen SH, Grünhagel B, Claussen JM, Altfeld M, Friese MA. Sex- and species-specific contribution of CD99 to T cell costimulation during multiple sclerosis. Biol Sex Differ 2024; 15:41. [PMID: 38750588 PMCID: PMC11097467 DOI: 10.1186/s13293-024-00618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Differences in immune responses between women and men are leading to a strong sex bias in the incidence of autoimmune diseases that predominantly affect women, such as multiple sclerosis (MS). MS manifests in more than twice as many women, making sex one of the most important risk factor. However, it is incompletely understood which genes contribute to sex differences in autoimmune incidence. To address that, we conducted a gene expression analysis in female and male human spleen and identified the transmembrane protein CD99 as one of the most significantly differentially expressed genes with marked increase in men. CD99 has been reported to participate in immune cell transmigration and T cell regulation, but sex-specific implications have not been comprehensively investigated. METHODS In this study, we conducted a gene expression analysis in female and male human spleen using the Genotype-Tissue Expression (GTEx) project dataset to identify differentially expressed genes between women and men. After successful validation on protein level of human immune cell subsets, we assessed hormonal regulation of CD99 as well as its implication on T cell regulation in primary human T cells and Jurkat T cells. In addition, we performed in vivo assays in wildtype mice and in Cd99-deficient mice to further analyze functional consequences of differential CD99 expression. RESULTS Here, we found higher CD99 gene expression in male human spleens compared to females and confirmed this expression difference on protein level on the surface of T cells and pDCs. Androgens are likely dispensable as the cause shown by in vitro assays and ex vivo analysis of trans men samples. In cerebrospinal fluid, CD99 was higher on T cells compared to blood. Of note, male MS patients had lower CD99 levels on CD4+ T cells in the CSF, unlike controls. By contrast, both sexes had similar CD99 expression in mice and Cd99-deficient mice showed equal susceptibility to experimental autoimmune encephalomyelitis compared to wildtypes. Functionally, CD99 increased upon human T cell activation and inhibited T cell proliferation after blockade. Accordingly, CD99-deficient Jurkat T cells showed decreased cell proliferation and cluster formation, rescued by CD99 reintroduction. CONCLUSIONS Our results demonstrate that CD99 is sex-specifically regulated in healthy individuals and MS patients and that it is involved in T cell costimulation in humans but not in mice. CD99 could potentially contribute to MS incidence and susceptibility in a sex-specific manner.
Collapse
Affiliation(s)
- Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Borgmeyer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Hendrik Hagen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Benjamin Grünhagel
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Janna M Claussen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Leavitt VM, Dworkin JD, Galioto R, Ratzan AS. Disparities in DMT treatment: Demographic and neurocognitive differences between MS patients currently treated versus not treated with disease-modifying therapies. Mult Scler Relat Disord 2024; 85:105508. [PMID: 38452646 DOI: 10.1016/j.msard.2024.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Current treatment guidelines recommend consideration of disease-modifying therapy (DMT) for all multiple sclerosis (MS) patients, but barriers to access have begun to be identified. In particular, prior studies have found that people with higher education have better access to DMTs, perhaps explained by the association of higher education with higher income. And while the majority of people with MS are women, being male is also associated with higher income. These factors argue for the need to better understand whether there are differences in DMT uptake based on sex and education. Finally, in addition to well-documented benefits of DMTs for slowing disease progression, there is growing evidence to suggest benefits of DMTs for cognitive functioning. OBJECTIVE Determine whether rates of DMT treatment differ based on education and sex. Secondarily, we investigate whether neurocognitive test performance differs in treated versus not treated groups. METHODS In cross-sectional data, mixed effects linear regression evaluated differences in education and sex of those treated versus not treated with DMTs. Models included the following predictors: age, disease duration, MS subtype, sex/education, disability, atrophy, and T2 lesion volume. Propensity score weights were extracted to obtain unbiased estimates of the relationship between DMT status and each outcome of interest. The same models evaluated performance differences between groups on an iPad-based processing speed test (PST) and manual dexterity test (MDT). RESULTS Controlling for covariates, individuals with less education (OR=1.09, 95 % CI=[1.03, 1.14], p = 0.003) and women (OR=0.80, 95 % CI=[0.72, 0.90], p < 0.001) were less likely to be currently treated with DMTs. Small effect size association was shown for DMT treatment with better performance on PST (beta=0.09, CI=[0.06, 0.13], p < 0.001) and MDT (beta=0.05, CI=[0.01,0.08], p = 0.011). CONCLUSIONS Women and people with lower education had a lower likelihood of being currently treated with DMTs. After controlling for all relevant variables, an independent (small) association of DMT treatment to better performance on tests of processing speed and fine motor dexterity was found. Reasons for disparities remain to be investigated in future work, and may include employment status, health insurance coverage, or sex differences in risk tolerance.
Collapse
Affiliation(s)
- Victoria M Leavitt
- Department of Neurology, Columbia University Irving Medical Center, 168th Street, P&S Box 16, New York 10032, NY, United States.
| | - Jordan D Dworkin
- Department of Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, NY, United States
| | - Rachel Galioto
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio, United States
| | - Alexander S Ratzan
- Department of Neurology, Columbia University Irving Medical Center, 168th Street, P&S Box 16, New York 10032, NY, United States
| |
Collapse
|
18
|
Sitruk-Ware R, Sussman H, Brinton R, Schumacher M, Singer P, Kumar N, De Nicola AF, El-Etr M, Guennoun R, V Borlongan C. Nestorone (segesterone acetate) effects on neuroregeneration. Front Neuroendocrinol 2024; 73:101136. [PMID: 38670433 DOI: 10.1016/j.yfrne.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Nestorone® (segesterone acetate) is a progestin with a chemical structure closely related to progesterone with high affinity and selectivity for the progesterone receptor without significant interaction with other steroid receptors. It has been developed for female and male contraception and is FDA-approved in a first long-acting contraceptive vaginal system for female contraception. Its safety has been extensively demonstrated in both preclinical and clinical studies for contraceptive indications. Nestorone was found to display neuroprotective and neuroregenerative activity in animal models of various central nervous system diseases, including multiple sclerosis, stroke, and amyotrophic lateral sclerosis. Reviewed herein are neuroprotective and myelin- regenerating properties of Nestorone in various animal models and its translational potential as a therapeutic agent for debilitating neurological diseases for which limited therapeutic options are available (Table 1).
Collapse
Affiliation(s)
| | | | - Roberta Brinton
- Center for Innovation in Brain Science, Tucson, AZ, United States
| | | | | | | | | | - Martine El-Etr
- U1195 Inserm and University Paris-Saclay Le Kremlin Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Saclay Le Kremlin Bicêtre, France
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
19
|
Castellazzi M, Candeloro R, Trevisan C, Permunian S, Buscemi G, Ghisellini S, Negri G, Gilli G, Ferri C, Bellini T, Pizzicotti S, Pugliatti M. Sex Differences in Albumin Quotient and Cerebrospinal Fluid Total Protein Content Do Not Depend on Anthropometric Factors. J Pers Med 2024; 14:362. [PMID: 38672989 PMCID: PMC11051272 DOI: 10.3390/jpm14040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Cerebrospinal fluid (CSF)/serum albumin quotient (QAlb) and CSF total protein (TP) are more elevated in males than females, and this has been hypothesised to be due to anthropometric differences between the sexes. This study aimed to investigate QAlb and CSF TP as a function of body height, weight, and body mass index (BMI). (2) Methods: A total of 207 patients were included in the study and analysed blinded to clinical diagnosis. (3) Results: Multivariable linear regressions were run to predict log-transformed Qalb and log-transformed CSF TP value from age, sex, weight, and height (first model) or from age, sex, and BMI (second model). In both models, age (β = 0.004, 95% CI = 0.002 to 0.006) and sex (β = -0.095, 95% CI = -0.169 to -0.021, and β = -0.135, 95% CI = -0.191 to -0.079) were significant predictors for QAlb, but weight, height, and BMI were not. Similarly, age (β = 0.004, 95% CI = 0.003 to 0.006) and sex (β = -0.077, 95% CI = -0.142 to -0.013, and β = -0.109, 95% CI = -0.157 to -0.060) were significant predictors for CSF TP, while anthropometric characteristics were not. No differences in QAlb and CSF TP were found when grouping males and females by BMI status. (4) Conclusions: Our data suggest that anthropometric characteristics could not explain the sex-related differences in QAlb and CSF TP.
Collapse
Affiliation(s)
- Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Raffaella Candeloro
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Caterina Trevisan
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Samantha Permunian
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Gaia Buscemi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Sara Ghisellini
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.); (S.P.)
| | - Giovanna Negri
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.); (S.P.)
| | - Giada Gilli
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| | - Caterina Ferri
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy;
| | - Tiziana Bellini
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Pizzicotti
- Chemical-Clinical Analysis Laboratory, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.); (S.P.)
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (S.P.); (G.B.); (G.G.); (T.B.); (M.P.)
| |
Collapse
|
20
|
Kissell CE, Young BE, Jarrard CP, Huang M, Allen DR, Okuda DT, Smith SA, Fadel PJ, Davis SL. Reduced resting beat-to-beat blood pressure variability in females with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2024; 83:105416. [PMID: 38244526 DOI: 10.1016/j.msard.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease of the central nervous system and cardiovascular autonomic dysfunction has been well documented in this population. The sympathetic nervous system contributes to beat-to-beat blood pressure regulation primarily by baroreflex control of the peripheral vasculature which may be impaired in females with RRMS. Even at rest, attenuated sympathetic control of vasomotor tone may result in large and frequent blood pressure excursions (i.e., greater blood pressure variability). Therefore, the primary purpose of this investigation was to test the following hypotheses; (1) females with RRMS have augmented beat-to-beat blood pressure variability compared to healthy controls and (2) reduced sympathetic baroreflex sensitivity in females with RRMS is related to augmented blood pressure variability. METHODS Electrocardiogram and beat-to-beat blood pressure were continuously recorded during 8-10 min of supine rest in 26 females with clinically definite RRMS and 24 sex-, age- and BMI- matched healthy controls. Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (MS, n = 15; CON, n = 14). Traditional statistical measurements of dispersions were used to index beat-to-beat blood pressure variability. Spontaneous sympathetic baroreflex sensitivity was quantified by sorting diastolic blood pressures into 3 mmHg bins and calculating MSNA burst incidence within each bin. Weighted linear regression was then used to account for the number of cardiac cycles in each bin and calculate slopes. Spontaneous cardiac baroreflex sensitivity was determined using the sequence method. RESULTS Groups had similar resting mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), MSNA burst frequency and MSNA burst incidence (All P > 0.05). The standard deviation and interquartile range of MAP, SBP and DBP were less in females with RRMS compared to healthy controls (All P < 0.05). There were no between groups differences in sympathetic baroreflex sensitivity or cardiac baroreflex sensitivity (Both P > 0.05) and baroreflex sensitivity measures were not related to any indices of blood pressure variability (Both P > 0.05). CONCLUSION These data suggest that females with RRMS have reduced beat-to-beat blood pressure variability. However, this does not appear to be related to changes in sympathetic or cardiac baroreflex sensitivity.
Collapse
Affiliation(s)
- Claire E Kissell
- Department of Applied Physiology and Sport Management, Southern Methodist University, Dallas, TX, USA
| | - Benjamin E Young
- Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caitlin P Jarrard
- Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mu Huang
- Office of Science, Medicine, and Health, American Heart Association, Dallas, TX, USA
| | - Dustin R Allen
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Darin T Okuda
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott A Smith
- Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Scott L Davis
- Department of Applied Physiology and Sport Management, Southern Methodist University, Dallas, TX, USA; Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Laaksonen S, Saraste M, Nylund M, Hinz R, Snellman A, Rinne J, Matilainen M, Airas L. Sex-driven variability in TSPO-expressing microglia in MS patients and healthy individuals. Front Neurol 2024; 15:1352116. [PMID: 38445263 PMCID: PMC10913932 DOI: 10.3389/fneur.2024.1352116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background Males with multiple sclerosis (MS) have a higher risk for disability progression than females, but the reasons for this are unclear. Objective We hypothesized that potential differences in TSPO-expressing microglia between female and male MS patients could contribute to sex differences in clinical disease progression. Methods The study cohort consisted of 102 MS patients (mean (SD) age 45.3 (9.7) years, median (IQR) disease duration 12.1 (7.0-17.2) years, 72% females, 74% relapsing-remitting MS) and 76 age- and sex-matched healthy controls. TSPO-expressing microglia were measured using the TSPO-binding radioligand [11C](R)-PK11195 and brain positron emission tomography (PET). TSPO-binding was quantified as distribution volume ratio (DVR) in normal-appearing white matter (NAWM), thalamus, whole brain and cortical gray matter (cGM). Results Male MS patients had higher DVRs compared to female patients in the whole brain [1.22 (0.04) vs. 1.20 (0.02), p = 0.002], NAWM [1.24 (0.06) vs. 1.21 (0.05), p = 0.006], thalamus [1.37 (0.08) vs. 1.32 (0.02), p = 0.008] and cGM [1.25 (0.04) vs. 1.23 (0.04), p = 0.028]. Similarly, healthy men had higher DVRs compared to healthy women except for cGM. Of the studied subgroups, secondary progressive male MS patients had the highest DVRs in all regions, while female controls had the lowest DVRs. Conclusion We observed higher TSPO-binding in males compared to females among people with MS and in healthy individuals. This sex-driven inherent variability in TSPO-expressing microglia may predispose male MS patients to greater likelihood of disease progression.
Collapse
Affiliation(s)
- Sini Laaksonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Maija Saraste
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Anniina Snellman
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Motyl J, Friedova L, Ganapathy Subramanian R, Vaneckova M, Fuchs TA, Krasensky J, Blahova Dusankova J, Kubala Havrdova E, Horakova D, Uher T. Brain MRI disease burden and sex differences in cognitive performance of patients with multiple sclerosis. Acta Neurol Belg 2024; 124:109-118. [PMID: 37552396 DOI: 10.1007/s13760-023-02350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Although there is evidence that shows worse cognitive functioning in male patients with multiple sclerosis (MS), the role of brain pathology in this context is under-investigated. OBJECTIVE To investigate sex differences in cognitive performance of MS patients, in the context of brain pathology and disease burden. METHODS Brain MRI, neurological examination, neuropsychological assessment (Brief International Cognitive Assessment in MS-BICAMS, and Paced Auditory Verbal Learning Test-PASAT), and patient-reported outcome questionnaires were performed/administered in 1052 MS patients. RESULTS Females had higher raw scores in the Symbol Digit Modalities Test (SDMT) (57.0 vs. 54.0; p < 0.001) and Categorical Verbal Learning Test (CVLT) (63.0 vs. 57.0; p < 0.001), but paradoxically, females evaluated their cognitive performance by MS Neuropsychological Questionnaire as being worse (16.6 vs 14.5, p = 0.004). Females had a trend for a weaker negative correlation between T2 lesion volume and SDMT ([Formula: see text] = - 0.37 in females vs. - 0.46 in men; interaction p = 0.038). On the other hand, women had a trend for a stronger correlation between Brain Parenchymal Fraction (BPF) and a visual memory test (Spearman's [Formula: see text] = 0.31 vs. 0.21; interaction p = 0.016). All these trends were not significant after correction for false discovery rate. CONCLUSIONS Although, females consider their cognition as worse, males had at a group level slightly worse verbal memory and information processing speed. However, the sex differences in cognitive performance were smaller than the variability of scores within the same sex group. Brain MRI measures did not explain the sex differences in cognitive performance among MS patients.
Collapse
Affiliation(s)
- Jiri Motyl
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Lucie Friedova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Ranjani Ganapathy Subramanian
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tom A Fuchs
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Blahova Dusankova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Multiple Sclerosis Center, Charles University and General University Hospital, Katerinska 30, 120 00, Prague, Czech Republic.
- Department of Physiotherapy, Faculty of Health Care, University of Presov, Prešov, Slovak Republic.
| |
Collapse
|
23
|
Said EA, Al-Rubkhi A, Jaju S, Koh CY, Al-Balushi MS, Al-Naamani K, Al-Sinani S, Al-Busaidi JZ, Al-Jabri AA. Association of the Magnitude of Anti-SARS-CoV-2 Vaccine Side Effects with Sex, Allergy History, Chronic Diseases, Medication Intake, and SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:104. [PMID: 38276676 PMCID: PMC10820381 DOI: 10.3390/vaccines12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Vaccination provides the best protection against the increasing infections of SARS-CoV-2. The magnitude and type of anti-SARS-CoV-2 vaccine side effects (SEs) depend on parameters that are not fully understood. In this cross-sectional study, the associations between different anti-SARS-CoV-2 vaccine SEs and age, sex, the presence of chronic diseases, medication intake, history of allergies, and infections with SARS-CoV-2 were investigated. Our survey used the Google platform and had 866 participants, contacted through e-mails, social media and chain referral sampling (margin of error ≈ 4.38%, 99% confidence). More than 99% of the participants received the BNT162b2 and ChAdOx1-S vaccines. Being female, having chronic diseases, taking medicines routinely and the presence of a SARS-CoV-2 infection (p < 0.05) were associated with strong SEs after the BNT162b2 vaccine second dose. Having a history of allergies and a female sex (p < 0.01) were associated with strong SEs after the ChAdOx1-S vaccine second dose. Furthermore, the results reveal, for the first time, the associations between having a history of allergies, chronic diseases, medication usage, and SEs of a strong magnitude for the BNT162b2 and ChAdOx1-S vaccines. Additionally, this study supports the association of the female sex and infection with SARS-CoV-2 with an increased potential of developing stronger SEs with certain anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman; (A.A.-R.)
| | - Afnan Al-Rubkhi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman; (A.A.-R.)
| | - Sanjay Jaju
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman;
| | - Crystal Y. Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman; (A.A.-R.)
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman; (A.A.-R.)
| | - Khalid Al-Naamani
- Department of Medicine, Armed Forces Hospital, P.O. Box 726, Muscat 111, Oman
| | - Siham Al-Sinani
- Oman Medical Specialty Board, P.O. Box 1948, Muscat 130, Oman
| | - Juma Z. Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman; (A.A.-R.)
| | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman; (A.A.-R.)
| |
Collapse
|
24
|
Itoh N, Itoh Y, Stiles L, Voskuhl R. Sex differences in the neuronal transcriptome and synaptic mitochondrial function in the cerebral cortex of a multiple sclerosis model. Front Neurol 2023; 14:1268411. [PMID: 38020654 PMCID: PMC10654219 DOI: 10.3389/fneur.2023.1268411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Multiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE). Methods Neurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes. Results RNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays. Discussion Cortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Department of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
25
|
Rook J, Llufriu S, de Kok D, Rofes A. Language impairments in people with autoimmune neurological diseases: A scoping review. JOURNAL OF COMMUNICATION DISORDERS 2023; 106:106368. [PMID: 37717472 DOI: 10.1016/j.jcomdis.2023.106368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Autoimmune neurological diseases (ANDs) are a specific type of autoimmune disease that affect cells within the central and peripheral nervous system. ANDs trigger various physical/neuropsychiatric symptoms. However, language impairments in people with ANDs are not well characterized. Here we aimed to determine the kinds of language impairment that most commonly emerge in 10 ANDs, the characteristics of the patients (demographic, neurological damage), and the assessment methods used. METHODS We followed the PRISMA Extension for Scoping Reviews (PRISMA-ScR). PubMed and Google Scholar were searched. We used a list of search terms containing 10 types of ANDs (e.g., multiple sclerosis, acute disseminated encephalomyelitis) in combination with the terms aphasia, dysphasia, fluency, language, listening, morphology, phonology, pragmatics, reading, semantics, speaking, syntax, writing. The reference lists and citations of the relevant papers were also investigated. The type of AND, patient characteristics, neurological damage and examination technique, language tests administered, and main findings were noted for each study meeting the inclusion criteria. RESULTS We found 171 studies meeting our inclusion criteria. These comprised group studies and case studies. Language impairments differed largely among types of ANDs. Neurological findings were mentioned in most of the papers, but specific language tests were rarely used. CONCLUSIONS Language symptoms in people with ANDs are commonly reported. These are often not full descriptions or only focus on specific time points in the course of the disease. Future research needs to assess specific language functions in people with ANDs and relate their language impairments to brain damage at different stages of disease evolution.
Collapse
Affiliation(s)
- Janine Rook
- Center for Language and Cognition, University of Groningen, Groningen, The Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Dörte de Kok
- Center for Language and Cognition, University of Groningen, Groningen, The Netherlands
| | - Adrià Rofes
- Center for Language and Cognition, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Cartwright J, Kipp K, Ng AV. Innovations in Multiple Sclerosis Care: The Impact of Artificial Intelligence via Machine Learning on Clinical Research and Decision-Making. Int J MS Care 2023; 25:233-241. [PMID: 37720260 PMCID: PMC10503815 DOI: 10.7224/1537-2073.2022-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Artificial intelligence (AI) and its specialized subcomponent machine learning are becoming increasingly popular analytic techniques. With this growth, clinicians and health care professionals should soon expect to see an increase in diagnostic, therapeutic, and rehabilitative technologies and processes that use elements of AI. The purpose of this review is twofold. First, we provide foundational knowledge that will help health care professionals understand these modern algorithmic techniques and their implementation for classification and clustering tasks. The phrases artificial intelligence and machine learning are defined and distinguished, as are the metrics by which they are assessed and delineated. Subsequently, 7 broad categories of algorithms are discussed, and their uses explained. Second, this review highlights several key studies that exemplify advances in diagnosis, treatment, and rehabilitation for individuals with multiple sclerosis using a variety of data sources-from wearable sensors to questionnaires and serology-and elements of AI. This review will help health care professionals and clinicians better understand AI-dependent diagnostic, therapeutic, and rehabilitative techniques, thereby facilitating a greater quality of care.
Collapse
Affiliation(s)
- Jacob Cartwright
- From the Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA (JC, KK, AVN)
| | - Kristof Kipp
- From the Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA (JC, KK, AVN)
| | - Alexander V. Ng
- From the Program in Exercise Science, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA (JC, KK, AVN)
| |
Collapse
|
27
|
Ebrahimi HA, Larizadeh MH, Saba M, Jafarzadeh A. Radiotherapy Improves the Disability in Patients with Secondary Progressive Multiple Sclerosis. J Biomed Phys Eng 2023; 13:317-322. [PMID: 37609511 PMCID: PMC10440411 DOI: 10.31661/jbpe.v0i0.2012-1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/28/2021] [Indexed: 08/24/2023]
Abstract
Background Multiple sclerosis (MS) as a complex neurological abnormality is marked with loss of myelin and axons due to chronic inflammatory and autoimmune responses. The modulatory properties of the low dose radiation (LDR) on inflammatory and immune responses have well known. Objective The current research aimed to assess the impacts of LDR on the disability in patients suffering from MS. Material and Methods This experimental pilot study was done on 10 patients with secondary progressive multiple sclerosis (SPMS). After magnetic resonance imaging, the SPMS patients were treated by LDR at a daily dose of 2 Gray for 5 consecutive days (totally 10 Gray dose) using a linear accelerator. The extent of the disability was evaluated one week after the completion of radiotherapy using expanded disability status scale (EDSS). Results After receiving radiotherapy, the patients had a feeling of wellbeing of some sort. The mean of EDSS was significantly reduced after radiotherapy compared with before irradiation (7.4±0.45 vs 6.35±1.18; P<0.017). EDSS more decreased in younger SPMS patients (P=0.0001), and in the women after LDR (P=0.027). Conclusion Radiotherapy can reduce fatigue and EDSS in patients with SPMS. The age and gender of patients may influence the LDR efficacy.
Collapse
Affiliation(s)
- Hossein-Ali Ebrahimi
- Neurology Research Center, Department of Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Hasan Larizadeh
- Neurology Research Center, Department of Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Saba
- Department of Radiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
28
|
Macaron G, Larochelle C, Arbour N, Galmard M, Girard JM, Prat A, Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front Neurol 2023; 14:1197212. [PMID: 37483447 PMCID: PMC10361071 DOI: 10.3389/fneur.2023.1197212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023] Open
Abstract
With a rapidly aging global population and improvement of outcomes with newer multiple sclerosis (MS)-specific disease-modifying therapies (DMTs), the epidemiology of MS has shifted to an older than previously described population, with a peak prevalence of the disease seen in the 55-65 years age group. Changes in the pathophysiology of MS appear to be age-dependent. Several studies have identified a consistent phase of disability worsening around the fifth decade of life. The latter appears to be independent of prior disease duration and inflammatory activity and concomitant to pathological changes from acute focal active demyelination to chronic smoldering plaques, slow-expanding lesions, and compartmentalized inflammation within the central nervous system (CNS). On the other hand, decreased CNS tissue reserve and poorer remyelinating capacity with aging lead to loss of relapse recovery potential. Aging with MS may imply longer exposure to DMTs, although treatment efficacy in patients >55 years has not been evaluated in pivotal randomized controlled trials and appears to decrease with age. Older individuals are more prone to adverse effects of DMTs, an important aspect of treatment individualization. Aging with MS also implies a higher global burden of comorbid illnesses that contribute to overall impairments and represent a crucial confounder in interpreting clinical worsening. Discontinuation of DMTs after age 55, when no evidence of clinical or radiological activity is detected, is currently under the spotlight. In this review, we will discuss the impact of aging on MS pathobiology, the effect of comorbidities and other confounders on clinical worsening, and focus on current therapeutic considerations in this age group.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Catherine Larochelle
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Nathalie Arbour
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Manon Galmard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Jean Marc Girard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Alexandre Prat
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Pierre Duquette
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
29
|
Zettl UK, Rommer PS, Aktas O, Wagner T, Richter J, Oschmann P, Cepek L, Elias-Hamp B, Gehring K, Chan A, Hecker M. Interferon beta-1a sc at 25 years: a mainstay in the treatment of multiple sclerosis over the period of one generation. Expert Rev Clin Immunol 2023; 19:1343-1359. [PMID: 37694381 DOI: 10.1080/1744666x.2023.2248391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Interferon beta (IFN beta) preparations are an established group of drugs used for immunomodulation in patients with multiple sclerosis (MS). Subcutaneously (sc) applied interferon beta-1a (IFN beta-1a sc) has been in continuous clinical use for 25 years as a disease-modifying treatment. AREAS COVERED Based on data published since 2018, we discuss recent insights from analyses of the pivotal trial PRISMS and its long-term extension as well as from newer randomized studies with IFN beta-1a sc as the reference treatment, the use of IFN beta-1a sc across the patient life span and as a bridging therapy, recent data regarding the mechanisms of action, and potential benefits of IFN beta-1a sc regarding vaccine responses. EXPERT OPINION IFN beta-1a sc paved the way to effective immunomodulatory treatment of MS, enabled meaningful insights into the disease process, and remains a valid therapeutic option in selected vulnerable MS patient groups.
Collapse
Affiliation(s)
- Uwe Klaus Zettl
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Paulus Stefan Rommer
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | - Andrew Chan
- Department of Neurology, Inselspital Bern, University Hospital Bern, Bern, Switzerland
| | - Michael Hecker
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
30
|
Català-Senent JF, Andreu Z, Hidalgo MR, Soler-Sáez I, Roig FJ, Yanguas-Casás N, Neva-Alejo A, López-Cerdán A, de la Iglesia-Vayá M, Stranger BE, García-García F. A deep transcriptome meta-analysis reveals sex differences in multiple sclerosis. Neurobiol Dis 2023; 181:106113. [PMID: 37023829 DOI: 10.1016/j.nbd.2023.106113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic auto-immune, inflammatory, and degenerative disease of the central nervous system, affects both males and females; however, females suffer from a higher risk of developing MS (2-3:1 ratio relative to males). The precise sex-based factors influencing risk of MS are currently unknown. Here, we explore the role of sex in MS to identify molecular mechanisms underlying observed MS sex differences that may guide novel therapeutic approaches tailored for males or females. METHODS We performed a rigorous and systematic review of genome-wide transcriptome studies of MS that included patient sex data in the Gene Expression Omnibus and ArrayExpress databases following PRISMA statement guidelines. For each selected study, we analyzed differential gene expression to explore the impact of the disease in females (IDF), in males (IDM) and our main goal: the sex differential impact of the disease (SDID). Then, for each scenario (IDF, IDM and SDID) we performed 2 meta-analyses in the main tissues involved in the disease (brain and blood). Finally, we performed a gene set analysis in brain tissue, in which a higher number of genes were dysregulated, to characterize sex differences in biological pathways. RESULTS After screening 122 publications, the systematic review provided a selection of 9 studies (5 in blood and 4 in brain tissue) with a total of 474 samples (189 females with MS and 109 control females; 82 males with MS and 94 control males). Blood and brain tissue meta-analyses identified, respectively, 1 (KIR2DL3) and 13 (ARL17B, CECR7, CEP78, IFFO2, LOC401127, NUDT18, RNF10, SLC17A5, STMP1, TRAF3IP2-AS1, UBXN2B, ZNF117, ZNF488) MS-associated genes that differed between males and females (SDID comparison). Functional analyses in the brain revealed different altered immune patterns in females and males (IDF and IDM comparisons). The pro-inflammatory environment and innate immune responses related to myeloid lineage appear to be more affected in females, while adaptive responses associated with the lymphocyte lineage in males. Additionally, females with MS displayed alterations in mitochondrial respiratory chain complexes, purine, and glutamate metabolism, while MS males displayed alterations in stress response to metal ion, amine, and amino acid transport. CONCLUSION We found transcriptomic and functional differences between MS males and MS females (especially in the immune system), which may support the development of new sex-based research of this disease. Our study highlights the importance of understanding the role of biological sex in MS to guide a more personalized medicine.
Collapse
Affiliation(s)
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009 Valencia, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Irene Soler-Sáez
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Francisco José Roig
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; Faculty of Health Sciences, San Jorge University, 50830 Zaragoza, Spain
| | - Natalia Yanguas-Casás
- Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Grupo de Investigación en Linfomas, C/Joaquín Rodrigo 2, Majadahonda, 28222 Madrid, Spain
| | - Almudena Neva-Alejo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Adolfo López-Cerdán
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012 Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012 Valencia, Spain
| | - Barbara E Stranger
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain.
| |
Collapse
|
31
|
Bronzini M, Maglione A, Rosso R, Matta M, Masuzzo F, Rolla S, Clerico M. Feeding the gut microbiome: impact on multiple sclerosis. Front Immunol 2023; 14:1176016. [PMID: 37304278 PMCID: PMC10248010 DOI: 10.3389/fimmu.2023.1176016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial neurological disease characterized by chronic inflammation and immune-driven demyelination of the central nervous system (CNS). The rising number of MS cases in the last decade could be partially attributed to environmental changes, among which the alteration of the gut microbiome driven by novel dietary habits is now of particular interest. The intent of this review is to describe how diet can impact the development and course of MS by feeding the gut microbiome. We discuss the role of nutrition and the gut microbiota in MS disease, describing preclinical studies on experimental autoimmune encephalomyelitis (EAE) and clinical studies on dietary interventions in MS, with particular attention to gut metabolites-immune system interactions. Possible tools that target the gut microbiome in MS, such as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally, we discuss the open questions and the prospects of these microbiome-targeted therapies for people with MS and for future research.
Collapse
Affiliation(s)
- Matteo Bronzini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | | | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
32
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
33
|
Bonaldo B, Casile A, Montarolo F, Bettarelli M, Napoli F, Gotti S, Panzica G, Marraudino M. Effects of perinatal exposure to bisphenol A or S in EAE model of multiple sclerosis. Cell Tissue Res 2023; 392:467-480. [PMID: 36750500 PMCID: PMC10172280 DOI: 10.1007/s00441-023-03746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Epidemiological studies support the idea that multiple sclerosis (MS) is a multifactorial disease, overlapping genetic, epigenetic, and environmental factors. A better definition of environmental risks is critical to understand both etiology and the sex-related differences of MS. Exposure to endocrine-disrupting compounds (EDCs) fully represents one of these risks. EDCs are natural or synthetic exogenous substances (or mixtures) that alter the functions of the endocrine system. Among synthetic EDCs, exposure to bisphenol A (BPA) has been implicated in the etiology of MS, but to date, controversial data has emerged. Furthermore, nothing is known about bisphenol S (BPS), one of the most widely used substitutes for BPA. As exposure to bisphenols will not disappear soon, it is necessary to clarify their role also in this pathological condition defining their role in disease onset and course in both sexes. In this study, we examined, in both sexes, the effects of perinatal exposure to BPA and BPS in one of the most widely used mouse models of MS, experimental autoimmune encephalomyelitis (EAE). Exposure to bisphenols seemed to be particularly deleterious in males. In fact, both BPA- and BPS-treated males showed anticipation of the disease onset and an increased motoneuron loss in the spinal cord. Overall, BPA-treated males also displayed an exacerbation of EAE course and an increase in inflammation markers in the spinal cord. Analyzing the consequences of bisphenol exposure on EAE will help to better understand the role of both xenoestrogens and endogenous estrogens on the sexually dimorphic characteristics of MS.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy.
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| |
Collapse
|
34
|
Ramanathan S, Brilot F, Irani SR, Dale RC. Origins and immunopathogenesis of autoimmune central nervous system disorders. Nat Rev Neurol 2023; 19:172-190. [PMID: 36788293 DOI: 10.1038/s41582-023-00776-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
The field of autoimmune neurology is rapidly evolving, and recent discoveries have advanced our understanding of disease aetiologies. In this article, we review the key pathogenic mechanisms underlying the development of CNS autoimmunity. First, we review non-modifiable risk factors, such as age, sex and ethnicity, as well as genetic factors such as monogenic variants, common variants in vulnerability genes and emerging HLA associations. Second, we highlight how interactions between environmental factors and epigenetics can modify disease onset and severity. Third, we review possible disease mechanisms underlying triggers that are associated with the loss of immune tolerance with consequent recognition of self-antigens; these triggers include infections, tumours and immune-checkpoint inhibitor therapies. Fourth, we outline how advances in our understanding of the anatomy of lymphatic drainage and neuroimmune interfaces are challenging long-held notions of CNS immune privilege, with direct relevance to CNS autoimmunity, and how disruption of B cell and T cell tolerance and the passage of immune cells between the peripheral and intrathecal compartments have key roles in initiating disease activity. Last, we consider novel therapeutic approaches based on our knowledge of the immunopathogenesis of autoimmune CNS disorders.
Collapse
Affiliation(s)
- Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Hospital, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- School of Medical Science, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Russell C Dale
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- TY Nelson Department of Paediatric Neurology, Children's Hospital Westmead, Sydney, New South Wales, Australia.
| |
Collapse
|
35
|
Hosny HS, Shehata HS, Ahmed S, Ramadan I, Abdo SS, Fouad AM. Predictors of severity and outcome of multiple sclerosis relapses. BMC Neurol 2023; 23:67. [PMID: 36782141 PMCID: PMC9926556 DOI: 10.1186/s12883-023-03109-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The most common type of MS is the relapsing-remitting MS (RRMS) where relapses are the main component of the disease course. However, the relationship between the characteristics of the relapses on one hand and their severity and outcome on the other hand has not been fully characterized. OBJECTIVES To explore the characteristics of relapses among a cohort of Egyptian MS patients and their relation to the severity and outcome of the disease. SUBJECTS AND METHODS We analyzed 300 attacks from 223 patients in a retrospective study to identify demographic, clinical and paraclinical (laboratory and radiological) factors affecting: 1- Severity of relapses (the difference between the EDSS at the day of maximum worsening and the EDSS before the onset of the attack). 2- Outcome of relapses (the difference between the EDSS at the day of maximum improvement and the EDSS before the onset of the relapse). RESULTS Severe attacks were most likely to occur in patients who are males, single, presenting with poly-symptomatic presentation, slower tempo of evolution of attack symptoms, longer duration of the attack, absence of DMTs at the time of the attack. The risk of having a severe relapse is more than 3 times when the patient is single. Regarding attack outcome, poorly recovered attacks were more common in patients with older age at disease onset and at attack onset, male sex, higher number of relapses, longer duration of illness prior to the attack, severe relapses, polysymptomatic presentation, associated cognitive symptoms, slower tempo of symptom evolution, longer duration of the attack, patients on OCPs, smoking, and presence of black holes in brain MRI. The risk of having relapses with partial or no recovery is more than five times when the patient has black holes in brain MRI and more than 4 times when the patient is a smoker. CONCLUSION Bearing in mind the demographic characteristics as well as the clinical and paraclinical characteristics of each attack and their relation to attack severity and outcome are a key to understanding the individual disease course of every patient and hence tailoring the best therapeutic plan suitable for his individual needs. In other words, prompt, rapid intervention in male patients, polysymptomatic attacks, slower tempo of evolution of attack symptoms and longer duration of the attack should be adopted since these factors are predictive of severe relapses as well as poor relapse outcome.
Collapse
Affiliation(s)
- Hassan Saad Hosny
- grid.7776.10000 0004 0639 9286Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hatem Samir Shehata
- grid.7776.10000 0004 0639 9286Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sandra Ahmed
- grid.7776.10000 0004 0639 9286Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ismail Ramadan
- grid.7155.60000 0001 2260 6941Neurology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sarah Sherif Abdo
- grid.7776.10000 0004 0639 9286Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amr Mohamed Fouad
- Neurology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
36
|
Daguano Gastaldi V, Bh Wilke J, Weidinger CA, Walter C, Barnkothe N, Teegen B, Luessi F, Stöcker W, Lühder F, Begemann M, Zipp F, Nave KA, Ehrenreich H. Factors predisposing to humoral autoimmunity against brain-antigens in health and disease: Analysis of 49 autoantibodies in over 7000 subjects. Brain Behav Immun 2023; 108:135-147. [PMID: 36323361 DOI: 10.1016/j.bbi.2022.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Circulating autoantibodies (AB) against brain-antigens, often deemed pathological, receive increasing attention. We assessed predispositions and seroprevalence/characteristics of 49 AB in > 7000 individuals. METHODS Exploratory cross-sectional cohort study, investigating deeply phenotyped neuropsychiatric patients and healthy individuals of GRAS Data Collection for presence/characteristics of 49 brain-directed serum-AB. Predispositions were evaluated through GWAS of NMDAR1-AB carriers, analyses of immune check-point genotypes, APOE4 status, neurotrauma. Chi-square, Fisher's exact tests and logistic regression analyses were used. RESULTS Study of N = 7025 subjects (55.8 % male; 41 ± 16 years) revealed N = 1133 (16.13 %) carriers of any AB against 49 defined brain-antigens. Overall, age dependence of seroprevalence (OR = 1.018/year; 95 % CI [1.015-1.022]) emerged, but no disease association, neither general nor with neuropsychiatric subgroups. Males had higher AB seroprevalence (OR = 1.303; 95 % CI [1.144-1.486]). Immunoglobulin class (N for IgM:462; IgA:487; IgG:477) and titers were similar. Abundant were NMDAR1-AB (7.7 %). Low seroprevalence (1.25 %-0.02 %) was seen for most AB (e.g., amphiphysin, KCNA2, ARHGAP26, GFAP, CASPR2, MOG, Homer-3, KCNA1, GLRA1b, GAD65). Non-detectable were others. GWAS of NMDAR1-AB carriers revealed three genome-wide significant SNPs, two intergenic, one in TENM3, previously autoimmune disease-associated. Targeted analysis of immune check-point genotypes (CTLA4, PD1, PD-L1) uncovered effects on humoral anti-brain autoimmunity (OR = 1.55; 95 % CI [1.058-2.271]) and disease likelihood (OR = 1.43; 95 % CI [1.032-1.985]). APOE4 carriers (∼19 %) had lower seropositivity (OR = 0.766; 95 % CI [0.625-0.933]). Neurotrauma predisposed to NMDAR1-AB seroprevalence (IgM: OR = 1.599; 95 % CI [1.022-2.468]). CONCLUSIONS Humoral autoimmunity against brain-antigens, frequent across health and disease, is predicted by age, gender, genetic predisposition, and brain injury. Seroprevalence, immunoglobulin class, or titers do not predict disease.
Collapse
Affiliation(s)
- Vinicius Daguano Gastaldi
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Justus Bh Wilke
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Cosima A Weidinger
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Carolin Walter
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Nadine Barnkothe
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Bianca Teegen
- Institute for Experimental Immunology, Affiliated to Euroimmun, Lübeck, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine‑Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, Affiliated to Euroimmun, Lübeck, Germany
| | - Fred Lühder
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center, of the Georg August University, Göttingen, Germany
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine‑Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| |
Collapse
|
37
|
Castellazzi M, Ferri C, Piola A, Permunian S, Buscemi G, Laudisi M, Baldi E, Pugliatti M. Dimethyl Fumarate Treatment Reduces the Amount but Not the Avidity of the Epstein-Barr Virus Capsid-Antigen-Specific Antibody Response in Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2023; 24:ijms24021500. [PMID: 36675014 PMCID: PMC9867096 DOI: 10.3390/ijms24021500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
(1) Multiple sclerosis (MS) is a chronic inflammatory disease of autoimmune origin. The Epstein−Barr virus (EBV) is associated with the onset of MS, as almost all patients have high levels of EBV-specific antibodies as a result of a previous infection. We evaluated longitudinally the effects of dimethyl fumarate (DMF), a first-line treatment of MS, on the quantity and quality of EBV-specific IgG in MS patients. (2) Serum samples from 17 MS patients receiving DMF were taken before therapy (T0) and after 1 week (T1) and 1 (T2), 3 (T3) and 6 (T4) months of treatment. Anti-EBV nuclear antigen (EBNA)-1 and capsid antigen (CA) IgG levels and anti-CA IgG avidity were measured in all samples. (3) Serum levels of anti-CA IgG were lower at T1 (p = 0.0341), T2 (p = 0.0034), T3 (p < 0.0001) and T4 (p = 0.0023) than T0. These differences were partially confirmed also in anti-EBNA-1 IgG levels (T3 vs. T0, p = 0.0034). All patients had high-avidity anti-CA IgG at T0, and no changes were observed during therapy. (4): DMF can reduce the amount but not the avidity of the anti-EBV humoral immune response in MS patients from the very early stages of treatment.
Collapse
Affiliation(s)
- Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-236388
| | - Caterina Ferri
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Alice Piola
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Samantha Permunian
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Gaia Buscemi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Laudisi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Eleonora Baldi
- Neurology Unit, “S. Anna” University Hospital, 44124 Ferrara, Italy
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
38
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
39
|
Erani F, Patel D, Deck BL, Hamilton RH, Schultheis MT, Medaglia JD. Investigating the influence of an effort-reward interaction on cognitive fatigue in individuals with multiple sclerosis. J Neuropsychol 2022. [PMID: 36208463 PMCID: PMC10082133 DOI: 10.1111/jnp.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
This study examined whether an alteration in the effort-reward relationship, a theoretical framework based on cognitive neuroscience, could explain cognitive fatigue. Forty persons with MS and 40 healthy age- and education-matched cognitively healthy controls (HC) participated in a computerized switching task with orthogonal high- and low-demand (effort) and reward manipulations. We used the Visual Analog Scale of Fatigue (VAS-F) to assess subjective state fatigue before and after each condition during the task. We used mixed-effects models to estimate the association and interaction between effort and reward and their relationship to subjective fatigue and task performance. We found the high-demand condition was associated with increased VAS-F scores (p < .001), longer response times (RT) (p < .001) and lower accuracy (p < .001). The high-reward condition was associated with faster RT (p = .006) and higher accuracy (p = .03). There was no interaction effect between effort and reward on VAS-F scores or performance. Participants with MS reported higher VAS-F scores (p = .02). Across all conditions, participants with MS were slower (p < .001) and slower as a function of condition demand compared with HC (p < .001). This behavioural study did not find evidence that an effort-reward interaction is associated with cognitive fatigue. However, our findings support the role of effort in subjective cognitive fatigue and both effort and reward on task performance. In future studies, more salient reward manipulations could be necessary to identify effort-reward interactions on subjective cognitive fatigue.
Collapse
Affiliation(s)
- Fareshte Erani
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Darshan Patel
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Benjamin L Deck
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Roy H Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria T Schultheis
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Borziak K, Finkelstein J. X-linked genetic risk factors that promote autoimmunity and dampen remyelination are associated with multiple sclerosis susceptibility. Mult Scler Relat Disord 2022; 66:104065. [PMID: 35905688 DOI: 10.1016/j.msard.2022.104065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/14/2022] [Accepted: 07/17/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neurodegenerative disease, which has a strong genetic component and is more prevalent in women. MS is caused by an autoimmunity initiated inflammatory response which leads to axon demyelination, followed by axon loss, plaque formation and neurodegeneration. The goal of this article was to explore X-linked genetic factors that are associated with MS susceptibility. METHODS Using UK Biobank microarray, we analyzed the prevalence of alleles on the X chromosome to identify variants potentially involved in MS. Overall, 488,225 patients across 18,857 markers were analyzed using PLINK. RESULTS Our results identify 20 SNPs that are significantly more abundant in persons with MS. The genes associated with these SNPs belong to immunity (LAMP2, AVPR2, MTMR8, F8, BCOR, PORCN, and ELF4) and remyelination (NSDHL, HS6ST2, RBM10, TAZ, and AR) pathways that are potentially of great significance for understanding the onset and progression of multiple sclerosis. We further identified a significant 20-fold increase in incidence of MS cases in women with co-occurrences of SNPs associated with myelination and immunity functions. CONCLUSIONS Our analysis provides novel insights into the roles of X-linked genes in the onset and presentation of multiple sclerosis, identifying 20 SNPs in 14 genes involved primarily in immunity and myelination functions that are significantly more abundant in persons with MS. Our co-occurrence analysis suggests that concurrent disruption of both myelination and immune systems significantly increases the risk of MS onset in women.
Collapse
Affiliation(s)
- Kirill Borziak
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 United States.
| | - Joseph Finkelstein
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 United States
| |
Collapse
|
41
|
Voskuhl R, Kuhle J, Siddarth P, Itoh N, Patel K, MacKenzie‐Graham A. Decreased neurofilament light chain levels in estriol-treated multiple sclerosis. Ann Clin Transl Neurol 2022; 9:1316-1320. [PMID: 35770318 PMCID: PMC9380170 DOI: 10.1002/acn3.51622] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogens have neuroprotective actions depending on estrogen type, dose, and timing in both preclinical models and in women during health and disease. Serum neurofilament light chain is a putative biomarker of neurodegeneration in multiple sclerosis, aging, and other neurodegenerative diseases. Here, oral treatment with an estrogen unique to pregnancy (estriol) using an 8 mg dose to induce a mid-pregnancy blood estriol level reduced serum neurofilament light chain in nonpregnant MS women at mean age of 37 years. This is consistent with estriol-mediated protection from neuro-axonal injury and supports the use of serum neurofilament light chain as a biomarker in MS.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- UCLA Multiple Sclerosis Program, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Prabha Siddarth
- Jane and Terry Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Noriko Itoh
- UCLA Multiple Sclerosis Program, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| | - Kevin Patel
- UCLA Multiple Sclerosis Program, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| | - Allan MacKenzie‐Graham
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyDavid Geffen School of Medicine at the University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
42
|
Eissman JM, Dumitrescu L, Mahoney ER, Smith AN, Mukherjee S, Lee ML, Scollard P, Choi SE, Bush WS, Engelman CD, Lu Q, Fardo DW, Trittschuh EH, Mez J, Kaczorowski CC, Hernandez Saucedo H, Widaman KF, Buckley RF, Properzi MJ, Mormino EC, Yang HS, Harrison TM, Hedden T, Nho K, Andrews SJ, Tommet D, Hadad N, Sanders RE, Ruderfer DM, Gifford KA, Zhong X, Raghavan NS, Vardarajan BN, Pericak-Vance MA, Farrer LA, Wang LS, Cruchaga C, Schellenberg GD, Cox NJ, Haines JL, Keene CD, Saykin AJ, Larson EB, Sperling RA, Mayeux R, Cuccaro ML, Bennett DA, Schneider JA, Crane PK, Jefferson AL, Hohman TJ. Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease. Brain 2022; 145:2541-2554. [PMID: 35552371 PMCID: PMC9337804 DOI: 10.1093/brain/awac177] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.
Collapse
Affiliation(s)
- Jaclyn M Eissman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Alexandra N Smith
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | | | - Michael L Lee
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Phoebe Scollard
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Seo Eun Choi
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Department of Population and
Quantitative Health Sciences, Case Western Reserve University,
Cleveland, OH, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public
Health, University of Wisconsin-Madison, Madison,
WI, USA
| | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-Madison,
Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, WI, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of
Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky,
Lexington, KY, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences, University of Washington
School of Medicine, Seattle, WA, USA
- VA Puget Sound Health Care System, GRECC, Seattle,
WA, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
| | | | - Hector Hernandez Saucedo
- UC Davis Alzheimer's Disease Research Center, Department of Neurology,
University of California Davis Medical Center, Sacramento,
CA, USA
| | | | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology,
Brigham and Women’s Hospital/Harvard Medical School, Boston,
MA, USA
- Melbourne School of Psychological Sciences, University of
Melbourne, Melbourne, Australia
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford
University, Stanford, CA, USA
| | - Hyun Sik Yang
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology,
Brigham and Women’s Hospital/Harvard Medical School, Boston,
MA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California
Berkeley, Berkeley, CA, USA
| | - Trey Hedden
- Icahn School of Medicine at Mount Sinai, New York
City, NY, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease
Center, Indiana University School of Medicine, Indianapolis,
IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University
School of Medicine, Indianapolis, IN, USA
| | - Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York
City, NY, USA
| | - Douglas Tommet
- Department of Psychiatry and Human Behavior, Brown University School of
Medicine, Providence, RI, USA
| | | | | | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Xiaoyuan Zhong
- Department of Statistics, University of Wisconsin-Madison,
Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, WI, USA
| | - Neha S Raghavan
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | - Badri N Vardarajan
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | | | | | | | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami School of
Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public
Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of
Medicine, Boston, MA, USA
| | - Li San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and
Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and
Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Department of Population and
Quantitative Health Sciences, Case Western Reserve University,
Cleveland, OH, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington,
Seattle, WA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of
Medicine, Indianapolis, IN, USA
| | - Eric B Larson
- Department of Medicine, University of Washington,
Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute,
Seattle, WA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami School of
Medicine, Miami, FL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical
Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical
Center, Chicago, IL, USA
| | - Paul K Crane
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| |
Collapse
|
43
|
Magyari M, Koch-Henriksen N. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:716-722. [PMID: 35393340 PMCID: PMC9279846 DOI: 10.1136/jnnp-2022-328994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To quantify sex differences in activity and severity of multiple sclerosis (MS) and how it depends on disease duration and time since clinical onset. METHODS All Danish citizens with onset of relapsing MS since 1996 who have received disease-modifying therapy have been followed with annual or biannual control visits with mandatory notification of the Danish Multiple Sclerosis Registry. Men and women were compared by the inverse probability of being female. Relapse rates and changes in the Expanded Disability Status Scale (EDSS) scores were analysed with weighted general linear models, and we used weighted Cox regression for HRs between men and women for different EDSS endpoints. RESULTS We included 3028 men and 6619 women. The weighted female:male relapse rate ratio was 1.16 (95% CI: 1.10 to 1.22) but after age 50 years, the difference disappeared. The annualised increase in EDSS was 0.07 in men (95% CI: 0.05 to 0.08) and 0.05 in women (95% CI: 0.04 to 0.06); p=0.017. With women as reference, the HR for reaching EDSS 4 was 1.34 (95% CI: 1.23 to 1.45; p<0.001), and for reaching EDSS 6 it was 1.43 (95% CI: 1.28 to 1.61; p<0.001). The diagnostic delay did not differ significantly between the sexes. CONCLUSION Women have more inflammatory disease activity in terms of relapses than men up to the age of menopause indicating that sex hormones may play a role. Men are more subject to the neurodegenerative component of MS than women, particularly after the age of 45 years.
Collapse
Affiliation(s)
- Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark .,The Danish Multiple Sclerosis Registry, Rigshospitalet, Copenhagen, Denmark
| | - Nils Koch-Henriksen
- The Danish Multiple Sclerosis Registry, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
44
|
Margoni M, Pagani E, Meani A, Storelli L, Mesaros S, Drulovic J, Barkhof F, Vrenken H, Strijbis E, Gallo A, Bisecco A, Pareto D, Sastre-Garriga J, Ciccarelli O, Yiannakas M, Palace J, Preziosa P, Rocca MA, Filippi M. Exploring in vivo multiple sclerosis brain microstructural damage through T1w/T2w ratio: a multicentre study. J Neurol Neurosurg Psychiatry 2022; 93:741-752. [PMID: 35580993 DOI: 10.1136/jnnp-2022-328908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate white matter and grey matter T1-weighted (w)/T2w ratio (T1w/T2w ratio) in healthy controls and patients with multiple sclerosis, and its association with clinical disability. METHODS In this cross-sectional study, 270 healthy controls and 434 patients with multiple sclerosis were retrospectively selected from 7 European sites. T1w/T2w ratio was obtained from brain T2w and T1w scans after intensity calibration using eyes and temporal muscle. RESULTS In healthy controls, T1w/T2w ratio increased until 50-60 years both in white and grey matter. Compared with healthy controls, T1w/T2w ratio was significantly lower in white matter lesions of all multiple sclerosis phenotypes, and in normal-appearing white matter and cortex of patients with relapsing-remitting and secondary progressive multiple sclerosis (p≤0.026), but it was significantly higher in the striatum and pallidum of patients with relapsing-remitting, secondary progressive and primary progressive multiple sclerosis (p≤0.042). In relapse-onset multiple sclerosis, T1w/T2w ratio was significantly lower in white matter lesions and normal-appearing white matter already at Expanded Disability Status Scale (EDSS) <3.0 and in the cortex only for EDSS ≥3.0 (p≤0.023). Conversely, T1w/T2w ratio was significantly higher in the striatum and pallidum for EDSS ≥4.0 (p≤0.005). In primary progressive multiple sclerosis, striatum and pallidum showed significantly higher T1w/T2w ratio beyond EDSS=6.0 (p≤0.001). In multiple sclerosis, longer disease duration, higher EDSS, higher brain lesional volume and lower normalised brain volume were associated with lower lesional and cortical T1w/T2w ratio and a higher T1w/T2w ratio in the striatum and pallidum (β from -1.168 to 0.286, p≤0.040). CONCLUSIONS T1w/T2w ratio may represent a clinically relevant marker sensitive to demyelination, neurodegeneration and iron accumulation occurring at the different multiple sclerosis phases.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Frederik Barkhof
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Hugo Vrenken
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva Strijbis
- MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Marios Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
45
|
Castellazzi M, Ferri C, Tecilla G, Huss A, Crociani P, Desina G, Barbella G, Piola A, Permunian S, Senel M, Leone M, Tumani H, Pugliatti M. The Sexual Dimorphism in Cerebrospinal Fluid Protein Content Does Not Affect Intrathecal IgG Synthesis in Multiple Sclerosis. J Pers Med 2022; 12:jpm12060977. [PMID: 35743761 PMCID: PMC9224729 DOI: 10.3390/jpm12060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) that mainly affects young adults and females more than males. The detection of intrathecal IgG synthesis (IIS) on cerebrospinal fluid (CSF) analysis supports the diagnosis of MS. A sexual dimorphism has recently been described in CSF protein content. (2) Methods: Clinical and laboratory data from 340 MS patients (F = 231, M = 99) and 89 people with clinically isolated syndrome (CIS) (F = 57, M = 32) were retrospectively analyzed to assess the presence of variables affected by sex and age. (3) Results: In MS, the albumin quotient (QAlb), reflecting the blood–CSF barrier (BCSFB) function, was higher in males (5.6 vs. 4.34) and correlated to age with a constant difference between sexes (F = 41.71). In CIS patients, QAlb increased with age only in males (r = 0.3567). Age was positively correlated to disease duration and severity in MS (r = 0.3502, r = 0.2986, respectively). No differences emerged for quantitative and qualitative IIS determinations. (4) Discussion: Although the main difference between males and females concerns the function of BCSFB assessed by QAlb, this sexual dimorphism does not affect the determination of the IIS evaluated both by quantitative and qualitative methods.
Collapse
Affiliation(s)
- Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-236388
| | - Caterina Ferri
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Ginevra Tecilla
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (M.S.); (H.T.)
| | - Paola Crociani
- Neurology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.C.); (G.D.); (M.L.)
| | - Gaetano Desina
- Neurology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.C.); (G.D.); (M.L.)
| | - Gianvito Barbella
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Alice Piola
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Samantha Permunian
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
| | - Makbule Senel
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (M.S.); (H.T.)
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.C.); (G.D.); (M.L.)
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (M.S.); (H.T.)
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (C.F.); (G.T.); (G.B.); (A.P.); (S.P.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
46
|
Zhu H, Li G, Yin J, Zhang H, Da Y, Li L. Anlotinib attenuates experimental autoimmune encephalomyelitis mice model of multiple sclerosis via modulating the differentiation of Th17 and Treg cells. Immunopharmacol Immunotoxicol 2022; 44:594-602. [PMID: 35638564 DOI: 10.1080/08923973.2022.2071722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In multiple sclerosis (MS), the imbalance between T helper (Th)-17 cells and regulatory T (Treg) cells are critical in autoimmune central nervous system (CNS) inflammation and demyelination. Experimental autoimmune encephalomyelitis (EAE) is an established mouse MS model and simulates MS at diverse levels. OBJECTIVES This study aims at investigating the impact of anlotinib on the clinical severity of EAE and CD4+ T cell differentiation. MATERIALS AND METHODS EAE-induced mice were treated with water (control) or 6 mg/kg anlotinib by gavage daily. At the peak of EAE, histopathological examination and flow cytometry analysis of CNS-infiltrating CD4+ T cells were performed. In vitro differentiation of CD4+ T cells under different conditions was detected by flow cytometry and quantitative real-time PCR. Finally, the impacts of anlotinib on the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the transcription levels of key genes involved in Th17 and Treg differentiation were tested. RESULTS Anlotinib attenuated the clinical severity of EAE and changed the frequencies of CNS-infiltrating CD4+ T cell subsets. Anlotinib inhibited the differentiation of Th17 cells in vitro, decreased the phosphorylation of STAT3, and reduced the expression of Rorc. Anlotinib promoted the differentiation of Treg cells and upregulated the expression levels of CD39 and CD73. DISCUSSION AND CONCLUSIONS Anlotinib alleviated the symptoms of EAE via inhibiting the Th17 cell differentiation and promoting Treg cell differentiation. Our study provides new opportunities for the exploitation of anlotinib as a therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Guangliang Li
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Hong Zhang
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yurong Da
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Long Li
- Department of Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China.,Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
47
|
Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Curr Top Behav Neurosci 2022; 62:333-373. [PMID: 35467295 DOI: 10.1007/7854_2022_324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS) that leads to axonal damage and accumulation of disability. Relapsing-remitting MS (RR-MS) is the most frequent presentation of MS and this form of MS is three times more prevalent in females than in males. This female bias in MS is apparent only after puberty, suggesting a role for sex hormones in this regulation; however, very little is known of the biological mechanisms that underpin the sex difference in MS onset. Experimental autoimmune encephalomyelitis (EAE) is an animal model of RR-MS that presents more severely in females in certain mouse strains and thus has been useful to study sex differences in CNS autoimmunity. Here, we overview the immunopathogenesis of MS and EAE and how immune mechanisms in these diseases differ between a male and female. We further describe how females exhibit more robust myelin-specific T helper (Th) 1 immunity in MS and EAE and how this sex bias in Th cells is conveyed by sex hormone effects on the T cells, antigen presenting cells, regulatory T cells, and innate lymphoid cell populations.
Collapse
|
48
|
Nishizawa K, Fujimori J, Nakashima I. Two-dimensional measurements with cut-off values are useful for assessing brain volume, physical disability, and processing speed in multiple sclerosis. Mult Scler Relat Disord 2022; 59:103543. [PMID: 35078126 DOI: 10.1016/j.msard.2022.103543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Two-dimensional (2D) measures have been proposed as potential proxy measures for whole-brain volume in multiple sclerosis (MS); however, cut-off values that determine the degree of brain volume loss (BVL) have not been established. Since we had previously developed a system to categorize MS patients into clusters with significantly different degrees of BVL, we tried to identify cut-off values for 2D measurements that can discriminate MS patients on the basis of disease severity associated with brain atrophy. METHODS In this cross-sectional analysis, ninety-one consecutive Japanese MS patients-clinically isolated syndrome (5%), relapsing-remitting MS (78%) and progressive MS (17%)-were categorized into two clusters (CL1 and CL2) with a significantly different degree of BVL using the method described in our previous study. MS patients were also evaluated for 2D measurements, namely, third ventricle width, lateral ventricle width (LVW), bicaudate ratio (BCR), and corpus callosum index (CCI). Thereafter, we performed receiver operating characteristic analysis to determine the cut-off values of the 2D measurements for categorizing the MS patients into two clusters. RESULTS We identified optimal cut-off values for each 2D measure with high specificity and sensitivity. The cut-off values for LVW, BCR, and CCI divided the MS patients into two subgroups, in which whole-brain and grey matter volume, EDSS, and processing speed were significantly different. CONCLUSION LVW, BCR, and CCI with particular cut-off values are useful to discriminate MS patients with decreased brain volume, physical disability, and processing speed.
Collapse
Affiliation(s)
- Kouichi Nishizawa
- School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
49
|
Ryan L, Mills KHG. Sex differences regulate immune responses in experimental autoimmune encephalomyelitis and multiple sclerosis. Eur J Immunol 2021; 52:24-33. [PMID: 34727577 DOI: 10.1002/eji.202149589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
MS is an autoimmune disease of the CNS that afflicts over 2.5 million people worldwide. There are striking sex differences in the susceptibility to and progression of this disease in humans. Females are twice as likely to develop MS than males, whereas disease progression and disability is more rapid in males compared with females; however, the latter is still controversial. There is growing evidence, mainly from animal models, that innate and adaptive immune responses are different in males and females, and that this can influence the outcome of a range of diseases including infection, cancer, and autoimmunity. Since MS is an immune-mediated disease, sex differences in pathogenic immune responses may account for some of the differences in susceptibility to and progression seen in men versus women. Indeed, data from the mouse model of MS, EAE, have already provided some evidence that female mice have earlier disease onset associated with stronger Th17 responses. This review will discuss the possible immunological basis of sex differences in susceptibility and disease outcome in EAE and MS and how a better understanding of sex differences in the responses to disease-modifying therapies may lead to improved patient treatment.
Collapse
Affiliation(s)
- Lucy Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
50
|
Hecker M, Bühring J, Fitzner B, Rommer PS, Zettl UK. Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis. Biomolecules 2021; 11:1510. [PMID: 34680143 PMCID: PMC8533505 DOI: 10.3390/biom11101510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Telomeres are protective structures at the ends of linear chromosomes. Shortened telomere lengths (TL) are an indicator of premature biological aging and have been associated with a wide spectrum of disorders, including multiple sclerosis (MS). MS is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system. The exact cause of MS is still unclear. Here, we provide an overview of genetic, environmental and lifestyle factors that have been described to influence TL and to contribute to susceptibility to MS and possibly disease severity. We show that several early-life factors are linked to both reduced TL and higher risk of MS, e.g., adolescent obesity, lack of physical activity, smoking and vitamin D deficiency. This suggests that the mechanisms underlying the disease are connected to cellular aging and senescence promoted by increased inflammation and oxidative stress. Additional prospective research is needed to clearly define the extent to which lifestyle changes can slow down disease progression and prevent accelerated telomere loss in individual patients. It is also important to further elucidate the interactions between shared determinants of TL and MS. In future, cell type-specific studies and advanced TL measurement methods could help to better understand how telomeres may be causally involved in disease processes and to uncover novel opportunities for improved biomarkers and therapeutic interventions in MS.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Jan Bühring
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Paulus Stefan Rommer
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| |
Collapse
|