1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Khalaf R, Sciberras M, Ellul P. The role of the fecal microbiota in inflammatory bowel disease. Eur J Gastroenterol Hepatol 2024; 36:1249-1258. [PMID: 38973540 DOI: 10.1097/meg.0000000000002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The understanding of the potential role of the microbiota in the pathogenesis of inflammatory bowel disease (IBD) is ever-evolving. Traditionally, the management of IBD has involved medical therapy and/or surgical intervention. IBD can be characterized by gut microbiome alterations through various pathological processes. Various studies delve into nontraditional methods such as probiotics and fecal microbiota transplant and their potential therapeutic effects. Fecal microbiota transplant involves the delivery of a balanced composition of gut microorganisms into an affected patient via multiple possible routes and methods, while probiotics consist of live microorganisms given via the oral route. At present, neither method is considered first-line treatment, however, fecal microbiota transplant has shown potential success in inducing and maintaining remission in ulcerative colitis. In a study by Kruis and colleagues, Escherichia coli Nissle 1917 was considered to be equivalent to mesalamine in mild ulcerative colitis. Alteration of the microbiome in the management of Crohn's disease is less well defined. Furthermore, variation in the clinical usefulness of 5-aminosalicylic acid medication has been attributed, in part, to its acetylation and inactivation by gut microbes. In summary, our understanding of the microbiome's role is continually advancing, with the possibility of paving the way for personalized medicine based on the microbiome.
Collapse
Affiliation(s)
- Rami Khalaf
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Pierre Ellul
- Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
3
|
Lee NK, Jang HJ, Paik HD. Non-lactic acid bacteria probiotics isolated from intestine or various circumstances. Food Sci Biotechnol 2024; 33:1997-2007. [PMID: 39130655 PMCID: PMC11315843 DOI: 10.1007/s10068-024-01608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
Probiotics are live microorganisms beneficial to host health, predominantly comprising lactic acid bacteria (LAB) such as Lactobacillus. Additional non-LAB probiotics, termed intestinal isolates, encompass next-generation strains like Akkermansia muciniphila, Faecalibacterium prausnitzii, Christensenella minuta, Anaerobutyricum soehngenii, Oxalobacter formigenes, etc. and alongside externally sourced Bacillus, Saccharomyces cerevisiae, Clostridium butyricum, and Propionibacterium. Intestinal-derived probiotics represent strictly anaerobic strains with challenging culturing requirements, contrasting with the aerobic nature of Bacillus probiotics and the ease of culturing S. cerevisiae. These strains exhibit diverse health-promoting properties, encompassing antimicrobial, anticancer, antioxidant, and vitamin production capabilities, albeit contingent upon strain specificity. This review delineates the characteristics, culturing conditions, and health advantages associated with non-LAB probiotics.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
4
|
Yang T, Liu Y, Yin J, Yv T, Zhou F, Li Y, Yang L, Han L, Huang X. Transplantation of fecal microbiota from different breeds improved intestinal barrier condition and modulated ileal microflora of recipient pigs. J Anim Sci 2024; 102:skae314. [PMID: 39401017 PMCID: PMC11638772 DOI: 10.1093/jas/skae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024] Open
Abstract
In this study, we investigated the effects of transplanting Ningxiang pig fecal bacteria on the ileum microflora and intestinal barrier of Duroc × Landrace × Large White (DLY) pigs. Thirty-two DLY pigs at 90-d-old were equally assigned to either control groups (fed the basal diet) or test groups (fed the basal diet + 10 mL fecal microbiota suspension from Ningxiang pig). Results showed that fecal microbiota transplantation (FMT) did not influence the growth performance, but increased the number of ileum goblet cells and the expression level of mucin-2. Additionally, the mucosal levels of anti-inflammatory cytokines interlukin-4 and interlukin-10 were upregulated, but the level of pro-inflammatory cytokine interferon-γ was downregulated by FMT. Moreover, FMT increased the expression level of porcine β defensin-114 in ileum mucus. 16S rRNA gene sequencing of ileal digesta showed that FMT modulated the diversity and composition of ileal microbiota of DLY pigs by increasing the relative abundances of beneficial bacteria, while decreasing the abundance of the pathogenic bacterium Streptococcus. Taken together, the study showed that FMT of Ningxiang pigs could improve the intestinal barrier condition of DLY pigs by improving intestinal microflora and promoting intestinal health.
Collapse
Affiliation(s)
- Tong Yang
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| | - Yang Liu
- Department of Animal Nutrition, Hunan Institute of Animal Husbandry and Veterinary Medicine, Furong 410131, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Wangcheng 410219, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| | - Tian Yv
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| | - Feng Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| | - Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| | - Li Han
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Furong 410125, China
| |
Collapse
|
5
|
Tikunov AY, Fedorets VA, Shrainer EV, Morozov VV, Bystrova VI, Tikunova NV. Intestinal Microbiome Changes and Clinical Outcomes of Patients with Ulcerative Colitis after Fecal Microbiota Transplantation. J Clin Med 2023; 12:7702. [PMID: 38137770 PMCID: PMC10743744 DOI: 10.3390/jcm12247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.
Collapse
Affiliation(s)
- Artem Y. Tikunov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria A. Fedorets
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Evgenia V. Shrainer
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria I. Bystrova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Nina V. Tikunova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| |
Collapse
|
6
|
Deng ZL, Pieper DH, Stallmach A, Steube A, Vital M, Reck M, Wagner-Döbler I. Engraftment of essential functions through multiple fecal microbiota transplants in chronic antibiotic-resistant pouchitis-a case study using metatranscriptomics. MICROBIOME 2023; 11:269. [PMID: 38037086 PMCID: PMC10691019 DOI: 10.1186/s40168-023-01713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Ileal pouch-anal anastomosis (IPAA) is the standard of care after total proctocolectomy for ulcerative colitis (UC). Around 50% of patients will experience pouchitis, an idiopathic inflammatory condition. Antibiotics are the backbone of treatment of pouchitis; however, antibiotic-resistant pouchitis develops in 5-10% of those patients. It has been shown that fecal microbiota transplantation (FMT) is an effective treatment for UC, but results for FMT antibiotic-resistant pouchitis are inconsistent. METHODS To uncover which metabolic activities were transferred to the recipients during FMT and helped the remission, we performed a longitudinal case study of the gut metatranscriptomes from three patients and their donors. The patients were treated by two to three FMTs, and stool samples were analyzed for up to 140 days. RESULTS Reduced expression in pouchitis patients compared to healthy donors was observed for genes involved in biosynthesis of amino acids, cofactors, and B vitamins. An independent metatranscriptome dataset of UC patients showed a similar result. Other functions including biosynthesis of butyrate, metabolism of bile acids, and tryptophan were also much lower expressed in pouchitis. After FMT, these activities transiently increased, and the overall metatranscriptome profiles closely mirrored those of the respective donors with notable fluctuations during the subsequent weeks. The levels of the clinical marker fecal calprotectin were concordant with the metatranscriptome data. Faecalibacterium prausnitzii represented the most active species contributing to butyrate synthesis via the acetyl-CoA pathway. Remission occurred after the last FMT in all patients and was characterized by a microbiota activity profile distinct from donors in two of the patients. CONCLUSIONS Our study demonstrates the clear but short-lived activity engraftment of donor microbiota, particularly the butyrate biosynthesis after each FMT. The data suggest that FMT triggers shifts in the activity of patient microbiota towards health which need to be repeated to reach critical thresholds. As a case study, these insights warrant cautious interpretation, and validation in larger cohorts is necessary for generalized applications. In the long run, probiotics with high taxonomic diversity consisting of well characterized strains could replace FMT to avoid the costly screening of donors and the risk of transferring unwanted genetic material. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Luo Deng
- Group Computational Biology for Infection Research, Helmholtz Center for Infection Research, Brunswick, Germany.
| | - Dietmar H Pieper
- Group Microbial Interactions and Processes, Helmholtz Center for Infection Research, Brunswick, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Reck
- Group Microbial Communication, Helmholtz Center for Infection Research, Brunswick, Germany
- TÜV Rheinland, Cologne, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Brunswick, Germany
| |
Collapse
|
7
|
Zhang H, Wang X, Zhang J, He Y, Yang X, Nie Y, Sun L. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. J Transl Int Med 2023; 11:382-392. [PMID: 38130639 PMCID: PMC10732497 DOI: 10.2478/jtim-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Macrophages residing in the gut maintain gut homeostasis by orchestrating patho-gens and innocuous antigens. A disturbance in macrophages leads to gut inflamma-tion, causing conditions such as inflammatory bowel disease (IBD). Macrophages ex-hibit remarkable plasticity, as they are sensitive to various signals in the tissue micro-environment. During the recent decades, gut microbiota has been highlighted refer-ring to their critical roles in immunity response. Microbiome-derived metabolites and products can interact with macrophages to participate in the progression of IBD. In this review, we describe recent findings in this field and provide an overview of the current understanding of microbiota-macrophages interactions in IBD, which may lead to the development of new targets and treatment options for patients with IBD.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Targeting Oncology, National Center for International Re-search of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xueying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yixuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Xiumin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| |
Collapse
|
8
|
Bai M, Guo H, Zheng XY. Inflammatory bowel disease and Clostridium difficile infection: clinical presentation, diagnosis, and management. Therap Adv Gastroenterol 2023; 16:17562848231207280. [PMID: 38034098 PMCID: PMC10685799 DOI: 10.1177/17562848231207280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/24/2023] [Indexed: 12/02/2023] Open
Abstract
As a frequent complication of inflammatory bowel disease (IBD), Clostridium difficile infection (CDI) was confirmed to not only aggravate the symptoms of IBD but also result in unexpected outcomes, including death. With the increasing prevalence rate of IBD and the updating of CDI diagnosis, the incidence of CDI in IBD patients is also seen rising. Although a detection method consisting of glutamate dehydrogenase immunoassay or nucleic acid amplification test and then toxin A/B enzyme immunoassay was recommended and widely adopted, the diagnosis of CDI in IBD is still a challenge because of the overlap between the symptoms of CDI in IBD and CDI itself. Vancomycin and fidaxomicin are the first-line therapy for CDI in IBD; however, the treatment has different effects due to the complexity of IBD patients' conditions and the choice of different treatment schemes. Although the use of fecal microbial transplantation is now in the ascendant for IBD management, the prospects are still uncertain and the prevention and treatment of the recurrence of CDI in IBD remain a clinical challenge. In this paper, the epidemiology, pathophysiology, clinical manifestation, prevention, and therapy of CDI in IBD were summarized and presented.
Collapse
Affiliation(s)
- Mei Bai
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, 28 Jinshan Avenue, Yubei District, Chongqing 401147, China
| | - Xiao-Yao Zheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
10
|
Ang WS, Law JWF, Letchumanan V, Hong KW, Wong SH, Ab Mutalib NS, Chan KG, Lee LH, Tan LTH. A Keystone Gut Bacterium Christensenella minuta-A Potential Biotherapeutic Agent for Obesity and Associated Metabolic Diseases. Foods 2023; 12:2485. [PMID: 37444223 DOI: 10.3390/foods12132485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Wei-Shan Ang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Kar Wai Hong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Nurul Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Innovative Bioprospection Development Research Group (InBioD), Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| |
Collapse
|
11
|
Zhou S, Cui Y, Zhang Y, Zhao T, Cong J. Fecal microbiota transplantation for induction of remission in Crohn's disease: a systematic review and meta-analysis. Int J Colorectal Dis 2023; 38:62. [PMID: 36882658 DOI: 10.1007/s00384-023-04354-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Fecal microbiota transplantation (FMT) has been found to be a potential treatment for Crohn's disease (CD). We sought to perform a systematic review and meta-analysis to evaluate the efficacy and safety of FMT in CD. METHODS Electronic databases were searched for studies until January 2023. Clinical remission was established as the primary outcome. The secondary outcome was clinical response, endoscopic remission, minor adverse events, serious adverse events, and changes in disease activity indices, biochemical indicators, and microbial diversities. Pooled effect sizes and 95% confidence intervals (CIs) were calculated under the random effects model. RESULTS Eleven cohort studies and one randomized controlled trial involving 228 patients were included. In a meta-analysis, the pooled proportion of adult patients with active CD that achieved clinical remission 2 to 4 weeks after FMT was 57% (95% CI = 49-64%) with a low risk of heterogeneity (I2 = 37%). Furthermore, our results showed that FMT significantly (standardized mean difference = -0.66; 95% CI = -1.12 to -0.20; I2 = 0) reduced Crohn's disease activity index scores 4 to 8 weeks after FMT. Subgroup analyses showed no difference between FMT methodologies, except for pre-FMT treatment with antibiotics (P = 0.02). Most adverse events were self-limiting and disappeared spontaneously within hours or days after FMT. Microbiota analysis showed an increased Shannon diversity and a shift toward donor-like microbiome after FMT. CONCLUSION FMT could be a promising therapy in the short-term treatment of active CD. More placebo-controlled randomized trials with a long-term follow-up treatment are necessary. TRIAL REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022322694 No. CRD42022322694.
Collapse
Affiliation(s)
- Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China
| | - Ying Cui
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Siliu South Road No.127, Qingdao, 266000, People's Republic of China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
12
|
Wang L, Zhang P, Chen J, Li C, Tian Y, Xu F. Prebiotic properties of the polysaccharide from Rosa roxburghii Tratt fruit and its protective effects in high-fat diet-induced intestinal barrier dysfunction: A fecal microbiota transplantation study. Food Res Int 2023; 164:112400. [PMID: 36737985 DOI: 10.1016/j.foodres.2022.112400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Polysaccharide from Rosa roxburghii Tratt fruit (RTFP) ameliorates high-fat diet (HFD)-induced colitis in mice. However, it is still unknown whether the gut microbiota can mediate the anti-colitis effects of RTFP in mice. This research aims to investigate the role of gut microbes in modulating RTFP in colitis mice through fecal microbiota transplantation (FMT). The findings demonstrated that RTFP exhibited prebiotic effects on HFD-induced colitis mice. After FMT treatment (transplatation of the microbiota from the fecal sample to each recipient daily), the fecal microbiota of RTFP-treated donor mice remarkably alleviated colitis-related symptoms (e.g., colonic inflammation, loss of body weight, gut microbiota dysbiosis, and loss of barrier integrity) and upregulated the expression of tight junction proteins compared to the HFD-treated donor mice. Overall, RTFP can reduce the severity of HFD-induced colitis by regulating gut microbiota.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Pan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingpeng Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fei Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Yao J, Fekadu G, Ng SC, You JHS. Fecal microbiota transplantation for patients with active ulcerative colitis: A cost-effectiveness analysis. J Gastroenterol Hepatol 2023; 38:70-78. [PMID: 36181412 DOI: 10.1111/jgh.16015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIM Growing studies have demonstrated clinical benefits of fecal microbiota transplantation (FMT) therapy (administered by colonoscopy, enema, or both) for active ulcerative colitis (UC). This study aimed to evaluate the cost-effectiveness of standard treatment with and without FMT therapy for mild-to-moderate active UC from the perspective of US healthcare provider. METHODS A 10-year Markov model was developed to evaluate the costs and quality-adjusted life-years (QALYs) of standard treatment plus FMT therapy versus standard treatment alone. Model inputs were retrieved from publish data in literature. Base-case and sensitivity analyses were performed. RESULTS In the base-case analysis, standard treatment plus FMT therapy was more effective than standard treatment alone (by 0.068 QALYs). Comparing to standard treatment alone, standard treatment plus FMT therapy varied from cost-saving to incremental cost, subject to the number of FMT administrations. One-way sensitivity analysis identified the relative risk of achieving remission with FMT therapy to be the most influential factor on the incremental cost-effectiveness ratio of standard treatment plus FMT therapy. Monte-Carlo simulations showed that standard treatment plus FMT therapy with 3 and 6 administrations per FMT course was cost-effective (at willingness-to-pay threshold = 50 000 USD/QALY) in 90.77% and 67.03% of time, respectively. CONCLUSIONS Standard treatment plus FMT therapy appears to be more effective in gaining higher QALYs than standard therapy alone for patients with mild-to-moderate active UC. Cost-effectiveness of standard treatment plus FMT therapy is highly subject to the relative improvement in achieving remission with standard therapy plus FMT therapy and number of FMT administrations per FMT course.
Collapse
Affiliation(s)
- Jiaqi Yao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Siew C Ng
- Microbiota I-Center, The Chinese University of Hong Kong, Hong Kong.,Department of Medicine and Therapeutics, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Joyce H S You
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Zunino P. Native microbiomes in danger: Could One Health help to cope with this threat to global health? INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.178-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Planetary health faces an emergency associated with global change. Climate change, the increase in world population and urban concentration, the hyperintensification of productive systems, and the associated changes in land use, among other factors, are generating a risky substrate for global health deterioration. The emergence of the coronavirus disease 2019 pandemic is an example of the problems that this situation can provoke. Several researchers and health professionals have addressed the role of microorganisms, particularly bacteria, in promoting global health, mainly in the past decades. However, global changes have contributed to the extinction of a wide array of bacterial species and the disruption of microbial communities that support the homeostasis of humans, animals, and the environment. The need to protect the diversity and richness of native microbiomes in biotic and abiotic environments is crucial but has been frequently underestimated. The "One Health" approach, based on integrating traditionally unconnected fields such as human, animal, and environmental health, could provide a helpful framework to face this challenge. Anyway, drastic political decisions will be needed to tackle this global health crisis, in which the preservation of native microbial resources plays a critical role, even in preventing the risk of a new pandemic. This review aims to explain the importance of native microbiomes in biotic and abiotic ecosystems and the need to consider bacterial extinction as a crucial problem that could be addressed under a One Health approach.
Collapse
Affiliation(s)
- Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| |
Collapse
|
16
|
Zhang T, Zhang B, Tian W, Wang F, Zhang J, Ma X, Wei Y, Tang X. Research trends in ulcerative colitis: A bibliometric and visualized study from 2011 to 2021. Front Pharmacol 2022; 13:951004. [PMID: 36199683 PMCID: PMC9529236 DOI: 10.3389/fphar.2022.951004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/19/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Ulcerative colitis (UC) is an idiopathic inflammatory bowel disease with repeated relapses and remissions. Despite decades of effort, numerous aspects, including the initiating event and pathogenesis of UC, still remain ambiguous, which requires ongoing investigation. Given the mass of publications on UC, there are multidimensional challenges to evaluating the scientific impact of relevant work and identifying the current foci of the multifaceted disease. Accordingly, herein, we aim to assess the global growth of UC research production, analyze patterns of research areas, and evaluate trends in this area. Methods: The Web of Science Core Collection of Clarivate Analytics was searched for articles related to UC published from 2011 to 2021. Microsoft Office Excel 2019 was used to visualize the number of publications over time. Knowledge maps were generated using CiteSpace and VOSviewer to analyze collaborations among countries, institutions, and authors and to present the journey of UC research as well as to reveal the current foci of UC research. Results: A total of 5,088 publications were evaluated in the present study. China had the most publications (1,099, 22.5%). Univ Calif San Diego was the most productive institution (126, 2.48%). William J Sandborn published the greatest number of articles (100, 1.97%). Toshifumi Hibi was the most influential author in the field with a betweenness centrality of 0.53. Inflammatory bowel diseases was identified as the most prolific journal (379, 7.45%). Gastroenterology was the most co-cited journal (3,730, 4.02%). “Vedolizumab,” “tofacitinib,” “Faecalibacterium prausnitzii,” “fecal microbiota transplantation (FMT),” “toll-like receptor 4,” and “nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome” were considered the hot topics. Conclusion: In UC research, manuscripts that had high impacts on the scientific community provided an evidence base. UC therapy has entered the era of personalized and precision therapy. As research on FMT, anti-integrin antibodies, Janus kinase inhibitors, and anti-tumor necrosis factor drugs continues to grow, their use in the clinical setting may also expand.
Collapse
Affiliation(s)
- Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xudong Tang,
| |
Collapse
|
17
|
El Hage Chehade N, Ghoneim S, Shah S, Chahine A, Mourad FH, Francis FF, Binion DG, Farraye FA, Hashash JG. Efficacy of Fecal Microbiota Transplantation in the Treatment of Active Ulcerative Colitis: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Inflamm Bowel Dis 2022; 29:808-817. [PMID: 35766805 DOI: 10.1093/ibd/izac135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has been investigated as a treatment option for patients with inflammatory bowel disease with controversial results.We sought to perform a systematic review and meta-analysis to evaluate the benefit of FMT in patients with ulcerative colitis. METHODS Double-blind randomized controlled trials (RCTs) including adult patients with active ulcerative colitis who received either FMT or placebo were eligible for inclusion. Outcomes of interest included the rate of combined clinical and endoscopic remission, endoscopic remission or response, clinical remission or response, and specific adverse events. The results were pooled together using Reviewer Manager 5.4 software. Publication bias was assessed using the Egger's test. RESULTS Six RCTs involving 324 patients were included. Our findings demonstrate that compared with placebo, FMT has significant benefit in inducing combined clinical and endoscopic remission (odds ratio, 4.11; 95% confidence interval, 2.19-7.72; P < .0001). Subgroup analyses of influencing factors showed no differences between pooled or single stool donors (P = .71), fresh or frozen FMT (P = .35), and different routes or frequencies of delivery (P = .80 and .48, respectively). Pre-FMT antibiotics, bowel lavage, concomitant biologic therapy, and topical rectal therapy did not affect combined remission rates (P values of .47, .38, .28, and .40, respectively). Clinical remission or response and endoscopic remission or response were significantly higher in patients who received FMT compared with placebo (P < .05) without any differences in serious or specific adverse events. CONCLUSIONS FMT demonstrated a clinical and endoscopic benefit in the short-term treatment of active ulcerative colitis, with a comparable safety profile to placebo. Future RCTs are required to standardize study protocols and examine data on maintenance therapy.
Collapse
Affiliation(s)
- Nabil El Hage Chehade
- Department of Internal Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sara Ghoneim
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sagar Shah
- Department of Internal Medicine, Ronald Reagan Medical Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anastasia Chahine
- Division of Gastroenterology and Hepatology, University of California, Irvine Medical Center, Orange, CA, USA
| | - Fadi H Mourad
- Division of Gastroenterology and Hepatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fadi F Francis
- Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David G Binion
- Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francis A Farraye
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Jana G Hashash
- Division of Gastroenterology and Hepatology, American University of Beirut Medical Center, Beirut, Lebanon.,Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
18
|
Shute A, Bihan DG, Lewis IA, Nasser Y. Metabolomics: The Key to Unraveling the Role of the Microbiome in Visceral Pain Neurotransmission. Front Neurosci 2022; 16:917197. [PMID: 35812241 PMCID: PMC9260117 DOI: 10.3389/fnins.2022.917197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is limited such that 5-25% of IBD outpatients are treated with narcotics, with associated morbidity and mortality. IBD patients commonly present with substantial alterations to the microbial community structure within the gastrointestinal tract, known as dysbiosis. The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized by altered bowel habits and abdominal pain, in the absence of inflammation. An emerging body of literature suggests that the gut microbiome plays an important role in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship with host receptors that are highly expressed on host cell and neurons, suggesting that microbial metabolites play a key role in visceral hypersensitivity. In this review, we will discuss the techniques used to analysis the metabolome, current potential metabolite targets for visceral hypersensitivity, and discuss the current literature that evaluates the role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.
Collapse
Affiliation(s)
- Adam Shute
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Dominique G. Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yasmin Nasser
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Losurdo G, Gravina AG, Maroni L, Gabrieletto EM, Ianiro G, Ferrarese A. Future challenges in gastroenterology and hepatology, between innovations and unmet needs: A SIGE Young Editorial Board's perspective. Dig Liver Dis 2022; 54:583-597. [PMID: 34509394 DOI: 10.1016/j.dld.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Gastroenterology, Digestive Endoscopy and Hepatology have faced significant improvements in terms of diagnosis and therapy in the last decades. However, many fields still remain poorly explored, and many questions unanswered. Moreover, basic-science, as well as translational and clinical discoveries, together with technology advancement will determine further steps toward a better, refined care for many gastroenterological disorders in the future. Therefore, the Young Investigators of the Italian Society of Gastroenterology (SIGE) joined together, offering a perspective on major future innovations in some hot clinical topics in Gastroenterology, Endoscopy, and Hepatology, as well as the current pitfalls and the grey zones.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari; PhD Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University 'Aldo Moro' of Bari.
| | - Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Maroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | | | - Gianluca Ianiro
- Digestive Disease Center, Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alberto Ferrarese
- Gastroenterology and Hepatology, Azienda Ospedaliera Universitaria Integrata, Ospedale Borgo Trento, Verona, Italy
| |
Collapse
|
20
|
Halaweish HF, Boatman S, Staley C. Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Front Cell Infect Microbiol 2022; 12:826114. [PMID: 35372103 PMCID: PMC8968856 DOI: 10.3389/fcimb.2022.826114] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has been established as a highly restorative therapeutic approach for treating recurrent Clostridioides difficile infection (rCDI). Recently, the use of capsule-based fecal microbiota transplantation (cFMT) has been shown to be a clinically effective approach to restore intestinal microbiota composition. This convenient, oral delivery provides an easy route of administration and a newfound flexibility for clinicians and patients. In this review, we discuss the development of cFMT, paying particular attention to lyophilized cFMT products. We review the available published clinical studies comparing cFMT with lower endoscopic FMT (eFMT) or placebo. We further discuss the pharmacokinetics of FMT, which should be understood in a framework of microbial ecology that considers the complex and dynamic interactions of gut microbiota with host factors and other microorganisms. Promisingly, the results of multiple trials investigating cFMT vs. eFMT in rCDI show cFMT to be as effective as eFMT at preventing rCDI. However, its efficacy in non-rCDI conditions, including obesity and metabolic syndrome, inflammatory bowel disease, HIV, and neurologic conditions, is less clear and more research is needed in these areas. Standardization of formulation, dose, and timing of administration to ensure optimal microbiota engraftment and clinical response is also a challenge to be addressed. Overall, cFMT is a practical method for fecal microbiota transplantation, with similar efficacy to eFMT in the resolution of rCDI, that holds therapeutic potential in a variety of other diseases.
Collapse
Affiliation(s)
- Hossam F. Halaweish
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Sonja Boatman
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- *Correspondence: Christopher Staley,
| |
Collapse
|
21
|
Wang R, Moniruzzaman M, Wong KY, Wiid P, Harding A, Giri R, Tong W(H, Creagh J, Begun J, McGuckin MA, Hasnain SZ. Gut microbiota shape the inflammatory response in mice with an epithelial defect. Gut Microbes 2022; 13:1-18. [PMID: 33645438 PMCID: PMC7928202 DOI: 10.1080/19490976.2021.1887720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal epithelial cell endoplasmic reticulum (ER) stress has been implicated in intestinal inflammation. It remains unclear whether ER stress is an initiator of or a response to inflammation. Winnie mice, carrying a Muc2 gene mutation resulting in intestinal goblet cell ER stress, develop spontaneous colitis with a depleted mucus barrier and increased bacterial translocation. This study aims to determine whether the microbiota was required for the development of Winnie colitis, and whether protein misfolding itself can initiate inflammation directly in absence of the microbiota. To assess the role of microbiota in driving Winnie colitis, WT and Winnie mice on the same background were rederived into the germ-free facility and housed in the Trexler-type soft-sided isolators. The colitis phenotype of these mice was assessed and compared to WT and Winnie mice housed within a specific pathogen-free facility. We found that Winnie colitis was substantially reduced but not abolished under germ-free conditions. Expression of inflammatory cytokine genes was reduced but several chemokines remained elevated in absence of microbiota. Concomitantly, ER stress was also diminished, although mucin misfolding persisted. RNA-Seq revealed that Winnie differentiated colon organoids have decreased expression of the negative regulators of the inflammatory response compared to WT. This data along with the increase in Mip2a chemokine expression, suggests that the epithelial cells in the Winnie mice are more responsive to stimuli. Moreover, the data demonstrate that intestinal epithelial intrinsic protein misfolding can prime an inflammatory response without initiating the unfolded protein response in the absence of the microbiota. However, the microbiota is necessary for the amplification of colitis in Winnie mice. Genetic predisposition to mucin misfolding in secretory cells initiates mild inflammatory signals. However, the inflammatory signal sets a forward-feeding cycle establishing progressive inflammation in the presence of microbiota.Abbreviations: Endoplasmic Reticulum: ER; Mucin-2: Muc-2; GF: Germ-Free; Inflammatory Bowel Disease: IBD.
Collapse
Affiliation(s)
- Ran Wang
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Md Moniruzzaman
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Kuan Yau Wong
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Percival Wiid
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Alexa Harding
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Rabina Giri
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Wendy (Hui) Tong
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Jackie Creagh
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia,Mater Adult Hospital, Mater Health Services, South Brisbane, Australia
| | - Michael A. McGuckin
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Australia
| | - Sumaira Z. Hasnain
- Immunopathology Group, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, Australia,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia,CONTACT Sumaira Z. Hasnain Mater Research Institute – University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Qld4102, Australia; Ran Wang Mater Research Institute – University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Qld 4102, Australia
| |
Collapse
|
22
|
Hu Y, Ye Z, Wu M, She Y, Li L, Xu Y, Qin K, Hu Z, Yang M, Lu F, Ye Q. The Communication Between Intestinal Microbiota and Ulcerative Colitis: An Exploration of Pathogenesis, Animal Models, and Potential Therapeutic Strategies. Front Med (Lausanne) 2021; 8:766126. [PMID: 34966755 PMCID: PMC8710685 DOI: 10.3389/fmed.2021.766126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory bowel disease. The prolonged course of UC and the lack of effective treatment management make it difficult to cure, affecting the health and life safety of patients. Although UC has received more attention, the etiology and pathogenesis of UC are still unclear. Therefore, it is urgent to establish an updated and comprehensive understanding of UC and explore effective treatment strategies. Notably, sufficient evidence shows that the intestinal microbiota plays an important role in the pathogenesis of UC, and the treating method aimed at improving the balance of the intestinal microbiota exhibits a therapeutic potential for UC. This article reviews the relationship between the genetic, immunological and microbial risk factors with UC. At the same time, the UC animal models related to intestinal microbiota dysbiosis induced by chemical drugs were evaluated. Finally, the potential value of the therapeutic strategies for restoring intestinal microbial homeostasis and treating UC were also investigated. Comprehensively, this study may help to carry out preclinical research, treatment theory and methods, and health management strategy of UC, and provide some theoretical basis for TCM in the treatment of UC.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Yingqi She
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linzhen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Wang Y, Zhang J, Xu L, Ma J, Lu M, Ma J, Liu Z, Wang F, Tang X. Modified Gegen Qinlian Decoction Regulates Treg/Th17 Balance to Ameliorate DSS-Induced Acute Experimental Colitis in Mice by Altering the Gut Microbiota. Front Pharmacol 2021; 12:756978. [PMID: 34803700 PMCID: PMC8601377 DOI: 10.3389/fphar.2021.756978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic pathology associated with extensive intestinal microbial dysregulation and intestinal inflammation. Thus, efforts are underway to manipulate the gut microbiome to improve inflammatory pathology. Gegen Qinlian decoction (GQD), a traditional Chinese medicine prescription, has been widely utilized for treating diarrhea and ulcerative colitis (UC) for thousands of years. However, the underlying mechanism of its efficacy and whether its protective effect against colitis is mediated by the gut microbiota are poorly understood. In the present study, our data demonstrated that modified GQD (MGQD) administration significantly improved the pathological phenotypes and colonic inflammation challenged by DSS in mice, which were specifically manifested as reduced loss of body weight, shortening of colon length, DAI score, histological score and suppressed inflammatory response. 16S rRNA sequencing and targeted metabonomics analysis showed that MQGD altered the diversity and community landscape of the intestinal microbiota and the metabolic profiles. In particular, MQGD significantly boosted the abundance of the intestinal microbiota producing short-chain fatty acids (SCFAs), which are causally associated with promoting the development of Treg cells and suppressing the differentiation of pro-inflammatory Th17 cells. More importantly, transferring fecal microbiota from MGQD-treated or healthy controls exhibited equivalent alleviative effects on colitis mice. However, this protective effect could not be replicated in experiments of mice with depleted intestinal microbes through broad-spectrum antibiotic cocktails (ABX), further supporting the importance of SCFA-producing gut microbiota in the beneficial role of MGQD. In general, MGQD therapy has the potential to remodel the intestinal microbiome and reestablish immune homeostasis to ameliorate DSS-induced colitis.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Jiaqi Zhang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Xu
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ma
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengxiong Lu
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Jinxin Ma
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Zhihong Liu
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Fengyun Wang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
You C, Jirků M, Corcoran DL, Parker W, Jirků-Pomajbíková K. Altered gut ecosystems plus the microbiota's potential for rapid evolution: A recipe for inevitable change with unknown consequences. Comput Struct Biotechnol J 2021; 19:5969-5977. [PMID: 34849201 PMCID: PMC8598968 DOI: 10.1016/j.csbj.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
In a single human gut, which is estimated to produce 1000-times more bacteria in a single day than the entire human population on Earth as of 2020, the potential for evolution is vast. In addition to the sheer volume of reproductive events, prokaryotes can transfer most genes horizontally, greatly accelerating their potential to evolve. In the face of this evolutionary potential, Westernization has led to profound changes in the ecosystem of the gut, including increased chronic inflammation in many individuals and dramatically reduced fiber consumption and decreased seasonal variation in the diet of most individuals. Experimental work using a variety of model systems has shown that bacteria will evolve within days to weeks when faced with substantial environmental changes. However, studies evaluating the effects of inflammation of the gut on the microbiota are still in their infancy and generally confounded by the effects of the microbiota on the immune system. At the same time, experimental data indicate that complete loss of fiber from the diet constitutes an extinction-level event for the gut microbiota. However, these studies evaluating diet may not apply to Westernized humans who typically have reduced but not absent levels of fiber in their diet. Thus, while it is expected that the microbiota will evolve rapidly in the face of Westernization, experimental studies that address the magnitude of that evolution are generally lacking, and it remains unknown to what extent this evolutionary process affects disease and the ability to treat the disease state.
Collapse
Affiliation(s)
- Celina You
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Global Health Institute, Duke University and Duke University School of Medicine, Durham, NC, USA
| | - Milan Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - David L. Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - William Parker
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Global Health Institute, Duke University and Duke University School of Medicine, Durham, NC, USA
| | - Kateřina Jirků-Pomajbíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
25
|
Varesi A, Deumer US, Ananth S, Ricevuti G. The Emerging Role of Gut Microbiota in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Current Evidence and Potential Therapeutic Applications. J Clin Med 2021; 10:jcm10215077. [PMID: 34768601 PMCID: PMC8584653 DOI: 10.3390/jcm10215077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
The well-known symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are chronic pain, cognitive dysfunction, post-exertional malaise and severe fatigue. Another class of symptoms commonly reported in the context of ME/CFS are gastrointestinal (GI) problems. These may occur due to comorbidities such as Crohn's disease or irritable bowel syndrome (IBS), or as a symptom of ME/CFS itself due to an interruption of the complex interplay between the gut microbiota (GM) and the host GI tract. An altered composition and overall decrease in diversity of GM has been observed in ME/CFS cases compared to controls. In this review, we reflect on genetics, infections, and other influences that may factor into the alterations seen in the GM of ME/CFS individuals, we discuss consequences arising from these changes, and we contemplate the therapeutic potential of treating the gut to alleviate ME/CFS symptoms holistically.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Sanjana Ananth
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Giovanni Ricevuti
- Department of Drug Sciences, School of Pharmacy, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| |
Collapse
|
26
|
Cibulková I, Řehořová V, Hajer J, Duška F. Fecal Microbial Transplantation in Critically Ill Patients-Structured Review and Perspectives. Biomolecules 2021; 11:1459. [PMID: 34680092 PMCID: PMC8533499 DOI: 10.3390/biom11101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiota consists of bacteria, archaea, fungi, and viruses. It is a dynamic ecosystem shaped by several factors that play an essential role in both healthy and diseased states of humans. A disturbance of the gut microbiota, also termed "dysbiosis", is associated with increased host susceptibility to a range of diseases. Because of splanchnic ischemia, exposure to antibiotics, and/or the underlying disease, critically ill patients loose 90% of the commensal organisms in their gut within hours after the insult. This is followed by a rapid overgrowth of potentially pathogenic and pro-inflammatory bacteria that alter metabolic, immune, and even neurocognitive functions and that turn the gut into the driver of systemic inflammation and multiorgan failure. Indeed, restoring healthy microbiota by means of fecal microbiota transplantation (FMT) in the critically ill is an attractive and plausible concept in intensive care. Nonetheless, available data from controlled studies are limited to probiotics and FMT for severe C. difficile infection or severe inflammatory bowel disease. Case series and observational trials have generated hypotheses that FMT might be feasible and safe in immunocompromised patients, refractory sepsis, or severe antibiotic-associated diarrhea in ICU. There is a burning need to test these hypotheses in randomized controlled trials powered for the determination of patient-centered outcomes.
Collapse
Affiliation(s)
- Ivana Cibulková
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| | - Veronika Řehořová
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Anesthesiology and Intensive Care Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| | - Jan Hajer
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| | - František Duška
- Third Faculty of Medicine, Charles University, 11000 Prague, Czech Republic; (I.C.); (V.Ř.); (J.H.)
- Department of Anesthesiology and Intensive Care Medicine, FNKV University Hospital, 10034 Prague, Czech Republic
| |
Collapse
|
27
|
Fehily SR, Basnayake C, Wright EK, Kamm MA. Fecal microbiota transplantation therapy in Crohn's disease: Systematic review. J Gastroenterol Hepatol 2021; 36:2672-2686. [PMID: 34169565 DOI: 10.1111/jgh.15598] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gastrointestinal microbiota is the key antigenic drive in the inflammatory bowel diseases. Randomized controlled trials (RCTs) in ulcerative colitis have established fecal microbiota transplantation (FMT) as an effective therapy. We have conducted a systematic review to evaluate the efficacy of FMT in Crohn's disease. METHODS A systematic literature search was performed through to August 2020 (MEDLINE; Embase). Studies were included if they reported FMT administration in patients with Crohn's disease, and reported on clinical outcomes. RESULTS Fifteen studies published between 2014 and 2020, comprising 13 cohort studies and two RCTs, were included in the analysis. The majority of trials evaluated FMT for induction of remission, with follow-up duration varying from 4 to 52 weeks. One RCT in 21 patients, of single-dose FMT versus placebo, following steroid-induced remission, showed a higher rate of steroid-free clinical remission in the FMT group compared to the control group: 87.5% vs 44.4% at week 10 (P = 0.23). Another RCT, two-dose FMT in 31 patients, showed an overall clinical remission rate of 36% at week 8, however, with no difference in clinical or endoscopic endpoints between FMT administered by gastroscopy and colonoscopy. Considering all studies, the clinical response rates in early follow up were higher following multiple FMT than with single FMT. FMT dose did not appear to influence clinical outcomes, nor did whether FMT was fresh or frozen. FMT delivered via upper gastrointestinal route demonstrated higher early efficacy rates of 75 to 100% compared with lower delivery route rates of 30% to 58%, but on follow up beyond 8 weeks, this difference was not maintained. Whether pre-FMT antibiotic administration was beneficial was not able to be determined due to the limited number of patients receiving antibiotics and varying antibiotic regimens. No serious adverse events were reported. CONCLUSIONS Preliminary studies suggest that FMT may be an effective therapy in Crohn's disease. However large controlled trials are needed. No serious safety concerns have been identified.
Collapse
Affiliation(s)
- Sasha R Fehily
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chamara Basnayake
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily K Wright
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Sun Z, Li J, Wang W, Liu Y, Liu J, Jiang H, Lu Q, Ding P, Shi R, Zhao X, Yuan W, Tan X, Shi X, Xing Y, Mao T. Qingchang Wenzhong Decoction Accelerates Intestinal Mucosal Healing Through Modulation of Dysregulated Gut Microbiome, Intestinal Barrier and Immune Responses in Mice. Front Pharmacol 2021; 12:738152. [PMID: 34557102 PMCID: PMC8452913 DOI: 10.3389/fphar.2021.738152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD), a group of multifactorial and inflammatory infirmities, is closely associated with dysregulation of gut microbiota and host metabolome, but effective treatments are currently limited. Qingchang Wenzhong Decoction (QCWZD) is an effective and classical traditional herbal prescription for the treatment of IBD and has been proved to attenuate intestinal inflammation in a model of acute colitis. However, the role of QCWZD in recovery phase of colitis is unclear. Here, we demonstrated that mice treated with QCWZD showed a faster recovery from dextran sulfate sodium (DSS)-induced epithelial injury, accompanied by reduced mucosal inflammation and attenuated intestinal dysbiosis using bacterial 16S rRNA amplicon sequencing compared to those receiving sterile water. The protective effects of QCWZD are gut microbiota dependent, as demonstrated by fecal microbiome transplantation and antibiotics treatment. Gut microbes transferred from QCWZD-treated mice displayed a similar role in mucosal protection and epithelial regeneration as QCWZD on colitis in mice, and depletion of the gut microbiota through antibiotics treatments diminished the beneficial effects of QCWZD on colitis mice. Moreover, metabolomic analysis revealed metabolic profiles alternations in response to the gut microbiota reprogrammed by QCWZD intervention, especially enhanced tryptophan metabolism, which may further accelerate intestinal stem cells-mediated epithelial regeneration to protect the integrity of intestinal mucosa through activation of Wnt/β-catenin signals. Collectively, our results suggested that orally administrated QCWZD accelerates intestinal mucosal healing through the modulation of dysregulated gut microbiota and metabolism, thus regulating intestinal stem cells-mediated epithelial proliferation, and hold promise for novel microbial-based therapies in the treatment of IBD.
Collapse
Affiliation(s)
- Zhongmei Sun
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Wang
- Department of Traditional Chinese Medicine, Beijing Yangfangdian Hospital, Beijing, China
| | - Yuyue Liu
- Department of Pathology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Jiang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiongqiong Lu
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Panghua Ding
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xingjie Zhao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Yuan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Tan
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yunqi Xing
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Zhang L, Qing P, Yang H, Wu Y, Liu Y, Luo Y. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention. Front Immunol 2021; 12:686501. [PMID: 34335588 PMCID: PMC8319742 DOI: 10.3389/fimmu.2021.686501] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE), often considered the prototype of autoimmune diseases, is characterized by over-activation of the autoimmune system with abnormal functions of innate and adaptive immune cells and the production of a large number of autoantibodies against nuclear components. Given the highly complex and heterogeneous nature of SLE, the pathogenesis of this disease remains incompletely understood and is presumed to involve both genetic and environmental factors. Currently, disturbance of the gut microbiota has emerged as a novel player involved in the pathogenesis of SLE. With in-depth research, the understanding of the intestinal bacteria-host interaction in SLE is much more comprehensive. Recent years have also seen an increase in metabolomics studies in SLE with the attempt to identify potential biomarkers for diagnosis or disease activity monitoring. An intricate relationship between gut microbiome changes and metabolic alterations could help explain the mechanisms by which gut bacteria play roles in the pathogenesis of SLE. Here, we review the role of microbiota dysbiosis in the aetiology of SLE and how intestinal microbiota interact with the host metabolism axis. A proposed treatment strategy for SLE based on gut microbiome (GM) regulation is also discussed in this review. Increasing our understanding of gut microbiota and their function in lupus will provide us with novel opportunities to develop effective and precise diagnostic strategies and to explore potential microbiota-based treatments for patients with lupus.
Collapse
Affiliation(s)
- Lingshu Zhang
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingying Qing
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Yang
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongkang Wu
- Department of Laboratory Medicine and Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
The Keystone commensal bacterium Christensenella minuta DSM 22607 displays anti-inflammatory properties both in vitro and in vivo. Sci Rep 2021; 11:11494. [PMID: 34075098 PMCID: PMC8169850 DOI: 10.1038/s41598-021-90885-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
Christensenellaceae is a family of subdominant commensal bacteria found in humans. It is thought to play an important role in gut health by maintaining microbial symbiosis. Indeed, these bacteria occur at significantly lower levels or are absent in individuals suffering from inflammatory bowel diseases (IBDs). Here, we explored if type species Christensenella minuta (strain: DSM 22607) could have the potential to help treat IBDs. We assessed key properties displayed by the bacterium using a combination of in vitro and in vivo assays. We found that while C. minuta is a strict anaerobe, it is also oxygen tolerant. Additionally, we observed that the species produces high levels of acetate and moderate levels of butyrate. We performed deep phenotyping using Biolog microarrays. Using human intestinal cell lines, we discovered that C. minuta demonstrated strong anti-inflammatory activity, resulting in reduced levels of proinflammatory IL-8 cytokines via the inhibition of the NF-κB signaling pathway. Furthermore, C. minuta protected intestinal epithelial integrity in vitro. Finally, in two distinct animal models of acute colitis, C. minuta prevented intestinal damage, reduced colonic inflammation, and promoted mucosal healing. Together, these results indicate that C. minuta has potent immunomodulatory properties, underscoring its potential use in innovative microbiome-based IBD biotherapies.
Collapse
|
31
|
Person H, Keefer L. Psychological comorbidity in gastrointestinal diseases: Update on the brain-gut-microbiome axis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110209. [PMID: 33326819 PMCID: PMC8382262 DOI: 10.1016/j.pnpbp.2020.110209] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The high comorbidity of psychological disorders in both functional and organic gastrointestinal diseases suggests the intimate and complex link between the brain and the gut. Termed the brain-gut axis, this bidirectional communication between the central nervous system and enteric nervous system relies on immune, endocrine, neural, and metabolic pathways. There is increasing evidence that the gut microbiome is a key part of this system, and dysregulation of the brain-gut-microbiome axis (BGMA) has been implicated in disorders of brain-gut interaction, including irritable bowel syndrome, and in neuropsychiatric disorders, including depression, Alzheimer's disease, and autism spectrum disorder. Further, alterations in the gut microbiome have been implicated in the pathogenesis of organic gastrointestinal diseases, including inflammatory bowel disease. The BGMA is an attractive therapeutic target, as using prebiotics, probiotics, or postbiotics to modify the gut microbiome or mimic gut microbial signals could provide novel treatment options to address these debilitating diseases. However, despite significant advancements in our understanding of the BGMA, clinical data is lacking. In this article, we will review current understanding of the comorbidity of gastrointestinal diseases and psychological disorders. We will also review the current evidence supporting the key role of the BGMA in this pathology. Finally, we will discuss the clinical implications of the BGMA in the evaluation and management of psychological and gastrointestinal disorders.
Collapse
Affiliation(s)
- Hannibal Person
- Division of Pediatric Gastroenterology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Laurie Keefer
- Division of Pediatric Gastroenterology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
33
|
Venkatakrishnan A, Holzknecht ZE, Holzknecht R, Bowles DE, Kotzé SH, Modliszewski JL, Parker W. Evolution of bacteria in the human gut in response to changing environments: An invisible player in the game of health. Comput Struct Biotechnol J 2021; 19:752-758. [PMID: 33552447 PMCID: PMC7829112 DOI: 10.1016/j.csbj.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/23/2023] Open
Abstract
Several factors in Western society, including widespread use of antibiotics, chronic inflammation, and loss of complex eukaryotic symbionts such as helminths, have a dramatic impact on the ecosystem of the gut, affecting the microbiota hosted there. In addition, reductions in dietary fiber are profoundly impactful on the microbiota, causing extensive destruction of the niche space that supports the normally diverse microbial community in the gut. Abundant evidence now supports the view that, following dramatic alterations in the gut ecosystem, microorganisms undergo rapid change via Darwinian evolution. Such evolutionary change creates functionally distinct bacteria that may potentially have properties of pathogens but yet are difficult to distinguish from their benign predecessors.
Collapse
Affiliation(s)
| | - Zoie E Holzknecht
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Rob Holzknecht
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Dawn E Bowles
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sanet H Kotzé
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 8000, South Africa
| | - Jennifer L Modliszewski
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - William Parker
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
34
|
Puricelli C, Rolla R, Gigliotti L, Boggio E, Beltrami E, Dianzani U, Keller R. The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Front Psychiatry 2021; 12:755171. [PMID: 35185631 PMCID: PMC8850385 DOI: 10.3389/fpsyt.2021.755171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The interest elicited by the large microbial population colonizing the human gut has ancient origins and has gone through a long evolution during history. However, it is only in the last decades that the introduction of high-throughput technologies has allowed to broaden this research field and to disentangle the numerous implications that gut microbiota has in health and disease. This comprehensive ecosystem, constituted mainly by bacteria but also by fungi, parasites, and viruses, is proven to be involved in several physiological and pathological processes that transcend the intestinal homeostasis and are deeply intertwined with apparently unrelated body systems, such as the immune and the nervous ones. In this regard, a novel speculation is the relationship between the intestinal microbial flora and the pathogenesis of some neurological and neurodevelopmental disorders, including the clinical entities defined under the umbrella term of autism spectrum disorders. The bidirectional interplay has led researchers to coin the term gut-brain-immune system axis, subverting the theory of the brain as an immune-privileged site and underscoring the importance of this reciprocal influence already from fetal life and especially during the pre- and post-natal neurodevelopmental process. This revolutionary theory has also unveiled the possibility to modify the gut microbiota as a way to treat and even to prevent different kinds of pathologies. In this sense, some attempts have been made, ranging from probiotic administration to fecal microbiota transplantation, with promising results that need further elaboration. This state-of-art report will describe the main aspects regarding the human gut microbiome and its specific role in the pathogenesis of autism and its related disorders, with a final discussion on the therapeutic and preventive strategies aiming at creating a healthy intestinal microbial environment, as well as their safety and ethical implications.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eleonora Beltrami
- Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.,Clinical Biochemistry Laboratory, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberto Keller
- Mental Health Department, Adult Autism Center, ASL Città di Torino, Turin, Italy
| |
Collapse
|
35
|
Allegretti JR. Update on Fecal Microbiota Transplantation for the Treatment of Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 2021; 17:31-34. [PMID: 34035760 PMCID: PMC8132680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jessica R Allegretti
- Associate Director, Crohn's and Colitis Center Director, Fecal Microbiota Transplant Program Brigham and Women's Hospital Assistant Professor of Medicine Harvard Medical School Boston, Massachusetts
| |
Collapse
|
36
|
Rezasoltani S, Yadegar A, Asadzadeh Aghdaei H, Reza Zali M. Modulatory effects of gut microbiome in cancer immunotherapy: A novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med 2020; 10:1141-1154. [PMID: 33369247 PMCID: PMC7897953 DOI: 10.1002/cam4.3694] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal (GI) tract harbors gut microbiome, which plays a crucial role in preserving homeostasis at the intestinal host‐microbial interface. Conversely, specific gut microbiota may be altered during various pathological conditions and produce a number of toxic compounds and oncoproteins, in turn, to induce both inflammatory response and carcinogenesis. Recently, promising findings have been documented toward the implementation of certain intestinal microbiome in the next era of cancer biology and cancer immunotherapy. Notably, intestinal microbiota can cooperate with immune checkpoint inhibitors (ICIs) of its host, especially in enhancing the efficacy of programmed death 1 (PD‐1) protein and its ligand programmed death ligand 1 (PD‐L1) blockade therapy for cancer. Herein, we review the dual function of gut microbiota in triggering GI cancers, its association with host immunity and its beneficial functions in modulation of cancer immunotherapy responses. Furthermore, we consider the significance of gut microbiota as a potential biomarker for predicting the efficacy of cancer immunotherapy. Finally, we summarize the relevant limitations that affect the effectiveness and clinical applications of gut microbiome in response to immunotherapy.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Rodríguez C, Romero E, Garrido-Sanchez L, Alcaín-Martínez G, Andrade RJ, Taminiau B, Daube G, García-Fuentes E. MICROBIOTA INSIGHTS IN CLOSTRIDIUM DIFFICILE INFECTION AND INFLAMMATORY BOWEL DISEASE. Gut Microbes 2020; 12:1725220. [PMID: 32129694 PMCID: PMC7524151 DOI: 10.1080/19490976.2020.1725220] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation that includes Crohn´s disease (CD) and ulcerative colitis (UC). Although the etiology is still unknown, some specific factors have been directly related to IBD, including genetic factors, abnormal intestinal immunity, and/or gut microbiota modifications. Recent findings highlight the primary role of the gut microbiota closely associated with a persistent inappropriate inflammatory response. This gut environment of dysbiosis in a susceptible IBD host can increasingly worsen and lead to colonization and infection with some opportunistic pathogens, especially Clostridium difficile. C. difficile is an intestinal pathogen considered the main cause of antibiotic-associated diarrhea and colitis and an important complication of IBD, which can trigger or worsen an IBD flare. Recent findings have highlighted the loss of bacterial cooperation in the gut ecosystem, as well as the pronounced intestinal dysbiosis, in patients suffering from IBD and concomitant C. difficile infection (CDI). The results of intestinal microbiota studies are still limited and often difficult to compare because of the variety of disease conditions. However, these data provide important clues regarding the main modifications and interrelations in the complicated gut ecosystem to better understand both diseases and to take advantage of the development of new therapeutic strategies. In this review, we analyze in depth the gut microbiota changes associated with both forms of IBD and CDI and their similarity with the dysbiosis that occurs in CDI. We also discuss the metabolic pathways that favor the proliferation or decrease in several important taxa directly related to the disease.
Collapse
Affiliation(s)
- C. Rodríguez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain,CONTACT C. Rodríguez Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, SpainUnidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Vitoria, Málaga, Spain
| | - E. Romero
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - L. Garrido-Sanchez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - G. Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - RJ. Andrade
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain,Department of Medicine and Dermatology, Universidad de Málaga, Málaga, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Málaga, Spain
| | - B. Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - G. Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - E. García-Fuentes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
38
|
Baier J, Gänsbauer M, Giessler C, Arnold H, Muske M, Schleicher U, Lukassen S, Ekici A, Rauh M, Daniel C, Hartmann A, Schmid B, Tripal P, Dettmer K, Oefner PJ, Atreya R, Wirtz S, Bogdan C, Mattner J. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Invest 2020; 130:5703-5720. [PMID: 32721946 PMCID: PMC7598089 DOI: 10.1172/jci126923] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.
Collapse
Affiliation(s)
- Julia Baier
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | - Claudia Giessler
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Harald Arnold
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Mercedes Muske
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Ulrike Schleicher
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | | | | | | | - Arndt Hartmann
- Pathologisches Institut, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Dettmer
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Raja Atreya
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
Tan P, Li X, Shen J, Feng Q. Fecal Microbiota Transplantation for the Treatment of Inflammatory Bowel Disease: An Update. Front Pharmacol 2020; 11:574533. [PMID: 33041818 PMCID: PMC7530266 DOI: 10.3389/fphar.2020.574533] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has successfully been applied for the treatment of recurrent Clostridioides difficile infection (CDI), which has led to studies on its application to other gastrointestinal diseases and extraintestinal diseases associated with gut microbiota dysbiosis. Recently, the results of FMT for patients with inflammatory bowel disease (IBD) have been encouraging. However, studies have not fully clarified the clinical application of this emerging therapy. Here, we aimed to review the current knowledge in this fast-growing field and characterize the effectiveness, safety and mechanisms of FMT for the treatment of IBD patients.
Collapse
Affiliation(s)
- Pufang Tan
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaogang Li
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Chen H, Li H, Liu Z. Interplay of intestinal microbiota and mucosal immunity in inflammatory bowel disease: a relationship of frenemies. Therap Adv Gastroenterol 2020; 13:1756284820935188. [PMID: 32952611 PMCID: PMC7485159 DOI: 10.1177/1756284820935188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/26/2020] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, are chronic inflammatory disorders of the gastrointestinal tract. With in-depth studies on the mechanisms of the initiation and development of IBD, increasing lines of evidence have focused on the intestinal microbiota in the pathogenesis of IBD. The imbalance between the host and intestinal microbiota induces dysregulated immune response in intestinal mucosa and plays a pivotal role in the initiation of disease and ongoing bowel destruction. This review focuses on recent advances in intestinal microbiota regulation of mucosal immune response as well as novel approaches based on intestinal microbiota alterations in the diagnosis and evaluation of therapeutic response in IBD.
Collapse
|
41
|
Bilski J, Wojcik D, Danielak A, Mazur-Bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-Belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-2950. [DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
42
|
Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol 2020; 145:16-27. [PMID: 31910984 DOI: 10.1016/j.jaci.2019.11.003] [Citation(s) in RCA: 484] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease affecting the gastrointestinal tract. IBD consists of 2 subtypes: ulcerative colitis and Crohn disease. IBD is thought to develop as a result of interactions between environmental, microbial, and immune-mediated factors in a genetically susceptible host. Of late, the potential role of the microbiome in the development, progression, and treatment of IBD has been a subject of considerable interest and enquiry. Indeed, studies in human subjects have shown that the gut microbiome is different in patients with IBD compared with that in healthy control subjects. Other evidence in support of a fundamental role for the microbiome in patients with IBD includes identification of mutations in genes involved in microbiome-immune interactions among patients with IBD and epidemiologic observations implicating such microbiota-modulating risk factors as antibiotic use, cigarette smoking, levels of sanitation, and diet in the pathogenesis of IBD. Consequently, there has been much interest in the possible benefits of microbiome-modulating interventions, such as probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and gene manipulation in the treatment of IBD. In this review we will discuss the role of the gut microbiome in patients with IBD; our focus will be on human studies.
Collapse
Affiliation(s)
- Kerri L Glassner
- Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Tex.
| | - Bincy P Abraham
- Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Tex
| | - Eamonn M M Quigley
- Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Tex
| |
Collapse
|
43
|
Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 2020; 20:411-426. [PMID: 32005980 DOI: 10.1038/s41577-019-0268-7] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. The presence of large numbers of symbionts near the epithelial surface of the intestine poses an enormous challenge to the host because it must avoid the activation of harmful inflammatory responses to the microorganisms while preserving its ability to mount robust immune responses to invading pathogens. In patients with inflammatory bowel disease, there is a breakdown of the multiple strategies that the immune system has evolved to promote the separation between symbiotic microorganisms and the intestinal epithelium and the effective killing of penetrant microorganisms, while suppressing the activation of inappropriate T cell responses to resident microorganisms. Understanding the complex interactions between intestinal microorganisms and the host may provide crucial insight into the pathogenesis of inflammatory bowel disease as well as new avenues to prevent and treat the disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
44
|
Simsek M, de Boer NKH. Letter: off-label use of hyperbaric oxygen therapy in inflammatory bowel disease-Authors' reply. Aliment Pharmacol Ther 2020; 52:216-217. [PMID: 32529768 DOI: 10.1111/apt.15806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Melek Simsek
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Tang LL, Feng WZ, Cheng JJ, Gong YN. Clinical remission of ulcerative colitis after different modes of faecal microbiota transplantation: a meta-analysis. Int J Colorectal Dis 2020; 35:1025-1034. [PMID: 32388604 DOI: 10.1007/s00384-020-03599-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent and destructive disease of the gastrointestinal tract. Faecal microbiota transplantation (FMT) is a therapeutic measure in which faecal microbiota from healthy people is transplanted into patients. AIM To systematically evaluate the safety and effectiveness of treating UC with different modes of FMT. METHODS Seven databases were searched by two independent researchers and studies related to randomized controlled trials were included in the analysis. RESULTS Seven studies on UC involving 431 patients were included in the analysis. The results showed that FMT had better efficacy than placebo (OR = 2.29, 95% CI 1.48-3.53, P = 0.0002). Subgroup analyses of influencing factors showed that frozen faeces from multiple donors delivered via the lower gastrointestinal tract had a better curative effect than placebo (OR = 2.76, 95% CI 1.59-4.79, P = 0.0003; OR = 2.93, 95% CI 1.67-5.71, P = 0.0002; and OR = 2.70, 95% CI 1.67-4.37, P < 0.0001); the difference in efficacy between mixed faeces from a single donor transplanted through the upper gastrointestinal tract and placebo was not significant(P = 0.05, P = 0.09 and P = 0.98). The analysis of side effects showed no significant difference between FMT and placebo (P = 0.43). CONCLUSIONS It may be safe and effective to transplant frozen faeces from multiple donors through the lower gastrointestinal tract to treat UC.
Collapse
Affiliation(s)
- Li-Li Tang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Zhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Jia-Jun Cheng
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yan-Ni Gong
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
46
|
Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 2020; 17:497-511. [PMID: 31249397 DOI: 10.1038/s41579-019-0213-6] [Citation(s) in RCA: 516] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perturbations in the intestinal microbiome are implicated in inflammatory bowel disease (IBD). Studies of treatment-naive patients have identified microbial taxa associated with disease course and treatment efficacy. To gain a mechanistic understanding of how the microbiome affects gastrointestinal health, we need to move from census to function. Bacteria, including those that adhere to epithelial cells as well as several Clostridium species, can alter differentiation of T helper 17 cells and regulatory T cells. Similarly, microbial products such as short-chain fatty acids and sphingolipids also influence immune responses. Metagenomics and culturomics have identified strains of Ruminococcus gnavus and adherent invasive Escherichia coli that are linked to IBD and gut inflammation. Integrated analysis of multiomics data, including metagenomics, metatranscriptomics and metabolomics, with measurements of host response and culturomics, have great potential in understanding the role of the microbiome in IBD. In this Review, we highlight current knowledge of gut microbial factors linked to IBD pathogenesis and discuss how multiomics data from large-scale population studies in health and disease have been used to identify specific microbial strains, transcriptional changes and metabolic alterations associated with IBD.
Collapse
Affiliation(s)
| | - Ashley Garner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
47
|
Insights into the Role of Human Gut Microbiota in Clostridioides difficile Infection. Microorganisms 2020; 8:microorganisms8020200. [PMID: 32023967 PMCID: PMC7074861 DOI: 10.3390/microorganisms8020200] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile infection (CDI) has emerged as a major health problem worldwide. A major risk factor for disease development is prior antibiotic use, which disrupts the normal gut microbiota by altering its composition and the gut’s metabolic functions, leading to the loss of colonization resistance and subsequent CDI. Data from human studies have shown that the presence of C. difficile, either as a colonizer or as a pathogen, is associated with a decreased level of gut microbiota diversity. The investigation of the gut’s microbial communities, in both healthy subjects and patients with CDI, elucidate the role of microbiota and improve the current biotherapeutics for patients with CDI. Fecal microbiota transplantation has a major role in managing CDI, aiming at re-establishing colonization resistance in the host gastrointestinal tract by replenishing the gut microbiota. New techniques, such as post-genomics, proteomics and metabolomics analyses, can possibly determine in the future the way in which C. difficile eradicates colonization resistance, paving the way for the development of new, more successful treatments and prevention. The aim of the present review is to present recent data concerning the human gut microbiota with a focus on its important role in health and disease.
Collapse
|
48
|
Effects of Antibiotic Pretreatment of an Ulcerative Colitis-Derived Fecal Microbial Community on the Integration of Therapeutic Bacteria In Vitro. mSystems 2020; 5:5/1/e00404-19. [PMID: 31992630 PMCID: PMC6989129 DOI: 10.1128/msystems.00404-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a proposedly useful strategy for the treatment of gastrointestinal (GI) disorders through remediation of the patient gut microbiota. However, its therapeutic success has been variable, necessitating research to uncover mechanisms that improve patient response. Antibiotic pretreatment has been proposed as one method to enhance the success rate by increasing niche availability for introduced species. Several limitations hinder exploring this hypothesis in clinical studies, such as deleterious side effects and the development of antimicrobial resistance in patients. Thus, the purpose of this study was to evaluate the use of an in vitro, bioreactor-based, colonic ecosystem model as a form of preclinical testing by determining how pretreatment with the antibiotic rifaximin influenced engraftment of bacterial strains sourced from a healthy donor into an ulcerative colitis-derived defined microbial community. Distinct species integrated under the pretreated and untreated conditions, with the relative rifaximin resistance of the microbial strains being an important influencer. However, both conditions resulted in the integration of taxa from Clostridium clusters IV and XIVa, a concomitant reduction of Proteobacteria, and similar decreases in metabolites associated with poor health status. Our results agree with the findings of similar research in the clinic by others, which observed no difference in primary patient outcomes whether or not patients were given rifaximin prior to FMT. We therefore conclude that our model is useful for screening for antibiotics that could improve efficacy of FMT when used as a pretreatment.IMPORTANCE Patients with gastrointestinal disorders often exhibit derangements in their gut microbiota, which can exacerbate their symptoms. Replenishing these ecosystems with beneficial bacteria through fecal microbiota transplantation is thus a proposedly useful therapeutic; however, clinical success has varied, necessitating research into strategies to improve outcomes. Antibiotic pretreatment has been suggested as one such approach, but concerns over harmful side effects have hindered testing this hypothesis clinically. Here, we evaluate the use of bioreactors supporting defined microbial communities derived from human fecal samples as models of the colonic microbiota in determining the effectiveness of antibiotic pretreatment. We found that relative antimicrobial resistance was a key determinant of successful microbial engraftment with rifaximin (broad-spectrum antibiotic) pretreatment, despite careful timing of the application of the therapeutic agents, resulting in distinct species profiles from those of the control but with similar overall outcomes. Our model had results comparable to the clinical findings and thus can be used to screen for useful antibiotics.
Collapse
|
49
|
Del Colle A, Israelyan N, Gross Margolis K. Novel aspects of enteric serotonergic signaling in health and brain-gut disease. Am J Physiol Gastrointest Liver Physiol 2020; 318:G130-G143. [PMID: 31682158 PMCID: PMC6985840 DOI: 10.1152/ajpgi.00173.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) comorbidities are common in individuals with mood and behavioral dysfunction. Similarly, patients with GI problems more commonly suffer from co-morbid psychiatric diagnoses. Although the central and enteric nervous systems (CNS and ENS, respectively) have largely been studied separately, there is emerging interest in factors that may contribute to disease states involving both systems. There is strong evidence to suggest that serotonin may be an important contributor to these brain-gut conditions. Serotonin has long been recognized for its critical functions in CNS development and function. The majority of the body's serotonin, however, is produced in the GI tract, where it plays key roles in ENS development and function. Further understanding of the specific impact that enteric serotonin has on brain-gut disease may lay the foundation for the creation of novel therapeutic targets. This review summarizes the current data focusing on the important roles that serotonin plays in ENS development and motility, with a focus on novel aspects of serotonergic signaling in medical conditions in which CNS and ENS co-morbidities are common, including autism spectrum disorders and depression.
Collapse
Affiliation(s)
- Andrew Del Colle
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Narek Israelyan
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Kara Gross Margolis
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
50
|
Azimirad M, Yadegar A, Gholami F, Shahrokh S, Asadzadeh Aghdaei H, Ianiro G, Suzuki H, Cammarota G, Zali MR. Treatment of Recurrent Clostridioides difficile Infection Using Fecal Microbiota Transplantation in Iranian Patients with Underlying Inflammatory Bowel Disease. J Inflamm Res 2020; 13:563-570. [PMID: 32982371 PMCID: PMC7509309 DOI: 10.2147/jir.s265520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Fecal microbiota transplantation (FMT) is an effective treatment option for patients with recurrent Clostridioides difficile infection (rCDI). However, there is a paucity of evidence regarding its efficacy and safety in patients with rCDI and concurrent inflammatory bowel disease (IBD). Here, we present a single-center experience of FMT for treatment of rCDI in Iranian patients with IBD. PATIENTS AND METHODS Eight patients with established IBD (7 with ulcerative colitis and 1 with Crohn's disease) who underwent at least one FMT via colonoscopy for treatment of rCDI were enrolled in this study. Demographics, pre-FMT and post-FMT IBD activity, efficacy for rCDI and adverse events (AEs) were assessed during a 6-month follow-up period. All patients had experienced 3 episodes of rCDI and were refractory to conventional therapies with metronidazole and vancomycin. Primary cure and secondary cure rates were assessed after FMT treatments. RESULTS A total of 10 FMTs were performed via colonoscopy in 8 patients (6/8; 75% men) with a median age of 35 years (range: 22-60). Two patients received a second FMT. Overall, the primary and secondary cure rates were 75% and 100%, respectively. Two patients developed CPE-producing C. perfringens diagnoses after second FMTs. There were no other AEs, and no patient experienced IBD flare. CONCLUSION We demonstrated that FMT appears to be an effective, safe and rational therapeutic alternative for resolution of rCDI in patients with underlying IBD. Furthermore, we suggest implementing the CPE-producing C. perfringens testing in the screening of FMT donors.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Correspondence: Abbas Yadegar Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran Email
| | - Fatemeh Gholami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa259-1193, Japan
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|