1
|
Zhang T, Wang X, Wang Z, Zhai J, He L, Wang Y, Zuo Q, Ma S, Zhang G, Guo Y. Canagliflozin Ameliorates Ventricular Remodeling through Apelin/Angiotensin-Converting Enzyme 2 Signaling in Heart Failure with Preserved Ejection Fraction Rats. Pharmacology 2023; 108:478-491. [PMID: 37611563 DOI: 10.1159/000533277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the effect of canagliflozin (CANA) on ventricular remodeling in patients with preserved ejection fraction (HFpEF) heart failure and to further investigate its possible molecular mechanisms. METHODS A high-salt diet was used to induce the formation of HFpEF model in salt-sensitive rats. The rats were fed with CANA and irbesartan, respectively. The mice were divided into control group, model group, CANA group, irbesartan group, and combined drug group. After 12 weeks of feeding, the rats were evaluated by measuring the relevant indexes and echocardiography for cardiac function. Histological analysis was performed using Masson trichrome staining and immunohistochemical staining. RT-qPCR and Western blot were used to quantify the relevant genes and proteins. RESULTS In this study, CANA exhibited diuresis, decreased blood pressure, weight loss, and increased food and water intake. Following a high-salt diet, Dahl salt-sensitive rats developed hypertension followed by left ventricular diastolic dysfunction, myocardial fibrosis, and left ventricular remodeling. Myocardial hypertrophy and fibrosis were reduced, and left ventricular diastolic function and ventricular remodeling improved after CANA treatment. The combination of CANA and irbesartan was superior to monotherapy in reducing blood pressure and improving cardiac insufficiency and left ventricular diastolic dysfunction in rats. CANA improves myocardial fibrosis, left ventricular diastolic dysfunction, and ventricular remodeling by upregulating apelin, activating angiotensin-converting enzyme 2 (ACE2), and increasing ACE2/Ang (1-7)/MASR axis levels. CONCLUSION CANA improves myocardial fibrosis, left ventricular diastolic dysfunction, and ventricular remodeling in HFpEF rats through upregulation of apelin/ACE2 signaling.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China,
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China,
| | - Xinyu Wang
- College of Postgraduate, Hebei North University, Zhangjiakou, China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Ni L, Liu L, Zhu W, Telljohann R, Zhang J, Monticone RE, McGraw KR, Liu C, Morrell CH, Garrido‐Gil P, Labandeira‐Garcia JL, Lakatta EG, Wang M. Inflammatory Role of Milk Fat Globule-Epidermal Growth Factor VIII in Age-Associated Arterial Remodeling. J Am Heart Assoc 2022; 11:e022574. [PMID: 36000422 PMCID: PMC9496444 DOI: 10.1161/jaha.121.022574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Background Age-associated aortic remodeling includes a marked increase in intimal medial thickness (IMT), associated with signs of inflammation. Although aortic wall milk fat globule-epidermal growth factor VIII (MFG-E8) increases with age, and is associated with aortic inflammation, it is not known whether MFG-E8 is required for the age-associated increase in aortic IMT. Here, we tested whether MFG-E8 is required for the age-associated increase in aortic IMT. Methods and Results To determine the role of MFG-E8 in the age-associated increase of IMT, we compared aortic remodeling in adult (20-week) and aged (96-week) MFG-E8 (-/-) knockout and age matched wild-type (WT) littermate mice. The average aortic IMT increased with age in the WT from 50±10 to 70±20 μm (P<0.0001) but did not significantly increase with age in MFG-E8 knockout mice. Because angiotensin II signaling is implicated as a driver of age-associated increase in IMT, we infused 30-week-old MFG-E8 knockout and age-matched littermate WT mice with angiotensin II or saline via osmotic mini-pumps to determine whether MFG-E8 is required for angiotensin II-induced aortic remodeling. (1) In WT mice, angiotensin II infusion substantially increased IMT, elastic lamina degradation, collagen deposition, and the proliferation of vascular smooth muscle cells; in contrast, these effects were significantly reduced in MFG-E8 KO mice; (2) On a molecular level, angiotensin II treatment significantly increased the activation and expression of matrix metalloproteinase type 2, transforming growth factor beta 1, and its downstream signaling molecule phosphorylated mother against decapentaplegic homolog 2, and collagen type I production in WT mice; however, in the MFG-E8 knockout mice, these molecular effects were significantly reduced; and (3) in WT mice, angiotensin II increased levels of aortic inflammatory markers phosphorylated nuclear factor-kappa beta p65, monocyte chemoattractant protein 1, tumor necrosis factor alpha, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 molecular expression, while in contrast, these inflammatory markers did not change in knockout mice. Conclusions Thus, MFG-E8 is required for both age-associated proinflammatory aortic remodeling and also for the angiotensin II-dependent induction in younger mice of an aortic inflammatory phenotype observed in advanced age. Targeting MFG-E8 would be a novel molecular approach to curb adverse arterial remodeling.
Collapse
Affiliation(s)
- Leng Ni
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
- Department of Vascular Surgery, Peking Union Medical College HospitalPeking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Lijuan Liu
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Wanqu Zhu
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Kimberly R. McGraw
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College HospitalPeking Union Medical College & Chinese Academy of Medical SciencesBeijingChina
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Pablo Garrido‐Gil
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDISUniversity of Santiago de CompostelaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Jose Luis Labandeira‐Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDISUniversity of Santiago de CompostelaSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institution on AgingNational Institutes of Health, Biomedical Research Center (BRC)BaltimoreMD
| |
Collapse
|
3
|
Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review. Pregnancy Hypertens 2022; 28:15-20. [DOI: 10.1016/j.preghy.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
|
4
|
Bhullar S, Shah A, Dhalla N. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion of angiotensin I to angiotensin II, are well-known for the treatments of cardiovascular diseases, such as heart failure, hypertension and acute coronary syndrome. Several of these inhibitors including captopril, enalapril, ramipril, zofenopril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunction and decrease mortality. Extensive experimental and clinical research over the past 35 years has revealed that the beneficial effects of ACE inhibitors in heart failure are associated with full or partial prevention of adverse cardiac remodeling. Since cardiac function is mainly determined by coordinated activities of different subcellular organelles, including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils, for regulating the intracellular concentration of Ca2+ and myocardial metabolism, there is ample evidence to suggest that adverse cardiac remodelling and cardiac dysfunction in the failing heart are the consequence of subcellular defects. In fact, the improvement of cardiac function by different ACE inhibitors has been demonstrated to be related to the attenuation of abnormalities in subcellular organelles for Ca2+-handling, metabolic alterations, signal transduction defects and gene expression changes in failing cardiomyocytes. Various ACE inhibitors have also been shown to delay the progression of heart failure by reducing the formation of angiotensin II, the development of oxidative stress, the level of inflammatory cytokines and the occurrence of subcellular defects. These observations support the view that ACE inhibitors improve cardiac function in the failing heart by multiple mechanisms including the reduction of oxidative stress, myocardial inflammation and Ca2+-handling abnormalities in cardiomyocytes.
Collapse
|
5
|
Kriszta G, Kriszta Z, Váncsa S, Hegyi PJ, Frim L, Erőss B, Hegyi P, Pethő G, Pintér E. Effects of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers on Angiotensin-Converting Enzyme 2 Levels: A Comprehensive Analysis Based on Animal Studies. Front Pharmacol 2021; 12:619524. [PMID: 33762942 PMCID: PMC7982393 DOI: 10.3389/fphar.2021.619524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of coronavirus disease 2019 (COVID-19), caused the outbreak escalated to pandemic. Reports suggested that near 1-3% of COVID-19 cases have a fatal outcome. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are widely used in hypertension, heart failure and chronic kidney disease. These drugs have been reported to upregulate angiotensin converting enzyme 2 (ACE2) which produces Ang (1-7), the main counter-regulatory mediator of angiotensin II. This enzyme is also known as the receptor of SARS-CoV-2 promoting the cellular uptake of the virus in the airways, however, ACE2 itself proved to be protective in several experimental models of lung injury. The present study aimed to systematically review the relationship between ACEI/ARB administration and ACE2 expression in experimental models. After a comprehensive search and selection, 27 animal studies investigating ACE2 expression in the context of ACEI and ARB were identified. The majority of these papers reported increased ACE2 levels in response to ACEI/ARB treatment. This result should be interpreted in the light of the dual role of ACE2 being a promoter of viral entry to cells and a protective factor against oxidative damage in the lungs.
Collapse
Affiliation(s)
- Gábor Kriszta
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, Pécs, Hungary
| | - Zsófia Kriszta
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Jenő Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Levente Frim
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Ning L, Rong J, Zhang Z, Xu Y. Therapeutic approaches targeting renin-angiotensin system in sepsis and its complications. Pharmacol Res 2021; 167:105409. [PMID: 33465472 DOI: 10.1016/j.phrs.2020.105409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Sepsis, caused by the inappropriate host response to infection, is characterized by excessive inflammatory response and organ dysfunction, thus becomes a critical clinical problem. Commonly, sepsis may progress to septic shock and severe complications, including acute kidney injury (AKI), acute respiratory distress syndrome (ARDS), sepsis-induced myocardial dysfunction (SIMD), liver dysfunction, cerebral dysfunction, and skeletal muscle atrophy, which predominantly contribute to high mortality. Additionally, the global pandemic of coronavirus disease 2019 (COVID-19) raised the concern of development of effectve therapeutic strategies for viral sepsis. Renin-angiotensin system (RAS) may represent as a potent therapeutic target for sepsis therapy. The emerging role of RAS in the pathogenesis of sepsis has been investigated and several preclinical and clinical trials targeting RAS for sepsis treatment revealed promising outcomes. Herein, we attempt to review the effects and mechanisms of RAS manipulation on sepsis and its complications and provide new insights into optimizing RAS interventions for sepsis treatment.
Collapse
Affiliation(s)
- Le Ning
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhaocai Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Oves M, Ravindran M, Rauf MA, Omaish Ansari M, Zahin M, Iyer AK, Ismail IMI, Khan MA, Palaniyar N. Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens 2020; 9:pathogens9120985. [PMID: 33255989 PMCID: PMC7761006 DOI: 10.3390/pathogens9120985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is responsible for an unprecedented disruption to the healthcare systems and economies of countries around the world. Developing novel therapeutics and a vaccine against SARS-CoV-2 requires an understanding of the similarities and differences between the various human coronaviruses with regards to their phylogenic relationships, transmission, and management. Phylogenetic analysis indicates that humans were first infected with SARS-CoV-2 in late 2019 and the virus rapidly spread from the outbreak epicenter in Wuhan, China to various parts of the world. Multiple variants of SARS-CoV-2 have now been identified in particular regions. It is apparent that MERS, SARS-CoV, and SARS-CoV-2 present with several common symptoms including fever, cough, and dyspnea in mild cases, but can also progress to pneumonia and acute respiratory distress syndrome. Understanding the molecular steps leading to SARS-CoV-2 entry into cells and the viral replication cycle can illuminate crucial targets for testing several potential therapeutics. Genomic and structural details of SARS-CoV-2 and previous attempts to generate vaccines against SARS-CoV and MERS have provided vaccine targets to manage future outbreaks more effectively. The coordinated global response against this emerging infectious disease is unique and has helped address the need for urgent therapeutics and vaccines in a remarkably short time.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia; (M.O.); (I.M.I.I.)
| | - Mithunan Ravindran
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Mohd Ahmar Rauf
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (M.A.R.); (A.K.I.)
| | - Mohammad Omaish Ansari
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia;
| | - Maryam Zahin
- Center for Predictive Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Arun K. Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (M.A.R.); (A.K.I.)
| | - Iqbal M. I. Ismail
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia; (M.O.); (I.M.I.I.)
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia
| | - Meraj A. Khan
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Correspondence: (M.A.K.); (N.P.)
| | - Nades Palaniyar
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Correspondence: (M.A.K.); (N.P.)
| |
Collapse
|
8
|
Oyagbemi AA, Bolaji-Alabi FB, Ajibade TO, Adejumobi OA, Ajani OS, Jarikre TA, Omobowale TO, Ola-Davies OE, Soetan KO, Aro AO, Emikpe BO, Saba AB, Adedapo AA, Oyeyemi MO, Nkadimeng SM, Kayoka-Kabongo PN, McGaw LJ, Oguntibeju OO, Yakubu MA. Novel antihypertensive action of rutin is mediated via inhibition of angiotensin converting enzyme/mineralocorticoid receptor/angiotensin 2 type 1 receptor (ATR1) signaling pathways in uninephrectomized hypertensive rats. J Food Biochem 2020; 44:e13534. [PMID: 33089540 DOI: 10.1111/jfbc.13534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 12/01/2022]
Abstract
Hypertension is the most common cardiovascular disease that affects approximately 26% of adult population, worldwide. Rutin is one of the important flavonoids that is consumed in the daily diet, and found in many food items, vegetables, and beverages. Uninephrectomy (UNX) of the left kidney was performed, followed by induction of hypertension. The rats were randomly divided into four groups of 10 rats: group 1-Sham-operated rats; group 2-UNX rats, group 3-UNX-L-NAME (40 mg/kg) plus rutin (100 mg/kg bwt), and groups 4-UNX-L-NAME plus lisinopril (10 mg/kg bwt), orally for 3 weeks. Results revealed significant heightening of arterial pressure and oxidative stress indices, while hypertensive rats treated with rutin had lower expressions of angiotensin converting enzyme (ACE) and mineralocorticoid receptor in uninephrectomized rats. Together, rutin as a novel antihypertensive flavonoid could provide an unimaginable benefits for the management of hypertension through inhibition of angiotensin converting enzyme and mineralocorticoid receptor. PRACTICAL APPLICATIONS: Hypertension has been reported to be the most common cardiovascular disease, affecting approximately 26% of the adult population worldwide with predicted prevalence to increase by 60% by 2025. Recent advances in phytomedicine have shown flavonoids to be very helpful in the treatment of many diseases. Flavonoids have been used in the treatment and management of cardiovascular diseases, obesity and hypertension. The study revealed that rutin, a known flavonoid inhibited angiotensin converting enzyme (ACE), angiotensin 2 type 1 receptor (ATR1), and mineralocorticoid receptor (MCR), comparable to the classic ACE inhibitor, Lisinopril, indicating the novel antihypertensive property of rutin. Therefore, flavonoids such as rutin found in fruits and vegetables could, therefore, serve as an antihypertensive drug regimen. Combining all, functional foods rich in flavonoids could be used as potential therapeutic candidates for managing uninephrectomized hypertensive patients.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Foluso Bolawaye Bolaji-Alabi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide Samuel Ajani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Theophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kehinde Olugboyega Soetan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Obemisola Aro
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Gauteng, South Africa
| | - Adeolu Alex Adedapo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Gauteng, South Africa
| | | | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Pretoria, South Africa
| | | | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Pretoria, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, Texas Southern University, Houston, TX, USA
| |
Collapse
|
9
|
Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320979097. [PMID: 33283602 PMCID: PMC7724427 DOI: 10.1177/1470320320979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.
Collapse
Affiliation(s)
| | | | - Janne Roorda
- Medical Doctor, General Practice
van Dijk, Oisterwijk, The Netherlands
| |
Collapse
|
10
|
Abstract
The recent demonstration of the significant reduction in mortality in patients with septic shock treated with adjunctive glucocorticoids combined with fludrocortisone and the effectiveness of angiotensin II in treating vasodilatory shock have renewed interest in the role of the mineralocorticoid axis in critical illness. Glucocorticoids have variable interactions at the mineralocorticoid receptor. Similarly, mineralocorticoid receptor-aldosterone interactions differ from mineralocorticoid receptor-glucocorticoid interactions and predicate receptor-ligand interactions that differ with respect to cellular effects. Hyperreninemic hypoaldosteronism or selective hypoaldosteronism, an impaired adrenal response to increasing renin levels, occurs in a subgroup of hemodynamically unstable critically ill patients. The suggestion is that there is a defect at the level of the adrenal zona glomerulosa associated with a high mortality rate that may represent an adaptive response aimed at increasing cortisol levels. Furthermore, cross-talk exists between angiotensin II and aldosterone, which needs to be considered when employing therapeutic strategies.
Collapse
|
11
|
Garg M, Manik G, Singhal A, Singh VK, Varshney RK, Sethi A. Efficacy and Safety of Azilsartan Medoxomil and Telmisartan in Hypertensive Patients: A Randomized, Assessor-Blinded Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2020; 8:87-94. [PMID: 32587489 PMCID: PMC7305670 DOI: 10.4103/sjmms.sjmms_19_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/10/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Few studies have compared the safety and efficacy of azilsartan medoxomil (AZL-M) and telmisartan in hypertensive patients, especially using ambulatory blood pressure monitoring (ABPM). OBJECTIVE The objective of this study was to compare the efficacy and safety profile of AZL-M and telmisartan in hypertensive patients using ABPM and clinic blood pressure (BP) monitoring. MATERIALS AND METHODS This prospective, randomized, open-label, blinded endpoint, parallel-arm study included 700 patients, aged 18-70 years, with clinic and 24-h mean ambulatory systolic BP (SBP) of 150-180 mmHg and 130-170 mmHg, respectively. They were randomized equally into two groups: Group A received AZL-M 40 mg and Group T received telmisartan 40 mg; the dose was force titrated to 80 mg after 2 weeks if the response rate was not achieved. BP (clinical and ambulatory) was measured after 12 weeks and compared with baseline measurements. RESULTS AZL-M significantly reduced the 24-h mean ambulatory SBP (Group A: 112.74 ± 7.58 mmHg; Group T: 113.96 ± 8.52 mmHg; P < 0.0001) and diastolic BP (Group A: 71.39 ± 5.89 mmHg; Group T: 67.29 ± 6.79 mmHg; P < 0.0001) compared with telmisartan at week 12. The clinic SBP significantly decreased in Group A at weeks 4 (-30.69± -0.33 mmHg) and 12 (-39.69± -1.09 mmHg) (for both, P = 0.0001). Dose titration was done in 99 and 128 patients from Group A and Group T, respectively (P = 0.012). Headache was the most common adverse drug reaction (Group A: 21; Group T: 27) and fatigue the least. CONCLUSION This study found that AZL-M has greater antihypertensive efficacy than telmisartan, with comparable side effects. In addition, ABPM was shown to be a feasible method for such studies.
Collapse
Affiliation(s)
- Megha Garg
- Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Geetesh Manik
- Department of Cardiology, Teerthanker Mahaveer Hospital, Moradabad, Uttar Pradesh, India
| | - Alok Singhal
- Department of Medicine, Teerthanker Mahaveer Medical College, Moradabad, Uttar Pradesh, India
| | - V. K. Singh
- Department of Medicine, Teerthanker Mahaveer Medical College, Moradabad, Uttar Pradesh, India
| | - Rohit K. Varshney
- Department of Anaesthesia, Teerthanker Mahaveer Medical College, Moradabad, Uttar Pradesh, India
| | - Aseem Sethi
- Department of Pharmacy Practice, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
12
|
Prehypertension exercise training attenuates hypertension and cardiac hypertrophy accompanied by temporal changes in the levels of angiotensin II and angiotensin (1-7). Hypertens Res 2019; 42:1745-1756. [DOI: 10.1038/s41440-019-0297-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/07/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022]
|
13
|
Fandiño J, Vaz AA, Toba L, Romaní-Pérez M, González-Matías L, Mallo F, Diz-Chaves Y. Liraglutide Enhances the Activity of the ACE-2/Ang(1-7)/Mas Receptor Pathway in Lungs of Male Pups from Food-Restricted Mothers and Prevents the Reduction of SP-A. Int J Endocrinol 2018; 2018:6920620. [PMID: 30627159 PMCID: PMC6304858 DOI: 10.1155/2018/6920620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
In utero growth restriction and being born small for gestational age are risk factors for respiratory morbidity. IUGR (in utero growth retardation) is associated to overall reduction in lung weight, surfactant content and activity, impaired maturation of the alveolar type II cells, and decreased alveolar formation. The renin-angiotensin system (RAS) may be a key target underlying pathophysiological lung alterations. GLP-1 and agonists of its receptor modulate the expression levels of different components of RAS and also are very important for lung maturation and the production of surfactant proteins. The aim of this study was to elucidate the effects of IUGR induced by perinatal food restriction of the mother in the lung function of pups at early stages of life (PD21) and to determine if liraglutide had any effect during gestational period. Sprague-Dawley pregnant rats were randomly assigned to 50% food restriction (MPFR) or ad libitum control (CT) groups at day of pregnancy 12 (GD12). From GD14 to parturition, pregnant MPFR and CT rats were treated with liraglutide or vehicle. At postnatal day 21 and before weaning, 20 CT and 20 FR male pups were sacrificed and lungs were analyzed by RT-PCR. Liraglutide restored surfactant protein A (SP-A) mRNA expression in pup lungs from food-restricted mothers. Surfactant protein B (SP-B) mRNA expression is not affected by neither IUGR nor liraglutide treatment. Moreover, liraglutide modulated different elements of RAS, increasing angiotensin-converting enzyme 2 (ACE2) and MasR mRNA expression only in pups from food-restricted mothers (MPFR), despite food restriction had not any direct effect at this early stage. Liraglutide also increased endothelial nitric oxide synthase (eNOS) expression in MPFR lungs, reflecting the activation of MasR by angiotensin 1-7. In conclusion, liraglutide prevented the alteration in lung function induced by IUGR and promoted the positive effects of ACE2-Ang(1-7)-MasR in restoring lung function.
Collapse
Affiliation(s)
- J. Fandiño
- Laboratory Endocrinology, LabEndo, Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, E36310 Vigo, Spain
| | - A. A. Vaz
- Laboratory Endocrinology, LabEndo, Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, E36310 Vigo, Spain
| | - L. Toba
- Laboratory Endocrinology, LabEndo, Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, E36310 Vigo, Spain
| | - M. Romaní-Pérez
- Laboratory Endocrinology, LabEndo, Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, E36310 Vigo, Spain
| | - L. González-Matías
- Laboratory Endocrinology, LabEndo, Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, E36310 Vigo, Spain
| | - F. Mallo
- Laboratory Endocrinology, LabEndo, Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, E36310 Vigo, Spain
| | - Y. Diz-Chaves
- Laboratory Endocrinology, LabEndo, Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, E36310 Vigo, Spain
| |
Collapse
|
14
|
Dick SM, Queiroz M, Brondani LA, Dall’Agnol A, Bernardi BL, Silveiro SP. Update in diagnosis and management of primary aldosteronism: reply to a Letter to the Editor. Clin Chem Lab Med 2018; 56:253-254. [DOI: 10.1515/cclm-2018-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Sofia Michele Dick
- UFRGS – Internal Medicine , Ramiro Barcelos, 2350 , Porto Alegre 90450100 , Brazil
| | - Marina Queiroz
- UFRGS – Internal Medicine , Ramiro Barcelos, 2350 , Porto Alegre 90450100 , Brazil
| | | | - Angélica Dall’Agnol
- UFRGS – Internal Medicine , Ramiro Barcelos, 2350 , Porto Alegre 90450100 , Brazil
| | | | - Sandra Pinho Silveiro
- Faculdade de Medicina da UFRGS, Programa de Pós Graduação em Ciências Médicas: Endocrinologia , Porto Alegre, RS , Brazil
| |
Collapse
|
15
|
Gay A. Letter to the Editor relative to Clin Chem Lab Med 2018;56(3):360-372. Clin Chem Lab Med 2018; 56:251-252. [PMID: 29668442 DOI: 10.1515/cclm-2018-0245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Alain Gay
- Bayer AG, Müllerstr. 178, 13342 Berlin, Germany
| |
Collapse
|
16
|
Khlestova GV, Romanov AY, Nizyaeva NV, Karapetyan AO, Baev OR, Ivanets TY. Dynamics of Renin, Angiotensin II, and Angiotensin (1-7) during Pregnancy and Predisposition to Hypertension-Associated Complications. Bull Exp Biol Med 2018; 165:438-439. [PMID: 30123953 DOI: 10.1007/s10517-018-4188-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 01/06/2023]
Abstract
Changes in the levels of rennin, angiotensin II, and angiotensin (1-7) were studied during normal pregnancy. The blood was taken on gestation days 140-237 and 238-280. No significant changes in renin concentration were observed during normal pregnancy (p=0.423). The level of angiotensin II increased during normal pregnancy from 9.7±1.2 to 14.7±1.9 pg/ml (p=0.019). On the contrary, angiotensin (1-7) concentration decreased from 771.1±44.2 to 390.7±13.9 pg/ml (p<0.001). The shift in the proportion between vasoconstrictor angiotensin II and vasodilaltor angiotensin (1-7) attests to high predisposition of pregnant women to hypertension-related complications.
Collapse
Affiliation(s)
- G V Khlestova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Romanov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N V Nizyaeva
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A O Karapetyan
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O R Baev
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Obstetrics, Gynecology, Perinatology, and Reproductology, Faculty of Postgraduate Professional Education, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - T Yu Ivanets
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
17
|
Antlanger M, Domenig O, Kovarik JJ, Kaltenecker CC, Kopecky C, Poglitsch M, Säemann MD. Molecular remodeling of the renin-angiotensin system after kidney transplantation. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317705232. [PMID: 28490223 PMCID: PMC5843863 DOI: 10.1177/1470320317705232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: We aimed at assessing the molecular adaptation of the renin-angiotensin system (RAS) after successful kidney transplantation (KTX). Materials and methods: In this prospective, exploratory study we analyzed 12 hemodialysis (HD) patients, who received a KTX and had excellent graft function six to 12 months thereafter. The concentrations of plasma Angiotensin (Ang) peptides (Ang I, Ang II, Ang-(1–7), Ang-(1–5), Ang-(2–8), Ang-(3–8)) were simultaneously quantified with a novel mass spectrometry-based method. Further, renin and aldosterone concentrations were determined by standard immunoassays. Results: Ang values showed a strong inter-individual variability among HD patients. Yet, despite a continued broad dispersion of Ang values after KTX, a substantial improvement of the renin/Ang II correlation was observed in patients without RAS blockade or on angiotensin receptor blocker (HD: renin/Ang II R2 = 0.660, KTX: renin/Ang II R2 = 0.918). Ang-(1–7) representing the alternative RAS axis was only marginally detectable both on HD and after KTX. Conclusions: Following KTX, renin-dependent Ang II formation adapts in non-ACE inhibitor-treated patients. Thus, a largely normal RAS regulation is reconstituted after successful KTX. However, individual Ang concentration variations and a lack of potentially beneficial alternative peptides after KTX call for individualized treatment. The long-term post-transplant RAS regulation remains to be determined.
Collapse
Affiliation(s)
- Marlies Antlanger
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Oliver Domenig
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Johannes J Kovarik
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Christopher C Kaltenecker
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Chantal Kopecky
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | | | - Marcus D Säemann
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| |
Collapse
|
18
|
Update in diagnosis and management of primary aldosteronism. ACTA ACUST UNITED AC 2017; 56:360-372. [DOI: 10.1515/cclm-2017-0217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
Abstract
Primary aldosteronism (PA) is a group of disorders in which aldosterone is excessively produced. These disorders can lead to hypertension, hypokalemia, hypervolemia and metabolic alkalosis. The prevalence of PA ranges from 5% to 12% around the globe, and the most common causes are adrenal adenoma and adrenal hyperplasia. The importance of PA recognition arises from the fact that it can have a remarkably adverse cardiovascular and renal impact, which can even result in death. The aldosterone-to-renin ratio (ARR) is the election test for screening PA, and one of the confirmatory tests, such as oral sodium loading (OSL) or saline infusion test (SIT), is in general necessary to confirm the diagnosis. The distinction between adrenal hyperplasia (AH) or aldosterone-producing adenoma (APA) is essential to select the appropriate treatment. Therefore, in order to identify the subtype of PA, imaging exams such as computed tomography or magnetic ressonance imaging, and/or invasive investigation such as adrenal catheterization must be performed. According to the subtype of PA, optimal treatment – surgical for APA or pharmacological for AH, with drugs like spironolactone and amiloride – must be offered.
Collapse
|