1
|
Jahanbin B, Sarmadi S, Ghasemi D, Nili F, Moradi JA, Ghasemi S. Pathogenic role of Twist-1 protein in hydatidiform molar pregnancies and investigation of its potential diagnostic utility in complete moles. Diagn Pathol 2023; 18:40. [PMID: 36991485 PMCID: PMC10053139 DOI: 10.1186/s13000-023-01329-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Complete and partial moles (PM) are the most common gestational trophoblastic diseases. Due to some overlapping morphological findings, ancillary studies may be necessary. METHODS In this cross-sectional study, 47 cases of complete mole (CM) and 40 cases of PM were randomly selected based on histopathological criteria. Only those cases that were agreed upon by two expert gynecological pathologists and confirmed by the P57 IHC study were included. The expression level of the Twist-1 marker in villi stromal cells, as well as syncytiotrophoblasts, was evaluated quantitatively (percentage of positive cells), qualitatively (staining intensity) and as a total comprehensive score. RESULTS Expression of Twist-1 is higher and more intense in villous stromal cells of CMs (p < 0.001). Moderate to strong staining intensity in more than 50% of villous stromal cells, can differentiate CM and PM with 89.5% sensitivity and 75% specificity. In syncytiotrophoblasts of CM, Twist-1 expression was significantly lower than PM (p < 0.001). Negative or weak staining intensity in less than 10% of syncytiotrophoblasts, can distinguish CM and PM with 82.9% sensitivity and 60% specificity. CONCLUSION A higher expression of Twist-1 in villous stromal cells of hydatidiform moles is a sensitive and specific marker for the diagnosis of CMs. An elevated expression of this marker in villous stromal cells suggests another pathogenic mechanism for more aggressiveness of CMs in addition to the characteristics of trophoblast cells. The opposite result was obtained in the expression of Twist-1 in the syncytiotrophoblasts, compatible with defects in the process of formation of these supportive cells in CMs.
Collapse
Affiliation(s)
- Behnaz Jahanbin
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, End of Keshavarz Ave, , Tehran, IR, Iran
| | - Soheila Sarmadi
- Department of Pathology, Yas Women Hospital, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Dorsa Ghasemi
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, End of Keshavarz Ave, , Tehran, IR, Iran
| | - Fatemeh Nili
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, End of Keshavarz Ave, , Tehran, IR, Iran.
| | - Jafar-Ali Moradi
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, End of Keshavarz Ave, , Tehran, IR, Iran
| | - Soha Ghasemi
- Qazvin University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
2
|
Labour classified by cervical dilatation & fetal membrane rupture demonstrates differential impact on RNA-seq data for human myometrium tissues. PLoS One 2021; 16:e0260119. [PMID: 34797869 PMCID: PMC8604334 DOI: 10.1371/journal.pone.0260119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing has previously identified differentially expressed genes (DEGs) and enriched signalling networks in human myometrium for term (≥37 weeks) gestation labour, when defined as a singular state of activity at comparison to the non-labouring state. However, transcriptome changes that occur during transition from early to established labour (defined as ≤3 and >3 cm cervical dilatation, respectively) and potentially altered by fetal membrane rupture (ROM), when adapting from onset to completion of childbirth, remained to be defined. In the present study, we assessed whether differences for these two clinically observable factors of labour are associated with different myometrial transcriptome profiles. Analysis of our tissue (‘bulk’) RNA-seq data (NCBI Gene Expression Omnibus: GSE80172) with classification of labour into four groups, each compared to the same non-labour group, identified more DEGs for early than established labour; ROM was the strongest up-regulator of DEGs. We propose that lower DEGs frequency for early labour and/or ROM negative myometrium was attributed to bulk RNA-seq limitations associated with tissue heterogeneity, as well as the possibility that processes other than gene transcription are of more importance at labour onset. Integrative analysis with future data from additional samples, which have at least equivalent refined clinical classification for labour status, and alternative omics approaches will help to explain what truly contributes to transcriptomic changes that are critical for labour onset. Lastly, we identified five DEGs common to all labour groupings; two of which (AREG and PER3) were validated by qPCR and not differentially expressed in placenta and choriodecidua.
Collapse
|
3
|
Maternal DNA Methylation During Pregnancy: a Review. Reprod Sci 2021; 28:2758-2769. [PMID: 33469876 DOI: 10.1007/s43032-020-00456-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Multiple environmental, behavioral, and hereditary factors affect pregnancy. Recent studies suggest that epigenetic modifications, such as DNA methylation (DNAm), affect both maternal and fetal health during the period of gestation. Some of the pregnancy-related risk factors can influence maternal DNAm, thus predisposing both the mother and the neonate to clinical adversities with long-lasting consequences. DNAm alterations in the promoter and enhancer regions modulate gene expression changes which play vital physiological role. In this review, we have discussed the recent advances in our understanding of maternal DNA methylation changes during pregnancy and its associated complications such as gestational diabetes and anemia, adverse pregnancy outcomes like preterm birth, and preeclampsia. We have also highlighted some major gaps and limitations in the area which if addressed might improve our understanding of pregnancy and its associated adverse clinical conditions, ultimately leading to healthy pregnancies and reduction of public health burden.
Collapse
|
4
|
Mishra P, Hirsch E. Variable Responsiveness to Agonists for TLR2 and TLR7 in Myometrial Cells from Different Sources: Correlation with Receptor Expression. Reprod Sci 2020; 27:996-1001. [PMID: 32124394 PMCID: PMC11354319 DOI: 10.1007/s43032-019-00064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/05/2019] [Indexed: 12/01/2022]
Abstract
The myometrium plays a vital role in maintenance of pregnancy. Disruption of myometrial sensitivity to pro-contractile stimuli might lead to preterm labor. Inflammation and/or infection are common precursors to preterm birth, in part by initiating pro-contractile stimuli through toll-like receptor (TLRs) activation. In this study, we investigated the responses specific to inflammatory stimuli for both human primary myometrial cells (HPMCs) and PHM1-41 cells, a human immortalized myometrial cell line. Both these types of cells are commonly used to study labor and pregnancy. Both cell lines were treated with lipopolysaccharide (LPS), peptidoglycan (PGN), or imiquimod (IQ) (ligands for TLRs 2, 4, and 7, respectively). We demonstrate that inflammatory cytokines increase significantly with LPS treatment; however, no change occurs with PGN and IQ, suggesting lack of TLR2- and TLR7-specific signaling in both HPMCs and in the PHM1-41 cell line. Absence of TLR2- and TLR7-specific protein bands on western blots confirmed the lack of these receptors in both HPMCs maintained in long-term culture and PHM1-41 cells. However, TLR2 expression was present in freshly collected matched human myometrial tissue (i.e., the tissues used to create the HPMC cultures), showing loss of TLR2 receptors by HPMCs during the cell culturing process. TLR7 protein expression was lacking both in myometrial tissue and in cultured cells. These results demonstrate the limited applicability and reliability of cellular models to investigate the role of the myometrium during pregnancy and labor.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, 2650 Ridge Ave., Evanston, IL, 60201, USA.
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA.
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, 2650 Ridge Ave., Evanston, IL, 60201, USA.
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Lui S, Duval C, Farrokhnia F, Girard S, Harris LK, Tower CL, Stevens A, Jones RL. Delineating differential regulatory signatures of the human transcriptome in the choriodecidua and myometrium at term labor. Biol Reprod 2019; 98:422-436. [PMID: 29329366 DOI: 10.1093/biolre/iox186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Preterm deliveries remain the leading cause of neonatal morbidity and mortality. Current therapies target only myometrial contractions and are largely ineffective. As labor involves multiple coordinated events across maternal and fetal tissues, identifying fundamental regulatory pathways of normal term labor is vital to understanding successful parturition and consequently labor pathologies. We aimed to identify transcriptomic signatures of human normal term labor of two tissues: in the fetal-facing choriodecidua and the maternal myometrium. Microarray transcriptomic data from choriodecidua and myometrium following term labor were analyzed for functional hierarchical networks, using Cytoscape 2.8.3. Hierarchically high candidates were analyzed for their regulatory casual relationships using Ingenuity Pathway Analysis. Selected master regulators were then chemically inhibited and effects on downstream targets were assessed using real-time quantitative PCR (RT-qPCR). Unbiased network analysis identified upstream molecular components in choriodecidua including vimentin, TLR4, and TNFSF13B. In the myometrium, candidates included metallothionein 2 (MT2A), TLR2, and RELB. These master regulators had significant differential gene expression during labor, hierarchically high centrality in community cluster networks, interactions amongst the labor gene set, and strong causal relationships with multiple downstream effects. In vitro experiments highlighted MT2A as an effective regulator of labor-associated genes. We have identified unique potential regulators of the term labor transcriptome in uterine tissues using a robust sequence of unbiased mathematical and literature-based in silico analyses. These findings encourage further investigation into the efficacy of predicted master regulators in blocking multiple pathways of labor processes across maternal and fetal tissues, and their potential as therapeutic approaches.
Collapse
Affiliation(s)
- Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Cyntia Duval
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,Sainte-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Department of Physiology and Pharmacology, Universite de Montreal, Quebec, Canada
| | - Farkhondeh Farrokhnia
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sylvie Girard
- Sainte-Justine Hospital Research Centre, Department of Obstetrics and Gynecology, Department of Physiology and Pharmacology, Universite de Montreal, Quebec, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,School of Pharmacy, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clare L Tower
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Stevens
- St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.,St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
6
|
Brennan GP, Vitsios DM, Casey S, Looney AM, Hallberg B, Henshall DC, Boylan GB, Murray DM, Mooney C. RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS One 2018; 13:e0207952. [PMID: 30507953 PMCID: PMC6277075 DOI: 10.1371/journal.pone.0207952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease has led to ongoing interest in their diagnostic and prognostic potential. Circulating microRNAs may be valuable predictors of early-life complications such as birth asphyxia or neonatal seizures but there are relatively few data on microRNA content in plasma from healthy babies. Here we performed small RNA-sequencing analysis of plasma processed from umbilical cord blood in a set of healthy newborns. MicroRNA levels in umbilical cord plasma of four male and four female healthy babies, from two different centres were profiled. A total of 1,004 individual microRNAs were identified, which ranged from 426 to 659 per sample, of which 269 microRNAs were common to all eight samples. Many of these microRNAs are highly expressed and consistent with previous studies using other high throughput platforms. While overall microRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited microRNAs in female plasma compared to male. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Six microRNAs, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma. These results provide a benchmark for microRNA profiling and biomarker discovery using umbilical cord plasma and can be used as comparative data for future biomarker profiles from complicated births or those with early-life developmental disorders.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dimitrios M. Vitsios
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | | | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - David C. Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Catherine Mooney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
7
|
Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos. Theriogenology 2018; 123:185-193. [PMID: 30312936 DOI: 10.1016/j.theriogenology.2018.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Maternal undernutrition during the periconceptional period alters the transcriptomic profile of pig endometrium and embryos. Herein, we tested the hypothesis that restricted maternal consumption by females during the periconceptional period impairs the pattern of DNA methylation in both the endometrium and embryos during the peri-implantation period (Day 15-16 of gestation). Affected genes in restricted-diet-fed pig endometrium and embryos were identified using quantitative methylation-specific PCR and comprised those genes which are known to be important in reproductive, metabolic and epigenetic function, thereby exhibiting altered transcriptomic expression in endometrium and embryos of restricted-diet-fed gilts. Specifically, levels of DNA methylation of selected genes with altered expression in the endometrium included acid phosphatase type 2C (PPAP2C), salivary lipocalin (SAL1), endothelin receptor type B (EDNRB), regulator of G-protein signalling 12 (RGS12), type 4 17β-hydroxysteroid dehydrogenase (HSD17B4), toll-like receptor 3 (TLR3), and adiponectin receptor 1 (ADIPOR1). In embryos, adiponectin receptor 2 (ADIPOR2), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), progestin and adipoQ receptor family member 7 (PAQR7), progesterone receptor membrane component 2 (PGRMC2), steroidogenic acute regulatory protein (STAR), and serpin family A member 1 (SERPINA1) were altered. Finally, 5 acid phosphatase tartrate resistant (ACP5), high mobility group box 2 (HMGB2), and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were altered in both the endometrium and in embryos. In the endometrium, the methylation levels of ACP5 (regulation of endometrial-conceptus iron transport), RGS12 (protein-coupled receptor signalling), and TLR3 (immune response) were increased, while that of EDNRB (corpus luteum maintenance) was decreased. In embryos, the methylation levels of ADIPOR2 (metabolic homeostasis) and DNMT1 (DNA methylation maintenance) were increased. The levels of methylation in other studied endometrial and embryonic genes were unchanged. DNA methylation levels in both the peri-implantation pig endometrium and embryos may be altered in response to female nutritional restriction.
Collapse
|
8
|
Lappas M. Runt-related transcription factor 1 (RUNX1) deficiency attenuates inflammation-induced pro-inflammatory and pro-labour mediators in myometrium. Mol Cell Endocrinol 2018; 473:61-71. [PMID: 29330113 DOI: 10.1016/j.mce.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 01/08/2023]
Abstract
Identifying new targets that regulate myometrial activation are required to develop effective treatments to stop preterm labor. Inflammation, which can be induced by sterile or infective insults, plays a role in initiating and maintaining uterine contractions. Several high throughput transcription screening studies have identified an upregulation of runt-related transcription factor 1 (RUNX1) mRNA expression in myometrium with labor. The role of RUNX1 in labor, however, is not known. We report increased RUNX1 during late gestation which was further augmented in labor, suggesting that RUNX1 may be involved in the transition of the myometrium from a quiescent into a contractile state in preparation for labor. By inhibiting the expression of RUNX1, we have established that RUNX1 induces the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, contraction-associated proteins OXR and PTGFR, the uterotonic PGF2α, and the ECM remodelling enzyme MMP9. Targeting RUNX1 may be a novel approach to prevent preterm labor.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
9
|
Nasibyan LS, Philyppov IB. EFFECT OF PEPTIDOGLYCANE OF STAPHYLOCOCCUS AUREUS CELL WALL ON THE MECHANISM OF REGULATION OF CONTRACTILE ACTIVITY OF RAT MYOMETRIUM BY ADENYLATE CYCLASE SYSTEM. ACTA ACUST UNITED AC 2018. [PMID: 29537197 DOI: 10.15407/fz62.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The revue deals with the role of each component of adenylate cyclase regulatory system in the rat myometrial contractile activity modulation by the peptidoglycane of Staphylococcus aureus. Noradrenalin and salbutamol were used to investigate peptidoglycane impact on the myometrial β-adrenergic receptors. It was shown that inhibited by these substances myometrial contractility increased to the initial level after peptidoglycane application. The same effect we observed under the cAMP level elevation by forscolin. Peptidoglycan’ s ability to strengthen contractions was inhibited by the 8-brom-cAMP and papaverine application. Stimulation of Gs-protein by the cholera toxin didn’t influence on the peptidoglycane effect while the blocking of Gi/o-protein by the pertussis toxin caused stopping it’s manifestation. We concluded that the modulating effect of peptidoglycane implemented via Gi/o-protein activation, which causes adenilatcyclase desensitization.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic beta-2 Receptor Agonists
- Albuterol/pharmacology
- Animals
- Cell Wall/chemistry
- Cholera Toxin/pharmacology
- Colforsin/pharmacology
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Myometrium/drug effects
- Myometrium/physiology
- Norepinephrine/pharmacology
- Papaverine/pharmacology
- Peptidoglycan/pharmacology
- Pertussis Toxin/pharmacology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Staphylococcus aureus/chemistry
- Tissue Culture Techniques
- Uterine Contraction/drug effects
- Uterine Contraction/physiology
Collapse
|
10
|
Hong X, Sherwood B, Ladd-Acosta C, Peng S, Ji H, Hao K, Burd I, Bartell TR, Wang G, Tsai HJ, Liu X, Ji Y, Wahl A, Caruso D, Lee-Parritz A, Zuckerman B, Wang X. Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples. Epigenetics 2018; 13:163-172. [PMID: 28165855 DOI: 10.1080/15592294.2017.1287654] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Preterm birth (PTB) affects one in six Black babies in the United States. Epigenetics is believed to play a role in PTB; however, only a limited number of epigenetic studies of PTB have been reported, most of which have focused on cord blood DNA methylation (DNAm) and/or were conducted in white populations. Here we conducted, by far, the largest epigenome-wide DNAm analysis in 300 Black women who delivered early spontaneous preterm (sPTB, n = 150) or full-term babies (n = 150) and replicated the findings in an independent set of Black mother-newborn pairs from the Boston Birth Cohort. DNAm in maternal blood and/or cord blood was measured using the Illumina HumanMethylation450 BeadChip. We identified 45 DNAm loci in maternal blood associated with early sPTB, with a false discovery rate (FDR) <5%. Replication analyses confirmed sPTB associations for cg03915055 and cg06804705, located in the promoter regions of the CYTIP and LINC00114 genes, respectively. Both loci had comparable associations with early sPTB and early medically-indicated PTB, but attenuated associations with late sPTB. These associations could not be explained by cell composition, gestational complications, and/or nearby maternal genetic variants. Analyses in the newborns of the 110 Black women showed that cord blood methylation levels at both loci had no associations with PTB. The findings from this study underscore the role of maternal DNAm in PTB risk, and provide a set of maternal loci that may serve as biomarkers for PTB. Longitudinal studies are needed to clarify temporal relationships between maternal DNAm and PTB risk.
Collapse
Affiliation(s)
- Xiumei Hong
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Ben Sherwood
- b Department of Biostatistics , Johns Hopkins University Bloomberg School of Public Health, Baltimore , MD , USA
| | - Christine Ladd-Acosta
- c Department of Epidemiology, The Wendy Klag Center for Autism and Developmental Disabilities , Johns Hopkins Bloomberg School of Public Health , Baltimore , MD 21205
| | - Shouneng Peng
- d Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai , New York , NY , 10029 , USA
| | - Hongkai Ji
- b Department of Biostatistics , Johns Hopkins University Bloomberg School of Public Health, Baltimore , MD , USA
| | - Ke Hao
- d Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai , New York , NY , 10029 , USA
| | - Irina Burd
- e Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Tami R Bartell
- f Mary Ann & J. Milburn Smith Child Health Research Program , Stanley Manne Children's Research Institute , Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , 60611 , USA
| | - Guoying Wang
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Hui-Ju Tsai
- g Division of Biostatistics and Bioinformatics , Institute of Population Health Sciences , National Health Research Institutes , Zhunan , Taiwan 350.,h Department of Pediatrics, Feinberg School of Medicine , Northwestern University , Chicago , IL , 60611 , USA
| | - Xin Liu
- h Department of Pediatrics, Feinberg School of Medicine , Northwestern University , Chicago , IL , 60611 , USA.,i Key Laboratory of Genomic and Precision Medicine , Beijing Institute of Genomics , Chinese Academy of Sciences , Beijing , 100101 , China
| | - Yuelong Ji
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Anastacia Wahl
- j Department of Pediatrics , Boston University School of Medicine and Boston Medical Center , Boston , MA, USA
| | - Deanna Caruso
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Aviva Lee-Parritz
- k Department of Obstetrics and Gynecology , Boston University School of Medicine , Boston , MA, USA
| | - Barry Zuckerman
- j Department of Pediatrics , Boston University School of Medicine and Boston Medical Center , Boston , MA, USA
| | - Xiaobin Wang
- a Department of Population , Family and Reproductive Health , Center on the Early Life Origins of Disease , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA.,l Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
11
|
DREAM Is Involved in the Genesis of Inflammation-Induced Prolabour Mediators in Human Myometrial and Amnion Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8237087. [PMID: 29682558 PMCID: PMC5842746 DOI: 10.1155/2018/8237087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/17/2018] [Indexed: 01/31/2023]
Abstract
Preterm birth is the primary cause of perinatal morbidity and mortality worldwide. Inflammation induces a cascade of events leading to preterm birth by activating nuclear factor-κB (NF-κB). In nongestational tissues, downstream regulatory element antagonist modulator (DREAM) regulates NF-κB activity. Our aims were to analyse DREAM expression in myometrium and fetal membranes obtained at term and preterm and to determine the effect of DREAM inhibition on prolabour mediators in primary myometrial and amnion cells. DREAM mRNA expression was significantly higher in fetal membranes obtained after spontaneous labour compared to nonlabour and in amnion from women with histological preterm chorioamnionitis when compared to amnion from women without chorioamnionitis. In primary myometrial and amnion cells, the effect of DREAM silencing by siRNA was a significant decrease in the expression of proinflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, the adhesion molecule ICAM-1, MMP-9 mRNA expression and activity, and NF-κB transcriptional activity when stimulated with the proinflammatory cytokine IL-1β, the bacterial products fsl-1 or flagellin, or the viral dsRNA analogue poly(I:C). These data suggest that, in states of heightened inflammation, DREAM mRNA expression is increased and that, in myometrial and amnion cells, DREAM regulates proinflammatory and prolabour mediators which may be mediated via NF-κB.
Collapse
|
12
|
Zglejc K, Martyniak M, Waszkiewicz E, Kotwica G, Franczak A. Peri-conceptional under-nutrition alters transcriptomic profile in the endometrium during the peri-implantation period-The study in domestic pigs. Reprod Domest Anim 2017; 53:74-84. [DOI: 10.1111/rda.13068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/27/2017] [Indexed: 11/26/2022]
Affiliation(s)
- K Zglejc
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - M Martyniak
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - E Waszkiewicz
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - G Kotwica
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - A Franczak
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| |
Collapse
|
13
|
Lim R, Barker G, Lappas M. TLR2, TLR3 and TLR5 regulation of pro-inflammatory and pro-labour mediators in human primary myometrial cells. J Reprod Immunol 2017; 122:28-36. [PMID: 28844021 DOI: 10.1016/j.jri.2017.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/06/2017] [Accepted: 08/16/2017] [Indexed: 02/01/2023]
Abstract
Preterm birth continues to be a significant global health care issue, due to our lack of understanding of the mechanisms that drive human labour and delivery. Toll-like receptors (TLRs) are essential in triggering an inflammatory response in human gestational tissues, leading to the production of pro-inflammatory and pro-labour mediators, and thus preterm birth. The aims of this study were to determine whether the adaptor molecules associated with TLR2, TLR3 and TLR5 signalling are involved in human myometrium. Primary human myometrial cells were transfected with siRNA against TIRAP, IRAK1, IRAK4, TAK1and stimulated with bacterial product fsl-1 (TLR2); TRIF, TRADD, TRAF6, RIP1, TAK1 and stimulated with dsRNA viral analogue poly(I:C) (TLR3); IRAK1, IRAK4, TAK1 and stimulated with bacterial product flagellin (TLR5), and assayed for production of pro-inflammatory and pro-labour mediators. Cells transfected with TIRAP, IRAK1, IRAK4 or TAK1 all showed a decrease in fsl-1-induced expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (GRO-α, IL-8, MCP-1), adhesion molecule ICAM-1, cyclooxygenase (COX)-2 mRNA and release of PGF2α and MMP-9 expression. Cells transfected with TRIF, TRAF6, RIP1 or TAK1 all decreased production of poly(I:C)-induced IL-1α, IL-1β, IL-6, GRO-α, IL-8, MCP-1, ICAM-1 and MMP-9 expression. Cells transfected with IRAK1, IRAK4 or TAK1 all showed decreased expression of flagellin-induced cytokine and chemokine expression, ICAM-1 and MMP-9 expression. Lastly, transfection with these siRNAs decreased fsl-1, poly(I:C) and flagellin-induced NF-κB transcriptional activity. Our study signifies that these adaptor molecules are necessary for the proper production of cytokines, chemokines and pro-labour mediators after TLR ligation.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
14
|
Zhu Y, Jiang YH, He YP, Zhang X, Sun ZG, Jiang MX, Wang J. Knockdown of regulator of G-protein signalling 2 (Rgs2) leads to abnormal early mouse embryo development in vitro. Reprod Fertil Dev 2017; 27:557-66. [PMID: 24524188 DOI: 10.1071/rd13269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/16/2014] [Indexed: 11/23/2022] Open
Abstract
Regulator of G-protein signalling 2 (Rgs2) is involved in G-protein-mediated signalling by negatively regulating the activity of the G-protein α-subunit. In the present study, the expression patterns of Rgs2 in mouse ovarian tissues and early embryos were determined by semiquantitative reverse transcription-polymerase chain reaction, immunohistochemistry and immunofluorescent analyses. Rgs2 expression was observed in the ovarian tissues of adult female mice, with an almost equal expression levels during different stages of the oestrous cycle. Rgs2 was abundant in the cytoplasm, membrane, nuclei and spindles of intact polar bodies in mouse early embryos at different developmental stages from the zygote to blastocyst. The effect of Rgs2 knockdown on early embryonic development in vitro was examined by microinjecting Rgs2-specific short interfering (si) RNAs into mouse zygotes. Knockdown of endogenous Rgs2 expression led to abnormal embryonic development in vitro, with a considerable number of early embryos arrested at the 2- or 4-cell stage. Moreover, mRNA expression of three zygotic gene activation-related genes (i.e. Zscan4, Tcstv1 and MuERV-L) was decreased significantly in 2-cell arrested embryos. These results suggest that Rgs2 plays a critical role in early embryo development.
Collapse
Affiliation(s)
- Yan Zhu
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Ya-Hong Jiang
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Ya-Ping He
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Xuan Zhang
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Zhao-Gui Sun
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Man-Xi Jiang
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Wang
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| |
Collapse
|
15
|
Brubaker D, Liu Y, Wang J, Tan H, Zhang G, Jacobsson B, Muglia L, Mesiano S, Chance MR. Finding lost genes in GWAS via integrative-omics analysis reveals novel sub-networks associated with preterm birth. Hum Mol Genet 2016; 25:5254-5264. [PMID: 27664809 PMCID: PMC6078636 DOI: 10.1093/hmg/ddw325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
Maternal genome influences associate with up to 40% of spontaneous preterm births (PTB). Multiple genome wide association studies (GWAS) have been completed to identify genetic variants associated with PTB. Disappointingly, no highly significant SNPs have replicated in independent cohorts so far. We developed an approach combining protein-protein interaction (PPI) network data with tissue specific gene expression data to "find" SNPs of modest significance to identify candidate genes of functional importance that would otherwise be overlooked. This approach is based on the assumption that "high-ranking" SNPs falling short of genome wide significance may nevertheless indicate genes that have substantial biological value in understanding PTB. We mapped highly-ranked candidate SNPs from a meta-analysis of PTB-GWAS to coding genes and developed a PPI network enriched with PTB-SNP carrying genes. This network was scored with gene expression data from term and preterm myometrium to identify subnetworks of PTB-SNP associated genes coordinately expressed with labour onset in myometrial tissue. Our analysis consistently identified significant sub-networks associated with the interacting transcription factors MEF2C and TWIST1, genes not previously associated with PTB, both of which regulate processes clearly relevant to birth timing. Other genes in the significant sub-networks were also associated with inflammatory pathways, as well as muscle function and ion channels. Gene expression level dysregulation was confirmed for eight of these networks by qRT-PCR in an independent set of term and pre-term subjects. Our method identifies novel genes dysregulated in PTB and provides a generalized framework to identify GWAS SNPs that would otherwise be overlooked.
Collapse
Affiliation(s)
- Douglas Brubaker
- Center for Proteomics and Bioinformatics, and Department of Nutrition, School of Medicine
| | - Yu Liu
- Center for Proteomics and Bioinformatics, and Department of Nutrition, School of Medicine
| | - Junye Wang
- Department of Reproductive Biology and Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Huiqing Tan
- Department of Reproductive Biology and Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ge Zhang
- Division of Human Genetics
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Sahlgrenska University Hospital/Östra, Gothenburg, Sweden; Norwegian Institute of Public Health, Oslo, Norway
| | - Louis Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sam Mesiano
- Department of Reproductive Biology and Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, and Department of Nutrition, School of Medicine
| |
Collapse
|
16
|
Mazaki-Tovi S, Tarca AL, Vaisbuch E, Kusanovic JP, Than NG, Chaiworapongsa T, Dong Z, Hassan SS, Romero R. Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition. J Perinat Med 2016; 44:813-835. [PMID: 26994472 PMCID: PMC5987212 DOI: 10.1515/jpm-2015-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to determine gene expression and splicing changes associated with parturition and regions (visceral vs. subcutaneous) of the adipose tissue of pregnant women. STUDY DESIGN The transcriptome of visceral and abdominal subcutaneous adipose tissue from pregnant women at term with (n=15) and without (n=25) spontaneous labor was profiled with the Affymetrix GeneChip Human Exon 1.0 ST array. Overall gene expression changes and the differential exon usage rate were compared between patient groups (unpaired analyses) and adipose tissue regions (paired analyses). Selected genes were tested by quantitative reverse transcription-polymerase chain reaction. RESULTS Four hundred and eighty-two genes were differentially expressed between visceral and subcutaneous fat of pregnant women with spontaneous labor at term (q-value <0.1; fold change >1.5). Biological processes enriched in this comparison included tissue and vasculature development as well as inflammatory and metabolic pathways. Differential splicing was found for 42 genes [q-value <0.1; differences in Finding Isoforms using Robust Multichip Analysis scores >2] between adipose tissue regions of women not in labor. Differential exon usage associated with parturition was found for three genes (LIMS1, HSPA5, and GSTK1) in subcutaneous tissues. CONCLUSION We show for the first time evidence of implication of mRNA splicing and processing machinery in the subcutaneous adipose tissue of women in labor compared to those without labor.
Collapse
Affiliation(s)
- Shali Mazaki-Tovi
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Edi Vaisbuch
- Department of Obstetrics and Gynecology, Kaplan Medical Center, Rehovot, Israel
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF). Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
17
|
Sharp GC, Hutchinson JL, Hibbert N, Freeman TC, Saunders PTK, Norman JE. Transcription Analysis of the Myometrium of Labouring and Non-Labouring Women. PLoS One 2016; 11:e0155413. [PMID: 27176052 PMCID: PMC4866706 DOI: 10.1371/journal.pone.0155413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/28/2016] [Indexed: 11/18/2022] Open
Abstract
An incomplete understanding of the molecular mechanisms that initiate normal human labour at term seriously hampers the development of effective ways to predict, prevent and treat disorders such as preterm labour. Appropriate analysis of large microarray experiments that compare gene expression in non-labouring and labouring gestational tissues is necessary to help bridge these gaps in our knowledge. In this work, gene expression in 48 (22 labouring, 26 non-labouring) lower-segment myometrial samples collected at Caesarean section were analysed using Illumina HT-12 v4.0 BeadChips. Normalised data were compared between labouring and non-labouring groups using traditional statistical methods and a novel network graph approach. We sought technical validation with quantitative real-time PCR, and biological replication through inverse variance-weighted meta-analysis with published microarray data. We have extended the list of genes suggested to be associated with labour: Compared to non-labouring samples, labouring samples showed apparent higher expression at 960 probes (949 genes) and apparent lower expression at 801 probes (789 genes) (absolute fold change ≥1.2, rank product percentage of false positive value (RP-PFP) <0.05). Although half of the women in the labouring group had received pharmaceutical treatment to induce or augment labour, sensitivity analysis suggested that this did not confound our results. In agreement with previous studies, functional analysis suggested that labour was characterised by an increase in the expression of inflammatory genes and network analysis suggested a strong neutrophil signature. Our analysis also suggested that labour is characterised by a decrease in the expression of muscle-specific processes, which has not been explicitly discussed previously. We validated these findings through the first formal meta-analysis of raw data from previous experiments and we hypothesise that this represents a change in the composition of myometrial tissue at labour. Further work will be necessary to reveal whether these results are solely due to leukocyte infiltration into the myometrium as a mechanism initiating labour, or in addition whether they also represent gene changes in the myocytes themselves. We have made all our data available at www.ebi.ac.uk/arrayexpress/ (accession number E-MTAB-3136) to facilitate progression of this work.
Collapse
Affiliation(s)
- Gemma C. Sharp
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - James L. Hutchinson
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Nanette Hibbert
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom C. Freeman
- Systems Immunology Group, Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T. K. Saunders
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane E. Norman
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Huang J, Chen L, Yao Y, Tang C, Ding J, Fu C, Li H, Ma G. Pivotal Role of Regulator of G-protein Signaling 12 in Pathological Cardiac Hypertrophy. Hypertension 2016; 67:1228-36. [PMID: 27091895 DOI: 10.1161/hypertensionaha.115.06877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
Cardiac hypertrophy is a major predictor of heart failure and is regulated by diverse signaling pathways. As a typical multi-domain member of the regulator of G-protein signaling (RGS) family, RGS12 plays a regulatory role in various signaling pathways. However, the precise effect of RGS12 on cardiac hypertrophy remains largely unknown. In this study, we observed increased expression of RGS12 in the development of pathological cardiac hypertrophy and heart failure. We then generated genetically engineered mice and neonatal rat cardiomyocytes to investigate the effects of RGS12 during this pathological process. Four weeks after aortic banding, RGS12-deficient hearts showed decreased cardiomyocyte cross area (374.7±43.2 μm(2) versus 487.1±47.9 μm(2) in controls; P<0.05) with preserved fractional shortening (43.0±3.4% versus 28.4±2.2% in controls; P<0.05), whereas RGS12-overexpressing hearts exhibited increased cardiomyocyte cross area (582.4±46.7 μm(2) versus 474.8±40.0 μm(2) in controls; P<0.05) and reduced fractional shortening (20.8±4.1% versus 28.6±3.2% in controls; P<0.05). RGS12 also contributed to angiotensin II-induced hypertrophy in isolated cardiomyocytes. Mechanistically, our data indicated that the activation of MEK1/2-ERK1/2 signaling may be responsible for the prohypertrophic action of RGS12. In addition, the requirement of the MEK1/2-ERK1/2 signaling for RGS12-mediated cardiac hypertrophy was confirmed in rescue experiments using the MEK1/2-specific inhibitor U0126. In conclusion, our findings provide a novel diagnostic and therapeutic target for pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jia Huang
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.)
| | - Lijuan Chen
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.)
| | - Yuyu Yao
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.)
| | - Chengchun Tang
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.)
| | - Jiandong Ding
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.)
| | - Cong Fu
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.)
| | - Hongliang Li
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.)
| | - Genshan Ma
- From the Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, PR China (J.H., L.C., Y.Y., C.T., J.D., C.F., G.M.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, PR China (H.L.).
| |
Collapse
|
19
|
Mazaki-Tovi S, Vaisbuch E, Tarca AL, Kusanovic JP, Than NG, Chaiworapongsa T, Dong Z, Hassan SS, Romero R. Characterization of Visceral and Subcutaneous Adipose Tissue Transcriptome and Biological Pathways in Pregnant and Non-Pregnant Women: Evidence for Pregnancy-Related Regional-Specific Differences in Adipose Tissue. PLoS One 2015; 10:e0143779. [PMID: 26636677 PMCID: PMC4670118 DOI: 10.1371/journal.pone.0143779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022] Open
Abstract
Objective The purpose of this study was to compare the transcriptome of visceral and subcutaneous adipose tissues between pregnant and non-pregnant women. Study Design The transcriptome of paired visceral and abdominal subcutaneous adipose tissues from pregnant women at term and matched non-pregnant women (n = 11) was profiled with the Affymetrix Human Exon 1.0 ST array. Differential expression of selected genes was validated with the use of quantitative reverse transcription–polymerase chain reaction. Results Six hundred forty-four transcripts from 633 known genes were differentially expressed (false discovery rate (FDR) <0.1; fold-change >1.5), while 42 exons from 36 genes showed differential usage (difference in FIRMA scores >2 and FDR<0.1) between the visceral and subcutaneous fat of pregnant women. Fifty-six known genes were differentially expressed between pregnant and non-pregnant subcutaneous fat and three genes in the visceral fat. Enriched biological processes in the subcutaneous adipose tissue of pregnant women were mostly related to inflammation. Conclusion The transcriptome of visceral and subcutaneous fat depots reveals pregnancy-related gene expression and splicing differences in both visceral and subcutaneous adipose tissue. Furthermore, for the first time, alternative splicing in adipose tissue has been associated with regional differences and human parturition.
Collapse
Affiliation(s)
- Shali Mazaki-Tovi
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University, Tel Aviv, Israel
- * E-mail: (SMT); (RR)
| | - Edi Vaisbuch
- Department of Obstetrics and Gynecology, Kaplan Medical Center, Rehovot, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (SMT); (RR)
| |
Collapse
|
20
|
Chandran S, Cairns MT, O'Brien M, O'Connell E, Mashayekhi K, Smith TJ. Effects of combined progesterone and 17β-estradiol treatment on the transcriptome of cultured human myometrial smooth muscle cells. Physiol Genomics 2015; 48:50-61. [PMID: 26534934 DOI: 10.1152/physiolgenomics.00021.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
A transcriptomic analysis of cultured human uterine smooth muscle cells (hUtSMCs) was performed to examine gene expression profiles in smooth muscle in an environment containing the two major steroid hormones that regulate the human myometrium in physiological states associated with estrous, pregnancy, labor, and pathophysiological states such as leiomyoma and endometrial cancer. hUtSMCs were treated with progesterone (P4) and 17β-estradiol (E2) individually and in combination, in the presence and absence of RU486 (mifepristone). Transcription of many genes was modulated in the presence of P4 or E2 alone, but almost six times more genes were transcriptionally modulated in the presence of the P4/E2 hormone combination. In total 796 annotated genes were significantly differentially expressed in the presence of both P4 and E2 relative to their expression in untreated cells. Functional withdrawal of P4 by addition of RU486 effectively reversed almost all transcriptional changes caused by P4/E2 treatment. Gene ontology analysis of differentially expressed genes revealed a strong association between P4/E2 treatment and downregulated expression of genes involved in cell communication, signal transduction, channel activity, inflammatory response, and differentiation. Upregulated processes included cell survival, gene transcription, steroid hormone biosynthesis, muscle development, insulin receptor signaling, and cell growth.
Collapse
Affiliation(s)
- Sreenath Chandran
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Michael T Cairns
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Margaret O'Brien
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Enda O'Connell
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Kaveh Mashayekhi
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Terry J Smith
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
21
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
22
|
Bostancı MS, Bayram M, Bakacak SM, Yıldırım OK, Attar R, Yıldırım G, Bağrıaçık EÜ, Celtemen B. The role of TWIST, SERPINB5, and SERPIN1 genes in uterine leiomyomas. J Turk Ger Gynecol Assoc 2014; 15:92-5. [PMID: 24976774 DOI: 10.5152/jtgga.2014.13005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The aim of this study is investigate the role of the Twist homolog 1 (TWIST), serine peptidase inhibitor (SERPINB5), and plasminogen activator inhibitor 1 (SERPIN1) genes in uterine leiomyoma etiopathogenesis. MATERIAL AND METHODS Twelve patients, aged between 39 and 58, and had a hysterectomy, were included in the study. The size of the leiomyomas was between 20 and 130 mm based on gross pathology after hysterectomy. Tissue samples were obtained from normal myometrium and leiomyoma (1 cm(3)) tissue of the uterus of the patients and stored at -86°C. Samples were divided to two groups after histopathological evaluation of the uterus: normal myometrial tissues as control group (Group 1) and leiomyoma tissue as the study group (Group 2). The TWIST, SERPINB5, and SERPIN1 genes were studied for uterine leiomyoma etiopathogenesis. RESULTS TWIST gene expression was significantly higher in the uterine leiomyoma tissue (p<0.001). SERPINB5 and SERPIN1 gene expression was decreased in the uterine leiomyoma tissue, but the differences were not statistically significant. CONCLUSION TWIST gene activity is significantly increased in leiomyoma tissue when compared to normal myometrium. In spite of the fact that the development of uterine leiomyomas is estrogen- and progesterone-dependent, myometrial cells could be triggered by the TWIST gene for uterine leiomyoma development.
Collapse
Affiliation(s)
- Mehmet Sühha Bostancı
- Department of Obstetrics and Gynecology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Merih Bayram
- Department of Obstetrics and Gynecology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Süleyman Murat Bakacak
- Department of Obstetrics and Gynecology, Sütçü İmam University Faculty f Medicine, Kahramanmaraş, Turkey
| | - Ozge Kızılkale Yıldırım
- Department of Obstetrics and Gynecology, Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Gazi Yıldırım
- Department of Obstetrics and Gynecology, Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Emin Ümit Bağrıaçık
- Department of Immunology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Baran Celtemen
- Department of Obstetrics and Gynecology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
23
|
Lim R, Barker G, Lappas M. The TLR2 ligand FSL-1 and the TLR5 ligand Flagellin mediate pro-inflammatory and pro-labour response via MyD88/TRAF6/NF-κB-dependent signalling. Am J Reprod Immunol 2014; 71:401-17. [PMID: 24635133 DOI: 10.1111/aji.12229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Toll-like receptors (TLRs) 2 and 5 induce inflammation via the adapter proteins myeloid differentiation factor 88 (MyD88) and TNFR-associated factor 6 (TRAF6) and the transcription factor nuclear factor-kappa B (NF-κB). The aims of this study were to determine the effects of the TLR5 ligand flagellin and the TLR2 ligand FSL-1 on pro-inflammatory and pro-labour mediators in human fetal membranes and myometrium, and to establish whether their actions are dependent on MyD88, TRAF6 and NF-κB. METHOD OF STUDY Tissue explants were performed to determine the effect of flagellin and FSL-1 on pro-labour mediators in fetal membranes and myometrium. siRNA knockdown was performed in primary amnion and myometrium cells to determine the role of MyD88, TRAF6 and NF-κB. RESULTS Flagellin and FSL-1 increased pro-inflammatory cytokines (IL-6 and IL-8), MMP-9 expression and activity, and COX-2 expression and prostaglandin release. siRNA knockdown of TLR2 decreased FSL-1 induced production of IL-6, IL-8, COX-2, prostaglandins and MMP-9; similarly, siRNA knockdown of TLR5 decreased flagellin induced production of these pro-labour mediators. The effects of flagellin and FSL-1 are mediated by MyD88 and TRAF6, as siRNA knockdown of MyD88 and TRAF6 decreased flagellin and FSL-1 induced pro-labour mediators. Additionally, the effects of flagellin and FSL-1 are mediated via NF-κB, as flagellin and FSL-1 increased NF-κB transcriptional activity, and the NF-κB inhibitor BAY 11-7082 attenuated flagellin and FSL-1 induced expression and secretion of pro-labour mediators. CONCLUSION TLR2 engagement by the synthetic lipoprotein FSL-1 and TLR5 engagement by bacterial flagellin enhances pro-inflammatory and pro-labour mediators in human fetal membranes and myometrium via MyD88/TRAF6/NF-κB.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic, Australia
| | | | | |
Collapse
|
24
|
Romero R, Tarca AL, Chaemsaithong P, Miranda J, Chaiworapongsa T, Jia H, Hassan SS, Kalita CA, Cai J, Yeo L, Lipovich L. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term. J Matern Fetal Neonatal Med 2014; 27:1397-408. [PMID: 24168098 DOI: 10.3109/14767058.2013.860963] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. MATERIALS AND METHODS Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. RESULTS We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. CONCLUSIONS We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH , Bethesda, MD and Detroit, MI , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chaemsaithong P, Madan I, Romero R, Than NG, Tarca AL, Draghici S, Bhatti G, Yeo L, Mazor M, Kim CJ, Hassan SS, Chaiworapongsa T. Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor. J Perinat Med 2013; 41:665-81. [PMID: 23893668 PMCID: PMC4183453 DOI: 10.1515/jpm-2013-0086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The molecular basis of failure to progress in labor is poorly understood. This study was undertaken to characterize the myometrial transcriptome of patients with an arrest of dilatation (AODIL). STUDY DESIGN Human myometrium was prospectively collected from women in the following groups: (1) spontaneous term labor (TL; n=29) and (2) arrest of dilatation (AODIL; n=14). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated Student's t-test and false discovery rate adjustment were used for analysis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of selected genes was performed in an independent sample set. Pathway analysis was performed on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database using Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). The MetaCore knowledge base was also searched for pathway analysis. RESULTS (1) Forty-two differentially expressed genes were identified in women with an AODIL; (2) gene ontology analysis indicated enrichment of biological processes, which included regulation of angiogenesis, response to hypoxia, inflammatory response, and chemokine-mediated signaling pathway. Enriched molecular functions included transcription repressor activity, heat shock protein (Hsp) 90 binding, and nitric oxide synthase (NOS) activity; (3) MetaCore analysis identified immune response chemokine (C-C motif) ligand 2 (CCL2) signaling, muscle contraction regulation of endothelial nitric oxide synthase (eNOS) activity in endothelial cells, and triiodothyronine and thyroxine signaling as significantly overrepresented (false discovery rate <0.05); (4) qRT-PCR confirmed the overexpression of Nitric oxide synthase 3 (NOS3); hypoxic ischemic factor 1A (HIF1A); Chemokine (C-C motif) ligand 2 (CCL2); angiopoietin-like 4 (ANGPTL4); ADAM metallopeptidase with thrombospondin type 1, motif 9 (ADAMTS9); G protein-coupled receptor 4 (GPR4); metallothionein 1A (MT1A); MT2A; and selectin E (SELE) in an AODIL. CONCLUSION The myometrium of women with AODIL has a stereotypic transcriptome profile. This disorder has been associated with a pattern of gene expression involved in muscle contraction, an inflammatory response, and hypoxia. This is the first comprehensive and unbiased examination of the molecular basis of an AODIL.
Collapse
|
26
|
Montalbano AP, Hawgood S, Mendelson CR. Mice deficient in surfactant protein A (SP-A) and SP-D or in TLR2 manifest delayed parturition and decreased expression of inflammatory and contractile genes. Endocrinology 2013; 154. [PMID: 23183169 PMCID: PMC3529364 DOI: 10.1210/en.2012-1797] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously we obtained compelling evidence that the fetus provides a critical signal for the initiation of term labor through developmental induction of surfactant protein (SP)-A expression by the fetal lung and secretion into amniotic fluid (AF). We proposed that interactions of AF macrophage (Mϕ) Toll-like receptors (TLRs) with SP-A, at term, or bacterial components, at preterm, result in their activation and migration to the pregnant uterus. Herein the timing of labor in wild-type (WT) C57BL/6 mice was compared with mice homozygous null for TLR2, SP-A, SP-D, or doubly deficient in SP-A and SP-D. Interestingly, TLR2(-/-) females manifested a significant (P < 0.001) delay in timing of labor compared with WT as well as reduced expression of the myometrial contraction-associated protein (CAP) gene, connexin-43, and Mϕ marker, F4/80, at 18.5 d postcoitum (dpc). Whereas in first pregnancies, SP-A(-/-), SP-D(-/-), and SP-A/D(-/-) females delivered at term (∼19.5 dpc), in second pregnancies, parturition was delayed by approximately 12 h in SP-A(-/-) (P = 0.07) and in SP-A/D(-/-) (P <0.001) females. Myometrium of SP-A/D(-/-) females expressed significantly lower levels of IL-1β, IL-6, and CAP genes, connexin-43, and oxytocin receptor at 18.5 dpc compared with WT. F4/80(+) AF Mϕs from TLR2(-/-) and SP-A/D(-/-) mice expressed significantly lower levels of both proinflammatory and antiinflammatory activation markers (e.g. IL-1β, IL-6, ARG1, YM1) compared with gestation-matched WT AF Mϕs. These novel findings suggest that the pulmonary collectins acting via TLR2 serve a modulatory role in the timing of labor; their relative impact may be dependent on parity.
Collapse
Affiliation(s)
- Alina P Montalbano
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | | | | |
Collapse
|
27
|
An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma. PLoS One 2012; 7:e28504. [PMID: 22253691 PMCID: PMC3257220 DOI: 10.1371/journal.pone.0028504] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022] Open
Abstract
In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.
Collapse
|
28
|
Schroeder JK, Kessler CA, Handwerger S. Critical role for TWIST1 in the induction of human uterine decidualization. Endocrinology 2011; 152:4368-76. [PMID: 21914771 PMCID: PMC3199000 DOI: 10.1210/en.2011-1140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The importance of the transcription factor TWIST1 for uterine decidualization was examined in human uterine fibroblast (HUF) cells decidualized in vitro with medroxyprogesterone, estradiol (E2), and prostaglandin E2. TWIST1 mRNA levels increased by 6.0- to 6.8-fold during the first 1-2 d of decidualization and remained above predecidualization levels for up to 15 d. Pretreatment of HUF cells with a TWIST1 small interfering RNA (siRNA) for 3 d before the induction of decidualization resulted in less morphologic differentiation than HUF cells pretreated with a nonsilencing control RNA. In addition, the cells pretreated with TWIST1 siRNA expressed 75-95% less IGF binding protein 1, LEFTY2, fibromodulin, laminin, and several other mRNA during decidualization, including the mRNA for the transcription factors forkhead box protein O1 and v-ets-erythroblastosis virus E26, both of which were previously shown to be critical for the induction of decidualization. The HUF cells pretreated with the TWIST1 siRNA also underwent less apoptosis during decidualization than the control cells, as evidenced by a 20% decrease in DNA fragmentation (terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling assay) and a 43-48% decrease in caspase 3, BCL2-associated X protein, and TNF receptor superfamily member 6 mRNA levels. Although the knockdown of TWIST1 expression markedly attenuated the induction of decidualization, overexpression of TWIST1 alone was insufficient to induce the decidualization of HUF cells. Taken together, these findings strongly implicate an essential role for TWIST1 in the initiation of human decidualization and uterine stromal cell apoptosis that occurs upstream of the induction of forkhead box protein O1 and v-ets-erythroblastosis virus E26 mRNA.
Collapse
Affiliation(s)
- Jennifer K Schroeder
- Department of Pediatrics, University of Cincinnati and Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
29
|
Mittal P, Romero R, Tarca AL, Draghici S, Nhan-Chang CL, Chaiworapongsa T, Hotra J, Gomez R, Kusanovic JP, Lee DC, Kim CJ, Hassan SS. A molecular signature of an arrest of descent in human parturition. Am J Obstet Gynecol 2011; 204:177.e15-33. [PMID: 21284969 PMCID: PMC3053040 DOI: 10.1016/j.ajog.2010.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 09/27/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study was undertaken to identify the molecular basis of an arrest of descent. STUDY DESIGN Human myometrium was obtained from women in term labor (TL; n = 29) and arrest of descent (AODes; n = 21). Gene expression was characterized using Illumina HumanHT-12 microarrays. A moderated Student t test and false discovery rate adjustment were applied for analysis. Confirmatory quantitative reverse transcription-polymerase chain reaction and immunoblot were performed in an independent sample set. RESULTS Four hundred genes were differentially expressed between women with an AODes compared with those with TL. Gene Ontology analysis indicated enrichment of biological processes and molecular functions related to inflammation and muscle function. Impacted pathways included inflammation and the actin cytoskeleton. Overexpression of hypoxia inducible factor-1a, interleukin -6, and prostaglandin-endoperoxide synthase 2 in AODes was confirmed. CONCLUSION We have identified a stereotypic pattern of gene expression in the myometrium of women with an arrest of descent. This represents the first study examining the molecular basis of an arrest of descent using a genome-wide approach.
Collapse
Affiliation(s)
- Pooja Mittal
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang L, Matsuda T, Raviraj V, Ching YW, Braet F, Nagai T, Soon LL. Imaging the dynamics of intracellular protein translocation by photoconversion of phamret-cybr/ROM. J Microsc 2010; 242:250-61. [PMID: 21118394 DOI: 10.1111/j.1365-2818.2010.03463.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cybr/Reduced On-random Motile (ROM) is a scaffold protein, containing a postsynaptic density protein-95/discs-large/ZO-1 (PDZ) domain, a LEU region and a PDZ domain binding region at the C-terminus. In the immune system, Cybr/ROM was found to localize in vesicles and at the plasma membrane, through interactions with cytohesin-1. In this investigation, we reported Cybr/ROM as occurring in vesicles, the cytoplasm and at membrane ruffles of H1299 lung cancer cells. Its localization at the ruffles was dependent on intact actin structures as indicated by latrunculin A treatment, which abrogated ruffle formation and staining of Cybr/ROM at the cells' periphery. Transfection of truncation mutants consisting of either the PDZ or LEU domain showed that the LEU domain of ROM was localized to membrane ruffles, vesicles and the cytoplasm, whereas, the PDZ domain localized to the membrane ruffles and cytoplasm only. There was therefore, domain/molecular segregation of Cybr/ROM in different cellular compartments. Cybr/ROM was subcloned into a plasmid carrying the photoactivation-mediated resonance energy transfer (Phamret) protein. The photoconversion experiments demonstrated the diffusion of ROM from the cytoplasm to the membrane ruffling sites and conversely from membrane ruffles to the cytoplasm. Large variances in the transport velocity of Cybr/ROM in the cytoplasm suggested that its movements were facilitated by other mechanisms in addition to diffusion.
Collapse
Affiliation(s)
- L Yang
- Australian Centre for Microscopy and Microanalysis (ACMM), Australian Microscopy and Microanalysis Research Facility (AMMRF), University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Mittal P, Romero R, Tarca AL, Gonzalez J, Draghici S, Xu Y, Dong Z, Nhan-Chang CL, Chaiworapongsa T, Lye S, Kusanovic JP, Lipovich L, Mazaki-Tovi S, Hassan SS, Mesiano S, Kim CJ. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med 2010; 38:617-43. [PMID: 20629487 PMCID: PMC3097097 DOI: 10.1515/jpm.2010.097] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS to characterize the transcriptome of human myometrium during spontaneous labor at term. METHODS myometrium was obtained from women with (n=19) and without labor (n=20). Illumina HumanHT-12 microarrays were utilized. Moderated t-tests and false discovery rate adjustment of P-values were applied. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed for a select set of differentially expressed genes in a separate set of samples. Enzyme-linked immunosorbent assay and Western blot were utilized to confirm differential protein production in a third sample set. RESULTS 1) Four hundred and seventy-one genes were differentially expressed; 2) gene ontology analysis indicated enrichment of 103 biological processes and 18 molecular functions including: a) inflammatory response; b) cytokine activity; and c) chemokine activity; 3) systems biology pathway analysis using signaling pathway impact analysis indicated six significant pathways: a) cytokine-cytokine receptor interaction; b) Jak-STAT signaling; and c) complement and coagulation cascades; d) NOD-like receptor signaling pathway; e) systemic lupus erythematosus; and f) chemokine signaling pathway; 4) qRT-PCR confirmed over-expression of prostaglandin-endoperoxide synthase-2, heparin binding epidermal growth factor (EGF)-like growth factor, chemokine C-C motif ligand 2 (CCL2/MCP1), leukocyte immunoglobulin-like receptor, subfamily A member 5, interleukin (IL)-8, IL-6, chemokine C-X-C motif ligand 6 (CXCL6/GCP2), nuclear factor of kappa light chain gene enhancer in B-cells inhibitor zeta, suppressor of cytokine signaling 3 (SOCS3) and decreased expression of FK506 binding-protein 5 and aldehyde dehydrogenase in labor; 5) IL-6, CXCL6, CCL2 and SOCS3 protein expression was significantly higher in the term labor group compared to the term not in labor group. CONCLUSIONS myometrium of women in spontaneous labor at term is characterized by a stereotypic gene expression pattern consistent with over-expression of the inflammatory response and leukocyte chemotaxis. Differential gene expression identified with microarray was confirmed with qRT-PCR using an independent set of samples. This study represents an unbiased description of the biological processes involved in spontaneous labor at term based on transcriptomics.
Collapse
Affiliation(s)
- Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA.
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Computer Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Gonzalez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sorin Draghici
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Computer Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Chia-Ling Nhan-Chang
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Stephen Lye
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
32
|
Youssef RE, Ledingham MA, Bollapragada SS, O'Gorman N, Jordan F, Young A, Norman JE. The Role of Toll-Like Receptors (TLR-2 and -4) and Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) in Human Term and Preterm Labor. Reprod Sci 2009; 16:843-56. [PMID: 19564644 DOI: 10.1177/1933719109336621] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Shrikant S. Bollapragada
- Reproductive & Maternal Medicine, University of Glasgow, Third Floor, Queen Elizabeth Building, Glasgow Royal Infirmary, United Kingdom
| | - Neil O'Gorman
- Reproductive & Maternal Medicine, University of Glasgow, Third Floor, Queen Elizabeth Building, Glasgow Royal Infirmary, United Kingdom
| | - Fiona Jordan
- Reproductive & Maternal Medicine, University of Glasgow, Third Floor, Queen Elizabeth Building, Glasgow Royal Infirmary, United Kingdom
| | - Anne Young
- Reproductive & Maternal Medicine, University of Glasgow, Third Floor, Queen Elizabeth Building, Glasgow Royal Infirmary, United Kingdom
| | - Jane E. Norman
- University of Edinburgh Centre for Reproductive Biology, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Ladds G, Zervou S, Vatish M, Thornton S, Davey J. Regulators of G protein signalling proteins in the human myometrium. Eur J Pharmacol 2009; 610:23-8. [PMID: 19318093 DOI: 10.1016/j.ejphar.2009.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/26/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
The contractile state of the human myometrium is controlled by extracellular signals that promote relaxation or contraction. Many of these signals function through G protein-coupled receptors at the cell surface, stimulating heterotrimeric G proteins and leading to changes in the activity of effector proteins responsible for bringing about the response. G proteins can interact with multiple receptors and many different effectors and are key players in the response. Regulators of G protein signalling (RGS) proteins are GTPase activating proteins for heterotrimeric G proteins and help terminate the signal. Little is known about the function of RGS proteins in human myometrium and we have therefore analysed transcript levels for RGS proteins at various stages of pregnancy (non-pregnant, preterm, term non-labouring, term labouring). RGS2 and RGS5 were the most abundantly expressed isolates in each of the patient groups. The levels of RGS4 and RGS16 (and to a lesser extent RGS2 and RGS14) increased in term labouring samples relative to the other groups. Yeast two-hybrid analysis and co-immunoprecipitation in myometrial cells revealed that both RGS2 and RGS5 interact directly with the cytoplasmic tail of the oxytocin receptor, suggesting they might help regulate signalling through this receptor.
Collapse
Affiliation(s)
- Graham Ladds
- Clinical Sciences Research Institute, University of Warwick Medical School, UHCW Campus, Clifford Bridge Road, Coventry CV2 2DX, UK
| | | | | | | | | |
Collapse
|