1
|
Machla F, Bekiari C, Monou PK, Kofidou E, Theodosaki AM, Katsamenis OL, Zisis V, Kokoti M, Bakopoulou A, Fatouros D, Andreadis D. Development of an Oral Epithelial Ex Vivo Organ Culture Model for Biocompatibility and Permeability Assessment of Biomaterials. Bioengineering (Basel) 2024; 11:1035. [PMID: 39451410 PMCID: PMC11504994 DOI: 10.3390/bioengineering11101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
In the present study, a customized device (Epi-ExPer) was designed and fabricated to facilitate an epithelial organ culture, allowing for controlled exposure to exogenous chemical stimuli and accommodating the evaluation of permeation of the tissue after treatment. The Epi-ExPer system was fabricated using a stereolithography (SLA)-based additive manufacturing (AM) method. Human and porcine oral epithelial mucosa tissues were inserted into the device and exposed to resinous monomers commonly released by dental restorative materials. The effect of these xenobiotics on the morphology, viability, permeability, and expression of relevant markers of the oral epithelium was evaluated. Tissue culture could be performed with the desired orientation of air-liquid interface (ALI) conditions, and exposure to xenobiotics was undertaken in a spatially guarded and reproducible manner. Among the selected monomers, HEMA and TEGDMA reduced tissue viability at high concentrations, while tissue permeability was increased by the latter. Xenobiotics affected the histological image by introducing the vacuolar degeneration of epithelial cells and increasing the expression of panCytokeratin (pCK). Epi-ExPer device offers a simple, precise, and reproducible study system to evaluate interactions of oral mucosa with external stimuli, providing a biocompatibility and permeability assessment tool aiming to an enhanced in vitro/ex vivo-to-in vivo extrapolation (IVIVE) that complies with European Union (EU) and Food and Durg Administration (FDI) policies.
Collapse
Affiliation(s)
- Foteini Machla
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Chrysanthi Bekiari
- Laboratory of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (E.K.)
| | - Paraskevi Kyriaki Monou
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.M.); (D.F.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Evangelia Kofidou
- Laboratory of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (E.K.)
| | - Astero Maria Theodosaki
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Vasileios Zisis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Kokoti
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Athina Bakopoulou
- Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (A.M.T.)
| | - Dimitrios Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.M.); (D.F.)
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Machla F, Monou PK, Bekiari C, Andreadis D, Kofidou E, Panteris E, Katsamenis OL, Kokoti M, Koidis P, About I, Fatouros D, Bakopoulou A. Tissue-Engineered Oral Epithelium for Dental Material Testing: Toward In Vitro Biomimetic Models. Tissue Eng Part C Methods 2024. [PMID: 39302070 DOI: 10.1089/ten.tec.2024.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Tissue-engineered oral epithelium (ΤΕΟΕ) was developed after comparing various culture conditions, including submerged (SUB) and air-liquid interface (ALI) human cell expansion options. Barrier formation was evaluated via transepithelial electrical resistance (TEER) and calcein permeation via spectrofluorometry. TEOE was further assessed for long-term viability via live/dead staining and development of intercellular connections via transmission electron microscopy. Tissue architecture was evaluated via histochemistry and the expression of pancytokeratin (pCK) via immunohistochemistry. The effect of two commonly used dental resinous monomers on TEOE was evaluated for alterations in cell viability and barrier permeability. ALI/keratinocyte growth factor-supplemented (ALI-KGS) culture conditions led to the formation of an 8-20-layer thick, intercellularly connected epithelial barrier. TEER values of ALI-KGS-developed TEOE decreased compared with all other tested conditions, and the established epithelium intensively expressed pCK. Exposure to dental monomers affected the integrity and architecture of TEOE and induced cellular vacuolation, implicating hydropic degeneration. Despite structural modifications, the permeability of TEOE was not substantially affected after exposure to the monomers. In conclusion, the biological properties of the TEOE mimicking the physiological functional conditions and its value as biocompatibility assessment tool for dental materials were characterized.
Collapse
Affiliation(s)
- Foteini Machla
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Chrysanthi Bekiari
- Laboratory of Anatomy and Histology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kofidou
- Laboratory of Anatomy and Histology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Orestis L Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Maria Kokoti
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Koidis
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Imad About
- Centre National de la Recherche Scientifique, Institute of Movement Sciences, Aix Marseille University, Marseille, France
| | - Dimitrios Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Tissue Engineering Core Unit, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Tez BÇ, Eliaçık BBK, Taşlı PN, Yılmaz H, Şahin F. Biocompatibility and Cytotoxicity of Pulp-Capping Materials on DPSCs, With Marker mRNA Expressions. Int Dent J 2024; 74:1064-1077. [PMID: 38692961 DOI: 10.1016/j.identj.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES The present study aimed to (1) investigate biocompatibility and cytotoxicity of pulp-capping materials on viability of human dental pulp stem cells (hDPSCs); (2) determine angiogenic, odontogenic, and osteogenic marker mRNA expressions; and (3) observe changes in surface morphology of the hDPSCs using scanning electron microscopy (SEM). METHODS Impacted third molars were used to isolate the hDPSCs, which were treated with extract-release fluids of the pulp-capping materials (Harvard BioCal-Cap, NeoPUTTY MTA, TheraCal LC, and Dycal). Effects of the capping materials on cell viability were assessed using 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay and the apoptotic/necrotic cell ratios and reactive oxygen species (ROS) levels from flow cytometry. Marker expressions (alkaline phosphatase [ALP], osteocalcin [OCN], collagen type I alpha 1 [Col1A], secreted protein acidic and rich in cysteine [SPARC], osteonectin [ON], and vascular endothelial growth factor [VEGF]) were determined by quantitative reverse-transcription polymerase chain reaction. Changes in surface morphology of the hDPSCs were visualised by SEM. RESULTS The MTS assay results at days 1, 3, 5, and 7 indicated that Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC did not adversely affect cell viability when compared with the control group. According to the MTS assay results at day 14, no significant difference was found amongst Dycal, Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC affecting cell viability. Dycal was the only capping material that increased ROS level. High levels of VEGF expression were observed with Harvard BioCal-Cap, TheraCal LC, and NeoPUTTY MTA. NeoPUTTY MTA, and Dycal upregulated OCN expression, whereas TheraCal LC upregulated Col1A and SPARC expression. Only Dycal increased ALP expression. HDSCs were visualized in characteristic spindle morphology on SEM when treated with TheraCal LC and Harvard BioCal-Cap. CONCLUSIONS NeoPUTTY MTA and Harvard BioCal-Cap showed suitable biocompatibility values; in particular, these pulp-capping materials were observed to support the angiogenic marker.
Collapse
Affiliation(s)
- Banu Çiçek Tez
- Department of Pediatric Dentistry, Faculty of Dentistry, Ankara Medipol University, Ankara, Türkiye
| | | | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| | - Hazal Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
4
|
Bošković M, Sokolović D, Stanković S, Ristić I, Popović J, Kocić G. The Influence of Removable Complete Denture on Pro-Oxidant Antioxidant Balance and Redox-Sensitive Inflammation Biomarker NF-ĸB in the Oral Cavity: An Interventional Follow-Up Study. Clin Exp Dent Res 2024; 10:e70007. [PMID: 39295455 PMCID: PMC11411146 DOI: 10.1002/cre2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/25/2024] [Accepted: 07/21/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES Oxidative stress, an imbalance between the body's natural antioxidant defenses and the production of reactive oxygen species (ROS), can result in serious oral diseases, including oral cancer, periodontal diseases, and oral lichen planus, through the activation of the redox-sensitive transcription factors and inflammation. The purpose of this study was to assess the potential effects of a removable complete denture on the levels of oxidative stress markers, such as lipid peroxidation (MDA), advanced oxidation protein products (AOPP), and catalase, and the quantitative expression of the redox-sensitive transcription factor NF-κB p65 subunit. MATERIALS AND METHODS This interventional follow-up study enrolled 40 participants of both sexes aged 28-78 years, with a median age of 56 years, where unstimulated saliva was collected before denture placement, immediately after the denture placement, and 24 h, 7 days, and 30 days after the denture placement. The most prominent ROS overproduction was reported on the seventh day (p < 0.05), followed by a significant fall in antioxidative defense. RESULTS The NF-κB p65 subunit, whose expression pattern was highest in the same time period on the seventh day, serves as a signaling molecule for redox imbalance due to ROS production. Over the next 30 days, its levels remained moderately increased compared to the basal value, which may influence pro-inflammatory pathways and the integrity of oral tissue components. These alterations may be induced by the dentures, which can produce high pressures on the supporting tissues or by the synthetic materials used for producing the dentures. CONCLUSION Our research may help to clarify the potential pathways by which oxidative stress and redox-sensitive inflammatory mediators, as well as mechanical and chemical irritants, may serve as risk factors for premalignant lesions in the mouth. Further research on this topic is required to understand the molecular mechanisms behind the relationship between inflammation and oral premalignant lesions caused by mechanical and chemical irritation.
Collapse
Affiliation(s)
- Mirjana Bošković
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Dušan Sokolović
- Department of Biochemistry, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Saša Stanković
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Ivan Ristić
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Jordan Popović
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gotheburg, Goteborg, Goteborg region, Sweden
| | - Gordana Kocić
- Department of Biochemistry, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| |
Collapse
|
5
|
Josic U, Teti G, Ionescu A, Maravic T, Mazzitelli C, Cokic S, Van Meerbeek B, Falconi M, Brambilla E, Mazzoni A, Breschi L. Cytotoxicity and microbiological behavior of universal resin composite cements. Dent Mater 2024; 40:1515-1523. [PMID: 39054113 DOI: 10.1016/j.dental.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To investigate the cytotoxicity on human dental pulp cells (HDPCs) and Streptococcus mutans (S.mutans) biofilm formation on universal resin composite cements (UCs). METHODS Three UCs (RelyX Universal, 3 M Oral Care - RXU; Panavia SA Cement Universal, Kuraray Noritake - PSAU; SoloCem, Coltene - SCM) and one 'gold-standard' multi-step cement (Panavia V5, Kuraray Noritake - PV5) were used following two polymerization protocols (light-cured - LC; self-cured - SC). Cytotoxicity (MTT) tests were performed after 1, 3 and 7 days of direct contact. Carboxy-2',7'-dichlorodihydrofluorescein diacetate was used to detect the release of reactive oxygen species (ROS), and interleukin 6 (IL-6) expression was analyzed by IL-6 proquantum high sensitivity immunoassay. S. mutans biofilms were grown on UCs samples in a bioreactor for 24 h, then adherent viable biomass was assessed using MTT assay. For microbiological procedures, half of UCs samples underwent accelerated aging. Data were statistically analyzed (α = 0.05). RESULTS The highest cytotoxicity was observed for PSAU SC, RXU SC, and PV5 SC at day 1, then for SC RXU after 3 days, and SC PSAU, LC PV5 and SCM after 1-week (p < 0.05). There was no increase in IL-6 expression after 1 day, while it increased depending on the group at 3 and 7 days. The highest ROS expression after 12 h was recorded for PSAU SC, PV5 SC and PV5 LC. Biofilm formation was as follows: RXU > > PSAU = PV5 > SCM, while light-curing systematically decreased biofilm formation (≈-33 %). Aging leveled out differences between UCs and between polymerization protocols. SIGNIFICANCE The choice of cement brand, rather than category, and polymerization protocol influence cell viability and microbiological behavior. Light-curing is beneficial for reducing the harmful pulpal effect that UCs may possess.
Collapse
Affiliation(s)
- Uros Josic
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrei Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Tatjana Maravic
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Mazzitelli
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stevan Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eugenio Brambilla
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Annalisa Mazzoni
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo Breschi
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Cabrol A, Chuy V, Fron-Chabouis H, Naveau A. Effectiveness of postprocessing on 3D printed resin biocompatibility in prosthodontics: A systematic review. J Prosthet Dent 2024:S0022-3913(24)00588-2. [PMID: 39304492 DOI: 10.1016/j.prosdent.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
STATEMENT OF PROBLEM Additive manufacturing is used in prosthodontics for producing casts, surgical guides, and interim and definitive prostheses. Printed resin components that will be in contact with the oral mucosa must meet biocompatibility requirements in accordance with current standards for medical devices. Despite such approvals being obtained by the manufacturer, the dentist remains responsible for following the manufacturer recommendations. Evidence for the effect of postprocessing 3-dimensionally (3D) printed resin components on biocompatibility is lacking PURPOSE: The purpose of this systematic review was to assess the effectiveness of 3D printing postprocessing on the biocompatibility of resins that will be in contact with the oral mucosa. MATERIAL AND METHODS The PubMed, Scopus, and DOSS search engines were used to identify articles. Two independent researchers conducted the systematic review by following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines and by following a combination of keywords. RESULTS Of a total of 249 articles, 27 were selected, including only 1 in vivo study. Thirty-two commercially available and a few experimental resins were tested. The main applications were removable denture bases and denture teeth, interim and definitive fixed restorations, occlusal splints, and surgical guides. Postprocessing procedures were those recommended by the manufacturer, experimental, or not implemented and involving alcohol, ultrasonic or centrifugal rinsing, photopolymerization at different UV wavelengths, a nitrated atmosphere chamber with air drying or compressed air drying and with heat treatment. The majority of postprocessed 3D printed resins were reported to be noncytotoxic, implying sufficient biocompatibility. CONCLUSIONS The heterogeneity of materials and methods did not allow the identification of an ideal postprocessing protocol or of the need for additional steps after following the manufacturer's recommendations.
Collapse
Affiliation(s)
| | - Virginie Chuy
- Hospital University Practitioner, Public Health Department, Faculty of Dental Medicine, Bordeaux University, Bordeaux University Hospital, Saint-André Hospital, Bordeaux, France
| | - Hélène Fron-Chabouis
- Associate Professor, Prosthodontics Department, Faculty of Dental Medicine, Bordeaux University, Bordeaux University Hospital, Saint-André Hospital, Bordeaux, France
| | - Adrien Naveau
- Professor, Prosthodontics Department, Faculty of Dental Medicine, Bordeaux University, Bordeaux University Hospital, Saint-André Hospital, Bordeaux, France; and Academic Guest, Clinic of General-, Special Care- and Geriatric Dentistry, Center of Dental Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Majstorović M, Babić Brčić S, Malev O, Par M, Živković I, Marciuš M, Tarle Z, Čož-Rakovac R, Marović D. Environmental implications of dental restorative materials on the zebrafish Danio rerio: Are dental chair drainage systems an emerging environmental threat? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104499. [PMID: 39019244 DOI: 10.1016/j.etap.2024.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to evaluate the environmental impact of dental materials: commercial composite Tetric EvoCeram®, glass ionomer Equia Forte® HT Fil, laboratory-prepared composite, alkasite Cention® Forte, amalgam Amalcap® Plus, and samples from dental chair drainage systems (DCDS). Methacrylate monomers were detected in the eluates of experimental and commercials composites, and alkasite. In DCDS samples solely mercury was found at concentrations of 0.08-1.86 μg/L. The experimental composite (48 h incubation) exhibited the highest toxicity on zebrafish Danio rerio (LC50=0.70 g/L), followed by amalgam (LC50=8.27 g/L) < Tetric EvoCeram® (LC50=10.94 g/L) < Equia Forte® HT Fil (LC50=24.84 g/L) < Cention® Forte (LC50=32.22 g/L). Exposure of zebrafish to DCDS samples resulted in decreased larval body length and increased occurrences of edema and blood accumulation. The results obtained highlight the need for additional monitoring and further research on the release of unreacted monomers and mercury from dental materials and their environmental impact.
Collapse
Affiliation(s)
- Matea Majstorović
- Department of Prosthodontics, Study of Dental Medicine, School of Medicine, University of Split, Šoltanska ul. 2, Split, Croatia
| | - Sanja Babić Brčić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| | - Olga Malev
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gundulićeva 5, Zagreb, Croatia
| | - Igor Živković
- Laboratory for Biogeochemistry, Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Marijan Marciuš
- Laboratory for Synthesis of New Materials, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gundulićeva 5, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Danijela Marović
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gundulićeva 5, Zagreb, Croatia.
| |
Collapse
|
8
|
Schmalz G, Schwendicke F, Hickel R, Platt JA. Alternative Direct Restorative Materials for Dental Amalgam: A Concise Review Based on an FDI Policy Statement. Int Dent J 2024; 74:661-668. [PMID: 38071154 PMCID: PMC11287089 DOI: 10.1016/j.identj.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 07/07/2024] Open
Abstract
Dental restorative procedures remain a cornerstone of dental practice, and for many decades, dental amalgam was the most frequently employed material. However, its use is declining, mainly driven by its poor aesthetics and by the development of tooth-coloured adhesive materials. Furthermore, the Minamata Convention agreed on a phase-down on the use of dental amalgam. This concise review is based on a FDI Policy Statement which provides guidance on the selection of direct restorative materials as alternatives to amalgam. The Policy Statement was informed by current literature, identified mainly from PubMed and the internet. Ultimately, dental, oral, and patient factors should be considered when choosing the best material for each individual case. Dental factors include the dentition, tooth type, and cavity class and extension; oral aspects comprise caries risk profiles and related risk factors; and patient-related aspects include systemic risks/medical conditions such as allergies towards certain materials as well as compliance. Special protective measures (eg, a no-touch technique, blue light protection) are required when handling resin-based materials, and copious water spray is recommended when adjusting or removing restorative materials. Cost and reimbursement policies may need to be considered when amalgam alternatives are used, and the material recommendation requires the informed consent of the patient. There is no single material which can replace amalgam in all applications; different materials are needed for different situations. The policy statement recommends using a patient-centred rather than purely a material-centred approach. Further research is needed to improve overall material properties, the clinical performance, the impact on the environment, and cost-effectiveness of all alternative materials.
Collapse
Affiliation(s)
- Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany; Department of Periodontology, University of Bern, Bern, Switzerland
| | - Falk Schwendicke
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany
| | - Jeffrey A Platt
- Department of Biomedical Sciences and Comprehensive Care, Division of Dental Biomaterials, Indiana University School of Dentistry, IUPUI, Indianapolis, Indiana.
| |
Collapse
|
9
|
Iliadi A, Zervou SK, Koletsi D, Schätzle M, Hiskia A, Eliades T, Eliades G. Surface alterations and compound release from aligner attachments in vitro. Eur J Orthod 2024; 46:cjae026. [PMID: 38884540 PMCID: PMC11181360 DOI: 10.1093/ejo/cjae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
AIM The aim of the present study was to assess the alterations in morphology, roughness, and composition of the surfaces of a conventional and a flowable composite attachment engaged with aligners, and to evaluate the release of resin monomers and their derivatives in an aqueous environment. METHODS Zirconia tooth-arch frames (n = 20) and corresponding thermoformed PET-G aligners with bonded attachments comprising two composite materials (universal-C and flowable-F) were fabricated. The morphological features (stereomicroscopy), roughness (optical profilometry), and surface composition (ATR-FTIR) of the attachments were examined before and after immersion in water. To simulate intraoral use, the aligners were removed and re-seated to the frames four times per day for a 7-day immersion period. After testing, the eluents were analyzed by LC-MS/MS targeting the compounds Bis-GMA, UDMA, 2-HEMA, TEGDMA and BPA and by LC-HRMS for suspect screening of the leached dental material compounds and their degradation products. RESULTS After testing, abrasion-induced defects were found on attachment surfaces such as scratches, marginal cracks, loss of surface texturing, and fractures. The morphological changes and debonding rate were greater in F. Comparisons (before-after testing) revealed a significantly lower Sc roughness parameter in F. The surface composition of the aligners after testing showed minor changes from the control, with insignificant differences in the degree of C = C conversion, except for few cases with strong evidence of hydrolytic degradation. Targeted analysis results revealed a significant difference in the compounds released between Days 1 and 7 in both materials. Insignificant differences were found when C was compared with F in both timeframes. Several degradation products were detected on Day 7, with a strong reduction in the concentration of the targeted compounds. CONCLUSIONS The use of aligners affects the surface characteristics and degradation rate of composite attachments in an aqueous environment, releasing monomers, and monomer hydrolysates within 1-week simulated use.
Collapse
Affiliation(s)
- Anna Iliadi
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Greece
- Faculty of Medicine and Health Technology, University of Tampere, Finland
| | - Sevasti-Kiriaki Zervou
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Despina Koletsi
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, CA, USA
| | - Marc Schätzle
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Switzerland
| | - Anastasia Hiskia
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Theodore Eliades
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Switzerland
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
10
|
Panahipour L, Micucci C, Gelmetti B, Gruber R. In Vitro Bioassay for Damage-Associated Molecular Patterns Arising from Injured Oral Cells. Bioengineering (Basel) 2024; 11:687. [PMID: 39061769 PMCID: PMC11273541 DOI: 10.3390/bioengineering11070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin (AREG), a growth factor that mediates the cross-talk between immune cells and epithelial cells; chromosome 11 open reading frame 96 (C11orf96) with an unclear biologic function; and the inflammation-associated prostaglandin E synthase (PTGES). Gingival fibroblasts increasingly express these genes in response to bone allografts containing remnants of injured cells. Thus, the gene expression might be caused by the local release of damage-associated molecular patterns arising from injured cells. The aim of this study is consequently to use the established gene panel as a bioassay to measure the damage-associated activity of oral cell lysates. To this aim, we have exposed gingival fibroblasts to lysates prepared from the squamous carcinoma cell lines TR146 and HSC2, oral epithelial cells, and gingival fibroblasts. We report here that all lysates significantly increased the transcription of the entire gene panel, supported for STC1 at the protein level. Blocking TGF-β receptor 1 kinase with SB431542 only partially reduced the forced expression of STC1, AREG, and C11orf96. SB431542 even increased the PTGES expression. Together, these findings suggest that the damage signals originating from oral cells can change the paracrine activity of gingival fibroblasts. Moreover, the expression panel of genes can serve as a bioassay for testing the biocompatibility of materials for oral application.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
| | - Chiara Micucci
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
| | - Benedetta Gelmetti
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
11
|
Marovic D, Bota M, Tarle F, Par M, Haugen HJ, Zheng K, Pavić D, Miloš M, Čižmek L, Babić S, Čož-Rakovac R, Trebše P, Boccaccini AR. The influence of copper-doped mesoporous bioactive nanospheres on the temperature rise during polymerization, polymer cross-linking density, monomer release and embryotoxicity of dental composites. Dent Mater 2024; 40:1078-1087. [PMID: 38797613 DOI: 10.1016/j.dental.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES Composites with copper-doped mesoporous bioactive nanospheres (Cu-MBGN) were developed to prevent secondary caries by imparting antimicrobial and ion-releasing/remineralizing properties. METHODS Seven experimental composites containing 1, 5 or 10 wt% Cu-MBGN, the corresponding inert controls (silica) and bioactive controls (bioactive glass 45S5) were prepared. The temperature rise during light curing, cross-linking density by ethanol softening test, monomer elution and their potential adverse effects on the early development of zebrafish Danio rerio was investigated. RESULTS Materials combining Cu-MBGN and silica showed the highest resistance to ethanol softening, as did the bioactive controls. Cu-MBGN composites showed significant temperature rise and reached maximum temperature in the shortest time. Bisphenol A was not detected, while bis-GMA was found only in the control materials and TEGDMA in the eluates of all materials. There was no increase in zebrafish mortality and abnormality rates during exposure to the eluates of any of the materials. CONCLUSIONS The composite with 5 wt% Cu-MBGN combined with nanosilica fillers showed the lowest ethanol softening, indicating the polymer's highest durability and cross-linking density. Despite the TEGDMA released from all tested materials, no embryotoxic effect was observed.
Collapse
Affiliation(s)
- Danijela Marovic
- University of Zagreb School of Dental Medicine, Department of Endodontics and Restorative Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia.
| | - Maria Bota
- student, University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Frano Tarle
- student, University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Matej Par
- University of Zagreb School of Dental Medicine, Department of Endodontics and Restorative Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 71, 0455 Oslo, Norway
| | - Kai Zheng
- Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Rd., 210029 Nanjing, China; Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | | | | | - Lara Čižmek
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Stocker L, Zervou SK, Papageorgiou SN, Karakousoglou S, Triantis T, Hiskia A, Eliades G, Eliades T. Salivary levels of eluents during Invisalign™ treatment with attachments: an in vivo investigation. Prog Orthod 2024; 25:22. [PMID: 38825612 PMCID: PMC11144685 DOI: 10.1186/s40510-024-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The aim of the present study was to investigate qualitatively and quantitatively the elution of substances from polyester-urethane (Invisalign™) aligners and resin composite attachments (Tetric EvoFlow) in vivo. METHODS Patients (n = 11) treated with the aligners and attachments (16 per patient, without other composite restorations) for an average of 20 months, who were planned for attachment removed were enrolled in the study. Patients were instructed to rinse with 50 mL of distilled water upon entry and the rinsing solution was collected (before removal). Then, the attachments were removed with low-speed tungsten carbide burs for adhesive residue removal, a thorough water rinsing was performed immediately after the grinding process to discard grinding particle residues, and subsequently, after a second water-rinsing the solution was collected for analysis (after removal). The rinsing solutions were analyzed for targeted (LC-MS/MS: Bis-GMA, DCDMA, UDMA, BPA) and untargeted (LC-HRMS: screening of leached species and their degradation products) compounds. RESULTS Targeted analysis revealed a significant reduction in BPA after attachment removal (4 times lower). Bis-GMA, DCDMA, UDMA were below the detection limit before removal but were all detectable after removal with Bis-GMA and UDMA at quantifiable levels. Untargeted analysis reviled the presence of mono-methacrylate transformation products of Bis-GMA (Bis-GMA-M1) and UDMA (UDMA-M1), UDMA without methacrylate moieties (UDMA-M2), and 4-(dimethylamino) benzoic acid (DMAB), the degradation product of the photo-initiator ethyl-4-(dimethylamino) benzoate (EDMAB), all after attachment removal. Several amino acids and endogenous metabolites were also found both before and after removal. CONCLUSIONS Elevated levels of BPA were traced instantaneously in patients treated with Invisalign™ and flowable resin composite attachments for the testing period. BPA was reduced after attachment removal, but residual monomers and resin degradation products were found after removal. Alternative resin formulations and attachment materials may be utilized to reduce eluents.
Collapse
Affiliation(s)
- Larissa Stocker
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, 8032, Switzerland
| | - Sevasti-Kiriaki Zervou
- Laboratory for Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - Spyridon N Papageorgiou
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, 8032, Switzerland
| | | | - Theodoros Triantis
- Laboratory for Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - Anastasia Hiskia
- Laboratory for Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodore Eliades
- Clinic of Orthodontics and Pediatric Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, 8032, Switzerland.
| |
Collapse
|
13
|
Saramet V, Stan MS, Ripszky Totan A, Țâncu AMC, Voicu-Balasea B, Enasescu DS, Rus-Hrincu F, Imre M. Analysis of Gingival Fibroblasts Behaviour in the Presence of 3D-Printed versus Milled Methacrylate-Based Dental Resins-Do We Have a Winner? J Funct Biomater 2024; 15:147. [PMID: 38921521 PMCID: PMC11204847 DOI: 10.3390/jfb15060147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Computer-aided design and computer-aided manufacturing (CAD/CAM) techniques are based on either subtractive (milling prefabricated blocks) or additive (3D printing) methods, and both are used for obtaining dentistry materials. Our in vitro study aimed to investigate the behavior of human gingival fibroblasts exposed to methacrylate (MA)-based CAD/CAM milled samples in comparison with that of MA-based 3D-printed samples to better elucidate the mechanisms of cell adaptability and survival. The proliferation of human gingival fibroblasts was measured after 2 and 24 h of incubation in the presence of these samples using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the membrane integrity was assessed through the lactate dehydrogenase release. The level of reactive oxygen species, expression of autophagy-related protein LC3B-I, and detection of GSH and caspase 3/7 were evaluated by fluorescence staining. The MMP-2 levels were measured using a Milliplex MAP kit. The incubation with MA-based 3D-printed samples significantly reduced the viability, by 16% and 28% from control after 2 and 24 h, respectively. There was a 25% and 55% decrease in the GSH level from control after 24 h of incubation with the CAD/CAM milled and 3D-printed samples, respectively. In addition, higher levels of LC3B-I and MMP-2 were obtained after 24 h of incubation with the MA-based 3D samples compared to the CAD/CAM milled ones. Therefore, our results outline that the MA-CAD/CAM milled samples displayed good biocompatibility during 24-h exposure, while MA-3D resins are proper for short-term utilization (less than 24 h).
Collapse
Affiliation(s)
- Veaceslav Saramet
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.S.); (M.I.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.R.T.); (D.S.E.); (F.R.-H.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17–23 Plevnei Street, 020021 Bucharest, Romania;
| | - Ana Maria Cristina Țâncu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.S.); (M.I.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17–23 Plevnei Street, 020021 Bucharest, Romania;
| | - Dan Sebastian Enasescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.R.T.); (D.S.E.); (F.R.-H.)
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.R.T.); (D.S.E.); (F.R.-H.)
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.S.); (M.I.)
| |
Collapse
|
14
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2024. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
15
|
Liu Y, Jin G, Lim JH, Kim JE. Effects of washing agents on the mechanical and biocompatibility properties of water-washable 3D printing crown and bridge resin. Sci Rep 2024; 14:9909. [PMID: 38688952 PMCID: PMC11061276 DOI: 10.1038/s41598-024-60450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Three-dimensional (3D) printing, otherwise known as additive manufacturing in a non-technical context, is becoming increasingly popular in the field of dentistry. As an essential step in the 3D printing process, postwashing with organic solvents can damage the printed resin polymer and possibly pose a risk to human health. The development of water-washable dental resins means that water can be used as a washing agent. However, the effects of washing agents and washing times on the mechanical and biocompatibility properties of water-washable resins remain unclear. This study investigated the impact of different washing agents (water, detergent, and alcohol) and washing time points (5, 10, 20, and 30 min) on the flexural strength, Vickers hardness, surface characterization, degree of conversion, biocompatibility, and monomer elution of 3D printed samples. Using water for long-term washing better preserved the mechanical properties, caused a smooth surface, and improved the degree of conversion, with 20 min of washing with water achieving the same biological performance as organic solvents. Water is an applicable agent option for washing the 3D printing water-washable temporary crown and bridge resin in the postwashing process. This advancement facilitates the development of other water-washable intraoral resins and the optimization of clinical standard washing guidelines.
Collapse
Affiliation(s)
- Yunqi Liu
- Department of Prosthodontics, College of Dentistry, Yonsei University, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gan Jin
- Department of Prosthodontics, College of Dentistry, Yonsei University, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Hwa Lim
- Department of Prosthodontics, College of Dentistry, Yonsei University, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong-Eun Kim
- Department of Prosthodontics, College of Dentistry, Yonsei University, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
16
|
Turkalj M, De Nys S, Godderis L, Vanoirbeek J, Van Meerbeek B, Van Landuyt KL. Elution from direct composites for provisional restorations. J Prosthodont Res 2024:JPR_D_23_00305. [PMID: 38616126 DOI: 10.2186/jpr.jpr_d_23_00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Purpose To assess elution from direct composite materials for provisional restorations and compare them with elution from direct restorative composites for permanent restorations.Methods Two dual-cure (Integrity Multi-Cure and Tempsmart DC) and two self-curing composites (Protemp 4 and Structur 3) were used, with Essentia serving as a reference. Cylindrical specimens (n=20) were cured according to the manufacturer's instructions; the dual-cure materials were prepared in both self- and dual-curing modes. Elution experiments were performed using water and absolute ethanol. The samples were incubated at 37 °C for either 24 h or four weeks; the extraction solvents were refreshed weekly. The eluted BisEMA (-3 / -6 / -10), BisGMA, CQ, UDMA, and TEGDMA were quantified using UHPLC-MS/MS.Results Monomer elution was detected in all provisional composites at 24 h and four weeks, but the amounts released did not exceed those released by the reference composite. When prepared in self-curing mode, Integrity Multi-Cure exhibited significantly higher elution of BisEMA-3, -6, and -10 in ethanol both after 24 h and cumulatively after four weeks. Self-cured Tempsmart DC released significantly more CQ, TEGDMA, and UDMA in both water and ethanol after immersion for 24 h and four weeks, along with significantly more BisGMA in ethanol both after 24 h and four weeks comparison to dual-cured Tempsmart DC (two-way ANOVA, post-hoc Tukey, P < 0.05).Conclusions Provisional composite materials did not elute higher amounts of monomers than a restorative composite. Dual-cured materials, prepared in the self-curing mode, show a trend towards higher monomer elution.
Collapse
Affiliation(s)
- Marko Turkalj
- KU Leuven (University of Leuven), Department of Oral Health Sciences, Biomat & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Siemon De Nys
- KU Leuven (University of Leuven), Department of Oral Health Sciences, Biomat & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Lode Godderis
- KU Leuven (University of Leuven), Environment and Health, Department of Public Health and Primary Care, Leuven, Belgium
- Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jeroen Vanoirbeek
- KU Leuven (University of Leuven), Environment and Health, Department of Public Health and Primary Care, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, Biomat & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, Biomat & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| |
Collapse
|
17
|
Ohlsson E, Bolay C, Arabulan S, Galler KM, Buchalla W, Schmalz G, Widbiller M. In-vitro-cytotoxicity of self-adhesive dental restorative materials. Dent Mater 2024; 40:739-746. [PMID: 38403539 DOI: 10.1016/j.dental.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Although the introduction of self-adhesive composites in restorative dentistry is very promising, the innovation of new materials also presents challenges and unknowns. Therefore, the aim of this study was to investigate the cytotoxicity of four different self-adhesive composites (SAC) in vitro and to compare them with resin-modified glass ionomer cements (RM-GIC), a more established group of materials. METHODS Samples of the following materials were prepared according to ISO 7405/10993-12 and eluted in cell culture medium for 24 h at 37 °C: Vertise Flow, Fusio Liquid Dentin, Constic, Surefil One, Photac Fil and Fuji II LC. Primary human pulp cells were obtained from extracted wisdom teeth and cultured for 24 h with the extracts in serial dilutions. Cell viability was evaluated by MTT assay, membrane disruption was quantified by LDH assay and apoptosis was assessed by flow cytometry after annexin/PI staining. RESULTS Two SAC (Constic and Vertise Flow) and one RM-GIC (Photac Fil) significantly reduced cell viability by more than 30% compared to the untreated control (p < 0.001). Disruptive cell morphological changes were observed and the cells showed signs of late apoptosis and necrosis in flow cytometry. Membrane disruption was not observed with any of the investigated materials. CONCLUSION Toxic effects occurred independently of the substance group and need to be considered in the development of materials with regard to clinical implications. CLINICAL SIGNIFICANCE SAC have many beneficial qualities, however, the cytotoxic effects of certain products should be considered when applied in close proximity to the dental pulp, as is often required.
Collapse
Affiliation(s)
- Ella Ohlsson
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstraße 11, 91054 Erlangen, Germany
| | - Carola Bolay
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sevgi Arabulan
- Department of Pedodontics, Ege University, Ege University Campus, 35040 Izmir, Turkey
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstraße 11, 91054 Erlangen, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; Department of Periodontology, University of Bern, 3012 Bern, Switzerland
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
18
|
Yu Q, Hua R, Zhao B, Qiu D, Zhang C, Huang S, Pan Y. Melatonin protects TEGDMA-induced preodontoblast mitochondrial apoptosis via the JNK/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:393-404. [PMID: 38308473 PMCID: PMC10984853 DOI: 10.3724/abbs.2023263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 02/04/2024] Open
Abstract
Resin monomer-induced dental pulp injury presents a pathology related to mitochondrial dysfunction. Melatonin has been regarded as a strong mitochondrial protective bioactive compound from the pineal gland. However, it remains unknown whether melatonin can prevent dental pulp from resin monomer-induced injury. The aim of this study is to investigate the effects of melatonin on apoptosis of mouse preodontoblast cells (mDPC6T) induced by triethylene glycol dimethacrylate (TEGDMA), a major component in dental resin, and to determine whether the JNK/MAPK signaling pathway mediates the protective effect of melatonin. A well-established TEGDMA-induced mDPC6T apoptosis model is adopted to investigate the preventive function of melatonin by detecting cell viability, apoptosis rate, expressions of apoptosis-related proteins, mitochondrial ROS (mtROS) production, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) level. Inhibitors of MAPKs are used to explore which pathway is involved in TEGDMA-induced apoptosis. Finally, the role of the JNK/MAPK pathway is verified using JNK agonists and antagonists. Our results show that melatonin attenuates TEGDMA-induced mDPC6T apoptosis by reducing mtROS production and rescuing MMP and ATP levels. Furthermore, mitochondrial dysfunction and apoptosis are alleviated only by the JNK/MAPK inhibitor SP600125 but not by other MAPK inhibitors. Additionally, melatonin downregulates the expression of phosphorylated JNK and counteractes the activating effects of anisomycin on the JNK/MAPK pathway, mimicking the effects of SP600125. Our findings demonstrate that melatonin protects mDPC6T cells against TEGDMA-induced apoptosis partly through JNK/MAPK and the maintenance of mitochondrial function, offering a novel therapeutic strategy for the prevention of resin monomer-induced dental pulp injury.
Collapse
Affiliation(s)
- Qihao Yu
- Department of EndodonticsSchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Ruize Hua
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Bingyang Zhao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Dongchao Qiu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Chengfei Zhang
- Restorative Dental SciencesEndodonticsFaculty of DentistryThe University of Hong KongHong Kong SAR 999077China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
- Department of ProsthodonticsSchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| | - Yihuai Pan
- Department of EndodonticsSchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
19
|
Luo K, Liu Q, Alhotan A, Dai J, Li A, Xu S, Li P. Effect of post-curing conditions on surface characteristics, physico-mechanical properties, and cytotoxicity of a 3D-printed denture base polymer. Dent Mater 2024; 40:500-507. [PMID: 38184445 DOI: 10.1016/j.dental.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVE This study aims to investigate the influence of post-polymerization (post-curing) conditions on surface characteristics, flexural properties, water sorption and solubility, and cytotoxicity of additively manufactured denture base materials. METHODS The tested specimens were additively manufactured using digital light processing and classified into different post-curing condition groups: submerged in water (WAT), submerged in glycerin (GLY), and air exposure (AIR). An uncured specimen (UNC) was used as a control. The surface topography and roughness were observed. The flexural strength and modulus were determined via a three-point bending test. The water sorption and solubility were subsequently tested. Finally, an extract test was performed to assess cytotoxicity. RESULTS Different post-curing conditions had no significant effects on the surface topography and roughness (Sa value). Various post-curing conditions also had no significant effects on the flexural strength. Notably, the flexural modulus of the WAT group (2671.80 ± 139.42 MPa) was significantly higher than the AIR group (2197.47 ± 197.93 MPa, p = 0.0103). After different post-curing conditions, the water sorption and solubility of the specimens met the ISO standards. Finally, all post-curing conditions effectively reduced cytotoxic effects. SIGNIFICANCES Post-curing with different oxygen levels improved flexural properties, and flexural modulus significantly increased after the specimens were submerged in water. In addition, water sorption and solubility, and cytocompatibility were optimized by post-curing, irrespective of the post-curing conditions. Therefore, the water-submerged conditions optimized the flexural modulus of the 3D-printed denture base materials.
Collapse
Affiliation(s)
- Ke Luo
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Abdulaziz Alhotan
- Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O.Box 10219, Riyadh 12372, Saudi Arabia
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China.
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong 510182, China.
| |
Collapse
|
20
|
Radwanski M, Rozpedek-Kaminska W, Galita G, Siwecka N, Sokolowski J, Majsterek I, Özcan M, Lukomska-Szymanska M. Cytotoxicity and genotoxicity of bioceramic root canal sealers compared to conventional resin-based sealer. Sci Rep 2024; 14:4124. [PMID: 38374199 PMCID: PMC10876547 DOI: 10.1038/s41598-024-54726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
The aim of this study was to evaluate cytotoxicity and genotoxicity of calcium-silicate based sealers and comparing them with a gold standard-an epoxy-based sealant. Two experimental cell lines were used, gingival fibroblasts (hGF) and monocyte/macrophage peripheral blood cell line (SC). The cytotoxicity (XTT assay) and genotoxicity (comet assay) were evaluated both after 24-h and 48-h incubation. Additionally, after 48-h incubation, the cell apoptosis and cell cycle progression was detected. BioRoot Flow induced a significant decrease in hGF cells viability compared to the negative control groups both after 24-h (p < 0.001) and 48-h incubation (p < 0.01). In group with SC cells, after 24-h incubation significant increase in cells viability was detected for AH Plus Bioceramic Sealer in comparison to negative control (p < 0.05). BioRoot Flow and BioRoot RCS can be considered potentially genotoxic for the hGF cells after 48-h incubation (> 20% DNA damage). BioRoot Flow and BioRoot RCS, may have potential genotoxic effects and induce apoptosis in hGF cells which may irritate periapical tissues, resulting in a delayed healing. The findings of the study would be useful in selection of an appropriate sealant for root canal filling without causing cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
| | | | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str., 92-213, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Mutlu Özcan
- Clinic of Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str., 92-213, Lodz, Poland.
| |
Collapse
|
21
|
Akarsu S, Atasoy S, Arıkan M, Koca B, Yiğin SN. Effects of three disinfection solutions on residual monomers released from resin nanoceramic CAD/CAM blocks. Heliyon 2024; 10:e24369. [PMID: 38317897 PMCID: PMC10838691 DOI: 10.1016/j.heliyon.2024.e24369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The aim of this study was to evaluate the effects of three disinfection solutions on the amount of monomers released from resin nanoceramic CAD/CAM blocks using high performance liquid chromatography (HPLC). Forty resin nanoceramic CAD/CAM (Cerasmart, GC, Japan) samples (12x14 × 2 mm) were divided into four groups; each group was disinfected using one of four solutions (Group 1: no disinfectant; Group 2: 70 % ethanol; Group 3: 2 % glutaraldehyde; and Group 4: 1 % sodium hypochlorite) for 5 min. Analysis of residual monomers (UDMA and Bis-EMA) amounts was performed using an HPLC instrument (Dionex Ultimate 3000, Thermo Fisher Scientific). After 30 days, the amounts of monomers found were as follows: 14.54 ppm for Group 1; 9.28 ppm for Group 2; 10.60 ppm for Group 3; and 2.76 ppm for Group 4 (the smallest monomer amount) (p < 0.001). Disinfection of indirect restorations prior to cementation can reduce the amount of residual monomers remaining from resin nanoceramic CAD/CAM blocks.
Collapse
Affiliation(s)
- Serdar Akarsu
- Ordu University, Faculty of Dentistry, Department of Restorative Dentistry, Turkey
| | - Samet Atasoy
- Ordu University, Faculty of Dentistry, Department of Restorative Dentistry, Turkey
| | - Merve Arıkan
- Ordu University, Faculty of Dentistry, Department of Restorative Dentistry, Turkey
| | - Bengisu Koca
- Ordu University, Faculty of Dentistry, Department of Restorative Dentistry, Turkey
| | - Sena Nur Yiğin
- Ordu University, Faculty of Dentistry, Department of Restorative Dentistry, Turkey
| |
Collapse
|
22
|
Park SH, Ye JR, Asiri NM, Chae YK, Choi SC, Nam OH. Biocompatibility and Bioactivity of a Dual-Cured Resin-Based Calcium Silicate Cement: In Vitro and in vivo Evaluation. J Endod 2024; 50:235-242. [PMID: 37995904 DOI: 10.1016/j.joen.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION This study aimed to assess the biocompatibility and bioactivity of a dual-cured resin-based calcium silicate cement in vitro and in vivo. METHODS For in vitro analyses, standardized samples were prepared using TheraCal LC, TheraCal PT, and ProRoot MTA. The amount of residual monomer released from TheraCal LC and TheraCal PT was assessed using liquid chromatography/mass spectrometry. Calcium ion release from the materials was evaluated using inductively coupled plasma-optical emission spectroscopy. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to determine the calcium weight volume in the materials. For in vivo analysis, a rat direct pulp capping model with TheraCal LC, TheraCal PT, and ProRoot MTA groups (n = 16 per group) was used. The rats were euthanized after 7 or 28 days, and histological and immunohistochemical analyses (CD68 and DSPP) were performed. RESULTS Bisphenol A-glycidyl methacrylate and polyethylene glycol dimethacrylate release from TheraCal PT was lower than that from TheraCal LC (P < .05). Similar results were obtained for calcium-ion release and calcium weight volume, with ProRoot MTA showing the highest values. In the in vivo evaluation, TheraCal PT showed significantly greater hard tissue formation than TheraCal LC (P < .017). TheraCal PT showed lower CD68 expression and greater DSPP expression than TheraCal LC (P < .017). There were no significant differences in the expression of CD68 or DSPP between the TheraCal PT and ProRoot MTA groups. CONCLUSIONS Within the limitations of this study, the biocompatibility and bioactivity of TheraCal PT could be comparable to those of ProRoot MTA.
Collapse
Affiliation(s)
- Seung Hwan Park
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Ju Ri Ye
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Naif Mohammed Asiri
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Yong Kwon Chae
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea; Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul, Korea; Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
23
|
Matsuura T, Stavrou S, Komatsu K, Cheng J, Pham A, Ferreira S, Baba T, Chang TL, Chao D, Ogawa T. Disparity in the Influence of Implant Provisional Materials on Human Gingival Fibroblasts with Different Phases of Cell Settlement: An In Vitro Study. Int J Mol Sci 2023; 25:123. [PMID: 38203293 PMCID: PMC10779283 DOI: 10.3390/ijms25010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The development of healthy peri-implant soft tissues is critical to achieving the esthetic and biological success of implant restorations throughout all stages of healing and tissue maturation, starting with provisionalization. The purpose of this study was to investigate the effects of eight different implant provisional materials on human gingival fibroblasts at various stages of cell settlement by examining initial cell attachment, growth, and function. Eight different specimens-bis-acrylic 1 and 2, flowable and bulk-fill composites, self-curing acrylic 1 and 2, milled acrylic, and titanium (Ti) alloy as a control-were fabricated in rectangular plates (n = 3). The condition of human gingival fibroblasts was divided into two groups: those in direct contact with test materials (contact experiment) and those in close proximity to test materials (proximity experiment). The proximity experiment was further divided into three phases: pre-settlement, early settlement, and late settlement. A cell culture insert containing each test plate was placed into a well where the cells were pre-cultured. The number of attached cells, cell proliferation, resistance to detachment, and collagen production were evaluated. In the contact experiment, bis-acrylics and composites showed detrimental effects on cells. The number of cells attached to milled acrylic and self-curing acrylic was relatively high, being approximately 70% and 20-30%, respectively, of that on Ti alloy. There was a significant difference between self-curing acrylic 1 and 2, even with the same curing modality. The cell retention ability also varied considerably among the materials. Although the detrimental effects were mitigated in the proximity experiment compared to the contact experiment, adverse effects on cell growth and collagen production remained significant during all phases of cell settlement for bis-acrylics and flowable composite. Specifically, the early settlement phase was not sufficient to significantly mitigate the material cytotoxicity. The flowable composite was consistently more cytotoxic than the bulk-fill composite. The harmful effects of the provisional materials on gingival fibroblasts vary considerably depending on the curing modality and compositions. Pre-settlement of cells mitigated the harmful effects, implying the susceptibility to material toxicity varies depending on the progress of wound healing and tissue condition. However, cell pre-settlement was not sufficient to fully restore the fibroblastic function to the normal level. Particularly, the adverse effects of bis-acrylics and flowable composite remained significant. Milled and self-curing acrylic exhibited excellent and acceptable biocompatibility, respectively, compared to other materials.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Stella Stavrou
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Alisa Pham
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | | | - Tomomi Baba
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Ting-Ling Chang
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Denny Chao
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| |
Collapse
|
24
|
Junqueira C, Mascarenhas P, Avelar M, Ribeiro AC, Barahona I. Biocompatibility of bulk-fill resins in vitro. Clin Oral Investig 2023; 27:7851-7858. [PMID: 37968357 DOI: 10.1007/s00784-023-05376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVES This study aims to evaluate the cytotoxicity and genotoxicity of three different extracts obtained from Filtek™ One Bulk Fill, Tetric Evoceram® Bulk Fill and Coltene Fill-Up! resins. MATERIALS AND METHODS The cytotoxicity was determined on 3T3 fibroblast cells using the MTT and crystal violet assays. The genotoxicity was determined using a cytokinesis-block micronucleus assay. RESULTS The cytotoxicity of the resin extracts on 3T3 mouse fibroblasts was found to be dose-dependent with both the MTT and crystal violet assays. Extracts concentrated above 1% were cytotoxic according to the MTT assay. The Filtek™ One Bulk Fill, Tetric Evoceram® Bulk Fill, and Coltene Fill-Up! resins reached the LD50 at concentrations of 60%, 50%, and 20%, respectively, and showed genotoxicity rates that were 2-5 times, 3-8 times, and 4-15 times higher than the negative control, respectively. CONCLUSIONS Coltene Fill-Up! resin extracts were the most cytotoxic and genotoxic, followed by Tetric Evoceram® Bulk Fill and Filtek™ One Bulk Fill. CLINICAL RELEVANCE The analyzed bulk-fill resins showed differences in in vitro biocompatibility, and the Filtek™ One Bulk Fill was found to be the safest for clinical use.
Collapse
Affiliation(s)
- Carla Junqueira
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Paulo Mascarenhas
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Mariana Avelar
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Ana Clara Ribeiro
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Isabel Barahona
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal.
| |
Collapse
|
25
|
Ferreira MN, Neves Dos Santos M, Fernandes I, Marto CM, Laranjo M, Silva D, Serro AP, Carrilho E, Botelho MF, Azul AM, Delgado AH. Effect of varying functional monomers in experimental self-adhesive composites: polymerization kinetics, cell metabolism influence and sealing ability. Biomed Mater 2023; 18:065014. [PMID: 37738988 DOI: 10.1088/1748-605x/acfc8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
The aim was to evaluate the effects of adding different functional monomers to experimental self-adhesive composites (SACs) on polymerization kinetics, cell metabolic activity, and sealing ability. SACs were formulated using urethane dimethacrylate as the base monomer and triethylene glycol dimethacrylate. Additionally, 10 wt.% of distinct functional monomers were added - 10-methacryloyloxydecyl dihydrogen phosphate, glycerol phosphate dimethacrylate (GPDM), 2-hydroxyethyl methacrylate (HEMA) or hydroxyethyl acrylamide (HEAA). ATR-FTIR was used to determine real-time polymerization kinetics (20 min,n= 3). The final extrapolated conversion and polymerization rates were determined (DC,max;Rp,max). TheDC,maxvalues were employed to calculate volumetric shrinkage. The MTT assay was performed on MDPC-23 cells using disc extracts at different concentrations (n= 8). Class V cavities were prepared in 60 sound human molars, assigned to six groups (n= 10), depending on the composite used and aging type (T0 or TC, if thermocycled for 10 000 cycles). One-way ANOVA, two-way, andKruskal-Wallistests were employed to treat the data (ɑ= 0.05). Varying the functional monomers had a large impact on DC,max, as confirmed by one-way ANOVA (p<0.001). The highest was obtained for HEMA (64 ± 3%). The HEMA and HEAA formulations were found to be significantly more toxic at concentrations below 100%. For microleakage, having a functional monomer or not did not show any improvement, irrespective of margin or aging period (Mann-Whitney U,p> 0.05). Larger functional monomers MDP and GPDM affected polymerization properties. Conversely, their acidity did not seem to be detrimental to cell metabolic activity. Regarding sealing ability, it seems that the functional monomers did not bring an advantage to the composites. Varying the functional monomer in SACs had a clear impact on the polymerization kinetics as well as on their cytotoxic potential. However, it did not confer better microleakage and sealing. Claiming self-adhesiveness based only on functional monomers seems dubious.
Collapse
Affiliation(s)
- Marta Nunes Ferreira
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Marta Neves Dos Santos
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Inês Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Diana Silva
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Paula Serro
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Eunice Carrilho
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
- Faculty of Medicine, Institute of Integrated Clinical Practice, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Ana Mano Azul
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - António Hs Delgado
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, NW3 2PF London, United Kingdom
| |
Collapse
|
26
|
Mulla SA, Kondkari SA, Patil A, Jain A, Mali S, Jaiswal HC, Jakhar A, Ansari ZM, Agarwal S, Yadav P. A Look Into the Cytotoxicity of Composite Fillings: Friend or Foe? Cureus 2023; 15:e46327. [PMID: 37916229 PMCID: PMC10617805 DOI: 10.7759/cureus.46327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
Dental resin composites are widely used restorative materials in dentistry for the treatment of carious and non-carious lesions as well as pit and fissure sealants, cavity liners, and endodontic sealers. They consist of two parts: an organic resin matrix and an inorganic/organic filler. The organic resin matrix phase is made up of multifunctional monomers and light-sensitive initiators, while the inorganic/organic filler phase is made up of micro/nano-sized fillers that primarily serve as reinforcement. Despite being a very promising dental material, its monomeric component has some drawbacks. It is well known for leaching out during incomplete polymerization, which can result in cytotoxicity. Bis-GMA (bisphenol A-glycidyl methacrylate) is the most cytotoxic of all monomeric components that exhibit synthetic estrogenic effects. The purpose of this article is to assess the cytotoxic effects of dental composite, understand the possible mechanism behind them, and explore ways to screen for and reduce this harmful effect, as well as shed light on its future prospects.
Collapse
Affiliation(s)
- Sayem A Mulla
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Saba A Kondkari
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Amit Patil
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Ashish Jain
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sheetal Mali
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Himmat C Jaiswal
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Ashima Jakhar
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Zoha M Ansari
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sumeet Agarwal
- Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Pooja Yadav
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| |
Collapse
|
27
|
Peter E, J M, George SA. Bisphenol-A release from thermoplastic clear aligner materials: A systematic review. J Orthod 2023; 50:276-286. [PMID: 36922722 DOI: 10.1177/14653125231160570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AIM The aim of the present study was to undertake a systematic review of the available evidence on the release of bisphenol-A (BPA) from thermoplastic materials used in the fabrication of clear aligners (CA). METHODS Electronic databases, such as MEDLINE (via PubMed), Google Scholar, Scopus, Cochrane Library, Web of Science, OpenGrey, and the U.S. National Institute of Heath-Clinical Trials, were searched up to 27 October 2022. In vivo/in vitro studies that assessed the release of BPA from different thermoplastic CA materials, with or without a control group, were selected. The risk of bias (RoB) in the randomised controlled trials (RCT) and in vitro studies was assessed using the Cochrane RoB tool and the guidelines for the reporting of pre-clinical studies, respectively. The quality of evidence was determined using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) Pro tool. RESULTS Six studies were considered for review from a total of 1926 records. This included one RCT and five in vitro studies. Only two studies found leaching of BPA, while four did not report any traces. The RoB was found to be moderate to high. The GRADE evidence level ranged from low to very low. Five of the included studies were conducted in vitro. Significant heterogeneity among the included studies prevented a quantitative synthesis. CONCLUSION In light of the available conflicting evidence, BPA release from CAs can neither be confirmed nor denied. Safety remains questionable until high-quality in vivo trials prove otherwise. REGISTRATION PROSPERO CRD42022310434.
Collapse
Affiliation(s)
- Elbe Peter
- Department of Orthodontics & Dentofacial Orthopedics, Government Dental College, Kottayam, Kerala, India
| | - Monisha J
- Department of Orthodontics & Dentofacial Orthopedics, Annoor Dental College, Kerala, India
| | - Suja Ani George
- Department of Orthodontics & Dentofacial Orthopedics, Government Dental College, Kottayam, Kerala, India
| |
Collapse
|
28
|
Moralez PF, Kantovitz KR, Martinez EF, Teixeira LN, Demasi AP. In vitro cytotoxicity of resin cement and its influence on the expression of antioxidant genes. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2023; 36:120-127. [PMID: 37776509 PMCID: PMC10557080 DOI: 10.54589/aol.36/2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/01/2023] [Indexed: 10/02/2023]
Abstract
AIM This study evaluated cytotoxicity and antioxidant gene expression of resin cements on human gingival fibroblasts (hGF). MATERIALS AND METHOD RelyX Ultimate™(RXU), Variolink™II(VLII), and RelyXU200™(RXU200) resin cements were incubated with culture medium for 24 h to obtain eluates. Then, the eluates were applied over hGF to assess cell viability at 24 h, 48 h, and 72 h and antioxidant gene expression at 24 h. hGF cultures non-exposed to the eluates were used as Control. Data were submitted to ANOVA and Bonferroni tests (α≤0.05). RESULTS RXU and RXU200 reduced the number of viable cells in 24 h. Longer exposure to cement extracts caused cell death. Gene expression showed peroxiredoxin 1 (PRDX1) induction by all resin cement types, and superoxide dismutase 1 (SOD1) induction by RXU200 and VLII. Moreover, RXU200 induced not only PRDX1 and SOD1, but also glutathione peroxidase 1 (GPX1), catalase (CAT), and glutathione synthetase (GSS). CONCLUSIONS All resin cements showed toxicity, and induced antioxidant genes in hGF. Antioxidant gene induction is at least partly associated with cytotoxicity of tested cements to oxidative stress experience.
Collapse
|
29
|
Alqutaibi AY, Baik A, Almuzaini SA, Farghal AE, Alnazzawi AA, Borzangy S, Aboalrejal AN, AbdElaziz MH, Mahmoud II, Zafar MS. Polymeric Denture Base Materials: A Review. Polymers (Basel) 2023; 15:3258. [PMID: 37571151 PMCID: PMC10422349 DOI: 10.3390/polym15153258] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
An ideal denture base must have good physical and mechanical properties, biocompatibility, and esthetic properties. Various polymeric materials have been used to construct denture bases. Polymethyl methacrylate (PMMA) is the most used biomaterial for dentures fabrication due to its favorable properties, which include ease of processing and pigmenting, sufficient mechanical properties, economy, and low toxicity. This article aimed to comprehensively review the current knowledge about denture base materials (DBMs) types, properties, modifications, applications, and construction methods. We searched for articles about denture base materials in PubMed, Scopus, and Embase. Journals covering topics including dental materials, prosthodontics, and restorative dentistry were also combed through. Denture base material variations, types, qualities, applications, and fabrication research published in English were considered. Although PMMA has several benefits and gained popularity as a denture base material, it has certain limitations and cannot be classified as an ideal biomaterial for fabricating dental prostheses. Accordingly, several studies have been performed to enhance the physical and mechanical properties of PMMA by chemical modifications and mechanical reinforcement using fibers, nanofillers, and hybrid materials. This review aimed to update the current knowledge about DBMs' types, properties, applications, and recent developments. There is a need for specific research to improve their biological properties due to patient and dental staff adverse reactions to possibly harmful substances produced during their manufacturing and use.
Collapse
Affiliation(s)
- Ahmed Yaseen Alqutaibi
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
- Prosthodontics Department, College of Dentistry, Ibb University, Ibb 70270, Yemen
| | - Abdulmajeed Baik
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.B.)
| | - Sarah A. Almuzaini
- College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.B.)
| | - Ahmed E. Farghal
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
| | - Ahmad Abdulkareem Alnazzawi
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
| | - Sary Borzangy
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
| | | | - Mohammed Hosny AbdElaziz
- Department of Substitutive Science, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; (A.E.F.); (A.A.A.); (S.B.); (M.H.A.)
- Fixed Prosthodontics Department, Faculty of Dental Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ihab Ismail Mahmoud
- Removable Prosthodontics Department, Faculty of Dental Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
30
|
Conditional Mitigation of Dental-Composite Material-Induced Cytotoxicity by Increasing the Cure Time. J Funct Biomater 2023; 14:jfb14030119. [PMID: 36976043 PMCID: PMC10053527 DOI: 10.3390/jfb14030119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Light-cured composite resins are widely used in dental restorations to fill cavities and fabricate temporary crowns. After curing, the residual monomer is a known to be cytotoxic, but increasing the curing time should improve biocompatibility. However, a biologically optimized cure time has not been determined through systematic experimentation. The objective of this study was to examine the behavior and function of human gingival fibroblasts cultured with flowable and bulk-fill composites cured for different periods of time, while considering the physical location of the cells with regard to the materials. Biological effects were separately evaluated for cells in direct contact with, and in close proximity to, the two composite materials. Curing time varied from the recommended 20 s to 40, 60, and 80 s. Pre-cured, milled-acrylic resin was used as a control. No cell survived and attached to or around the flowable composite, regardless of curing time. Some cells survived and attached close to (but not on) the bulk-fill composite, with survival increasing with a longer curing time, albeit to <20% of the numbers growing on milled acrylic even after 80 s of curing. A few cells (<5% of milled acrylic) survived and attached around the flowable composite after removal of the surface layer, but attachment was not cure-time dependent. Removing the surface layer increased cell survival and attachment around the bulk-fill composite after a 20-s cure, but survival was reduced after an 80-s cure. Dental-composite materials are lethal to contacting fibroblasts, regardless of curing time. However, longer curing times mitigated material cytotoxicity exclusively for bulk-fill composites when the cells were not in direct contact. Removing the surface layer slightly improved biocompatibility for cells in proximity to the materials, but not in proportion to cure time. In conclusion, mitigating the cytotoxicity of composite materials by increasing cure time is conditional on the physical location of cells, the type of material, and the finish of the surface layer. This study provides valuable information for clinical decision making and novel insights into the polymerization behavior of composite materials.
Collapse
|
31
|
Jiang ES, Moon W, Lim BS, Chang J, Chung SH. Cytotoxicity and reactive oxygen species production induced by different co-monomer eluted from nanohybrid dental composites. BMC Oral Health 2023; 23:55. [PMID: 36717844 PMCID: PMC9887763 DOI: 10.1186/s12903-023-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Safety issues for dental restorative composites are critical to material selection, but, limited information is available to dental practitioners. This study aimed to compare the chemical and biological characteristics of three nanohybrid dental composites by assessing filler particle analysis, monomer degree of conversion (DC), the composition of eluates, and cytotoxicity and reactive oxygen species (ROS) production in fibroblasts. METHODS Three nanohybrid composites (TN, Tetric N-Ceram; CX, Ceram X Sphere Tec One; and DN, DenFil NX) were used. The size distribution and morphology of the filler particles were analysed using scanning electron microscopy (n = 5). The DC was measured via micro-Raman spectroscopy (n = 5). For the component analysis, methanol eluates from the light-polymerised composites were evaluated by gas chromatography/mass spectrometry (n = 3). The eluates were prepared from the polymerised composites after 24 h in a cell culture medium. A live/dead assay (n = 9) and Water-Soluble Tetrazolium-1 assay (n = 9) were performed and compared with negative and positive controls. The ROS in composites were compared with NC. Statistical significance in differences was assessed using a t-test and ANOVA (α = 0.05). RESULTS Morphological variations in different-sized fillers were observed in the composites. The DC values were not significantly different among the composites. The amounts of 2-hydroxyethyl methacrylate (HEMA) were higher in TN than DN (p = 0.0022) and triethylene glycol dimethacrylate (TEGDMA) in CX was higher than in others (p < 0.0001). The lowest cell viability was shown in CX (p < 0.0001) and the highest ROS formation was detected in TN (p < 0.0001). CONCLUSIONS Three nanohybrid dental composites exhibited various compositions of filler sizes and resin components, resulting in different levels of cytotoxicity and ROS production. Chemical compositions of dental composites can be considered with their biological impact on safety issues in the intraoral use of dental restorative composites. CX with the highest TEGDMA showed the highest cytotoxicity induced by ROS accumulation. DN with lower TEGDMA and HEMA presented the highest cell viability.
Collapse
Affiliation(s)
- En-Shi Jiang
- grid.31501.360000 0004 0470 5905Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.459480.40000 0004 1758 0638Department of Stomatology, Yanbian University and Affiliated Hospital of Yanbian University, Yanji, 133000 China
| | - Wonjoon Moon
- grid.31501.360000 0004 0470 5905Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Bum-Soon Lim
- grid.31501.360000 0004 0470 5905Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea
| | - Juhea Chang
- National Dental Care Center for Persons With Special Needs, Seoul National University Dental Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| | - Shin Hye Chung
- Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
32
|
Barišić ML, Sarajlija H, Klarić E, Knežević A, Sabol I, Pandurić V. Detection of Leachable Components from Conventional and Dental Bulk-Fill Resin Composites (High and Low Viscosity) Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method. Polymers (Basel) 2023; 15:polym15030627. [PMID: 36771928 PMCID: PMC9921113 DOI: 10.3390/polym15030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to investigate leachable components (monomers) in high and low viscosity dental bulk-fill resin composites and conventional resin composite materials after polymerization. Six bulk-fill and six conventional dental resin composite materials were used in this study. The samples of each material (three sets of triplicates) were cured for 20 s with irradiance of 1200 mW/cm2 with a LED curing unit and immersed in a 75% ethanol solution at 37 °C. The eluates from each triplicate set were analyzed after 24 h, 7 days or 28 days using liquid chromatography coupled with triple quadrupole tandem mass spectrometry (LC-MS/MS). Detectable amounts of 2-Hydroxyethyl methacrylate (HEMA) were found in both Gradia materials and the amount observed across different time points was statistically different (p ˂ 0.05), with the amount in solution increasing for Gradia and decreasing for Gradia Direct flo. Bisphenol A diglycidildimethacrylate (BIS GMA) was found in Filtek and Tetric materials. Triethylene glycol dimethacrylate (TEGDMA) was detected in all materials. On the other hand, there were no statistically significant differences in the amounts of TEGDMA detected across different time points in either of the tested materials. Monomers HEMA, TEGDMA, 4-dimethylaminobenzoic acid ethyl ester (DMA BEE) and BIS GMA in bulk-fill and conventional composites (high and low viscosity) can be eluted after polymerization. The good selection of composite material and proper handling, the following of the manufacturer's instructions for polymerization and the use of finishing and polishing procedures may reduce the elution of the unpolymerized monomers> responsible for the possible allergic and genotoxic potential of dental resin composites.
Collapse
Affiliation(s)
| | | | - Eva Klarić
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (E.K.); (V.P.)
| | - Alena Knežević
- Division of Restorative Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Boskovic Institute, 10000 Zagreb, Croatia
| | - Vlatko Pandurić
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (E.K.); (V.P.)
| |
Collapse
|
33
|
Qi F, Huang H, Wang M, Rong W, Wang J. Applications of Antioxidants in Dental Procedures. Antioxidants (Basel) 2022; 11:2492. [PMID: 36552699 PMCID: PMC9774737 DOI: 10.3390/antiox11122492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
As people are paying more and more attention to dental health, various dental treatment procedures have emerged, such as tooth bleaching, dental implants, and dental restorations. However, a large number of free radicals are typically produced during the dental procedures. When the imbalance in distribution of reactive oxygen species (ROS) is induced, oxidative stress coupled with oxidative damage occurs. Oral inflammations such as those in periodontitis and pulpitis are also unavoidable. Therefore, the applications of exogenous antioxidants in oral environment have been proposed. In this article, the origin of ROS during dental procedures, the types of antioxidants, and their working mechanisms are reviewed. Additionally, antioxidants delivery in the complicated dental procedures and their feasibility for clinical applications are also covered. Finally, the importance of safety assessment of these materials and future work to take the challenge in antioxidants development are proposed for perspective.
Collapse
Affiliation(s)
| | | | | | | | - Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 Xincun Road, Zibo 255000, China
| |
Collapse
|
34
|
Matsuura T, Komatsu K, Chao D, Lin YC, Oberoi N, McCulloch K, Cheng J, Orellana D, Ogawa T. Cell Type-Specific Effects of Implant Provisional Restoration Materials on the Growth and Function of Human Fibroblasts and Osteoblasts. Biomimetics (Basel) 2022; 7:biomimetics7040243. [PMID: 36546943 PMCID: PMC9775359 DOI: 10.3390/biomimetics7040243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Implant provisional restorations should ideally be nontoxic to the contacting and adjacent tissues, create anatomical and biophysiological stability, and establish a soft tissue seal through interactions between prosthesis, soft tissue, and alveolar bone. However, there is a lack of robust, systematic, and fundamental data to inform clinical decision making. Here we systematically explored the biocompatibility of fibroblasts and osteoblasts in direct contact with, or close proximity to, provisional restoration materials. Human gingival fibroblasts and osteoblasts were cultured on the "contact" effect and around the "proximity" effect with various provisional materials: bis-acrylic, composite, self-curing acrylic, and milled acrylic, with titanium alloy as a bioinert control. The number of fibroblasts and osteoblasts surviving and attaching to and around the materials varied considerably depending on the material, with milled acrylic the most biocompatible and similar to titanium alloy, followed by self-curing acrylic and little to no attachment on or around bis-acrylic and composite materials. Milled and self-curing acrylics similarly favored subsequent cellular proliferation and physiological functions such as collagen production in fibroblasts and alkaline phosphatase activity in osteoblasts. Neither fibroblasts nor osteoblasts showed a functional phenotype when cultured with bis-acrylic or composite. By calculating a biocompatibility index for each material, we established that fibroblasts were more resistant to the cytotoxicity induced by most materials in direct contact, however, the osteoblasts were more resistant when the materials were in close proximity. In conclusion, there was a wide variation in the cytotoxicity of implant provisional restoration materials ranging from lethal and tolerant to near inert, and this cytotoxicity may be received differently between the different cell types and depending on their physical interrelationships.
Collapse
|
35
|
Matsuura T, Komatsu K, Ogawa T. N-Acetyl Cysteine-Mediated Improvements in Dental Restorative Material Biocompatibility. Int J Mol Sci 2022; 23:ijms232415869. [PMID: 36555541 PMCID: PMC9781091 DOI: 10.3390/ijms232415869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The fibroblast-rich gingival tissue is usually in contact with or adjacent to cytotoxic polymer-based dental restoration materials. The objective of this study was to determine whether the antioxidant amino acid, N-acetyl cysteine (NAC), reduces the toxicity of dental restorative materials. Human oral fibroblasts were cultured with bis-acrylic, flowable composite, bulk-fill composite, self-curing acrylic, and titanium alloy test specimens. Cellular behavior and function were analyzed on and around the materials. Impregnation of the bulk-fill composite and self-curing acrylic with NAC reduced their toxicity, improving the attachment, growth, and function of human oral fibroblasts on and around the materials. These mitigating effects were NAC dose dependent. However, NAC impregnation of the bis-acrylic and flowable composite was ineffective, with no cells attaching to nor around the materials. Although supplementing the culture medium with NAC also effectively improved fibroblast behaviors, direct impregnation of materials with NAC was more effective than supplementing the cultures. NAC-mediated improvements in fibroblast behavior were associated with reduced production of reactive oxygen species and oxidized glutathione together with increased glutathione reserves, indicating that NAC effectively directly scavenged ROS from materials and reinforced the cellular antioxidant defense system. These results establish a proof of concept of NAC-mediated improvements in biocompatibility in the selected dental restorative materials.
Collapse
Affiliation(s)
| | | | - Takahiro Ogawa
- Correspondence: ; Tel.: +1-310-794-7653; Fax: +1-310-825-6345
| |
Collapse
|
36
|
Biodegradation of Dental Resin-Based Composite—A Potential Factor Affecting the Bonding Effect: A Narrative Review. Biomedicines 2022; 10:biomedicines10092313. [PMID: 36140414 PMCID: PMC9496159 DOI: 10.3390/biomedicines10092313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, although resin composite has played an important role in the restoration of tooth defects, it still has several disadvantages, including being biodegraded by saliva, bacteria and other enzymes in the oral cavity, which may result in repair failure. This factor is not conducive to the long-term survival of the prosthesis in the mouth. In this article, we review the causes, influencing factors and prevention methods of resin biodegradation. Biodegradation is mainly caused by esterase in saliva and bacteria, which breaks the ester bond in resin and causes the release of monomers. The mechanical properties of the prosthesis can then be affected. Meanwhile, cathepsin and MMPs are activated on the bonding surface, which may decompose the dentin collagen. In addition, neutrophils and residual water on the bonding surface can also aggravate biodegradation. Currently, the primary methods to prevent biodegradation involve adding antibacterial agents to resin, inhibiting the activity of MMPs and enhancing the crosslinking of collagen fibers. All of the above indicates that in the preparation and adhesion of resin materials, attention should be paid to the influence of biodegradation to improve the prosthesis’s service life in the complex environment of the oral cavity.
Collapse
|
37
|
Gilli M, Hollaert TG, Setbon HM, des Rieux A, Leprince JG. Quality of Cure in Depth of Commercially Available Bulk-fill Composites: A Layer-by-layer Mechanical and Biological Evaluation. Oper Dent 2022; 47:437-448. [PMID: 35917249 DOI: 10.2341/21-084-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/23/2022]
Abstract
Despite their popularity, the use of bulk-fill composites remains controversial, both in terms of their properties and their in-depth development. The objectives of the present work were (1) to provide a more comprehensive evaluation of the quality of cure in depth of commercially available bulk-fill composites by combining various key mechanical and biological characterization methods, (2) to evaluate the inter-material differences when optimally cured, and (3) to evaluate the efficiency of an antioxidant-N-acetyl-cysteine (NAC)-to restrain the adverse effects of the leached components on cell viability. Nine bulk-fill composites (including flowable and high-viscosity materials) were investigated and compared to two conventional resin-based composites, one flowable and one high-viscosity restorative material. The materials were injected or packed into Teflon molds of various configurations, up to 6 mm material thickness. They were then light-cured from the top for 20 seconds with Bluephase G2 (Ivoclar Vivadent, irradiance = 1050 mW/cm2). The following physicomechanical properties were measured for the upper (0-2 mm), intermediate (2-4 mm), and lower (4-6 mm) layers: degree of conversion using Raman Spectrometry (DC, in %), microhardness using a Vickers micro-indenter before (VHN dry) and after 24 hours of storage in ethanol (VHN EtOH), and flexural strength (in MPa) and flexural modulus (in GPa) using a three-point bend test. Each composite layer and an uncured layer were also stored for one week in a standard cell growth medium to generate conditioned media. Human dental pulp cells were then cultured for 24 hours with the latter and cell viability was measured using an MTS assay. A similar experiment was repeated with conditioned media produced in contact with uncured composites, with and without the addition of 4 mM NAC. The data were subjected to a Shapiro-Wilk test, then one-way ANOVA or Kruskal-Wallis test, followed either by Tukey's test (inter-material comparison) or by Dunnett's or Dunn's test (comparison between layers relative to the upper one). The level of statistical significance was set at 0.05. Some materials (EverX, X-traF, VenusBF, X-traB) did not show any significant differences (p>0.05) for any of the properties considered between the intermediate layers compared to the upper one (considered as reference). Others displayed significant differences, at least for some properties, highlighting the value of combining various key mechanical and biological characterization methods when investigating the quality of cure in depth. Significant inter-material differences (p<0.05) were observed when comparing the properties of their upper layer, considered as "optimally" polymerized. Hence, one needs to consider the absolute property values, not only their relative evolution concerning layer thickness. Finally, the use of NAC appeared as beneficial to reduce the risk of harmful effects to dental pulp cells, especially in case of excessive thickness use, and may therefore be of potential interest as an additive to composites in the future.
Collapse
Affiliation(s)
- M Gilli
- *Matthieu Gilli, Adult and Child Dentistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - T G Hollaert
- Thibaut G Hollaert, Adult and Child Dentistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - H M Setbon
- Hugo M Setbon, private practice; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - A des Rieux
- Anne des Rieux, DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - J G Leprince
- Julian G. Leprince, Adult and Child Dentistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
38
|
A novel visible light-curing chitosan-based hydrogel membrane for Guided Tissue Regeneration. Colloids Surf B Biointerfaces 2022; 218:112760. [DOI: 10.1016/j.colsurfb.2022.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
|
39
|
Frasheri I, Aumer K, Keßler A, Miosge N, Folwaczny M. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. J ESTHET RESTOR DENT 2022; 34:1105-1112. [PMID: 35731110 DOI: 10.1111/jerd.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study investigated the effect of eluates of conventional and 3D-printed resin materials for manufacturing temporary dental restorations on gingival keratinocytes. METHODS Three-dimensional (3D)-printed resin materials: 3Delta temp (Deltamed), NextDent MFH (Nextdent), Freeprint temp (Detax), GC temp (GC), were compared to Grandio disc (Voco) and Luxatemp (DMG). Human gingival keratinocytes (IHGKs) were exposed to eluates of the materials and XTT assays were performed at 24 h, 48 h, 72 h, or 144 h. For quantification of the proinflammatory response, the protein amount of IL-6 and 8 was determined in the supernatants using ELISA. One-way ANOVA with post hoc analysis was used to compare differences in cell viability and IL-6 and IL-8 levels between groups. RESULTS At 24 h, and more remarkably at 48 h, a significant decrease in cell viability occurred for the 3D-printed materials compared to the untreated IHGKs, but also compared to Grandio disc and Luxatemp. Except for the expression of IL-8 in presence of the eluate of Grandio disc at 24 and 48 h, all tested materials caused attenuation of IL-6 and 8 from IHGKs for any observation period. CONCLUSIONS The materials for additive manufacturing affect cell proliferation differently than the subtractive manufactured material Grandio disc and the conventional material Luxatemp. CLINICAL SIGNIFICANCE In comparison to conventional and subtractive manufactured restorations, 3D printed temporary restorations might induce more negative effects on the gingival and probably also on pulpal health since viability and the proinflammatory response of oral keratinocytes are more intensively affected by these materials.
Collapse
Affiliation(s)
- Iris Frasheri
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Aumer
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Keßler
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics, Medical Faculty, Georg-August-University, Göttingen, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
40
|
Behnke R, Stahl F, Duske K, Warkentin M, Schwartz M, Hinz B, Walther U. Influence of Test Specimen Geometry and Water Soaking on the In Vitro Cytotoxicity of Orthocryl ®, Orthocryl ® LC, Loctite ® EA 9483 and Polypropylene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123949. [PMID: 35745078 PMCID: PMC9227244 DOI: 10.3390/molecules27123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
Depending on their composition, plastics have a cytotoxic potential that needs to be evaluated before they are used in dentistry, e.g., as orthodontic removable appliances. Relevant guidelines set out requirements that a potential new resin in the medical field must meet, with a wide scope for experimental design. In the present study, test specimens of different geometries consisting of varying polymers (Orthocryl®, Orthocryl® LC, Loctite® EA 9483, Polypropylene) were soaked for different periods of time, then transferred to cell culture medium for 24 h, which was subsequently used for 24-h cultivation of A549 cells, followed by cytotoxicity assays (WST-1, Annexin V-FITC-propidium iodide (PI) flow cytometry). In this context, a reduction in the cytotoxic effect of the eluates of test specimens prepared from Orthocryl® LC and Loctite® EA 9483 was particularly evident in the Annexin V-FITC-PI assay when the soaking time was extended to 48 h and 168 h, respectively. Consistent with this, a reduced release of potentially toxic monomers into the cell culture medium, as measured by gas chromatography-mass spectrometry, was observed when the prior soaking time of test specimens of all geometries was extended. Remarkably, a significant increase in cytotoxic effect was observed in the WST-1 assay, which was accompanied by a higher release of monomers when the thickness of the test sample was increased from 0.5 to 1.0 mm, although an elution volume adapted to the surface area was used. However, further increasing the thickness to 3.0 mm did not lead to an increase in the observed cytotoxicity or monomer release. Test specimens made of polypropylene showed no toxicity under all test specimen sizes and soaking time conditions. Overall, it is recommended to perform toxicity studies of test specimens using different geometries and soaking times. Thereby, the influence of the different specimen thicknesses should also be considered. Finally, an extension of the test protocols proposed in ISO 10993-5:2009 should be considered, e.g., by flow cytometry or monomer analysis as well as fixed soaking times.
Collapse
Affiliation(s)
- Richard Behnke
- Department of Orthodontics, University Dental School, Rostock University Medical Center, 18057 Rostock, Germany; (R.B.); (F.S.); (K.D.)
| | - Franka Stahl
- Department of Orthodontics, University Dental School, Rostock University Medical Center, 18057 Rostock, Germany; (R.B.); (F.S.); (K.D.)
| | - Kathrin Duske
- Department of Orthodontics, University Dental School, Rostock University Medical Center, 18057 Rostock, Germany; (R.B.); (F.S.); (K.D.)
| | - Mareike Warkentin
- Department of Materials Science and Medical Engineering, University of Rostock, 18119 Rostock, Germany;
| | - Margit Schwartz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (U.W.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (U.W.)
- Correspondence: ; Tel.: +49-381-494-5770
| | - Udo Walther
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (U.W.)
| |
Collapse
|
41
|
Đorđević NS, Tričković-Vukić D, Šehalić MG, Marjanović DD, Lazić DD, Radosavljević RD, Tabaković SZ, Todić JT. Polymethyl methacrylate resin for provisional restoration affects rat macrophage function in in vitro conditions. J Oral Sci 2022; 64:228-231. [PMID: 35661645 DOI: 10.2334/josnusd.22-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study evaluated the cytotoxic effects of polymethyl methacrylate resin extracts on rat macrophage viability in in vitro conditions. METHODS Prepared test specimens were immersed in 5 mL of artificial saliva and incubated for 24, 48, and 72 h at 37°C. The cytotoxicity of the obtained solutions of extracted resins, used as a stock solution (100%) and diluted with Roswell Park Memorial Institute (RPMI) medium to obtain the working solutions (50, 40, 30, 20, 10, and 5%), was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS No dose-dependent toxic activity in macrophage culture was detected for the three types of extracts obtained after 24, 48, and 72 h of material extraction. The shortest extraction of material was found to be completely non-toxic, and the 20% concentration of this extract obtained caused a significant increase in cell ability to metabolize MTT. Extracts obtained after 72 h of extraction showed the highest cytotoxic potential of 50%, 40% and 30%, and extracts obtained after 48 and 72 h of extraction at concentrations of 5% and 10% had a proliferative effect on the macrophage cell line. CONCLUSION This study demonstrated that the highest cytotoxic effect was observed in cells exposed to the highest concentrations (50, 40, and 30%) of the extracts that were extracted for 72 h.
Collapse
Affiliation(s)
- Nadica S Đorđević
- Department of Dentistry, Faculty of Medicine, University of Priština in Kosovska Mitrovica
| | | | - Meliha G Šehalić
- Department of Dentistry, Faculty of Medicine, University of Priština in Kosovska Mitrovica
| | - Dragan D Marjanović
- Department of Dentistry, Faculty of Medicine, University of Priština in Kosovska Mitrovica
| | - Dragoslav D Lazić
- Department of Dentistry, Faculty of Medicine, University of Priština in Kosovska Mitrovica
| | | | - Saša Z Tabaković
- Department of Dentistry, Faculty of Medicine, University of Priština in Kosovska Mitrovica
| | - Jelena T Todić
- Department of Dentistry, Faculty of Medicine, University of Priština in Kosovska Mitrovica
| |
Collapse
|
42
|
Paolone G, Mazzitelli C, Josic U, Scotti N, Gherlone E, Cantatore G, Breschi L. Modeling Liquids and Resin-Based Dental Composite Materials—A Scoping Review. MATERIALS 2022; 15:ma15113759. [PMID: 35683057 PMCID: PMC9181045 DOI: 10.3390/ma15113759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
Several lubricant materials can be used to model resin-based composites (RBCs) during restorative procedures. Clinically, instruments or brushes are wet with bonding agents (BAs) or modeling liquids (MLs) for sculpturing purposes. However, a knowledge gap exists on their effects on the mechanical properties of RBCs, requiring greater insight. Five databases were searched, including 295 in vitro studies on the use of lubricant materials for modeling RBCs during restorative procedures. Only articles in the English language were included, with no limits on the publication date. The last piece of research was dated 24 March 2022. In total, 16 studies were included in the review process, together with a paper retrieved after screening references. A total of 17 BAs and 7 MLs were investigated. Tensile (n = 5), flexural strength (n = 2), water sorption (n = 2), color stability (n = 8) and translucency (n = 3), micro-hardness (n = 4), roughness (n = 3), degree of conversion (n = 3), and monomer elution (n = 2) tests were carried out. In general, a maximum of 24 h of artificial storage was performed (n = 13), while four papers tested the specimens immediately. The present review identifies the possibilities and limitations of modeling lubricants used during restorative procedures on the mechanical, surface, and optical properties of RBCs. Clinicians should be aware that sculpturing RBCs with modeling resins might influence the composite surface properties in a way that is material-dependent.
Collapse
Affiliation(s)
- Gaetano Paolone
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy; (E.G.); (G.C.)
- Correspondence:
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Via S. Vitale 59, 40125 Bologna, Italy; (C.M.); (U.J.); (L.B.)
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Via S. Vitale 59, 40125 Bologna, Italy; (C.M.); (U.J.); (L.B.)
| | - Nicola Scotti
- Department of Surgical Sciences, Dental School Lingotto, University of Turin, Via Nizza 230, 10126 Turin, Italy;
| | - Enrico Gherlone
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy; (E.G.); (G.C.)
| | - Giuseppe Cantatore
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy; (E.G.); (G.C.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Via S. Vitale 59, 40125 Bologna, Italy; (C.M.); (U.J.); (L.B.)
| |
Collapse
|
43
|
Bürgers R, Schubert A, Müller J, Krohn S, Rödiger M, Leha A, Wassmann T. Cytotoxicity of 3D‐printed, milled, and conventional oral splint resins to L929 cells and human gingival fibroblasts. Clin Exp Dent Res 2022; 8:650-657. [PMID: 35570327 PMCID: PMC9209804 DOI: 10.1002/cre2.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Evidence on the biocompatibility of three‐dimensional (3D)‐printed and milled resins for oral splints is limited. This in vitro study assessed the influence of the manufacturing method on the cytotoxicity of oral splint resins on L929 cells and human gingival fibroblasts (GF1). Materials and Methods Standardized specimens of four 3D‐printed, two‐milled, one‐thermoformed, and one‐pressed splint resin were incubated with L929 and GF1 cells for 24 h. Immunofluorescence and WST‐8 assay were performed to evaluate cytotoxic effects. One‐way analysis of variance and Tukey's multiple comparison test were applied with the variables “splint resin” and “manufacturing method” (p < .05). Results Immunofluorescence showed attachment of L929 and GF1 cells to the splint resins. Irrespective of the manufacturing method, the WST‐8 assay revealed significant differences between splint resins for the viability of L929 and GF1 cells. L929 cells generally showed lower viability rates than GF1 cells. The evaluation of cell viability by the manufacturing method showed no significant differences between 3D printing, milling, and conventional methods. Conclusions The cytotoxic effects of 3D‐printed, milled, and conventional oral splint resins were similar, indicating minor influence of the manufacturing method on biocompatibility. Cytotoxicity of the resins was below a critical threshold in GF1 cells. The chemical composition might be more crucial than the manufacturing method for the biocompatibility of splint resins.
Collapse
Affiliation(s)
- Ralf Bürgers
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Andrea Schubert
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Jonas Müller
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Sebastian Krohn
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Matthias Rödiger
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Andreas Leha
- Department of Medical StatisticsUniversity Medical Center GöttingenGöttingenGermany
| | - Torsten Wassmann
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
44
|
Sharifi S, Saei AA, Gharibi H, Mahmoud NN, Harkins S, Dararatana N, Lisabeth EM, Serpooshan V, Végvári Á, Moore A, Mahmoudi M. Mass Spectrometry, Structural Analysis, and Anti-Inflammatory Properties of Photo-Cross-Linked Human Albumin Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:2643-2663. [PMID: 35544705 DOI: 10.1021/acsabm.2c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Albumin-based hydrogels offer unique benefits such as biodegradability and high binding affinity to various biomolecules, which make them suitable candidates for biomedical applications. Here, we report a non-immunogenic photocurable human serum-based (HSA) hydrogel synthesized by methacryloylation of human serum albumin by methacrylic anhydride (MAA). We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, liquid chromatography-tandem mass spectrometry, as well as size exclusion chromatography to evaluate the extent of modification, hydrolytic and enzymatic degradation of methacrylated albumin macromer and its cross-linked hydrogels. The impacts of methacryloylation and cross-linking on alteration of inflammatory response and toxicity were evaluated in vitro using brain-derived HMC3 macrophages and Ex-Ovo chick chorioallantoic membrane assay. Results revealed that the lysines in HSA were the primary targets reacting with MAA, though modification of cysteine, threonine, serine, and tyrosine, with MAA was also confirmed. Both methacrylated HSA and its derived hydrogels were nontoxic and did not induce inflammatory pathways, while significantly reducing macrophage adhesion to the hydrogels; one of the key steps in the process of foreign body reaction to biomaterials. Cytokine and growth factor analysis showed that albumin-based hydrogels demonstrated anti-inflammatory response modulating cellular events in HMC3 macrophages. Ex-Ovo results also confirmed the biocompatibility of HSA macromer and hydrogels along with slight angiogenesis-modulating effects. Photocurable albumin hydrogels may be used as a non-immunogenic platform for various biomedical applications including passivation coatings.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Nouf N Mahmoud
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.,Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shannon Harkins
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Naruphorn Dararatana
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Erika M Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden.,Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
45
|
Burkhardt F, Spies BC, Wesemann C, Schirmeister CG, Licht EH, Beuer F, Steinberg T, Pieralli S. Cytotoxicity of polymers intended for the extrusion-based additive manufacturing of surgical guides. Sci Rep 2022; 12:7391. [PMID: 35513701 PMCID: PMC9072356 DOI: 10.1038/s41598-022-11426-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Extrusion-based printing enables simplified and economic manufacturing of surgical guides for oral implant placement. Therefore, the cytotoxicity of a biocopolyester (BE) and a polypropylene (PP), intended for the fused filament fabrication of surgical guides was evaluated. For comparison, a medically certified resin based on methacrylic esters (ME) was printed by stereolithography (n = 18 each group). Human gingival keratinocytes (HGK) were exposed to eluates of the tested materials and an impedance measurement and a tetrazolium assay (MTT) were performed. Modulations in gene expression were analyzed by quantitative PCR. One-way ANOVA with post-hoc Tukey tests were applied. None of the materials exceeded the threshold for cytotoxicity (< 70% viability in MTT) according to ISO 10993-5:2009. The impedance-based cell indices for PP and BE, reflecting cell proliferation, showed little deviations from the control, while ME caused a reduction of up to 45% after 72 h. PCR analysis after 72 h revealed only marginal modulations caused by BE while PP induced a down-regulation of genes encoding for inflammation and apoptosis (p < 0.05). In contrast, the 72 h ME eluate caused an up-regulation of these genes (p < 0.01). All evaluated materials can be considered biocompatible in vitro for short-term application. However, long-term contact to ME might induce (pro-)apoptotic/(pro-)inflammatory responses in HGK.
Collapse
Affiliation(s)
- Felix Burkhardt
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center, Center for Dental Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center, Center for Dental Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Christian Wesemann
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center, Center for Dental Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.,Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Assmanshauser Str. 4-6, 14197, Berlin, Germany
| | - Carl G Schirmeister
- Freiburg Materials Research Center FMF and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany.,Basell Sales & Marketing B.V., LyondellBasell Industries, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Erik H Licht
- Basell Sales & Marketing B.V., LyondellBasell Industries, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Florian Beuer
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Assmanshauser Str. 4-6, 14197, Berlin, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Faculty of Medicine, Medical Center, Center for Dental Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Stefano Pieralli
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center, Center for Dental Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| |
Collapse
|
46
|
Influence of ceramic veneer on the transdentinal cytotoxicity, degree of conversion and bond strength of light-cured resin cements to dentin. Dent Mater 2022; 38:e160-e173. [DOI: 10.1016/j.dental.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
47
|
Aldhafyan M, Silikas N, Watts DC. Influence of curing modes on monomer elution, sorption and solubility of dual-cure resin-cements. Dent Mater 2022; 38:978-988. [PMID: 35339295 DOI: 10.1016/j.dental.2022.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the effect of two curing modes, for dual-cure resin cements, on their monomer elution, water sorption and solubility after 30 d water storage and 30 d dry reconditioning. METHODS Eight dual-cure resin-cements were investigated (Bifix SE, Nexus Third Generation, PANAVIA SA, PANAVIA V5, RelyX Ultimate Universal, RelyX Unicem 2, RelyX Universal and SpeedCEM Plus). Six disk-shaped specimens were made per curing mode: light-cure (LC) versus self-cure (SC) to measure amounts of eluted monomers after 30 d of water storage at 37 °C. Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC MS/MS) was performed to identify and quantify three eluted monomers (Bis-GMA, UDMA and TEGDMA). Water sorption/ solubility specimens were prepared according to ISO 4049. Specimens from each curing mode (LC/SC) were immersed separately in distilled water for 30 d and then reconditioned for 30 d; all at 37 °C. Mass change was measured at different time intervals. Data were analyzed via one-way ANOVA, Tukey post-hoc tests and independent sample t-tests (α = 0.05). RESULTS After 30 d of water storage, the three monomers Bis-GMA, UDMA and TEGDMA were detected in water. All monomers showed a variable extent of elution into water and were significantly higher (p < 0.0001) with SC compared to LC curing modes. BSE had the highest quantity of eluted monomers. After 30 d of water sorption (μg/mm3), all rein-cements showed significantly higher sorption (p < 0.05) of SC compared to LC curing modes except for PV5, RXU and CEM (p > 0.05). After 30 d of water solubility (μg/mm3), all resin-cements showed significantly higher solubility (p < 0.0001) of SC compared to LC curing mode. BSE had the highest water sorption and solubility. The total amounts of eluted monomers correlated positively with solubility: r2 = 0.95 for LC and r2 = 0.93 for SC. SIGNIFICANCE Whenever light access is possible, light curing remains beneficial to reduce the extent of resin degradation and related properties of dual-cure resin cements. BSE showed statistically the highest extent of eluted monomers, sorption and solubility.
Collapse
Affiliation(s)
- Mohammed Aldhafyan
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK; Division of Dental Biomaterials Science, College of Dentistry, King Saud University, Saudi Arabia
| | - Nikolaos Silikas
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK.
| | - David C Watts
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK; Photon Science Institute, University of Manchester, UK.
| |
Collapse
|
48
|
The Cytotoxicity of OptiBond Solo Plus and Its Effect on Sulfur Enzymes Expression in Human Fibroblast Cell Line Hs27. COATINGS 2022. [DOI: 10.3390/coatings12030382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the study was to determine the cytotoxic concentrations and incubation times of the commonly used dental adhesive system OptiBond Solo Plus in its non-polymerized form, and to test how it relates to oxidative stress by determining the reduced and oxidized glutathione (GSH and GSSG) levels as well as to study its influence on cell number and the expression of selected sulfur enzymes, with particular emphasis on cystathionine γ-lyase (CTH) and 3-mercaptopyruvate (MPST), sulfurtransferase. All investigations were conducted on an in vitro model of human fibroblast cell line Hs27. Changes in cellular plasma membrane integrity were measured by the LDH test. The expression levels were determined by RT-PCR and Western blot protocols. Changes in cell number were visualized using crystal violet staining. The RP-HPLC method was used to determine the GSH and GSSG levels. Reduced cell number was shown for all tested concentrations and times. Changes in the expression on the mRNA and protein level were demonstrated for CTH and MPST enzymes upon exposure to the tested range of OptiBond concentrations. Levels of low-molecular sulfur compounds of reduced and oxidized glutathione were also established. Cytotoxic effect of OptiBond Solo Plus may be connected with the changes of MPST and CTH sulfur enzymes in the human fibroblast Hs27 cell line. The elevated levels of these enzymes could possibly show the antioxidant response to this dental adhesive system. OptiBond Solo Plus in vitro results should be taken into consideration for further in vivo tests.
Collapse
|
49
|
Cengiz S, Velioğlu N, Cengiz Mİ, Çakmak Özlü F, Akbal AU, Çoban AY, Özcan M. Cytotoxicity of Acrylic Resins, Particulate Filler Composite Resin and Thermoplastic Material in Artificial Saliva with and without Melatonin. MATERIALS 2022; 15:ma15041457. [PMID: 35208000 PMCID: PMC8877573 DOI: 10.3390/ma15041457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022]
Abstract
There is limited information on the effect of melatonin on the cytotoxicity of dental materials. The study evaluated the cytotoxic effects of heat- and auto-polymerized acrylic resin, particulate filler composite resin and a thermoplastic material on L-929 fibroblast cell viability at different incubation periods in artificial saliva without and with melatonin. Disk-shaped specimens were prepared according to each manufacturer’s instructions and divided into two groups to be stored either in artificial saliva (AS) and AS with melatonin (ASM). The measurements were performed using an MTT (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide) assay, in which the L-929 mouse fibroblasts cell culture was used. For the MTT test, extracts were examined at 1, 24, 72 h and 1 and 2 weeks. Data were analyzed using 3-way ANOVA and Tukey’s tests. No significant difference was found between groups AS and ASM (F = 0.796; p = 0.373). Incubation period significantly affected all materials tested (p < 0.001). Storing resin-based materials in artificial saliva with melatonin solution for 24 h may reduce cytotoxic effects on the fibroblast cells for which the highest effect was observed. Soaking resin prosthesis or orthodontic appliances in artificial saliva with melatonin at least 24 h before intraoral use or rinsing medium containing melatonin may be recommended for decreasing the cytotoxicity of dental resin materials.
Collapse
Affiliation(s)
- Seda Cengiz
- Department of Prosthodontics, Faculty of Dentistry, Zonguldak Bülent Ecevit University, Zonguldak 67600, Turkey
- Correspondence:
| | - Neslin Velioğlu
- Department of Prosthodontics, Navadent Oral and Dental Health Policlinic, Zonguldak 67000, Turkey;
| | - Murat İnanç Cengiz
- Department of Periodontology, Faculty of Dentistry, Zonguldak Bülent Ecevit University, Zonguldak 67600, Turkey;
| | - Fehiye Çakmak Özlü
- Department of Orthodontics, Faculty of Dentistry, Ondokuz Mayıs University, Samsun 55270, Turkey;
| | - Ahmet Ugur Akbal
- Unit of Infectious Diseases, Samsun Health Directorate, Samsun 55060, Turkey;
| | - Ahmet Yılmaz Çoban
- Department of Medical Biotechnology, Institute of Health Sciences, Akdeniz University, Antalya 07058, Turkey;
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Akdeniz University, Antalya 07058, Turkey
- Tuberculosis Research Center, Akdeniz University, Antalya 07058, Turkey
| | - Mutlu Özcan
- Center for Dental and Oral Medicine, Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland;
| |
Collapse
|
50
|
Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect eluates from bulk fill resin-based-composites. Dent Mater 2022; 38:489-507. [DOI: 10.1016/j.dental.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|