1
|
Wang L, Cui J, Zhang N, Wang X, Su J, Vallés MP, Wu S, Yao W, Chen X, Chen D. OsIPK1 frameshift mutations disturb phosphorus homeostasis and impair starch synthesis during grain filling in rice. PLANT MOLECULAR BIOLOGY 2024; 114:91. [PMID: 39172289 DOI: 10.1007/s11103-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP6) synthesis. In this study, the effects of OsIPK1 mutations on InsP6 synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T0 plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP6 synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP6 content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.
Collapse
Affiliation(s)
- Lina Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Cui
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueqin Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingping Su
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - María Pilar Vallés
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, Spanish National Research Council (EEAD-CSIC), Zaragoza, 50059, Spain
| | - Shian Wu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Yao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
2
|
Oo AZ, Asai H, Win KT, Marui J, Saito H. Seed phytic acid concentration affects rice seedling vigor irrespective of soil phosphorus bioavailability. PHYSIOLOGIA PLANTARUM 2023; 175:e13913. [PMID: 37043305 DOI: 10.1111/ppl.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 06/27/2023]
Abstract
Rice with a black-colored pericarp (hereafter, black rice) is well-known as an antioxidant-rich food, but a high grain phytic acid (PA) concentration affects its nutritional quality. However, phytic acid helps improve seedling vigor, which is crucial for enhancing subsequent plant growth. This study investigated the effect of seed phytic acid concentration in black rice on seedling vigor compared to the effects on white rice. In the first experiment, three phytic acid concentrations in the seeds of black rice, low (LPA, 15.5 mg g-1 per seed), medium (MPA, 24.7 mg g-1 per seed), and high (HPA, 35.4 mg g-1 per seed) were tested for seedling vigor in phosphorus-deficient soils. The HPA seedlings showed substantially increased seedling vigor and shoot P uptake due to early root development and enhanced physiological processes. LPA grown seedlings showed increased ethylene production in response to P stress, which is the main physiological mechanism modulating seedling growth under P stress conditions. In the second experiment, the three phytic acid concentrations in black and white rice seeds were tested under low and high soil P conditions. Again, LPA seedlings showed significantly reduced seedling vigor in both rice varieties in P-deficient soils. Interestingly, seed phytic acid and external P application had an additive effect on seedling vigor, suggesting that the combined effect further improved seedling growth. Our results reveal that black rice seeds with a HPA concentration can be used as a seed source for planting in P-deficient ecosystems for rice plants as they can increase seedling vigor and subsequent growth, thus reducing dependence on finite P resources.
Collapse
Affiliation(s)
- Aung Zaw Oo
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Hidetoshi Asai
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Khin Thuzar Win
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Junichiro Marui
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroki Saito
- Tropical Agricultural Research Fronts, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa, Japan
| |
Collapse
|
3
|
Pasion EA, Misra G, Kohli A, Sreenivasulu N. Unraveling the genetics underlying micronutrient signatures of diversity panel present in brown rice through genome-ionome linkages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:749-771. [PMID: 36573652 PMCID: PMC10952705 DOI: 10.1111/tpj.16080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa) is an important staple crop to address the Hidden Hunger problem not only in Asia but also in Africa where rice is fast becoming an important source of calories. The brown rice (whole grain with bran) is known to be more nutritious due to elevated mineral composition. The genetics underlying brown rice ionome (sum total of such mineral composition) remains largely unexplored. Hence, we conducted a comprehensive study to dissect the genetic architecture of the brown rice ionome. We used genome-wide association studies, gene set analysis, and targeted association analysis for 12 micronutrients in the brown rice grains. A diverse panel of 300 resequenced indica accessions, with more than 1.02 million single nucleotide polymorphisms, was used. We identified 109 candidate genes with 5-20% phenotypic variation explained for the 12 micronutrients and identified epistatic interactions with multiple micronutrients. Pooling all candidate genes per micronutrient exhibited phenotypic variation explained values ranging from 11% to almost 40%. The key donor lines with larger concentrations for most of the micronutrients possessed superior alleles, which were absent in the breeding lines. Through gene regulatory networks we identified enriched functional pathways for central regulators that were detected as key candidate genes through genome-wide association studies. This study provided important insights on the ionome variations in rice, on the genetic basis of the genome-ionome relationships and on the molecular mechanisms underlying micronutrient signatures.
Collapse
Affiliation(s)
| | - Gopal Misra
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | - Ajay Kohli
- International Rice Research InstituteLos BañosLaguna4030Philippines
| | | |
Collapse
|
4
|
Lydia Pramitha J, Joel J, Rajasekaran R, Uma D, Vinothana K, Balakrishnan M, Sathyasheela KRV, Muthurajan R, Hossain F. Stability Analysis and Heterotic Studies in Maize ( Zea mays L.) Inbreds to Develop Hybrids With Low Phytic Acid and High-Quality Protein. FRONTIERS IN PLANT SCIENCE 2022; 12:781469. [PMID: 35145531 PMCID: PMC8823190 DOI: 10.3389/fpls.2021.781469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Maize is a major staple crop with high value as food and feed in the poultry sector. Considering the overall nutritional value, maize-based diets comprise two major constraints, i.e., higher phytic acid (PA) and lack of tryptophan. To overcome these issues, a set of identified stable donors for low PA (lpa) and higher tryptophan were crossed in a line × tester fashion, and the hybrids obtained were evaluated at three locations with two replications. Among the inbreds for yield, UMI 1201 and UMI 1205 were the stable good combiners, and for PA, UMI 447 and LPA-2-285 were identified as efficient combiners across locations. Subsequently, 72 hybrids developed from these inbreds had a reduced phytate and higher tryptophan compared with checks having alterations in their yield levels. From Additive Main Effects and Multiplicative Interaction (AMMI) and Genotype main effect plus genotype-by-environment interaction (GGE) biplots, DMR-QPM-09-13-1 × UMI 1099 (PA:9.38 mg/g, trp:0.06%, and yield:184.35 g) and UMI 1205 × UMI 467 (PA:7.04 mg/g, trp:0.06%, and yield:166.39 g) were stable for their high yield with medium PA and tryptophan. Also, across environments, UMI 1200 × UMI 467 had a stable average yield of 129.91 g along with the lowest PA of 4.50 mg/g and higher tryptophan of 0.07%. Thus, these hybrids could be selected and evaluated in upcoming biofortification trials to benefit the poultry sector. Furthermore, the parental inbreds utilized were grouped into heterotic pools to serve as a source population for the development of lpa hybrids in future programs.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Tamil Nadu Agricultural University, Coimbatore, India
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - John Joel
- Tamil Nadu Agricultural University, Coimbatore, India
| | | | - D. Uma
- Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | | | | - Firoz Hossain
- Tamil Nadu Agricultural University, Coimbatore, India
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Bakhite MAE, Sithole NJ, Magwaza LS, Odindo AO, Magwaza ST, Ncama K. Phosphorus application improves grain yield in low phytic acid maize synthetic populations. Heliyon 2021; 7:e07912. [PMID: 34527823 PMCID: PMC8429078 DOI: 10.1016/j.heliyon.2021.e07912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/10/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Maize mutants with low phytic acid have a compromised overall agronomic performance that results in low yields. This study was conducted to investigate the effect of P (18, 26 and 34 mg/kg) on the agronomic performance of low and high phytic acid (LPA and HPA) maize synthetic populations of tropical origin, compared to two commercial hybrids (SC701 and LS8520). Subsequently, a germination test was performed on the seeds produced from the different levels of P fertilizer application rates. The germination test was conducted in the laboratory, using a germination paper towel, while the agronomic study was conducted in a controlled environment. The measured parameters included days to 50% flowering, plant height, and grain yield, as well as the final germination and germination velocity index. The results found that the grain yield increased by 1.30, 0.51, 2.41 and 1.87 t/ha in LPA, HPA, SC701 and LS8520, from the application of 18–26 mg/kg of P, respectively. However, there were non-significant differences (p > 0.05) in the grain yields of all varieties at a P application of 26 and 34 mg/kg. The final germination increased by 4% and 2% in LPA and LS8520, respectively, with the increase in the P application rate being from 18 to 26 mg/kg. However, no significant differences (p > 0.05) were found in the final germination percentage of all varieties at 26 mg/kg of P. This study indicated that the optimum application of P at planting enhances the overall performance of the LPA maize synthetic population to a level that is comparable to commercially-grown varieties.
Collapse
Affiliation(s)
- Mohammed A E Bakhite
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Nkanyiso J Sithole
- Crop Science Department, Faculty of Natural and Agricultural Science, North-West University Private Bag X 2046, Mmabatho 2035, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Lembe S Magwaza
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa.,Discipline of Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Alfred O Odindo
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Shirly T Magwaza
- Department of Agricultural Science, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Khayelihle Ncama
- Crop Science Department, Faculty of Natural and Agricultural Science, North-West University Private Bag X 2046, Mmabatho 2035, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
6
|
Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 2021; 142:110193. [PMID: 33773669 DOI: 10.1016/j.foodres.2021.110193] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Phytic acid (PA), [myo-inositol 1,2,3,4,5,6-hexakisphosphate] is the principal storage compound of phosphorus (P) and account for 65%-85% of the seeds total P. The negative charge on PA attracts and chelates metal cations resulting in a mixed insoluble salt, phytate. Phytate contains six negatively charged ions, chelates divalent cations such as Fe2+, Zn2+, Mg2+, and Ca2+ rendering them unavailable for absorption by monogastric animals. This may lead to micronutrient deficiencies in humans since they lack the enzyme phytase that hydrolyzes phytate and releases the bound micronutrients. There are two main concerns about the presence of PA in human diet. The first is its negative impact on the bioavailability of several minerals and the second is the evidence of PA inhibiting various proteases essential for protein degradation and the subsequent digestion in stomach and small intestine. The beneficial role of PA has been underestimated due to its distinct negative consequences. PA is reported to be a potent natural plant antioxidant which plays a protective role against oxidative stress in seeds and preventive role in various human diseases. Recently beneficial roles of PA as an antidiabetic and antibacterial agent has been reported. Thus, the development of grains with low-PA and modified distribution pattern can be achieved through fine-tuning of its content in the seeds.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR- National Rice Research Institute (ICAR-NRRI), Cuttack-753006, Odisha, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Pinky Raigond
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Chandrasekhar Sahu
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Udit Nandan Mishra
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Srigopal Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
7
|
Assessing adaptive requirements and breeding potential of spelt under Mediterranean environment. Sci Rep 2021; 11:7208. [PMID: 33785769 PMCID: PMC8010017 DOI: 10.1038/s41598-021-86276-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/10/2021] [Indexed: 11/09/2022] Open
Abstract
The rising demand for spelt wheat (Triticum aestivum ssp. spelta) as a high-value grain crop has raised interest in its introduction into non-traditional spelt growing areas. This study aimed to assess adaptive constrains of spelt under short Mediterranean season. At first screening of a wide spelt collection for phenology and allelic distribution at the photoperiod (PPD) and vernalization (VRN) loci was done. In addition an in-depth phenotypic evaluation of a selected panel (n = 20) was performed, including agronomically important traits and concentration of grain mineral (GMC) and grain protein (GPC) content. Results from both wide screening and in-depth in panel (group of 18 spelt lines and two bread wheat lines) evaluation shows that the major adaptive constraint for spelt under Mediterranean conditions is late heading, caused by day length sensitivity, as evident from phenology and allelic profile (PPD and VRN). All lines carrying the photoperiod-sensitive allele (PPD-D1b) were late flowering (> 120DH). Based on the panel field evaluations those consequently suffer from low grain yield and poor agronomic performances. As for minerals, GMC for all but Zn, significantly correlated with GPC. In general, GMC negatively correlated with yield which complicated the assessment of GMC per-se and challenge the claim for higher mineral content in spelt grains. The exceptions were, Fe and Zn, which did not correlate with yield. Spelt lines showing high Fe and Zn concentration in a high-yield background illustrate their potential for spelt wheat breeding. Improving spelt adaptation to Mediterranean environments could be mediated by introducing the insensitive-PPD-D1a allele to spelt wheat background. Following this breeding path spelt could better compete with bread wheat under short season with limited and fluctuating rain fall.
Collapse
|
8
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
9
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Sashidhar N, Harloff HJ, Potgieter L, Jung C. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2241-2250. [PMID: 32191373 PMCID: PMC7589381 DOI: 10.1111/pbi.13380] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
Commercialization of Brassica napus. L (oilseed rape) meal as protein diet is gaining more attention due to its well-balanced amino acid and protein contents. Phytic acid (PA) is a major source of phosphorus in plants but is considered as anti-nutritive for monogastric animals including humans due to its adverse effects on essential mineral absorption. The undigested PA causes eutrophication, which potentially threatens aquatic life. PA accounts to 2-5% in mature seeds of oilseed rape and is synthesized by complex pathways involving multiple enzymes. Breeding polyploids for recessive traits is challenging as gene functions are encoded by several paralogs. Gene redundancy often requires to knock out several gene copies to study their underlying effects. Therefore, we adopted CRISPR-Cas9 mutagenesis to knock out three functional paralogs of BnITPK. We obtained low PA mutants with an increase of free phosphorus in the canola grade spring cultivar Haydn. These mutants could mark an important milestone in rapeseed breeding with an increase in protein value and no adverse effects on oil contents.
Collapse
Affiliation(s)
- Niharika Sashidhar
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| | - Hans J. Harloff
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| | - Lizel Potgieter
- Environmental GenomicsBotanical InstituteChristian‐Albrechts‐University of KielKielGermany
- Environmental GenomicsMax‐Planck‐Institute for Evolutionary BiologyPlönGermany
| | - Christian Jung
- Plant Breeding InstituteChristian‐Albrechts‐University of KielKielGermany
| |
Collapse
|
11
|
Das P, Adak S, Lahiri Majumder A. Genetic Manipulation for Improved Nutritional Quality in Rice. Front Genet 2020; 11:776. [PMID: 32793287 PMCID: PMC7393646 DOI: 10.3389/fgene.2020.00776] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Food with higher nutritional value is always desired for human health. Rice is the prime staple food in more than thirty developing countries, providing at least 20% of dietary protein, 3% of dietary fat and other essential nutrients. Several factors influence the nutrient content of rice which includes agricultural practices, post-harvest processing, cultivar type as well as manipulations followed by selection through breeding and genetic means. In addition to mutation breeding, genetic engineering approach also contributed significantly for the generation of nutrition added varieties of rice in the last decade or so. In the present review, we summarize the research update on improving the nutritional characteristics of rice by using genetic engineering and mutation breeding approach. We also compare the conventional breeding techniques of rice with modern molecular breeding techniques toward the generation of nutritionally improved rice variety as compared to other cereals in areas of micronutrients and availability of essential nutrients such as folate and iron. In addition to biofortification, our focus will be on the efforts to generate low phytate in seeds, increase in essential fatty acids or addition of vitamins (as in golden rice) all leading to the achievements in rice nutrition science. The superiority of biotechnology over conventional breeding being already established, it is essential to ascertain that there are no serious negative agronomic consequences for consumers with any difference in grain size or color or texture, when a nutritionally improved variety of rice is generated through genetic engineering technology.
Collapse
|
12
|
Kim OH, Booth CJ, Choi HS, Lee J, Kang J, Hur J, Jung WJ, Jung YS, Choi HJ, Kim H, Auh JH, Kim JW, Cha JY, Lee YJ, Lee CS, Choi C, Jung YJ, Yang JY, Im SS, Lee DH, Cho SW, Kim YB, Park KS, Park YJ, Oh BC. High-phytate/low-calcium diet is a risk factor for crystal nephropathies, renal phosphate wasting, and bone loss. eLife 2020; 9:52709. [PMID: 32271147 PMCID: PMC7145417 DOI: 10.7554/elife.52709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/22/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphate overload contributes to mineral bone disorders that are associated with crystal nephropathies. Phytate, the major form of phosphorus in plant seeds, is known as an indigestible and of negligible nutritional value in humans. However, the mechanism and adverse effects of high-phytate intake on Ca2+ and phosphate absorption and homeostasis are unknown. Here, we show that excessive intake of phytate along with a low-Ca2+ diet fed to rats contributed to the development of crystal nephropathies, renal phosphate wasting, and bone loss through tubular dysfunction secondary to dysregulation of intestinal calcium and phosphate absorption. Moreover, Ca2+ supplementation alleviated the detrimental effects of excess dietary phytate on bone and kidney through excretion of undigested Ca2+-phytate, which prevented a vicious cycle of intestinal phosphate overload and renal phosphate wasting while improving intestinal Ca2+ bioavailability. Thus, we demonstrate that phytate is digestible without a high-Ca2+ diet and is a risk factor for phosphate overloading and for the development of crystal nephropathies and bone disease.
Collapse
Affiliation(s)
- Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, United States
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Jinwook Lee
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jinku Kang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - June Hur
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Woo Jin Jung
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yun-Shin Jung
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyung Jin Choi
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeonjin Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Technology, Chung-Ang University, Ansung, Republic of Korea
| | - Jung-Wan Kim
- Department of Biology, University of Incheon, Incheon, Republic of Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute Gachon University College of Medicine, Incheon, Republic of Korea
| | - Young Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute Gachon University College of Medicine, Incheon, Republic of Korea
| | - Cheol Soon Lee
- Medical Health Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Cheolsoo Choi
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yun Jae Jung
- Department of Mirobiolgy, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jun-Young Yang
- Department of Toxicological Evaluation and Research, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
13
|
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-0020-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Legumes and cereals contain high amounts of macronutrients and micronutrients but also anti-nutritional factors. Major anti-nutritional factors, which are found in edible crops include saponins, tannins, phytic acid, gossypol, lectins, protease inhibitors, amylase inhibitor, and goitrogens. Anti-nutritional factors combine with nutrients and act as the major concern because of reduced nutrient bioavailability. Various other factors like trypsin inhibitors and phytates, which are present mainly in legumes and cereals, reduce the digestibility of proteins and mineral absorption. Anti-nutrients are one of the key factors, which reduce the bioavailability of various components of the cereals and legumes. These factors can cause micronutrient malnutrition and mineral deficiencies. There are various traditional methods and technologies, which can be used to reduce the levels of these anti-nutrient factors. Several processing techniques and methods such as fermentation, germination, debranning, autoclaving, soaking etc. are used to reduce the anti-nutrient contents in foods. By using various methods alone or in combinations, it is possible to reduce the level of anti-nutrients in foods. This review is focused on different types of anti-nutrients, and possible processing methods that can be used to reduce the level of these factors in food products.
Graphical abstract
A brief overview of beneficial effects of anti-nutrients and reduction strategy.
Collapse
|
14
|
Sashidhar N, Harloff HJ, Jung C. Identification of phytic acid mutants in oilseed rape (Brassica napus) by large-scale screening of mutant populations through amplicon sequencing. THE NEW PHYTOLOGIST 2020; 225:2022-2034. [PMID: 31651044 DOI: 10.1111/nph.16281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/11/2019] [Indexed: 05/18/2023]
Abstract
Brassica napus (oilseed rape) is an important oil crop in temperate regions, which originated from hybridization of Brassica oleracea and Brassica rapa. Owing to its polyploidy, the functional study of single genes is cumbersome. Phytic acid is considered as an antinutritive compound, and we aimed to knock out the underlying synthesis and transporter genes to identify low phytic acid mutants. We implemented a high-throughput next-generation sequencing screening protocol for an ethylmethane sulfonate population of 7680 plants in six gene families (BnMIPS, BnMIK, Bn2-PGK, BnIPK1, BnIPK2, and BnMRP5) with two paralogues for each gene. A total of 1487 mutations were revealed, and the vast majority (96%) were confirmed by Sanger sequencing. Furthermore, the characterization of double mutants of Bn.2-PGK2 showed a significant reduction of phytic acid contents. We propose to use three-dimensional pooling combined with amplicon stacking and next-generation sequencing to identify mutations in polyploid oilseed rape in a fast and cost-effective manner for complex metabolic pathways. Furthermore, the mutants identified in Bn2-PGK2 might be a very valuable resource for industrial production of oilseed rape protein for human consumption.
Collapse
Affiliation(s)
- Niharika Sashidhar
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118, Kiel, Germany
| |
Collapse
|
15
|
Perera I, Seneweera S, Hirotsu N. Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability. RICE (NEW YORK, N.Y.) 2018; 11:4. [PMID: 29327163 PMCID: PMC5764899 DOI: 10.1186/s12284-018-0200-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/05/2018] [Indexed: 05/18/2023]
Abstract
Myo-inositol hexaphosphate, also known as phytic acid (PA), is the most abundant storage form of phosphorus in seeds. PA acts as a strong chelator of metal cations to form phytate and is considered an anti-nutrient as it reduces the bioavailability of important micronutrients. Although the major nutrient source for more than one-half of the global population, rice is a poor source of essential micronutrients. Therefore, biofortification and reducing the PA content of rice have arisen as new strategies for increasing micronutrient bioavailability in rice. Furthermore, global climate change effects, particularly rising atmospheric carbon dioxide concentration, are expected to increase the PA content and reduce the concentrations of most of the essential micronutrients in rice grain. Several genes involved in PA biosynthesis have been identified and characterized in rice. Proper understanding of the genes related to PA accumulation during seed development and creating the means to suppress the expression of these genes should provide a foundation for manipulating the PA content in rice grain. Low-PA rice mutants have been developed that have a significantly lower grain PA content, but these mutants also had reduced yields and poor agronomic performance, traits that challenge their effective use in breeding programs. Nevertheless, transgenic technology has been effective in developing low-PA rice without hampering plant growth or seed development. Moreover, manipulating the micronutrient distribution in rice grain, enhancing micronutrient levels and reducing the PA content in endosperm are possible strategies for increasing mineral bioavailability. Therefore, a holistic breeding approach is essential for developing successful low-PA rice lines. In this review, we focus on the key determinants for PA concentration in rice grain and discuss the possible molecular methods and approaches for manipulating the PA content to increase micronutrient bioavailability.
Collapse
Affiliation(s)
- Ishara Perera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
| |
Collapse
|
16
|
Malý O, Mareš J, Zugárková I, Mareš L. The Effect of Using Low-Phytate Cereal Varieties on Phosphorus Digestibility and Selected Production Indices. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2017. [DOI: 10.11118/actaun201765051567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Sharma D, Jamra G, Singh UM, Sood S, Kumar A. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet ( Eleusine coracana) for Devising Strategies of Enrichment of Food Crops. FRONTIERS IN PLANT SCIENCE 2017; 7:2028. [PMID: 28144246 PMCID: PMC5239788 DOI: 10.3389/fpls.2016.02028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca2+) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca2+) accumulation in its grains and could pave way for development of nutraceuticals or designer crops.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Gautam Jamra
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Uma M. Singh
- International Rice Research Institute Division, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Salej Sood
- Indian Council of Agricultural Research-Vivekananda Institute of Hill AgricultureAlmora, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| |
Collapse
|
18
|
Israr B, Frazier RA, Gordon MH. Enzymatic hydrolysis of phytate and effects on soluble oxalate concentration in foods. Food Chem 2017; 214:208-212. [DOI: 10.1016/j.foodchem.2016.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023]
|
19
|
Bouis HE. Improving Human Nutrition through Agriculture: The Role of International Agricultural Research. Conference Summary and Recommendations. Food Nutr Bull 2016. [DOI: 10.1177/156482650002100441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper reports the conference recommendations for priorities for future research and follow-up actions. It also summarizes the paper presentations and key points made by participants during the course of the conference. It includes partial transcripts of invited remarks made by several participants who were not asked to submit research papers. With respect to research, participants recommended continued efforts on breeding for nutritionally improved crop varieties, evaluation of the impact of the Consultative Group on International Agricultural Research (CGIAR) activities on nutritional outcomes, and new work on communication and outreach related to nutrition. Interdisciplinary research collaboration with non-CGIAR partners in these three broad areas was stressed. The need for a shift in emphasis from protein– energy malnutrition to micronutrient malnutrition was recognized. With respect to institutionally related follow-up actions, formation of an interdisciplinary task force was recommended to implement a process for development of a multidisciplinary common conceptual framework describing agriculture– nutrition linkages, which could then be used for evaluating integrated approaches to nutrition improvement; and to seek approval from the CGIAR Technical Advisory Committee for a system-wide initiative on human nutrition that would include partners from outside the CGIAR. Progress since the conference is reported.
Collapse
Affiliation(s)
- Howarth E. Bouis
- International Food Policy Research Institute (IFPRI) in Washington, DC
| |
Collapse
|
20
|
Schneeman BO, Kennedy E. Agriculture–nutrition Linkages and the US Department of Agriculture: A Global View. Food Nutr Bull 2016. [DOI: 10.1177/156482650002100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Consultative Group on International Agricultural Research (CGIAR) system, like the US Department of Agriculture (USDA), has been successful in using research to improve the yield and efficiency of food systems. Our systems must now move beyond a focus on simply producing enough food to address fundamental issues of how to make the food system better able to meet the nutritional needs of consumers and contribute to sustainable environmental quality. Success in this endeavour will be determined by multidisciplinary research efforts. This is an area where more specific collaboration between the CGIAR and the USDA will be essential. The USDA Agricultural Research Service has been experimenting with these multidisciplinary partnerships for at least 60 years. Some examples from USDA's experience are given.
Collapse
Affiliation(s)
- Barbara O. Schneeman
- Administrator for Human Nutrition in the Agricultural Research Service of the US Department of Agriculture in Washington, DC
| | - Eileen Kennedy
- Research, Education and Economics, in the US Department of Agriculture
| |
Collapse
|
21
|
Bänziger M, Long J. The Potential for Increasing the Iron and Zinc Density of Maize through Plant-breeding. Food Nutr Bull 2016. [DOI: 10.1177/156482650002100410] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Centro Internacional de Mejoramiento de Maiz y Trigo ( CIMMYT) maize-breeding programme has been focusing on identifying white-grained maize germplasm that has the potential to increase kernel iron and zinc concentrations, especially in sub-Saharan Africa. In addition, research at Cornell University has focused on traits such as multiple aleurone layer, which can increase kernel iron and zinc concentrations, and low phytic acid concentration, which holds promise for improving the bioavailability of iron and zinc. More than 1,400 improved maize genotypes and 400 landraces were grown and evaluated to assess grain iron and zinc concentrations. These materials represented all white-grained landraces that belonged to the core collection of CIM-MYT's germplasm bank, all white- and yellow-grained CIMMYT maize germplasm pools and populations, all white-grained materials that are currently in the active breeding programme of CIMMYT-Zimbabwe, and 57 white-grained maize cultivars currently grown in southern Africa. After a very thorough evaluation of the genetic variability of iron and zinc potentially available in white-grained tropical maize germplasm, promising genetic variability was found in both improved maize germplasm and landraces. One difficulty that maize breeders encounter is that grain iron and zinc concentrations are often correlated negatively with grain yield, which may result from the increased carbohydrate content of high-yielding materials, so that a given amount of iron and zinc is diluted. The multiple aleurone trait may be a fast track to overcome this effect. This trait is being introgressed into various materials in both the United States and southern Africa.
Collapse
Affiliation(s)
- Marianne Bänziger
- Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) in Harare, Zimbabwe
| | - Jennifer Long
- Plant Breeding and Biometry Department at Cornell University in Ithaca, New York, USA
| |
Collapse
|
22
|
Abstract
This paper summarizes research to date on improving the nutritional characteristics of rice by using biotechnology, including efforts to produce β-carotene in the rice endosperm, to introduce a heat-stable phytase gene, and to increase iron concentration. The results obtained using biotechnology are compared with the results of breeding research by conventional techniques. Based on this comparison, the following lessons are drawn as to the potential usefulness of biotechnology in providing more nutritious food staples: (1) It must be established that plant-breeding is more cost-effective than alternative interventions. This is apparently the case, in large measure because of the multiplier effects of plant-breeding, over time and space, as compared with supplementation and fortification. (2) There must be aspects of breeding for which biotechnology is superior to conventional techniques. For rice, this is the case for adding β-carotene-related and heat-stable phytase genes. For increasing mineral concentration, conventional breeding techniques work as well and may be applied more quickly. (3) For those aspects of the plant-breeding strategy for which biotechnology is superior to conventional breeding, it must be established that there are no serious negative agronomic consequences; that consumers will accept any changes in the colour, taste, texture, and cooking qualities; and that the characteristic being added will result in a measurable improvement in the nutritional status of the malnourished target population. The conditions under lesson three, in particular, have yet to be firmly established. However, it is important not be overly cautious, in view of the potentially enormous benefits to the poor.
Collapse
Affiliation(s)
- Swapan Datta
- International Rice Research Institute (IRRI) in Los Baños, Laguna, Philippines
| | - Howarth E. Bouis
- International Food Policy Research Institute (IFPRI) in Washington, DC
| |
Collapse
|
23
|
Abstract
A key distinguishing feature of Latin America is that 75% of the population is urban, and this proportion is projected to rise to 82% by 2025. Because markets for processed foods are more developed in urban than in rural areas, fortification has a comparative advantage in Latin America relative to other regions. In fact, fortification has been highly successful in Latin America. Salt iodination programmes are the most widespread, followed by fortification of sugar with vitamin A; fortification of wheat with thiamine, riboflavin, niacin, and folic acid; and fortification of margarine. At least 13 Latin American countries now have vitamin A supplementation programmes, which are relatively new to Latin America. A mix of types of fortification, supplementation, and food-based interventions will be needed in the future. Efforts should continue in the implementation of activities such as home gardens, small-animal production, and promotion of edible, native plants. Genetic manipulation through plant-breeding can alter in a positive way desirable functional properties of foods as well as the concentration and properties of macro- and micronutrients. The benefits of functional characteristics bred into plants have been clearly demonstrated (e.g., fatty acid profiles, delayed ripening), but not the benefits for human nutrition, except in laboratory situations. The plant-breeding approach needs additional, interdisciplinary research at various points in the food chain to establish the benefit for human nutrition.
Collapse
Affiliation(s)
- Ricardo Bressani
- Center of Food Science and Technology, Research Institute in the Universidad del Valle de Guatemala in Guatemala City, Guatemala
| |
Collapse
|
24
|
Teklić T, Lončarić Z, Kovačević V, Singh BR. Metallic trace elements in cereal grain – a review: how much metal do we eat? Food Energy Secur 2013. [DOI: 10.1002/fes3.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tihana Teklić
- Department of Agroecology Faculty of Agriculture University J. J. Strossmayer in Osijek Kralja Petra Svačića 1d 31000 Osijek Croatia
| | - Zdenko Lončarić
- Department of Agroecology Faculty of Agriculture University J. J. Strossmayer in Osijek Kralja Petra Svačića 1d 31000 Osijek Croatia
| | - Vlado Kovačević
- Department for Plant Production Faculty of Agriculture University J. J. Strossmayer in Osijek Kralja Petra Svačića 1d 31000 Osijek Croatia
| | - Bal Ram Singh
- Department of Plant and Environmental Sciences Norwegian University of Life Sciences PO Box 5003 1432 As Norway
| |
Collapse
|
25
|
Singh S, Gupta AK, Kaur N. Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. ScientificWorldJournal 2012; 2012:485751. [PMID: 22629143 PMCID: PMC3354446 DOI: 10.1100/2012/485751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/03/2012] [Indexed: 11/17/2022] Open
Abstract
The present study in a two-year experiment investigated the influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat whole meal of two genotypes differing in their water requirements. Different thermal conditions prevailing during the grain filling period under different sowing time generated a large effect on the amount of total soluble proteins. Late sown conditions offered higher protein content accompanied by increased albumin-globulin but decreased glutenin content. Fe content was increased to 20–23%; however, tannin decreased to 18–35% under early sown rain-fed conditions as compared to irrigated timely sown conditions in both the genotypes. Activity of trypsin inhibitor was decreased under rain-fed conditions in both genotypes. This study inferred that variable sowing times and irrigation practices can be used for inducing variation in different wheat whole meal quality characteristics. Lower temperature prevailing under early sown rain-fed conditions; resulted in higher protein content. Higher Fe and lower tannin contents were reported under early sown rain-fed conditions however, late sown conditions offered an increase in phytic acid accompanied by decreased micronutrients and glutenin contents.
Collapse
Affiliation(s)
- Sondeep Singh
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | | | | |
Collapse
|
26
|
|
27
|
Herath HMT, Rajapakse D, Wimalasena S, Weerasooriya MKB. Iron content and availability studies in some Sri Lankan rice varieties. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02669.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Karami M, Afyuni M, Khoshgoftarmanesh AH, Papritz A, Schulin R. Grain zinc, iron, and copper concentrations of wheat grown in central iran and their relationships with soil and climate variables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10876-10882. [PMID: 19883069 DOI: 10.1021/jf902074f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We performed a survey in central Iran to assess the variability in grain zinc (Zn), iron (Fe), and copper (Cu) concentrations of winter wheat and their relationships with soil and climate variables under field conditions. The goal was to identify factors that should be studied further to improve wheat cultivation in the study area with respect to the nutritional quality of this main Iranian staple crop. Soil and grain samples were collected from 137 randomly selected wheat fields in the provinces of Qom, Isfahan, and Fars. In general, soils were characterized by a high pH. Grain micronutrient concentrations ranged from 11.7 to 64.0 mg kg(-1) (mean, 31.6 mg kg(-1)) for Zn, from 21.1 to 96.6 mg kg(-1) (mean, 42.7 mg kg(-1)) for Fe, and from 2.4 to 9.3 mg kg(-1) (mean, 5.5 mg kg(-1)) for Cu. The grain concentrations of these three metals were positively correlated to each other. DTPA-extractable and total soil micronutrient concentrations alone were very poor predictors of grain micronutrient concentrations. Predictions were slightly improved when other soil and climate variables were taken into account (Zn, R2=0.26; Fe, R2=0.08; and Cu, R2=0.13).
Collapse
Affiliation(s)
- Mahin Karami
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156, Iran.
| | | | | | | | | |
Collapse
|
29
|
Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat x wild emmer wheat RIL population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:353-69. [PMID: 19407982 DOI: 10.1007/s00122-009-1044-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 03/08/2009] [Indexed: 05/02/2023]
Abstract
Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2-16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe.
Collapse
Affiliation(s)
- Zvi Peleg
- The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, Nielsen E. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:967-78. [PMID: 19204030 DOI: 10.1093/jxb/ern345] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A maize mutant defective in the synthesis of phytic acid during seed maturation was used as a tool to study the consequences of the lack of this important reserve substance on seed survival. Data on germinability, free iron level, free radical relative abundance, protein carbonylation level, damage to DNA, degree of lipid peroxidation, alpha- and gamma-tocopherol amount and antioxidant capacity were recorded on seeds of maize B73 and of an isogenic low phytic acid mutant (lpa1-241), either unaged or incubated for 7 d in accelerated ageing conditions (46 degrees C and 100% relative humidity). The lpa1-241 mutant, compared to wild type (wt), showed a lower germination capacity, which decreased further after accelerated ageing. Whole lpa1-241 mutant kernels contained about 50% more free or weakly bound iron than wt ones and showed a higher content of free radicals, mainly concentrated in embryos; in addition, upon accelerated ageing, lpa1-241 seed proteins were more carbonylated and DNA was more damaged, whereas lipids did not appear to be more peroxidated, but the gamma-tocopherol content was decreased by about 50%. These findings can be interpreted in terms of previously reported but never proven antioxidant activity of phytic acid through iron complexation. Therefore, a novel role in plant seed physiology can be assigned to phytic acid, that is, protection against oxidative stress during the seed's life span. As in maize kernels the greater part of phytic acid (and thus of metal ions) is concentrated in the embryo, its antioxidant action may be of particular relevance in this crop.
Collapse
Affiliation(s)
- Enrico Doria
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming monotonous plant-based diets. The high prevalence of iron deficiency in the developing world has substantial health and economic costs, including poor pregnancy outcome, impaired school performance, and decreased productivity. Recent studies have reported how the body regulates iron absorption and metabolism in response to changing iron status by upregulation or downregulation of key intestinal and hepatic proteins. Targeted iron supplementation, iron fortification of foods, or both, can control iron deficiency in populations. Although technical challenges limit the amount of bioavailable iron compounds that can be used in food fortification, studies show that iron fortification can be an effective strategy against nutritional iron deficiency. Specific laboratory measures of iron status should be used to assess the need for fortification and to monitor these interventions. Selective plant breeding and genetic engineering are promising new approaches to improve dietary iron nutritional quality.
Collapse
Affiliation(s)
- Michael B Zimmermann
- Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zürich, Switzerland.
| | | |
Collapse
|
32
|
Lin L, Ockenden I, Lott JNA. The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) grains and grain parts. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b04-146] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comparison of mineral nutrient and phytic acid-phosphorus (PA-P) distribution in the grains of wild-type (WT) and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) was conducted to determine how the lpa1-1 mutation influences mineral element concentrations in different grain parts and impacts the structure of phosphorus-rich inclusions (globoids) in the grain cells. This is the first report regarding total phosphorus (P) and PA-P concentrations in scutellum and root-shoot axis portions of cereal embryos of WT in comparison to its matching lpa1-1 genotype. In WT, 95% of the grain PA-P was located in the embryo, mostly in the scutellum. The lpa1-1 mutation reduced whole-grain PA-P by 62% but influenced the scutella more than the root-shoot axes and rest-of-grain fractions. In spite of the lpa1-1 mutants containing greatly reduced PA-P, whole-grain amounts of Mg, Fe, and Mn were higher in lpa1-1 than in WT, K and Zn were similar, and Ca was lower. Iron was 1/3 higher in lpa1-1 grains than WT while Ca was 18% lower. Decreased phytic acid in lpa1-1 grains resulted in reduction in globoid size in both scutellum and aleurone layer cells. Most lpa1-1 aleurone globoids were non-spherical and scutellum globoids were clusters of small spheres while WT globoids were large discrete spheres. X-ray analyses of globoids in both grain types revealed major amounts of P, K, and Mg and traces of Ca, Fe, and Zn. Both grain types contained almost no mineral nutrient stores in the starchy endosperm.Key words: corn (Zea mays L.), phytic acid-phosphorus, low phytic acid1-1 (lpa1-1) grains, mineral nutrients, globoids, electron microscopy.
Collapse
|
33
|
|
34
|
|
35
|
Zimmermann MB, Hurrell RF. Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr Opin Biotechnol 2002; 13:142-5. [PMID: 11950566 DOI: 10.1016/s0958-1669(02)00304-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent understanding of plant metabolism has made it possible to increase the iron, zinc and beta-carotene (provitamin A) content in staple foods by both conventional plant breeding and genetic engineering. Improving the micronutrient composition of plant foods may become a sustainable strategy to combat deficiencies in human populations, replacing or complementing other strategies such as food fortification or nutrient supplementation.
Collapse
Affiliation(s)
- Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food Science and Nutrition, Swiss Federal Institute of Technology, Zürich, PO Box 474, CH-8803 Rüschlikon, Switzerland.
| | | |
Collapse
|