1
|
Dinčić M, Čolović MB, Todorović J, Milinković N, Radosavljević B, Mougharbel AS, Kortz U, Krstić DZ. Donut-shaped [NaP 5W 30O 110] 14- polyoxometalate as a promising antidiabetic drug-candidate: putative mechanisms of action. J Biol Inorg Chem 2025:10.1007/s00775-025-02098-w. [PMID: 39912867 DOI: 10.1007/s00775-025-02098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
The aim of this study was to elucidate the potential mechanism of the antihyperglycemic action of the donut-shaped Preyssler-Pope-Jeannin polyanion salt (NH4)14[NaP5W30O110] 31H2O (NaP5W30) and its effect on metabolic disorders associated with diabetes. For this purpose, relevant parameters of blood glucose regulation, lipid profile, and electrolyte status were monitored in streptozotocin (STZ)-induced diabetic rats that were orally treated with 20 mg/kg/day NaP5W30 for three weeks. The serum insulin concentration was increased in diabetic animals treated with NaP5W30 (20 mg/kg/day, per os, three weeks), which could be one of the possible mechanisms of the confirmed antihyperglycemic effect. In addition, the administration of NaP5W30 significantly reduced hyperglycemia and glycated haemoglobin A1c (HbA1c) in STZ-induced diabetic rats, although normoglycemic values were not achieved. Furthermore, a statistically significant 1.3-fold reduction in serum total cholesterol and a 1.7-fold reduction in high-density lipoprotein (HDL) cholesterol were observed in the NaP5W30 treatment group compared to the diabetic control group. In contrast, NaP5W30 had no effect on homeostasis model assessment of insulin resistance (HOMA-IR) index values, electrolyte concentrations, or serum concentrations of low-density lipoprotein (LDL) cholesterol, apolipoprotein A1 (Apo A1), apolipoprotein B (Apo B), or total triglycerides. In summary, NaP5W30 effectively improved glycoregulation in diabetic rats via the considerable stimulation of insulin as a putative mechanism. Moreover, NaP5W30 did not affect rat weight or disrupt lipid and electrolyte status, common diabetes-followed side effects and risk factors for various life-threatening complications. Thus, NaP5W30 could be considered a promising antidiabetic drug-candidate that deserves further investigation.
Collapse
Grants
- 451-03-9/2023-14/200110 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-66/2024-03/200017 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-9/2023-14/200110 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-9/2023-14/200110 Ministry of Science, Technological Development, and Innovation of the Republic of Serbia
- 451-03-01038/2015-09/16, DAAD-PPP Bilateral project Serbia-Germany
- 451-03-01038/2015-09/16, DAAD-PPP Bilateral project Serbia-Germany
- 451-03-01038/2015-09/16, DAAD-PPP Bilateral project Serbia-Germany
Collapse
Affiliation(s)
- Marko Dinčić
- Faculty of Medicine, Institute of Pathological Physiology, University of Belgrade, Dr. Subotića 1, Belgrade, 11000, Republic of Serbia
| | - Mirjana B Čolović
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Department of Physical Chemistry, University of Belgrade, M. Petrović 12-14, Belgrade, 11351, Republic of Serbia
| | - Jasna Todorović
- Faculty of Medicine, Institute of Pathological Physiology, University of Belgrade, Dr. Subotića 1, Belgrade, 11000, Republic of Serbia
| | - Neda Milinković
- Faculty of Pharmacy, Department of Medical Biochemistry, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Republic of Serbia
| | - Branimir Radosavljević
- Faculty of Medicine, Institute of Medical Chemistry, University of Belgrade, Višegradska 26, Belgrade, 11000, Republic of Serbia
| | - Ali S Mougharbel
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Ulrich Kortz
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Danijela Z Krstić
- Faculty of Medicine, Institute of Medical Chemistry, University of Belgrade, Višegradska 26, Belgrade, 11000, Republic of Serbia.
| |
Collapse
|
2
|
Furukawa N, Matsui H, Sunaga H, Nagata K, Hirayama M, Obinata H, Yokoyama T, Ohno K, Kurabayashi M, Koitabashi N. Sacubitril/valsartan improves diastolic left ventricular stiffness with increased titin phosphorylation via cGMP-PKG activation in diabetic mice. Sci Rep 2024; 14:25081. [PMID: 39443532 PMCID: PMC11499646 DOI: 10.1038/s41598-024-75757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Titin, a giant sarcomeric protein, regulates diastolic left ventricular (LV) passive stiffness as a molecular spring and could be a therapeutic target for diastolic dysfunction. Sacubitril/valsartan (Sac/Val), an angiotensin receptor neprilysin inhibitor, has been shown to benefit patients with heart failure with preserved ejection fraction. The effect of Sac/Val is thought to be due to the enhancement of the cGMP/PKG pathway via natriuretic peptide. In this study, the effects of Sac/Val on LV diastolic dysfunction are demonstrated in a mouse diabetic cardiomyopathy model focusing on titin phosphorylation. Sac/Val-treated diabetic mice showed a greater increase in myocardial levels of cGMP-PKG than Val-treated and control mice. Conductance catheter analysis showed a significant reduction in LV stiffness in diabetic mice, but not in non-diabetic mice. Notably, diastolic LV stiffness was significantly reduced in Sac/Val-treated diabetic hearts compared with Val-treated or vehicle-treated diabetic mice. The phosphorylation level of titin (N2B), which determines passive stiffness and modulates active contraction, was higher in Sac/Val-treated hearts compared with Val-treated hearts in diabetic mice. Given that alteration of titin phosphorylation through PKG contributes to myocardial stiffness, the beneficial effects of Sac/Val in heart failure might be partly attributed to the induction of titin phosphorylation.
Collapse
Affiliation(s)
- Nozomi Furukawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Hiroaki Sunaga
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan
- Center for Liberal Arts and Sciences, Ashikaga University, Ashikaga, Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Occupational Therapy, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoyuki Yokoyama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Kinji Ohno
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
3
|
Zhao J, Han L, Zhang YR, Liu SM, Ji DR, Wang R, Yu YR, Jia MZ, Chai SB, Tang HF, Huang W, Qi YF. Intermedin Alleviates Diabetic Cardiomyopathy by Up-Regulating CPT-1β through Activation of the Phosphatidyl Inositol 3 Kinase/Protein Kinase B Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1204. [PMID: 39338366 PMCID: PMC11435185 DOI: 10.3390/ph17091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1β (CPT-1β) is the rate-limiting enzyme responsible for β-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, participating in the protection of various cardiovascular diseases. However, the role and underlying mechanisms of IMD in DCM are still unclear. In this study, we investigated whether IMD alleviates DCM via regulating CPT-1β. A rat DCM model was established by having rats to drink fructose water for 12 weeks. A mouse DCM model was induced by feeding mice a high-fat diet for 16 weeks. We showed that IMD and its receptor complexes levels were significantly down-regulated in the cardiac tissues of DCM rats and mice. Reduced expression of IMD was also observed in neonatal rat cardiomyocytes treated with palmitic acid (PA, 300 μM) in vitro. Exogenous and endogenous IMD mitigated cardiac hypertrophy, fibrosis, dysfunction, and lipid accumulation in DCM rats and IMD-transgenic DCM mice, whereas knockout of IMD worsened these pathological processes in IMD-knockout DCM mice. In vitro, IMD alleviated PA-induced cardiomyocyte hypertrophy and cardiac fibroblast activation. We found that CPT-1β enzyme activity, mRNA and protein levels, and acetyl-CoA content were increased in T2DM patients, rats and mice. IMD up-regulated the CPT-1β levels and acetyl-CoA content in T2DM rats and mice. Knockdown of CPT-1β blocked the effects of IMD on increasing acetyl-CoA content and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. IMD receptor antagonist IMD17-47 and the phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 reversed the effects of IMD on up-regulating CPT-1β and acetyl-CoA expression and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. We revealed that IMD alleviates DCM by up-regulating CPT-1β via calcitonin receptor-like receptor/receptor activity-modifying protein (CRLR/RAMP) receptor complexes and PI3K/Akt signaling. IMD may serve as a potent therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Ling Han
- Department of Cardiology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Rui Wang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yan-Rong Yu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Mo-Zhi Jia
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing 102206, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Wei Huang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| |
Collapse
|
4
|
Gera J, Kumar D, Chauhan G, Choudhary A, Rani L, Mandal L, Mandal S. High sugar diet-induced fatty acid oxidation potentiates cytokine-dependent cardiac ECM remodeling. J Cell Biol 2024; 223:e202306087. [PMID: 38916917 PMCID: PMC11199913 DOI: 10.1083/jcb.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Context-dependent physiological remodeling of the extracellular matrix (ECM) is essential for development and organ homeostasis. On the other hand, consumption of high-caloric diet leverages ECM remodeling to create pathological conditions that impede the functionality of different organs, including the heart. However, the mechanistic basis of high caloric diet-induced ECM remodeling has yet to be elucidated. Employing in vivo molecular genetic analyses in Drosophila, we demonstrate that high dietary sugar triggers ROS-independent activation of JNK signaling to promote fatty acid oxidation (FAO) in the pericardial cells (nephrocytes). An elevated level of FAO, in turn, induces histone acetylation-dependent transcriptional upregulation of the cytokine Unpaired 3 (Upd3). Release of pericardial Upd3 augments fat body-specific expression of the cardiac ECM protein Pericardin, leading to progressive cardiac fibrosis. Importantly, this pathway is quite distinct from the ROS-Ask1-JNK/p38 axis that regulates Upd3 expression under normal physiological conditions. Our results unravel an unknown physiological role of FAO in cytokine-dependent ECM remodeling, bearing implications in diabetic fibrosis.
Collapse
Affiliation(s)
- Jayati Gera
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Dheeraj Kumar
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gunjan Chauhan
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Adarsh Choudhary
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lavi Rani
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
5
|
Stratmann B, Eggers B, Mattern Y, de Carvalho TS, Marcus-Alic K, Tschoepe D. Maladaptive response following glucose overload in GLUT4-overexpressing H9C2 cardiomyoblasts. Diabetes Obes Metab 2024; 26:2379-2389. [PMID: 38528822 DOI: 10.1111/dom.15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Glucose overload drives diabetic cardiomyopathy by affecting the tricarboxylic acid pathway. However, it is still unknown how cells could overcome massive chronic glucose influx on cellular and structural level. METHODS/MATERIALS Expression profiles of hyperglycemic, glucose transporter-4 (GLUT4) overexpressing H9C2 (KE2) cardiomyoblasts loaded with 30 mM glucose (KE230L) and wild type (WT) cardiomyoblasts loaded with 30 mM glucose (WT30L) were compared using proteomics, real-time polymerase quantitative chain reaction analysis, or Western blotting, and immunocytochemistry. RESULTS The findings suggest that hyperglycemic insulin-sensitive cells at the onset of diabetic cardiomyopathy present complex changes in levels of structural cell-related proteins like tissue inhibitor of metalloproteases-1 (1.3 fold), intercellular adhesion molecule 1 (1.8 fold), type-IV-collagen (3.2 fold), chaperones (Glucose-Regulated Protein 78: 1.8 fold), autophagy (Autophagosome Proteins LC3A, LC3B: 1.3 fold), and in unfolded protein response (UPR; activating transcription factor 6α expression: 2.3 fold and processing: 2.4 fold). Increased f-actin levels were detectable with glucose overload by immnocytochemistry. Effects on energy balance (1.6 fold), sirtuin expression profile (Sirtuin 1: 0.7 fold, sirtuin 3: 1.9 fold, and sirtuin 6: 4.2 fold), and antioxidant enzymes (Catalase: 0.8 fold and Superoxide dismutase 2: 1.5 fold) were detected. CONCLUSION In conclusion, these findings implicate induction of chronic cell distress by sustained glucose accumulation with a non-compensatory repair reaction not preventing final cell death. This might explain the chronic long lasting pathogenesis observed in developing heart failure in diabetes mellitus.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Yvonne Mattern
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tayana Silva de Carvalho
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Katrin Marcus-Alic
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Centre for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Diethelm Tschoepe
- Herz- and Diabeteszentrum NRW, Diabeteszentrum, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Stiftung DHD (Der herzkranke Diabetiker) Stiftung in der Deutschen Diabetes-Stiftung, Bad Oeynhausen, Germany
| |
Collapse
|
6
|
Freitas SCF, Dutra MRH, Dourado PMM, Miranda VHDM, dos Santos CP, Sanches IC, Irigoyen MC, De Angelis K. Insulin Treatment Does Not Prevent EARLY Autonomic Cardiovascular and Diastolic Dysfunctions in Streptozotocin-Induced Diabetic Rats. Pharmaceuticals (Basel) 2024; 17:577. [PMID: 38794147 PMCID: PMC11124310 DOI: 10.3390/ph17050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies have found increased cardiovascular mortality risk in patients with type 1 diabetes when compared to normoglycemic people, even when they were kept under good glycemic control. However, the mechanisms underlying this condition have yet to be fully understood. Using streptozotocin (STZ)-induced diabetic rats, we evaluated the effects of insulin replacement therapy on cardiac, autonomic, inflammatory, and oxidative stress parameters. Daily treatment with insulin administrated subcutaneously in the STZ-diabetic rats showed a reduction in hyperglycemia (>250 mg/dL) to normalized values. The insulin treatment was effective in preventing alterations in cardiac morphometry and systolic function but had no impact on diastolic function. Also, the treatment was not able to prevent the impairment of baroreflex-tachycardic response and systolic arterial pressure variability (SAP-V). A correlation was found between improvement of these autonomic parameters and higher levels of IL-10 and lower levels of oxidized glutathione. Our findings show that insulin treatment was not able to prevent diastolic, baroreflex, and SAP-V dysfunction, suggesting an outstanding cardiovascular risk, even after obtaining a good glycemic control in STZ-induced diabetic rats. This study shed light on a relatively large population of diabetic patients in need of other therapies to be used in combination with insulin treatment and thus more effectively manage cardiovascular risk.
Collapse
Affiliation(s)
- Sarah C. F. Freitas
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil;
| | - Marina R. H. Dutra
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil;
| | - Paulo M. M. Dourado
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil; (P.M.M.D.)
| | | | - Camila P. dos Santos
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil; (V.H.d.M.M.)
| | - Iris C. Sanches
- Movement Laboratory, Sao Judas Tadeu University (USJT), Sao Paulo 03166-000, Brazil
| | - Maria-Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo (USP), Sao Paulo 05403-000, Brazil; (P.M.M.D.)
| | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil;
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil; (V.H.d.M.M.)
| |
Collapse
|
7
|
Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol 2024; 23:65. [PMID: 38347569 PMCID: PMC10863220 DOI: 10.1186/s12933-024-02136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Heart failure (HF) is increasing at an alarming rate, primary due to the rising in aging, obesity and diabetes. Notably, individuals with type 1 diabetes (T1D) face a significantly elevated risk of HF, leading to more hospitalizations and increased case fatality rates. Several risk factors contribute to HF in T1D, including poor glycemic control, female gender, smoking, hypertension, elevated BMI, and albuminuria. However, early and intensive glycemic control can mitigate the long-term risk of HF in individuals with T1D. The pathophysiology of diabetes-associated HF is complex and multifactorial, and the underlying mechanisms in T1D remain incompletely elucidated. In terms of treatment, much of the evidence comes from type 2 diabetes (T2D) populations, so applying it to T1D requires caution. Sodium-glucose cotransporter 2 inhibitors have shown benefits in HF outcomes, even in non-diabetic populations. However, most of the information about HF and the evidence from cardiovascular safety trials related to glucose lowering medications refer to T2D. Glycemic control is key, but the link between hypoglycemia and HF hospitalization risk requires further study. Glycemic variability, common in T1D, is an independent HF risk factor. Technological advances offer the potential to improve glycemic control, including glycemic variability, and may play a role in preventing HF. In summary, HF in T1D is a complex challenge with unique dimensions. This review focuses on HF in individuals with T1D, exploring its epidemiology, risk factors, pathophysiology, diagnosis and treatment, which is crucial for developing tailored prevention and management strategies for this population.
Collapse
Affiliation(s)
- María Teresa Julián
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandra Pérez-Montes de Oca
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Gudenkauf B, Shaya G, Mukherjee M, Michos ED, Madrazo J, Mathews L, Shah SJ, Sharma K, Hays AG. Insulin resistance is associated with subclinical myocardial dysfunction and reduced functional capacity in heart failure with preserved ejection fraction. J Cardiol 2024; 83:100-104. [PMID: 37364818 DOI: 10.1016/j.jjcc.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Obesity and insulin resistance are prevalent in heart failure with preserved ejection fraction (HFpEF) and are associated with adverse cardiovascular outcomes. Measuring insulin resistance is difficult outside of research settings, and its correlation to parameters of myocardial dysfunction and functional status is unknown. METHODS A total of 92 HFpEF patients with New York Heart Association class II to IV symptoms underwent clinical assessment, 2D echocardiography, and 6-min walk (6 MW) test. Insulin resistance was defined by estimated glucose disposal rate (eGDR) using the formula: eGDR = 19.02 - [0.22 × body mass index (BMI), kg/m2] - (3.26 × hypertension, presence) - (0.61 × glycated hemoglobin, %). Lower eGDR indicates increased insulin resistance (unfavorable). Myocardial structure and function were assessed by left ventricular (LV) mass, average E/e' ratio, right ventricular systolic pressure, left atrial volume, LV ejection fraction, LV longitudinal strain (LVLS), and tricuspid annular plane systolic excursion. Associations between eGDR and adverse myocardial function were evaluated in unadjusted and multivariable-adjusted analyses using analysis of variance testing and multivariable linear regression. RESULTS Mean age (SD) was 65 (11) years, 64 % were women, and 95 % had hypertension. Mean (SD) BMI was 39 (9.6) kg/m2, glycated hemoglobin 6.7 (1.6) %, and eGDR 3.3 (2.6) mg × kg-1 min-1. Increased insulin resistance was associated with worse LVLS in a graded fashion [mean (SD) -13.8 % (4.9 %), -14.4 % (5.8 %), -17.5 % (4.4 %) for first, second, and third eGDR tertiles, respectively, p = 0.047]. This association persisted after multivariable adjustment, p = 0.040. There was also a significant association between worse insulin resistance and decreased 6 MW distance on univariate analysis, but not on multivariable adjusted analysis. CONCLUSION Our findings may inform treatment strategies focused on the use of tools to estimate insulin resistance and selection of insulin sensitizing drugs which may improve cardiac function and exercise capacity.
Collapse
Affiliation(s)
- Brent Gudenkauf
- Osler Medical Residency, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabriel Shaya
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Monica Mukherjee
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Michos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Madrazo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lena Mathews
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allison G Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Al-Horani RA, Janaydeh S, Al-Trad B, Aljanabi MM, Muhaidat R. Acute Exercise Promptly Normalizes Myocardial Myosin Heavy-Chain Isoform mRNA Composition in Diabetic Rats: Implications for Diabetic Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2193. [PMID: 38138296 PMCID: PMC10744754 DOI: 10.3390/medicina59122193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: The acute effects of exercise on the myosin heavy-chain (MHC) isoform mRNA expression and the upstream transcription factors in diabetic and non-diabetic hearts remain unexplored. We aimed to determine the acute effect of a single exercise session on the expression of left ventricular MHC, MHC-α and MHC-β, and thyroid receptor (TR), TR-α1 and TR-β, isoform mRNA in diabetic and non-diabetic rats. Materials and Methods: Sprague-Dawley rats were assigned to four groups: non-diabetic control (CS), diabetic exercise (DIEX), sedentary diabetic (DIS), and non-diabetic exercise (CEX). Diabetes was induced via streptozotocin injection (55 mg/kg). DIEX and CEX rats performed an exercise session (60 min at 50 m/min and 0% grade) 6-7 weeks after diabetes induction. Results: MHC-α mRNA was lower in DIS (p = 0.03) and not different in DIEX (p = 0.1) relative to CS. DIS showed higher MHC-β mRNA than the non-diabetic rats, CS and CEX (p = 0.02 and p = 0.009, respectively). MHC-β mRNA in DIEX was normalized to non-diabetic levels in CS (p = 0.3). TR-α1 was higher in DIS and not different in DIEX relative to CS and CEX (p = 0.03 and p = 1.0, respectively). In CEX, exercise did not change MHC-α, MHC-β, and TR-α1 relative to CS (p = 1.0). TR-β was not different between groups. Conclusion: In conclusion, exercise appears to acutely normalize the myocardial MHC and TR isoform mRNA expression only in the diabetic heart. These responses may induce therapeutic mechanisms other than changing the MHC isoform composition.
Collapse
Affiliation(s)
| | - Saja Janaydeh
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan; (S.J.); (B.A.-T.); (R.M.)
| | - Bahaa Al-Trad
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan; (S.J.); (B.A.-T.); (R.M.)
| | - Mukhallad Mohammed Aljanabi
- Department of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Riyadh Muhaidat
- Department of Biological Sciences, Yarmouk University, Irbid 21163, Jordan; (S.J.); (B.A.-T.); (R.M.)
| |
Collapse
|
10
|
Cohen CD, De Blasio MJ, Farrugia GE, Dona MS, Hsu I, Prakoso D, Kiriazis H, Krstevski C, Nash DM, Li M, Gaynor TL, Deo M, Drummond GR, Ritchie RH, Pinto AR. Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy. iScience 2023; 26:107759. [PMID: 37736052 PMCID: PMC10509303 DOI: 10.1016/j.isci.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Miles J. De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiovascular Research and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Malathi S.I. Dona
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Ian Hsu
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - David M. Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Taylah L. Gaynor
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Alexander R. Pinto
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Raimundo JRS, da Costa Aguiar Alves B, Encinas JFA, Siqueira AM, de Gois KC, Perez MM, Petri G, Dos Santos JFR, Fonseca FLA, da Veiga GL. Expression of TNFR1, VEGFA, CD147 and MCT1 as early biomarkers of diabetes complications and the impact of aging on this profile. Sci Rep 2023; 13:17927. [PMID: 37863950 PMCID: PMC10589356 DOI: 10.1038/s41598-023-41061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023] Open
Abstract
Hyperglycemia leads to microvascular lesions in various tissues. In diabetic nephropathy-DN, alterations in usual markers reflect an already installed disease. The study of new biomarkers for the early detection of diabetic complications can bring new prevention perspectives. Rats were divided into diabetic adult-DMA-or elderly-DME and control sham adult-CSA-or control sham elderly-CSE. Blood and urine samples were collected for biochemical analysis. Bulbar region, cardiac, hepatic and renal tissues were collected for target gene expression studies. As result, DMA showed decreased TNFR1, MCT1 and CD147 expression in the bulbar region, TNFR1 in the heart, VEGFA and CD147 in the kidney and TNFR1 in blood. Positive correlations were found between TNFR1 and MCT1 in the bulbar region and HbA1c and plasma creatinine, respectively. DME showed positive correlation in the bulbar region between TNFR1 and glycemia, in addition to negative correlations between CD147 in the heart versus glycemia and urea. We concluded that the initial hyperglycemic stimulus already promotes changes in the expression of genes involved in the inflammatory and metabolic pathways, and aging alters this profile. These changes prior to the onset of diseases such as DN, show that they have potential for early biomarkers studies.
Collapse
Affiliation(s)
- Joyce Regina Santos Raimundo
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil.
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Jéssica Freitas Araujo Encinas
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Andressa Moreira Siqueira
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Katharyna Cardoso de Gois
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Matheus Moreira Perez
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Giuliana Petri
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - José Francisco Ramos Dos Santos
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo/UNIFESP, Campus Diadema, Rua Prof. Artur Riedel, 275, Diadema, SP, 09972-270, Brazil
| | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| |
Collapse
|
12
|
Zhang X, Lv X, Wang N, Yu S, Si J, Zhang Y, Cai M, Liu Y. WATCH-DM risk score predicts the prognosis of diabetic phenotype patients with heart failure and preserved ejection fraction. Int J Cardiol 2023:S0167-5273(23)00738-6. [PMID: 37257517 DOI: 10.1016/j.ijcard.2023.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome. Diabetes may identify an essential phenotype that significantly affects the prognosis of these patients. The WATCH-DM risk score has been validated for predicting the risk of heart failure in outpatients with type 2 diabetes mellitus (T2DM), but its ability to predict clinical outcomes in HFpEF patients with T2DM is unknown. We aimed to assess whether this risk score could predict the prognosis of diabetic phenotype patients with heart failure and preserved ejection fraction. METHODS We enrolled retrospectively 414 patients with HFpEF (70.03 ± 8.654 years, 58.70% female), including 203 (49.03%) type 2 diabetics. Diabetic HFpEF patients were stratified by baseline WATCH-DM risk score. RESULTS Diabetic HFpEF patients exhibited a trend toward more concentric remodeling/hypertrophy than nondiabetic HFpEF patients. When analyzed as a continuous variable, per 1-point increase in the WATCH-DM risk score was associated with increased risks of all-cause death (HR 1.181), cardiovascular death (HR 1.239), any hospitalization (HR 1.082), and HF hospitalization (HR 1.097). The AUC for the WATCH-DM risk score in predicting incident cardiovascular death (0.7061, 95% CI 0.6329-0.7792) was higher than that of all-cause death, any hospitalization, or HF hospitalization. CONCLUSIONS As a high-risk phenotype for heart failure, diabetic HFpEF necessitates early risk stratification and specific treatment. To the best of our knowledge, the current study is the first to demonstrate that the WATCH-DM score predicts poor outcomes in diabetic HFpEF patients. Its convenience may allow for quick risk assessments in busy clinical settings.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Xin Lv
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Ning Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Songqi Yu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Jinping Si
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Yanli Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Mingxu Cai
- Health Management Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Ying Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China.
| |
Collapse
|
13
|
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca 2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:37. [PMID: 36804872 PMCID: PMC9942322 DOI: 10.1186/s12933-023-01755-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, 89102, USA.
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
14
|
Lynch TA, Westen E, Li D, Katzman PJ, Malshe A, Drennan K. Stillbirth in women with diabetes: a retrospective analysis of fetal autopsy reports. J Matern Fetal Neonatal Med 2022; 35:2091-2098. [PMID: 32567445 DOI: 10.1080/14767058.2020.1779213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Diabetes in pregnancy is associated with an increased rate of stillbirth. There are a wide variety of factors that have been implicated including placental insufficiency, hypoxia, hyperinsulinemia and impaired cardiac function. Furthermore, there is evidence that diabetic pregnancies have an increased rate of fetal cardiomyopathy as compared to non-diabetic pregnancies. Prior studies have indicated that this association can also be an etiology for diabetic stillbirth. The purpose of this study was to determine if diabetic pregnancies have an increased risk of fetal cardiomyopathy identified on fetal autopsy as compared to non-diabetic women with a stillbirth in a cohort of pregnancies that had evaluation with a fetal autopsy. MATERIALS AND METHODS Retrospective cohort study of women with a stillbirth who consented to fetal autopsy at an academic medical center from 2011 to 2017. Stillbirth was defined as an intrauterine fetal demise at ≥20 weeks' gestation. Women with diabetes defined as pre-gestational diabetes type 1, pre-gestational diabetes type 2, and gestational diabetes were compared to women without diabetes. Primary outcome was fetal cardiomyopathy. Other etiologies for stillbirth were also evaluated and classified according to the Stillbirth Collaborative Research Network (SCRN) initial causes of fetal death. Fisher exact test, χ2 test, and Mann Whitney U tests were performed as appropriate, with p < .05 considered significant. Generalized linear models were performed for fetal organ weights controlling for gestational age of delivery, maternal chronic hypertension, delivery body mass index, and birthweight. RESULTS A total of 78 women elected to have fetal autopsy examinations during the study period. Of these, 75 had complete information available for review. A total of 60 women did not have diabetes and 15 women had diabetes. Of pregnancies complicated by diabetes, 11 had insulin dependent diabetes and 4 had non-insulin dependent diabetes. Fetal cardiomyopathy was diagnosed on autopsy for 7 (46.7%) of pregnancies with diabetes and 2 (3.3% of pregnancies without diabetes (RR 14.00 [95% CI 3.23-60.65], p < .001). These associations were still significant even when analyzing only those pregnancies without fetal congenital heart disease (7 [46.7%] diabetic pregnancies with cardiomyopathy versus 1 [2.0%] nondiabetic pregnancy with cardiomyopathy, RR 23.80 [95% CI 3.17-178.46], p < .001). There was no difference between diabetic and non-diabetic pregnancies in regards to other causes for stillbirth. Stillbirths in pregnancies with diabetes also had larger fetal heart, liver, and adrenal weights on fetal autopsy. CONCLUSION Women with diabetes have 14 times the risk of fetal cardiomyopathy identified at fetal autopsy as compared to women without diabetes. As the prediction and prevention of diabetic stillbirth is limited, information on potential causes of stillbirth may help future research identify those pregnancies at the greatest risk for adverse outcome.
Collapse
Affiliation(s)
- Tara A Lynch
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Elizabeth Westen
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, Department of Obstetrics and Gynecology, Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip J Katzman
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Amol Malshe
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathryn Drennan
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Diabetes and Myocardial Fibrosis: A Systematic Review and Meta-Analysis. JACC. CARDIOVASCULAR IMAGING 2022; 15:796-808. [PMID: 35512952 DOI: 10.1016/j.jcmg.2021.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis investigated the association of diabetes and glycemic control with myocardial fibrosis (MF). BACKGROUND MF is associated with an increased risk of heart failure, coronary artery disease, arrhythmias, and death. Diabetes may influence the development of MF, but evidence is inconsistent. METHODS The authors searched EMBASE, Medline Ovid, Cochrane CENTRAL, Web of Science, and Google Scholar for observational and interventional studies investigating the association of diabetes, glycemic control, and antidiabetic medication with MF assessed by histology and cardiac magnetic resonance (ie, extracellular volume fraction [ECV%] and T1 time). RESULTS A total of 32 studies (88% exclusively on type 2 diabetes) involving 5,053 participants were included in the systematic review. Meta-analyses showed that diabetes was associated with a higher degree of MF assessed by histological collagen volume fraction (n = 6 studies; mean difference: 5.80; 95% CI: 2.00-9.59) and ECV% (13 studies; mean difference: 2.09; 95% CI: 0.92-3.27), but not by native or postcontrast T1 time. Higher glycosylated hemoglobin levels were associated with higher degrees of MF. CONCLUSIONS Diabetes is associated with higher degree of MF assessed by histology and ECV% but not by T1 time. In patients with diabetes, worse glycemic control was associated with higher MF degrees. These findings mostly apply to type 2 diabetes and warrant further investigation into whether these associations are causal and which medications could attenuate MF in patients with diabetes.
Collapse
|
16
|
Gomes KP, Jadli AS, de Almeida LGN, Ballasy NN, Edalat P, Shandilya R, Young D, Belke D, Shearer J, Dufour A, Patel VB. Proteomic Analysis Suggests Altered Mitochondrial Metabolic Profile Associated With Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 9:791700. [PMID: 35310970 PMCID: PMC8924072 DOI: 10.3389/fcvm.2022.791700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetic cardiomyopathy (DbCM) occurs independently of cardiovascular diseases or hypertension, leading to heart failure and increased risk for death in diabetic patients. To investigate the molecular mechanisms involved in DbCM, we performed a quantitative proteomic profiling analysis in the left ventricle (LV) of type 2 diabetic mice. Six-month-old C57BL/6J-lepr/lepr (db/db) mice exhibited DbCM associated with diastolic dysfunction and cardiac hypertrophy. Using quantitative shotgun proteomic analysis, we identified 53 differentially expressed proteins in the LVs of db/db mice, majorly associated with the regulation of energy metabolism. The subunits of ATP synthase that form the F1 domain, and Cytochrome c1, a catalytic core subunit of the complex III primarily responsible for electron transfer to Cytochrome c, were upregulated in diabetic LVs. Upregulation of these key proteins may represent an adaptive mechanism by diabetic heart, resulting in increased electron transfer and thereby enhancement of mitochondrial ATP production. Conversely, diabetic LVs also showed a decrease in peptide levels of NADH dehydrogenase 1β subcomplex subunit 11, a subunit of complex I that catalyzes the transfer of electrons to ubiquinone. Moreover, the atypical kinase COQ8A, an essential lipid-soluble electron transporter involved in the biosynthesis of ubiquinone, was also downregulated in diabetic LVs. Our study indicates that despite attempts by hearts from diabetic mice to augment mitochondrial ATP energetics, decreased levels of key components of the electron transport chain may contribute to impaired mitochondrial ATP production. Preserved basal mitochondrial respiration along with the markedly reduced maximal respiratory capacity in the LVs of db/db mice corroborate the association between altered mitochondrial metabolic profile and cardiac dysfunction in DbCM.
Collapse
Affiliation(s)
- Karina P. Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Luiz G. N. de Almeida
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Noura N. Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Ruchita Shandilya
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, Calgary, AB, Canada
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
- *Correspondence: Vaibhav B. Patel ;
| |
Collapse
|
17
|
Prandi FR, Evangelista I, Sergi D, Palazzuoli A, Romeo F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants. Heart Fail Rev 2022; 28:597-606. [PMID: 35001338 DOI: 10.1007/s10741-021-10200-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a diabetes mellitus-induced pathophysiological condition characterized by cardiac structural, functional, and metabolic changes that can result in heart failure (HF), in the absence of coronary artery disease, hypertension, and valvular heart disease. Metabolic alterations such as hyperglycemia, insulin resistance, hyperinsulinemia, and increased metabolism of free fatty acids result in oxidative stress, inflammation, advanced glycation end products formation, abnormalities in calcium homeostasis, and apoptosis that are responsible for structural remodeling. Cardiac stiffness, hypertrophy, and fibrosis eventually lead to dysfunction and HF with preserved ejection fraction and/or HF with reduced ejection fraction. In this review, we analyzed in detail the cellular and molecular mechanisms and the metabolic pathways involved in the pathophysiology of DCM. Different phenotypes are observed in DCM, and it is not clear yet if the restrictive and the dilated phenotypes are distinct or represent an evolution of the same disease. Phenotypic differences can be observed between T1DM and T2DM DCM, possibly explained by the different myocardial insulin action. Further studies are needed in order to better understand the underlying mechanisms of DCM and to identify appropriate therapeutic targets and novel strategies to prevent and reverse the progression toward heart failure in diabetic patients.
Collapse
Affiliation(s)
| | - Isabella Evangelista
- Cardiovascular Diseases Unit, Department of Internal Medicine, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Domenico Sergi
- Division of Cardiology, University Hospital "Tor Vergata", Rome, RM, Italy
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Department of Internal Medicine, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Francesco Romeo
- Division of Cardiology, University Hospital "Tor Vergata", Rome, RM, Italy
- Unicamillus International University, Rome, RM, Italy
| |
Collapse
|
18
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Smeir E, Kintscher U, Foryst-Ludwig A. Adipose tissue-heart crosstalk as a novel target for treatment of cardiometabolic diseases. Curr Opin Pharmacol 2021; 60:249-254. [PMID: 34482212 DOI: 10.1016/j.coph.2021.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
Cardiometabolic disorders, such as diabetes, obesity, or metabolic syndrome, are often considered as key comorbidities, leading to the development of different forms of cardiovascular diseases such as heart failure or diabetic cardiomyopathy. Although the causal relationship between the pathophysiological status of white adipose tissue (WAT) and cardiac lipotoxicity is still elusive, elevated lipolytic rate in WAT has been demonstrated to participate in the overall augmentation of plasma lipid levels, as observed in most of the patients suffering from heart failure. In the present overview, we discuss current therapeutic approaches, as well as new treatment options targeting lipolysis and cardiac lipid metabolism in different forms of heart failure and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Elia Smeir
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| |
Collapse
|
20
|
Alaeddine LM, Harb F, Hamza M, Dia B, Mogharbil N, Azar NS, Noureldein MH, El Khoury M, Sabra R, Eid AA. Pharmacological regulation of cytochrome P450 metabolites of arachidonic acid attenuates cardiac injury in diabetic rats. Transl Res 2021; 235:85-101. [PMID: 33746109 DOI: 10.1016/j.trsl.2021.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a well-established complication of type 1 and type 2 diabetes associated with a high rate of morbidity and mortality. DCM is diagnosed at advanced and irreversible stages. Therefore, it is of utmost need to identify novel mechanistic pathways involved at early stages to prevent or reverse the development of DCM. In vivo experiments were performed on type 1 diabetic rats (T1DM). Functional and structural studies of the heart were executed and correlated with mechanistic assessments exploring the role of cytochromes P450 metabolites, the 20-hydroxyeicosatetraenoic acids (20-HETEs) and epoxyeicosatrienoic acids (EETs), and their crosstalk with other homeostatic signaling molecules. Our data displays that hyperglycemia results in CYP4A upregulation and CYP2C11 downregulation in the left ventricles (LV) of T1DM rats, paralleled by a differential alteration in their metabolites 20-HETEs (increased) and EETs (decreased). These changes are concomitant with reductions in cardiac outputs, LV hypertrophy, fibrosis, and increased activation of cardiac fetal and hypertrophic genes. Besides, pro-fibrotic cytokine TGF-ß overexpression and NADPH (Nox4) dependent-ROS overproduction are also correlated with the observed cardiac functional and structural modifications. Of interest, these observations are attenuated when T1DM rats are treated with 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA), which blocks EETs metabolism, or N-hydroxy-N'-(4-butyl-2-methylphenol)Formamidine (HET0016), which inhibits 20-HETEs formation. Taken together, our findings confer pioneering evidence about a potential interplay between CYP450-derived metabolites and Nox4/TGF-β axis leading to DCM. Pharmacologic interventions targeting the inhibition of 20-HETEs synthesis or the activation of EETs synthesis may offer novel therapeutic approaches to treat DCM.
Collapse
Affiliation(s)
- Lynn M Alaeddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Frederic Harb
- Department of Biology, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Maysaa Hamza
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Nahed Mogharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Nadim S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mirella El Khoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
21
|
Abdel Hafez SMN, Zenhom NM, Abdel-Hamid HA. Effects of platelet rich plasma on experimentally induced diabetic heart injury. Int Immunopharmacol 2021; 96:107814. [PMID: 34162165 DOI: 10.1016/j.intimp.2021.107814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Diabetic heart is one of the common complications of diabetes mellitus. Platelet-rich plasma (PRP) is an autologous product rich in growth factors that can enhance tissue regeneration. This work was conducted to study the PRP ability to improve diabetes-inducing cardiac changes. Also, it sheds more light on the possible mechanisms through which PRP induces its effects. Rats were divided into; control, PRP, diabetic, and PRP-diabetic groups. Cardiac specimens were obtained and processed for biochemical, histological, and immunohistochemical study. The diabetic group exhibited a significant increase in cardiac oxidative stress, inflammation, and cardiac injury markers if compared with the control group. Additionally, the cardiac tissue showed variable morphological changes in the form of focal distortion and loss of cardiac myocytes. Distorted mitochondria and heterochromatic nuclei were observed in the cardiac muscle fibers. The mean number of charcoal-stained macrophages, and mean area fraction for collagen fibers, mean number of PCNA-immune positive cardiac muscle were significantly decrease in PRP- diabetic group. Collectively, the results showed that PRP treatment ameliorated most of all these previous changes. CONCLUSION: PRP ameliorated the diabetic cardiac injury via inhibition of oxidative stress and inflammation. It was confirmed by biochemical, histological, and immunohistochemical study. It could be concluded that PRP could be used as a potential therapy for diabetic heart.
Collapse
Affiliation(s)
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Egypt
| | | |
Collapse
|
22
|
Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int J Mol Sci 2021; 22:ijms22115863. [PMID: 34070765 PMCID: PMC8199383 DOI: 10.3390/ijms22115863] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) affects up to over 20% of patients with type 2 diabetes (T2DM), even more in the elderly. Although, in T2DM, both hyperglycemia and the proinflammatory status induced by insulin resistance are crucial in cardiac function impairment, SGLT2i cardioprotective mechanisms against HF are several. In particular, these beneficial effects seem attributable to the significant reduction of intracellular sodium levels, well-known to exert a cardioprotective role in the prevention of oxidative stress and consequent cardiomyocyte death. From a molecular perspective, patients’ exposure to gliflozins’ treatment mimics nutrient and oxygen deprivation, with consequent autophagy stimulation. This allows to maintain the cellular homeostasis through different degradative pathways. Thus, since their introduction in the clinical practice, the hypotheses on SGLT2i mechanisms of action have changed: from simple glycosuric drugs, with consequent glucose lowering, erythropoiesis enhancing and ketogenesis stimulating, to intracellular sodium-lowering molecules. This provides their consequent cardioprotective effect, which justifies its significant reduction in CV events, especially in populations at higher risk. Finally, the updated clinical evidence of SGLT2i benefits on HF was summarized. Thus, this review aimed to analyze the cardioprotective mechanisms of sodium glucose transporter 2 inhibitors (SGLT2i) in patients with HF, as well as their clinical impact on cardiovascular events.
Collapse
|
23
|
Marchini GS, Cestari IN, Salemi VMC, Irigoyen MC, Arnold A, Kakoi A, Rocon C, Aiello VD, Cestari IA. Early changes in myocyte contractility and cardiac function in streptozotocin-induced type 1 diabetes in rats. PLoS One 2020; 15:e0237305. [PMID: 32822421 PMCID: PMC7442260 DOI: 10.1371/journal.pone.0237305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes can elicit direct deleterious effects on the myocardium, independent of coronary artery disease or hypertension. These cardiac disturbances are termed diabetic cardiomyopathy showing increased risk of heart failure with or without reduced ejection fraction. Presently, there is no specific treatment for this type of cardiomyopathy and in the case of type I diabetes, it may start in early childhood independent of glycemic control. We hypothesized that alterations in isolated myocyte contractility and cardiac function are present in the early stages of experimental diabetes in rats before overt changes in myocardium structure occur. Diabetes was induced by single-dose injection of streptozotocin (STZ) in rats with data collected from control and diabetic animals 3 weeks after injection. Left ventricle myocyte contractility was measured by single-cell length variation under electrical stimulation. Cardiac function and morphology were studied by high-resolution echocardiography with pulsed-wave tissue Doppler imaging (TDI) measurements and three-lead surface electrocardiogram. Triglycerides, cholesterol and liver enzyme levels were measured from plasma samples obtained from both groups. Myocardial collagen content and perivascular fibrosis of atria and ventricle were studied by histological analysis after picrosirius red staining. Diabetes resulted in altered contractility of isolated cardiac myocytes with increased contraction and relaxation time intervals. Echocardiography showed left atrium dilation, increased end-diastolic LV and posterior wall thickness, with reduced longitudinal systolic peak velocity (S’) of the septum mitral annulus at the apical four-chamber view obtained by TDI. Triglycerides, aspartate aminotransferase and alkaline phosphatase were elevated in diabetic animals. Intertitial collagen content was higher in atria of both groups and did not differ among control and diabetic animals. Perivascular intramyocardial arterioles collagen did not differ between groups. These results suggest that alterations in cardiac function are present in the early phase in this model of diabetes type 1 and occur before overt changes in myocardium structure appear as evaluated by intersticial collagen deposition and perivascular fibrosis of intramyocardial arterioles.
Collapse
Affiliation(s)
- Gustavo S. Marchini
- Biomedical Engineering Graduate Progam, University of São Paulo Polytechnic School, São Paulo, Brazil
| | - Ismar N. Cestari
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Vera M. C. Salemi
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | | | - Alexandre Arnold
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Adélia Kakoi
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Camila Rocon
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Vera D. Aiello
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Idágene A. Cestari
- Biomedical Engineering Graduate Progam, University of São Paulo Polytechnic School, São Paulo, Brazil
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
24
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|
25
|
Laddha AP, Kulkarni YA. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications. Eur J Pharmacol 2020; 881:173206. [PMID: 32442539 DOI: 10.1016/j.ejphar.2020.173206] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
The human body has a mechanism for balancing the generation and neutralization of reactive oxygen species. The body is exposed to many agents that are responsible for the generation of reactive oxygen/nitrogen species, which leads to disruption of the balance between generation of these species and oxidative stress defence mechanisms. Diabetes is a chronic pathological condition associated with prolonged hyperglycaemia. Prolonged elevation of level of glucose in the blood leads to the generation of reactive oxygen species. This generation of reactive oxygen species is responsible for the development of diabetic vasculopathy, which includes micro- and macrovascular diabetic complications. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a membrane-bound enzyme responsible for the development of reactive oxygen species in hyperglycaemia. Phosphorylation of the cytosolic components of NOX, such as p47phox, p67phox, and RAC-1, in hyperglycaemia is one of the important causes of conversion of oxygen to reactive oxygen. Overexpression of NOX in pathological conditions is associated with activation of aldose reductase, advanced glycation end products, protein kinase C and the hexosamine pathway. In addition, NOX also promotes the activation of inflammatory cytokines, such as TGF-β, TNF-α, NF-kβ, IL-6, and IL-18, the activation of endothelial growth factors, such as VEGF and FGF, hyperlipidaemia, and the deposition of collagen. Thus, overexpression of NOX is linked to the development of diabetic complications. The present review focuses on the role of NOX, its associated pathways, and various NOX inhibitors in the management and treatment of diabetic complications, such as diabetic nephropathy, retinopathy, neuropathy and cardiomyopathy.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
26
|
Choxi R, Roy S, Stamatouli A, Mayer SB, Jovin IS. Type 2 diabetes mellitus and cardiovascular disease: focus on the effect of antihyperglycemic treatments on cardiovascular outcomes. Expert Rev Cardiovasc Ther 2020; 18:187-199. [PMID: 32306789 DOI: 10.1080/14779072.2020.1756778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Type 2 diabetes mellitus and cardiovascular disease contribute to significant morbidity, mortality, and health-care resource expenditure. The pathophysiological and clinical associations between diabetes and cardiovascular disease have been the subject of multiple studies, most recently culminating in large trials of several new antiglycemic agents being found to confer additional cardiovascular risk reduction. Understanding the potential cardiovascular benefits of antiglycemic medications offers the unique opportunity to reduce the morbidity and mortality presented by both diseases at once.Areas covered: The literature search was comprised of a Pubmed search querying 'cardiovascular outcomes' and 'diabetes'. This article reviews the pathophysiology of cardiovascular complications in type 2 diabetes and the cardiovascular outcome trials related to newer antiglycemic medications.Expert opinion: The treatment of patients with type 2 diabetes mellitus and cardiovascular disease is rapidly advancing. In particular, the sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists have demonstrated cardiovascular benefit by reducing major adverse cardiovascular events and cardiovascular mortality. Future directions of the treatment of type 2 diabetes and cardiovascular disease will focus on targeting and preventing diabetic cardiomyopathy and further defining the role of SGLT2 inhibitors and of GLP-1 receptor agonists in additional patient populations.
Collapse
Affiliation(s)
- Ravi Choxi
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| | - Sumon Roy
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| | | | - Stéphanie B Mayer
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| | - Ion S Jovin
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
27
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Angiotensin II Type I Receptor Antagonism Attenuates Nicotine-Induced Cardiac Remodeling, Dysfunction, and Aggravation of Myocardial Ischemia-Reperfusion Injury in Rats. Front Pharmacol 2019; 10:1493. [PMID: 31920673 PMCID: PMC6920178 DOI: 10.3389/fphar.2019.01493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Increased exposure to nicotine contributes to the development of cardiac dysfunction by promoting oxidative stress, fibrosis, and inflammation. These deleterious events altogether render cardiac myocytes more susceptible to acute cardiac insults such as ischemia-reperfusion (I/R) injury. This study sought to elucidate the role of angiotensin II type I (AT1) receptors in cardiac injury resulting from prolonged nicotine administration in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg ip) for 28 days to induce cardiac dysfunction, alone or in combination with the AT1 receptor antagonist, irbesartan (10 mg/kg, po). Vehicle-treated rats were used as controls. Rat hearts isolated from each experimental group at study endpoint were examined for changes in function, histology, gene expression, and susceptibility against acute I/R injury determined ex vivo. Rats administered nicotine alone exhibited significantly increased cardiac expression of angiotensin II and angiotensin-converting enzyme (ACE) in addition to elevated systolic blood pressure (SBP) and heart rate. Furthermore, nicotine administration markedly reduced left ventricular (LV) performance with concomitant increases in myocardial oxidative stress, fibrosis, and inflammation. Concomitant treatment with irbesartan attenuated these effects, lowering blood pressure, heart rate, oxidative stress, and expression of fibrotic and inflammatory genes. Importantly, the irbesartan-treated group also manifested reduced susceptibility to I/R injury ex vivo. These findings suggest that AT1 receptors play an important role in nicotine-induced cardiac dysfunction, and pharmacological approaches targeting cardiac AT1 receptors may thus benefit patients with sustained exposure to nicotine.
Collapse
Affiliation(s)
- Anand Ramalingam
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Cohen A, Angoulvant D. Cardiomyopathie du diabétique, dépistage et épidémiologie. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2019. [DOI: 10.1016/s1878-6480(19)30963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Tate M, Prakoso D, Willis AM, Peng C, Deo M, Qin CX, Walsh JL, Nash DM, Cohen CD, Rofe AK, Sharma A, Kiriazis H, Donner DG, De Haan JB, Watson AMD, De Blasio MJ, Ritchie RH. Characterising an Alternative Murine Model of Diabetic Cardiomyopathy. Front Physiol 2019; 10:1395. [PMID: 31798462 PMCID: PMC6868003 DOI: 10.3389/fphys.2019.01395] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
The increasing burden of heart failure globally can be partly attributed to the increased prevalence of diabetes, and the subsequent development of a distinct form of heart failure known as diabetic cardiomyopathy. Despite this, effective treatment options have remained elusive, due partly to the lack of an experimental model that adequately mimics human disease. In the current study, we combined three consecutive daily injections of low-dose streptozotocin with high-fat diet, in order to recapitulate the long-term complications of diabetes, with a specific focus on the diabetic heart. At 26 weeks of diabetes, several metabolic changes were observed including elevated blood glucose, glycated haemoglobin, plasma insulin and plasma C-peptide. Further analysis of organs commonly affected by diabetes revealed diabetic nephropathy, underlined by renal functional and structural abnormalities, as well as progressive liver damage. In addition, this protocol led to robust left ventricular diastolic dysfunction at 26 weeks with preserved systolic function, a key characteristic of patients with type 2 diabetes-induced cardiomyopathy. These observations corresponded with cardiac structural changes, namely an increase in myocardial fibrosis, as well as activation of several cardiac signalling pathways previously implicated in disease progression. It is hoped that development of an appropriate model will help to understand some the pathophysiological mechanisms underlying the accelerated progression of diabetic complications, leading ultimately to more efficacious treatment options.
Collapse
Affiliation(s)
- Mitchel Tate
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew M Willis
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cheng Peng
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jesse L Walsh
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David M Nash
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Charles D Cohen
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Alex K Rofe
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Arpeeta Sharma
- Oxidative Stress Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Daniel G Donner
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Judy B De Haan
- Oxidative Stress Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anna M D Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Abstract
Heart failure and related morbidity and mortality are increasing at an alarming rate, in large part, because of increases in aging, obesity, and diabetes mellitus. The clinical outcomes associated with heart failure are considerably worse for patients with diabetes mellitus than for those without diabetes mellitus. In people with diabetes mellitus, the presence of myocardial dysfunction in the absence of overt clinical coronary artery disease, valvular disease, and other conventional cardiovascular risk factors, such as hypertension and dyslipidemia, has led to the descriptive terminology, diabetic cardiomyopathy. The prevalence of diabetic cardiomyopathy is increasing in parallel with the increase in diabetes mellitus. Diabetic cardiomyopathy is initially characterized by myocardial fibrosis, dysfunctional remodeling, and associated diastolic dysfunction, later by systolic dysfunction, and eventually by clinical heart failure. Impaired cardiac insulin metabolic signaling, mitochondrial dysfunction, increases in oxidative stress, reduced nitric oxide bioavailability, elevations in advanced glycation end products and collagen-based cardiomyocyte and extracellular matrix stiffness, impaired mitochondrial and cardiomyocyte calcium handling, inflammation, renin-angiotensin-aldosterone system activation, cardiac autonomic neuropathy, endoplasmic reticulum stress, microvascular dysfunction, and a myriad of cardiac metabolic abnormalities have all been implicated in the development and progression of diabetic cardiomyopathy. Molecular mechanisms linked to the underlying pathophysiological changes include abnormalities in AMP-activated protein kinase, peroxisome proliferator-activated receptors, O-linked N-acetylglucosamine, protein kinase C, microRNA, and exosome pathways. The aim of this review is to provide a contemporary view of these instigators of diabetic cardiomyopathy, as well as mechanistically based strategies for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Guanghong Jia
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.)
| | - Michael A Hill
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.)
| | - James R Sowers
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.).
| |
Collapse
|
31
|
Nikolajević Starčević J, Janić M, Šabovič M. Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients. Int J Mol Sci 2019; 20:ijms20051197. [PMID: 30857271 PMCID: PMC6429211 DOI: 10.3390/ijms20051197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
In diabetic patients, cardiomyopathy is an important cause of heart failure, but its pathophysiology has not been completely understood thus far. Myocardial hypertrophy and diastolic dysfunction have been considered the hallmarks of diabetic cardiomyopathy (DCM), while systolic function is affected in the latter stages of the disease. In this article we propose the potential pathophysiological mechanisms responsible for myocardial hypertrophy and increased myocardial stiffness leading to diastolic dysfunction in this specific entity. According to our model, increased myocardial stiffness results from both cellular and extracellular matrix stiffness as well as cell–matrix interactions. Increased intrinsic cardiomyocyte stiffness is probably the most important contributor to myocardial stiffness. It results from the impairment in cardiomyocyte cytoskeleton. Several other mechanisms, specifically affected by diabetes, seem to also be significantly involved in myocardial stiffening, i.e., impairment in the myocardial nitric oxide (NO) pathway, coronary microvascular dysfunction, increased inflammation and oxidative stress, and myocardial sodium glucose cotransporter-2 (SGLT-2)-mediated effects. Better understanding of the complex pathophysiology of DCM suggests the possible value of drugs targeting the listed mechanisms. Antidiabetic drugs, NO-stimulating agents, anti-inflammatory agents, and SGLT-2 inhibitors are emerging as potential treatment options for DCM.
Collapse
Affiliation(s)
- Jovana Nikolajević Starčević
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Miodrag Janić
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Mišo Šabovič
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Novaes RD, Mouro VGS, Gonçalves RV, Mendonça AAS, Santos EC, Fialho MCQ, Machado-Neves M. Aluminum: A potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:814-826. [PMID: 30032078 DOI: 10.1016/j.envpol.2018.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Large amounts of aluminum (Al) are found in wastewater from industrial bauxite mining, which is often responsible for the contamination of drinking water sources in urban and rural communities. Although this metal exhibits broad environmental distribution, its cardiac repercussions are poorly understood, making it difficult to establish diagnostic criteria in cases of Al intoxication. In the absence of clinical data, we used a preclinical model to investigate the impact of Al exposure on heart bioaccumulation, molecular oxidation, micromineral distribution, structural and ultrastructural remodeling of the cardiac tissue. Male Wistar rats were equally randomized into five groups: G1 = distilled water; and G2 to G5 = 0.02, 0.1, 50, and 200 mg/kg aluminum solution, respectively. After 120 days, the hearts were collected and subjected to mineral microanalysis, immunoenzymatic detection of 8-OHdG, as well as bright field, polarizing, scanning and transmission electron microscopy to estimate the extent of the cardiac remodeling and cardiomyocytes ultrastructure. Long-term Al exposure induced dose-dependent bioaccumulation, micromineral imbalance, genomic DNA oxidation, structural and ultrastructural abnormalities of the cardiac tissue, resulting in extensive parenchymal loss, stromal expansion, diffuse inflammatory infiltrate, increased glycoconjugate and collagen deposition, subversion and collapse of the collagen network, reduced myocardial vascularization index, mitochondrial swelling, sarcomere disorganization, myofilament dissociation, and fragmentation in cardiomyocytes. Our findings indicated that the heart was sensitive to Al-mediated toxicity, especially in animals treated with the three highest doses of Al. In response to Al-induced loss of the parenchyma, heart stroma exhibited a reactive and compensatory expansion, which, in combination with the increased distribution of thick myofibrils and degenerated mitochondria in cardiomyocytes, provides morphological evidence that cardiac tissue adaptations are not enough to adjust the relationships between the parenchyma and stroma until a steady state is reached, resulting in continuous pathological remodeling potentially associated with Al-induced proinflammatory and pro-oxidant events.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil.
| | - Viviane G S Mouro
- Department of General Biology, Federal University of Viçosa, MG, Brazil
| | | | - Andrea A S Mendonça
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil
| | - Eliziária C Santos
- Medicine School, Federal University of Jequitinhonha and Mucuri Valleys, MG, Brazil
| | - Maria C Q Fialho
- Department of Morphology, Federal University of Amazonas, AM, Brazil
| | | |
Collapse
|
33
|
Wanrooy BJ, Kumar KP, Wen SW, Qin CX, Ritchie RH, Wong CHY. Distinct contributions of hyperglycemia and high-fat feeding in metabolic syndrome-induced neuroinflammation. J Neuroinflammation 2018; 15:293. [PMID: 30348168 PMCID: PMC6198529 DOI: 10.1186/s12974-018-1329-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Background High-fat feeding and hyperglycemia, key risk factors for the development of metabolic syndrome (MetS), are emerging to associate with increased risk of developing dementia and cognitive decline. Despite this, clinical and experimental studies have yet to elucidate the specific contributions of either high-fat feeding or hyperglycemia to potential neuroinflammatory components. In this study, we delineate these individual components of MetS in the development of neuroinflammation. Methods Male C57Bl/6 J adult mice were treated with either citrate vehicle (CIT) or streptozotocin (STZ; 55 mg/kg) 3, 5 and 7 days before commencement of either a normal or high-fat diet for 9 or 18 weeks. By creating separate models of high-fat feeding, STZ-induced hyperglycemia, as well as in combination, we were able to delineate the specific effects of a high-fat diet and hyperglycemia on the brain. Throughout the feeding regime, we measured the animals’ body weight and fasting blood glucose levels. At the experimental endpoint, we assessed plasma levels of insulin, glycated haemoglobin and performed glucose tolerance testing. In addition, we examined the effect of high fat-feeding and hyperglycemia on the levels of systemic inflammatory cytokines, gliosis in the hippocampus and immune infiltration in cerebral hemispheric tissue. Furthermore, we used intravital multiphoton microscopy to assess leukocyte-endothelial cell interactions in the cerebral vasculature of mice in vivo. Results We showed that acute hyperglycemia induces regional-specific effects on the brain by elevating microglial numbers and promotes astrocytosis in the hippocampus. In addition, we demonstrated that chronic hyperglycemia supported the recruitment of peripheral GR1+ granulocytes to the cerebral microvasculature in vivo. Moreover, we provided evidence that these changes were independent of the systemic inflammation associated with high-fat feeding. Conclusions Hyperglycemia alone preferentially induces microglial numbers and astrocytosis in the hippocampus and is associated with the peripheral recruitment of leukocytes to the cerebrovasculature, but not systemic inflammation. High-fat feeding alone, and in combination with hyperglycemia, increases the systemic pro-inflammatory cytokine milieu but does not result in brain-specific immune gliosis. These results shed light on the specific contributions of high-fat feeding and hyperglycemia as key factors of MetS in the development of neuroinflammation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1329-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brooke J Wanrooy
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Shu Wen Wen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Cheng Xue Qin
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Monash University, Melbourne, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
34
|
Zhao C, Shen Q. Overexpression of small ubiquitin‑like modifier 2 ameliorates high glucose‑induced reductions in cardiomyocyte proliferation via the transforming growth factor‑β/Smad pathway. Mol Med Rep 2018; 18:4877-4885. [PMID: 30280191 PMCID: PMC6236294 DOI: 10.3892/mmr.2018.9522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia may induce diabetic cardiomyopathy (DC). In the current study, the mechanism underlying the alleviation of high glucose (HG)-induced impairments in the proliferation of H9c2 embryo cardiomyocyte proliferation by small ubiquitin-like modifier 2 (SUMO2) overexpression was investigated. H9c2 cell morphology was identified as classical long shuttle type by optical microscopy. The viability of HG-injured H9c2 cells was evaluated by a Cell Counting Kit-8 assay and the results indicated that viability was inhibited in a dose-dependent (5.6, 10, 20 and 30 mmol/l) and time-dependent (6, 12 and 24 h) manner. H9c2 cells treated with 20 mmol/l HG for 24 h were selected for subsequent experiments due to the extent of injury caused at a low density. Flow cytometry was conducted to confirm cell cycle arrest between G1/S phases and apoptosis promotion in HG-injured H9c2 cells, and the subsequent alleviating effect of SUMO2 overexpression on these HG-induced effects. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to detect mRNA and protein expression levels of cell cycle-and apoptosis-associated factors. The results indicated that the expression ofthe cell cycle-associated factors CyclinA2 and C-Myc was upregulated, and cyclin-dependent kinase inhibitor 1a was downregulated. The expression of the apoptosis-associated factor Bcl-2 was upregulated, while Bcl-2-associated X and caspase-3 expression was downregulated, by SUMO2 overexpression. Furthermore, the effect of SUMO2 overexpression on the transforming growth factor (TGF)-β/Smad pathway was also determined using RT-qPCR and western blot analysis. The results indicated the mRNA and protein levels of TGF-β1 and Smad3 in HG-injured H9c2 cells were significantly decreased following SUMO2 overexpression. Thus, the results demonstrated that overexpression of SUMO2 may alleviate H9c2 cardiomyocyte cell cycle arrest and apoptosis promotion induced by HG via regulation of cell cycle- and apoptosis-associated factors, as well as inhibition of the TGF-β/Smad pathway. These results may therefore provide a novel strategy for the protection of cardiomyocytes and may aid the diagnosis and prognosis of patients with DC.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Qile Shen
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
35
|
Ng HH, Leo CH, Parry LJ, Ritchie RH. Relaxin as a Therapeutic Target for the Cardiovascular Complications of Diabetes. Front Pharmacol 2018; 9:501. [PMID: 29867503 PMCID: PMC5962677 DOI: 10.3389/fphar.2018.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular complications are the major cause of mortality in patients with diabetes. This is closely associated with both macrovascular and microvascular complications of diabetes, which lead to organ injuries in diabetic patients. Previous studies have consistently demonstrated the beneficial effects of relaxin treatment for protection of the vasculature, with evidence of antioxidant and anti-remodeling actions. Relaxin enhances nitric oxide, prostacyclin and endothelium-derived hyperpolarization (EDH)-type-mediated relaxation in various vascular beds. These effects of relaxin on the systemic vasculature, coupled with its cardiac actions, reduce pulmonary capillary wedge pressure and pulmonary artery pressure. This results in an overall decrease in systemic and pulmonary vascular resistance in heart failure patients. The anti-fibrotic actions of relaxin are well established, a desirable property in the context of diabetes. Further, relaxin ameliorates diabetic wound healing, with accelerated angiogenesis and vasculogenesis. Relaxin-mediated stimulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1-α, as well as regulation of metalloproteinase expression, ameliorates cardiovascular fibrosis in diabetic mice. In the heart, relaxin is a cardioprotective molecule in several experimental animal models, exerting anti-fibrotic, anti-hypertrophy and anti-apoptotic effects in diabetic pathologies. Collectively, these studies provide a foundation to propose the therapeutic potential for relaxin as an adjunctive agent in the prevention or treatment of diabetes-induced cardiovascular complications. This review provides a comprehensive overview of the beneficial effects of relaxin, and identifies its therapeutic possibilities for alleviating diabetes-related cardiovascular injury.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Science and Math Cluster, Singapore University of Technology and Design, Singapore, Singapore
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Shin YK, Hsieh YS, Kwon S, Lee HS, Seol GH. Linalyl acetate restores endothelial dysfunction and hemodynamic alterations in diabetic rats exposed to chronic immobilization stress. J Appl Physiol (1985) 2018; 124:1274-1283. [DOI: 10.1152/japplphysiol.01018.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although stress is one of the risk factors of diabetes, few studies have assessed the effects of stress on diabetic rats. This study, therefore, analyzed differences in cardiovascular-related factors among control, nonstressed diabetic, and stressed diabetic rats as well as assessed the effects of linalyl acetate (LA) on stressed diabetic rats. Male Sprague-Dawley rats were subjected to immobilization stress throughout the experimental period, and diabetes was induced on day 15 by a single injection of streptozotocin. After confirming the induction of diabetes, stressed diabetic rats were administered LA (10 or 100 mg/kg) or metformin (500 mg/kg) for the last 7 days. Compared with nonstressed diabetic rats, stressed diabetic rats had significantly lower body weight, body fat percentage, ACh-induced vasorelaxation, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), and NF-κB expression as well as increased serum nitrite concentration. Although metformin increased serum insulin concentration significantly, 100 mg/kg LA showed only an increasing tendency. However, treatment with 100 mg/kg LA not only reduced serum glucose and NF-κB expression, but also restored ACh-induced vasorelaxation, SBP, DBP, HR, AMP-activated protein kinase expression, and serum nitrite almost to control levels. Importantly, 100 mg/kg LA was more effective than metformin in ameliorating serum glucose, endothelial nitric oxide synthase expression, HR, and serum nitrite. These findings suggest that chronic stress can aggravate endothelial dysfunction and hemodynamic alterations in diabetes and that LA may have potent therapeutic efficacy in diabetic patients with cardiovascular disease complications or chronic stress. NEW & NOTEWORTHY To our knowledge, this is the first study to assess the effects of linalyl acetate (LA) on cardiovascular-related factors in diabetic rats exposed to chronic stress. Treatment with LA restored acetylcholine-induced vasorelaxation, blood pressure, heart rate, and AMP-activated protein kinase and serum nitrite levels. The present results suggest that LA may have potent therapeutic efficacy in diabetic patients with complications of cardiovascular disease or chronic stress.
Collapse
Affiliation(s)
- You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Hui Su Lee
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Delgado-León TG, Sálas-Pacheco JM, Vazquez-Alaniz F, Vértiz-Hernández ÁA, López-Guzmán OD, Lozano-Guzmán E, Martínez-Romero A, Úrtiz-Estrada N, Cervantes-Flores M. Apoptosis in pancreatic β-cells is induced by arsenic and atorvastatin in Wistar rats with diabetes mellitus type 2. J Trace Elem Med Biol 2018; 46:144-149. [PMID: 29413104 DOI: 10.1016/j.jtemb.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Diabetes Mellitus type 2 (T2D) is a multifactorial disease. However, it is known that there is an important effect in pancreatic β-cells caused by apoptosis of pro-apoptotic proteins, possibly related to arsenic exposure and atorvastatin treatment. OBJECTIVE The goal of this study was to evaluate the effects of atorvastatin treatment on apoptosis of pancreatic β-cells in Wistar rats with induced diabetes type 2 exposed to arsenic. MATERIAL & METHODS T2D in Wistar rats was induced by administration of Streptozotocin. The plasmatic glucose concentrations were measured using the glucose oxidase method, and the concentration of glycated hemoglobin (HbA1c) in whole blood was determined. Exposure to arsenic was measured from urine using atomic absorption with hydride generation, and pro-apoptotic proteins in pancreatic β-cells were observed using the Western blotting technique. RESULTS Caspase-3 was present in rats that were treated with 10 mg/kg of oral atorvastatin and exposed to 0.01 and 0.025 mg/L of arsenic, but no others proteins were present, such as pro Caspase-8, bcl-2, and Fas. The glycemic levels were 129.2 ± 7.0 mg/dL in the control group and 161.8 ± 14.6 mg/dL and 198.3 ± 18.2 mg/dL (p < .05) in the study groups. HbA1c increased from 2.53% to 3.64% (p < .05) in the control and study groups. CONCLUSIONS Atorvastatin treatment and arsenic exposure alone are capable of generating apoptosis in pancreatic β-cells of Wistar rats with T2D. Together, all of these factors induce apoptosis in pancreatic cells.
Collapse
Affiliation(s)
- Tania Guadalupe Delgado-León
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - José Manuel Sálas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa s/n, C.P. 34000, Durango, Dgo, Mexico
| | - Fernando Vazquez-Alaniz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico; Hospital General 450 Servicios de Salud de Durango Blvd José María Patoni No. 403 Col El Cipres, CP 34206, Durango, Dgo, Mexico
| | - Ángel Antonio Vértiz-Hernández
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, carretera a Cedral Km 5+600, Ejido San José de las Trojes, CP: 78700, Matehuala, SLP, Mexico
| | - Olga Dania López-Guzmán
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - Eduardo Lozano-Guzmán
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - Aurora Martínez-Romero
- Facultad de Ciencias Químicas, Campus Gómez Palacio, Universidad Juárez del Estado de Durango, Durango, Av. Artículo 123 s/n, Fracc. Filadelfia, 35010 Gómez Palacio, Dgo, Mexico
| | - Norma Úrtiz-Estrada
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico
| | - Maribel Cervantes-Flores
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Dgo., México AV. Veterinaria s/n Circuito Universitario, C.P. 34120 Durango, Dgo, Mexico.
| |
Collapse
|
38
|
Implications of Underlying Mechanisms for the Recognition and Management of Diabetic Cardiomyopathy. J Am Coll Cardiol 2018; 71:339-351. [DOI: 10.1016/j.jacc.2017.11.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/05/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
|