1
|
Long TT, Phuong L, Van Nguyen Dang L, Ngoc TTB, Thao DTP, Trinh NTM. Petroleum ether extract of Elephantopus mollis induces senescence and inhibits invasion in breast cancer MDA-MB-231 cells. 3 Biotech 2025; 15:45. [PMID: 39834568 PMCID: PMC11741969 DOI: 10.1007/s13205-025-04214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Elephantopus mollis Kunth H.B et Kunth is an herbal plant employed customarily for the treatment of numerous maladies, notably cancers. Here in this research, we studied the effects of E. mollis (EM) petroleum ether extract (EM-PE) on the highly aggressive breast cancer cell line MDA-MB-231. The result from phytochemical analysis demonstrated the presence of tannins and saponins in EM-PE, of which, saponins made up more than 50% of the extract's mass. Cytotoxicity results, which were obtained from MTT assay and microscopic observation, suggested the potential of EM-PE to inhibit the growth of MDA-MB-231 cells with low IC50 value (approximately 30 μg/mL) and remarkably high selectivity index (> 4.78). Further evaluation indicated that EM-PE inhibited MDA-MB-231 cells growth in a dose-dependent manner. Interestingly, we found that EM-PE induced senescence in MDA-MB-231 cells via the activation of senescence-associated β-galactosidase and the transcriptional upregulation of p21 (3.7 times) and p27 (1.4 times). In consistent with this effect, pre-treated cancer cells showed no proliferative recovery after EM-PE removal. In addition, EM-PE could dramatically hinder breast cancer cells invasion (as much as 15.07-fold), which was shown in Transwell invasion assay, together with the decreased transcription of the important metastatic-involved SNAIL1 gene. Overall, our study, for the first time, exhibits the anti-proliferation and anti-invasion effects of EM extract on highly metastasis breast cancer cell line MDA-MB-231. Hence, these findings contributed to the knowledge of anti-cancer potential of this herbal plant. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04214-8.
Collapse
Affiliation(s)
- Tran Thanh Long
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Le Phuong
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Le Van Nguyen Dang
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Truong Thi Bich Ngoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Laboratory of Molecular Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Laboratory of Cancer Research, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Thi My Trinh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Stockwell SR, Scott DE, Fischer G, Guarino E, Rooney TPC, Feng TS, Moschetti T, Srinivasan R, Alza E, Asteian A, Dagostin C, Alcaide A, Rocaboy M, Blaszczyk B, Higueruelo A, Wang X, Rossmann M, Perrior TR, Blundell TL, Spring DR, McKenzie G, Abell C, Skidmore J, Venkitaraman AR, Hyvönen M. Selective Aurora A-TPX2 Interaction Inhibitors Have In Vivo Efficacy as Targeted Antimitotic Agents. J Med Chem 2024; 67:15521-15536. [PMID: 39190548 PMCID: PMC11403621 DOI: 10.1021/acs.jmedchem.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Aurora A kinase, a cell division regulator, is frequently overexpressed in various cancers, provoking genome instability and resistance to antimitotic chemotherapy. Localization and enzymatic activity of Aurora A are regulated by its interaction with the spindle assembly factor TPX2. We have used fragment-based, structure-guided lead discovery to develop small molecule inhibitors of the Aurora A-TPX2 protein-protein interaction (PPI). Our lead compound, CAM2602, inhibits Aurora A:TPX2 interaction, binding Aurora A with 19 nM affinity. CAM2602 exhibits oral bioavailability, causes pharmacodynamic biomarker modulation, and arrests the growth of tumor xenografts. CAM2602 acts by a novel mechanism compared to ATP-competitive inhibitors and is highly specific to Aurora A over Aurora B. Consistent with our finding that Aurora A overexpression drives taxane resistance, these inhibitors synergize with paclitaxel to suppress the outgrowth of pancreatic cancer cells. Our results provide a blueprint for targeting the Aurora A-TPX2 PPI for cancer therapy and suggest a promising clinical utility for this mode of action.
Collapse
Affiliation(s)
- Simon R Stockwell
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Duncan E Scott
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Estrella Guarino
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Timothy P C Rooney
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tzu-Shean Feng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tommaso Moschetti
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Rajavel Srinivasan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Esther Alza
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Alice Asteian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Claudio Dagostin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Anna Alcaide
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Mathieu Rocaboy
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Beata Blaszczyk
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Alicia Higueruelo
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Xuelu Wang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | | | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Grahame McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - John Skidmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
3
|
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 Overexpression to Chromosomal Imbalances and Cancer. Cells 2024; 13:1397. [PMID: 39195284 PMCID: PMC11353082 DOI: 10.3390/cells13161397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.
Collapse
Affiliation(s)
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.P.); (A.M.)
| |
Collapse
|
4
|
Marugán C, Sanz‐Gómez N, Ortigosa B, Monfort‐Vengut A, Bertinetti C, Teijo A, González M, Alonso de la Vega A, Lallena MJ, Moreno‐Bueno G, de Cárcer G. TPX2 overexpression promotes sensitivity to dasatinib in breast cancer by activating YAP transcriptional signaling. Mol Oncol 2024; 18:1531-1551. [PMID: 38357786 PMCID: PMC11161735 DOI: 10.1002/1878-0261.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer aggressiveness, providing genetic plasticity and tumor heterogeneity that allows the tumor to evolve and adapt to stress conditions. CIN is considered a cancer therapeutic biomarker because healthy cells do not exhibit CIN. Despite recent efforts to identify therapeutic strategies related to CIN, the results obtained have been very limited. CIN is characterized by a genetic signature where a collection of genes, mostly mitotic regulators, are overexpressed in CIN-positive tumors, providing aggressiveness and poor prognosis. We attempted to identify new therapeutic strategies related to CIN genes by performing a drug screen, using cells that individually express CIN-associated genes in an inducible manner. We find that the overexpression of targeting protein for Xklp2 (TPX2) enhances sensitivity to the proto-oncogene c-Src (SRC) inhibitor dasatinib due to activation of the Yes-associated protein 1 (YAP) pathway. Furthermore, using breast cancer data from The Cancer Genome Atlas (TCGA) and a cohort of cancer-derived patient samples, we find that both TPX2 overexpression and YAP activation are present in a significant percentage of cancer tumor samples and are associated with poor prognosis; therefore, they are putative biomarkers for selection for dasatinib therapy.
Collapse
Grants
- 2018-20I114 Spanish National Research Council (CSIC)
- 2021-AEP035 Spanish National Research Council (CSIC)
- 2022-20I018 Spanish National Research Council (CSIC)
- FJC2020-044620-I Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2019-104644RB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2021-125705OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2022-136854OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- RTI2018-095496-B-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- CB16/12/00295 Instituto de Salud Carlos III - CIBERONC
- LABAE16017DECA Spanish Association Against Cancer (AECC) Scientific Foundation
- POSTD234371SANZ Spanish Association Against Cancer (AECC) Scientific Foundation
- PROYE19036MOR Spanish Association Against Cancer (AECC) Scientific Foundation
- Spanish National Research Council (CSIC)
- Spanish Association Against Cancer (AECC) Scientific Foundation
Collapse
Affiliation(s)
- Carlos Marugán
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Natalia Sanz‐Gómez
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Monfort‐Vengut
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Cristina Bertinetti
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Teijo
- Pathology DepartmentMD Anderson Cancer CenterMadridSpain
| | - Marta González
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Alicia Alonso de la Vega
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - María José Lallena
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Gema Moreno‐Bueno
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- MD Anderson International FoundationMadridSpain
- Biomedical Cancer Research Network (CIBERONC)MadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| |
Collapse
|
5
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
6
|
Pussila M, Laiho A, Törönen P, Björkbacka P, Nykänen S, Pylvänäinen K, Holm L, Mecklin JP, Renkonen-Sinisalo L, Lehtonen T, Lepistö A, Linden J, Mäki-Nevala S, Peltomäki P, Nyström M. Mitotic abnormalities precede microsatellite instability in lynch syndrome-associated colorectal tumourigenesis. EBioMedicine 2024; 103:105111. [PMID: 38583260 PMCID: PMC11002576 DOI: 10.1016/j.ebiom.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Lynch syndrome (LS) is one of the most common hereditary cancer syndromes worldwide. Dominantly inherited mutation in one of four DNA mismatch repair genes combined with somatic events leads to mismatch repair deficiency and microsatellite instability (MSI) in tumours. Due to a high lifetime risk of cancer, regular surveillance plays a key role in cancer prevention; yet the observation of frequent interval cancers points to insufficient cancer prevention by colonoscopy-based methods alone. This study aimed to identify precancerous functional changes in colonic mucosa that could facilitate the monitoring and prevention of cancer development in LS. METHODS The study material comprised colon biopsy specimens (n = 71) collected during colonoscopy examinations from LS carriers (tumour-free, or diagnosed with adenoma, or diagnosed with carcinoma) and a control group, which included sporadic cases without LS or neoplasia. The majority (80%) of LS carriers had an inherited genetic MLH1 mutation. The remaining 20% included MSH2 mutation carriers (13%) and MSH6 mutation carriers (7%). The transcriptomes were first analysed with RNA-sequencing and followed up with Gorilla Ontology analysis and Reactome Knowledgebase and Ingenuity Pathway Analyses to detect functional changes that might be associated with the initiation of the neoplastic process in LS individuals. FINDINGS With pathway and gene ontology analyses combined with measurement of mitotic perimeters from colonic mucosa and tumours, we found an increased tendency to chromosomal instability (CIN), already present in macroscopically normal LS mucosa. Our results suggest that CIN is an earlier aberration than MSI and may be the initial cancer driving aberration, whereas MSI accelerates tumour formation. Furthermore, our results suggest that MLH1 deficiency plays a significant role in the development of CIN. INTERPRETATION The results validate our previous findings from mice and highlight early mitotic abnormalities as an important contributor and precancerous marker of colorectal tumourigenesis in LS. FUNDING This work was supported by grants from the Jane and Aatos Erkko Foundation, the Academy of Finland (330606 and 331284), Cancer Foundation Finland sr, and the Sigrid Jusélius Foundation. Open access is funded by Helsinki University Library.
Collapse
Affiliation(s)
- Marjaana Pussila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Aleksi Laiho
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pauliina Björkbacka
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sonja Nykänen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsi Pylvänäinen
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Liisa Holm
- Organismal and Evolutionary Biology Research Program, Faculty of Biosciences, and Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Well Being Services County of Central Finland, Department of Science, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Taru Lehtonen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumour Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jere Linden
- Department of Veterinary Biosciences, and Finnish Centre for Laboratory Animal Pathology (FCLAP), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Finland; HUSLAB Laboratory of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Minna Nyström
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Naso FD, Polverino F, Cilluffo D, Latini L, Stagni V, Asteriti IA, Rosa A, Soddu S, Guarguaglini G. AurkA/TPX2 co-overexpression in nontransformed cells promotes genome instability through induction of chromosome mis-segregation and attenuation of the p53 signalling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167116. [PMID: 38447882 DOI: 10.1016/j.bbadis.2024.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Danilo Cilluffo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Linda Latini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Signal Transduction Unit, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena, 291, 00161 Rome, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
8
|
Asteriti IA, Polverino F, Stagni V, Sterbini V, Ascanelli C, Naso FD, Mastrangelo A, Rosa A, Paiardini A, Lindon C, Guarguaglini G. AurkA nuclear localization is promoted by TPX2 and counteracted by protein degradation. Life Sci Alliance 2023; 6:e202201726. [PMID: 36797043 PMCID: PMC9936162 DOI: 10.26508/lsa.202201726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The AurkA kinase is a well-known mitotic regulator, frequently overexpressed in tumors. The microtubule-binding protein TPX2 controls AurkA activity, localization, and stability in mitosis. Non-mitotic roles of AurkA are emerging, and increased nuclear localization in interphase has been correlated with AurkA oncogenic potential. Still, the mechanisms leading to AurkA nuclear accumulation are poorly explored. Here, we investigated these mechanisms under physiological or overexpression conditions. We observed that AurkA nuclear localization is influenced by the cell cycle phase and nuclear export, but not by its kinase activity. Importantly, AURKA overexpression is not sufficient to determine its accumulation in interphase nuclei, which is instead obtained when AURKA and TPX2 are co-overexpressed or, to a higher extent, when proteasome activity is impaired. Expression analyses show that AURKA, TPX2, and the import regulator CSE1L are co-overexpressed in tumors. Finally, using MCF10A mammospheres we show that TPX2 co-overexpression drives protumorigenic processes downstream of nuclear AurkA. We propose that AURKA/TPX2 co-overexpression in cancer represents a key determinant of AurkA nuclear oncogenic functions.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Signal Transduction Unit, Rome, Italy
| | - Valentina Sterbini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Anna Mastrangelo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- < Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies "C. Darwin," Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Hu J, He Q, Tian T, Chang N, Qian L. Transmission of Exosomal TPX2 Promotes Metastasis and Resistance of NSCLC Cells to Docetaxel. Onco Targets Ther 2023; 16:197-210. [PMID: 37009264 PMCID: PMC10065223 DOI: 10.2147/ott.s401454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background Lung cancer, most of which is non-small cell lung cancer (NSCLC), is the most common tumor in the world, and drug resistance, as a major problem in clinical treatment, has attracted extensive attention. However, the role and mechanism of Targeting protein for Xenopus kinesin-like protein 2 (TPX2), which is highly expressed in NSCLC, is still unclear. Methods Bioinformatics analysis was used to analyze the relationship between TPX2 and the clinicopathological features of NSCLC. Stable TPX2 overexpression cell lines with were constructed by lentivirus infection, and the effect of TPX2 on proliferation, migration, invasion and chemoresistance to docetaxel was characterized by the CCK8, wound healing, transwell, colony formation assay and FACS. An in vivo lung homing mouse model was used to further confirmed the role of TPX2 on metastasis. Exosomes were extracted by differential centrifugation from the culture supernatant, and their functions were investigated by co-culture with tumor cells. Gene expression was detected via Western blot and real time PCR (RT-qPCR). Results Overexpression of TPX2 was related to the poor prognosis of NSCLC. Promoted migration, invasion and metastasis, and reduced the sensitivity of NSCLC cells to docetaxel. The abundance of TPX2 can be packaged in vesicles and transported to other cells. In addition, overexpression of TPX2 induced the accumulation of β-catenin and C-myc. Conclusion Our findings indicated that intercellular transfer of exosomal TPX2 triggered metastasis and resistance against to docetaxel in lung cancer cells, through activating downstream WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiaru Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Qing He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Tian Tian
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230001, People’s Republic of China
| | - Na Chang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230001, People’s Republic of China
| | - Liting Qian
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
- Correspondence: Liting Qian, Email
| |
Collapse
|
10
|
Duan H, Chen B, Wang W, Luo H. Identification of GNG7 as a novel biomarker and potential therapeutic target for gastric cancer via bioinformatic analysis and in vitro experiments. Aging (Albany NY) 2023; 15:1445-1474. [PMID: 36863706 PMCID: PMC10042700 DOI: 10.18632/aging.204545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies with unfavorable prognoses. The present study aimed to identify novel biomarkers or potential therapeutic targets in GC via bioinformatic analysis and in vitro experiments. The Gene Expression Omnibus and The Cancer Genome Atlas databases were used to screen the differentially expressed genes (DEGs). After protein-protein interaction network construction, both module and prognostic analyses were performed to identify prognosis-related genes in GC. The expression patterns and functions of G protein γ subunit 7 (GNG7) in GC were then visualized in multiple databases and further verified using in vitro experiments. A total of 897 overlapping DEGs were detected and 20 hub genes were identified via systematic analysis. After accessing the prognostic value of the hub genes using the online server Kaplan-Meier plotter, a six-gene prognostic signature was identified, which was also significantly correlated with the process of immune infiltration in GC. The results of open-access database analyses suggested that GNG7 is downregulated in GC; this downregulation was associated with tumor progression. Furthermore, the functional enrichment analysis unveiled that the GNG7-coexpressed genes or gene sets were closely correlated with the proliferation and cell cycle processes of GC cells. Finally, in vitro experiments further confirmed that GNG7 overexpression inhibited GC cell proliferation, colony formation, and cell cycle progression and induced apoptosis. As a tumor suppressor gene, GNG7 suppressed the growth of GC cells via cell cycle blockade and apoptosis induction and thus may be used as a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Houyu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Biao Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| |
Collapse
|
11
|
Liao YY, Cao WM. The progress in our understanding of CIN in breast cancer research. Front Oncol 2023; 13:1067735. [PMID: 36874134 PMCID: PMC9978327 DOI: 10.3389/fonc.2023.1067735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chromosomal instability (CIN) is an important marker of cancer, which is closely related to tumorigenesis, disease progression, treatment efficacy, and patient prognosis. However, due to the limitations of the currently available detection methods, its exact clinical significance remains unknown. Previous studies have demonstrated that 89% of invasive breast cancer cases possess CIN, suggesting that it has potential application in breast cancer diagnosis and treatment. In this review, we describe the two main types of CIN and discuss the associated detection methods. Subsequently, we highlight the impact of CIN in breast cancer development and progression and describe how it can influence treatment and prognosis. The goal of this review is to provide a reference on its mechanism for researchers and clinicians.
Collapse
Affiliation(s)
- Yu-Yang Liao
- Wenzhou Medical University, Wenzhou, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
12
|
Goncharov NV, Kovalskaia VA, Romanishin AO, Shved NA, Belousov AS, Tiasto VS, Gulaia VS, Neergheen VS, Rummun N, Liskovykh M, Larionov V, Kouprina N, Kumeiko VV. Novel assay to measure chromosome instability identifies Punica granatum extract that elevates CIN and has a potential for tumor- suppressing therapies. Front Bioeng Biotechnol 2022; 10:989932. [PMID: 36601386 PMCID: PMC9806258 DOI: 10.3389/fbioe.2022.989932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Human artificial chromosomes (HACs) have provided a useful tool to study kinetochore structure and function, gene delivery, and gene expression. The HAC propagates and segregates properly in the cells. Recently, we have developed an experimental high-throughput imaging (HTI) HAC-based assay that allows the identification of genes whose depletion leads to chromosome instability (CIN). The HAC carries a GFP transgene that facilitates quantitative measurement of CIN. The loss of HAC/GFP may be measured by flow cytometry or fluorescence scanning microscope. Therefore, CIN rate can be measured by counting the proportion of fluorescent cells. Here, the HAC/GFP-based assay has been adapted to screen anticancer compounds for possible induction or elevation of CIN. We analyzed 24 cytotoxic plant extracts. Punica granatum leaf extract (PLE) indeed sharply increases CIN rate in HT1080 fibrosarcoma cells. PLE treatment leads to cell cycle arrest, reduction of mitotic index, and the increased numbers of micronuclei (MNi) and nucleoplasmic bridges (NPBs). PLE-mediated increased CIN correlates with the induction of double-stranded breaks (DSBs). We infer that the PLE extract contains a component(s) that elevate CIN, making it a candidate for further study as a potential cancer treatment. The data also provide a proof of principle for the utility of the HAC/GFP-based system in screening for natural products and other compounds that elevate CIN in cancer cells.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | | | - Nikita A. Shved
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena S. Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia S. Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vidushi S. Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Nawraj Rummun
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit, Mauritius
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Vadim V. Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
13
|
Weidle UH, Sela T, Brinkmann U, Niewoehner J. Circular RNAs With Efficacy in Preclinical In Vitro and In Vivo Models of Esophageal Squamous Cell Carcinoma. Cancer Genomics Proteomics 2022; 19:283-298. [PMID: 35430563 DOI: 10.21873/cgp.20320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is associated with a dismal prognosis. The armamentarium of approved drugs is focused on chemotherapy with modest therapeutic benefit. Recently, checkpoint inhibitory monoclonal antibody Pembrolizumab was approved. In order to identify new targets and modalities for the treatment of esophagus squamous cell carcinoma (ESCC) we searched the literature for circRNAs involved in the pathogenesis of ESCC. We identified two down-regulated and 17 up-regulated circRNAs as well as a synthetic circRNA with efficacy in preclinical in vivo systems. Down-regulated circRNAs sponge microRNAs directed against tumor suppressor genes. Up-regulated circRNAs sponge microRNAs directed against mRNAs, which encode proteins with pro-tumoral functions. We discuss issues such as reconstitution of down-regulated circRNAs and inhibition of up-regulated circRNAs with short interfering RNA (siRNA)- related entities. Also, we address druggability issues of the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Jens Niewoehner
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
14
|
Koike Y, Yin C, Sato Y, Nagano Y, Yamamoto A, Kitajima T, Shimura T, Kawamura M, Matsushita K, Okugawa Y, Amano K, Otake K, Okita Y, Ohi M, Inoue M, Uchida K, Hirayama M, Toiyama Y. TPX2 is a prognostic marker and promotes cell proliferation in neuroblastoma. Oncol Lett 2022; 23:136. [PMID: 35317024 PMCID: PMC8907931 DOI: 10.3892/ol.2022.13256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/07/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yuki Sato
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yuka Nagano
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Akira Yamamoto
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Kohei Matsushita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Keishiro Amano
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Kohei Otake
- Department of Surgery, Mie Prefectural General Medical Center, Yokkaichi, Mie 510‑0885, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| |
Collapse
|
15
|
El-Masry OS, Goja A, Rateb M, Owaidah AY, Alsamman K. RNA sequencing identified novel target genes for Adansonia digitata in breast and colon cancer cells. Sci Prog 2021; 104:368504211032084. [PMID: 34251294 PMCID: PMC10450698 DOI: 10.1177/00368504211032084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adansonia digitata exhibits numerous beneficial effects. In the current study, we investigated the anti-cancer effects of four different extracts of A. digitata (polar and non-polar extracts of fruit powder and fibers) on the proliferation of human colon cancer (HCT116), human breast cancer (MCF-7), and human ovarian cancer (OVCAR-3 and OVCAR-4) cell lines. RNA sequencing revealed the influence of the effective A. digitata fraction on the gene expression profiles of responsive cells. The results indicated that only the polar extract of the A. digitata fibers exhibited anti-proliferative activities against HCT116 and MCF-7 cells, but not ovarian cancer cells. Moreover, the polar extract of the fibers resulted in the modulation of the expression of multiple genes in HCT116 and MCF-7 cells. We propose that casein kinase 2 alpha 3 (CSNK2A3) is a novel casein kinase 2 (CSNK2) isoform in HCT116 cells and report, for the first time, the potential involvement of FYVE, RhoGEF, and PH domain-containing 3 (FGD3) in colon cancer. Together, these findings provide evidence supporting the anti-cancer potential of the polar extract of A. digitata fibers in this experimental model of breast and colon cancers.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arafat Goja
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
- Marine Biodiscovery Centre, School of Natural & Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
16
|
Setru SU, Gouveia B, Alfaro-Aco R, Shaevitz JW, Stone HA, Petry S. A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. NATURE PHYSICS 2021; 17:493-498. [PMID: 35211183 PMCID: PMC8865447 DOI: 10.1038/s41567-020-01141-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/24/2020] [Indexed: 05/23/2023]
Affiliation(s)
- Sagar U. Setru
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua W. Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
17
|
Polverino F, Naso FD, Asteriti IA, Palmerini V, Singh D, Valente D, Bird AW, Rosa A, Mapelli M, Guarguaglini G. The Aurora-A/TPX2 Axis Directs Spindle Orientation in Adherent Human Cells by Regulating NuMA and Microtubule Stability. Curr Biol 2020; 31:658-667.e5. [PMID: 33275894 DOI: 10.1016/j.cub.2020.10.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Mitotic spindle orientation is a crucial process that defines the axis of cell division, contributing to daughter cell positioning and fate, and hence to tissue morphogenesis and homeostasis.1,2 The trimeric NuMA/LGN/Gαi complex, the major determinant of spindle orientation, exerts pulling forces on the spindle poles by anchoring astral microtubules (MTs) and dynein motors to the cell cortex.3,4 Mitotic kinases contribute to correct spindle orientation by regulating nuclear mitotic apparatus protein (NuMA) localization,5-7 among which the Aurora-A centrosomal kinase regulates NuMA targeting to the cell cortex in metaphase.8,9 Aurora-A and its activator targeting protein for Xklp2 (TPX2) are frequently overexpressed in cancer,10-12 raising the question as to whether spindle orientation is among the processes downstream the Aurora-A/TPX2 signaling axis altered under pathological conditions. Here, we investigated the role of TPX2 in the Aurora-A- and NuMA-dependent spindle orientation. We show that, in cultured adherent human cells, the interaction with TPX2 is required for Aurora-A to exert this function. We also show that Aurora-A, TPX2, and NuMA are part of a complex at spindle MTs, where TPX2 acts as a platform for Aurora-A regulation of NuMA. Interestingly, excess TPX2 does not influence NuMA localization but induces a "super-alignment" of the spindle axis with respect to the substrate, although an excess of Aurora-A induces spindle misorientation. These opposite effects are both linked to altered MT stability. Overall, our results highlight the importance of TPX2 for spindle orientation and suggest that spindle orientation is differentially sensitive to unbalanced levels of Aurora-A, TPX2, or the Aurora-A/TPX2 complex.
Collapse
Affiliation(s)
- Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Francesco D Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Italia A Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Valentina Palmerini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Davide Valente
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy.
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
18
|
Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Naso FD, Sterbini V, Crecca E, Asteriti IA, Russo AD, Giubettini M, Cundari E, Lindon C, Rosa A, Guarguaglini G. Excess TPX2 Interferes with Microtubule Disassembly and Nuclei Reformation at Mitotic Exit. Cells 2020; 9:E374. [PMID: 32041138 PMCID: PMC7072206 DOI: 10.3390/cells9020374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
The microtubule-associated protein TPX2 is a key mitotic regulator that contributes through distinct pathways to spindle assembly. A well-characterised function of TPX2 is the activation, stabilisation and spindle localisation of the Aurora-A kinase. High levels of TPX2 are reported in tumours and the effects of its overexpression have been investigated in cancer cell lines, while little is known in non-transformed cells. Here we studied TPX2 overexpression in hTERT RPE-1 cells, using either the full length TPX2 or a truncated form unable to bind Aurora-A, to identify effects that are dependent-or independent-on its interaction with the kinase. We observe significant defects in mitotic spindle assembly and progression through mitosis that are more severe when overexpressed TPX2 is able to interact with Aurora-A. Furthermore, we describe a peculiar, and Aurora-A-interaction-independent, phenotype in telophase cells, with aberrantly stable microtubules interfering with nuclear reconstitution and the assembly of a continuous lamin B1 network, resulting in daughter cells displaying doughnut-shaped nuclei. Our results using non-transformed cells thus reveal a previously uncharacterised consequence of abnormally high TPX2 levels on the correct microtubule cytoskeleton remodelling and G1 nuclei reformation, at the mitosis-to-interphase transition.
Collapse
Affiliation(s)
- Francesco D. Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Valentina Sterbini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Elena Crecca
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Italia A. Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Alessandra D. Russo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Maria Giubettini
- CrestOptics S.p.A., Via di Torre Rossa 66, 00165 Rome, Italy;
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Enrico Cundari
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK;
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| |
Collapse
|
20
|
TPX2 as a Novel Prognostic Indicator and Promising Therapeutic Target in Triple-negative Breast Cancer. Clin Breast Cancer 2019; 19:450-455. [DOI: 10.1016/j.clbc.2019.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
|
21
|
Yang W, Wan H, Shan R, Wen W, Li J, Luo D, Wan RH. The clinical significance and prognostic value of Xenopus kinesin-like protein 2 expressions in human tumors: A systematic review and meta-analysis. J Cell Physiol 2019; 234:14991-14998. [PMID: 30779127 DOI: 10.1002/jcp.28343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein that plays a pivotal part in the formation of spindles. There is accumulating evidence that the expression of TPX2 is upregulated in many kinds of human cancers and that this protein is involved in the occurrence and progression of tumors. The purpose of this meta-analysis was to investigate the relationship between the overexpression of TPX2 and poor prognosis in cancer patients. A total of 18 eligible studies encompassing 3115 patients were included by searching relevant databases. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were pooled under random-/fixed-effect models. After calculation, the results showed that patients with increased TPX2 expression had a significantly shorter overall survival (HR = 2.21; 95% CI: 1.70-2.86), and disease-free survival (HR = 2.10; 95% CI: 1.67-2.64). In addition, it was found that increased TPX2 expression was significantly associated with TNM stage (OR = 2.17; 95% CI:1.42-3.32), lymph node metastasis (OR = 2.98; 95% CI: 2.28-3.89), distant metastasis (OR = 2.25; 95% CI:1.03-4.92), and vascular invasion (OR = 2.22; 95% CI:1.26-3.91). Nevertheless, there was no significant correlation between increased expression of TPX2 and either gender, tumor differentiation, or tumor size. Thus, we can come to the conclusion that the overexpression of TPX2 is related to poor clinical outcomes and can be used as a biomarker for the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Weina Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haiting Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Ren-Hua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Feng Y, Liu H, Duan B, Liu Z, Abbruzzese J, Walsh KM, Zhang X, Wei Q. Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic cancer. Carcinogenesis 2019; 40:521-528. [PMID: 30794721 PMCID: PMC6556704 DOI: 10.1093/carcin/bgz029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/02/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
The AURORA pathway participates in mitosis and cell division, and alterations in mitosis and cell division can lead to carcinogenesis. Therefore, genetic variants in the AURORA pathway genes may be associated with susceptibility to pancreatic cancer. To test this hypothesis, we used three large publically available pancreatic cancer genome-wide association study (GWAS) datasets (PanScan I, II/III and PanC4) to assess the associations of 7168 single nucleotide polymorphisms (SNPs) in a set of 62 genes of this pathway with pancreatic cancer risk in 8477 cases and 6946 controls of European ancestry. We identify 15 significant pancreatic cancer risk-associated SNPs in three genes (SMC2, ARHGEF7 and TP53) after correction for multiple comparisons by a false discovery rate < 0.20. Through further linkage disequilibrium analysis, SNP functional prediction and stepwise logistic regression analysis, we focused on three SNPs: rs3818626 in SMC2, rs79447092 in ARHGEF7 and rs9895829 in TP53. We found that these three SNPs were associated with pancreatic cancer risk [odds ratio (OR) = 1.12, 95% confidence interval (CI) = 1.07-1.17 and P = 2.20E-06 for the rs3818626 C allele; OR = 0.76, CI = 0.66-0.88 and P = 1.46E-04 for the rs79447092 A allele and OR = 0.82, CI = 0.74-0.91 and P = 1.51E-04 for the rs9895829 G allele]. Their joint effect as the number of protective genotypes also showed a significant association with pancreatic cancer risk (trend test P ≤ 0.001). Finally, we performed an expression quantitative trait loci analysis and found that rs3818626 and rs9895829 were significantly associated with SMC2 and TP53 messenger RNA expression levels in 373 lymphoblastoid cell lines, respectively. In conclusion, these three representative SNPs may be potentially susceptibility loci for pancreatic cancer and warrant additional validation.
Collapse
Affiliation(s)
- Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Bensong Duan
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Gastroenterology, Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - James Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Xuefeng Zhang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
23
|
Ye Y, Zhu J, Ai Q, Wang C, Liao M, Fan H. Quantitative Proteomics Reveals Changes in Vero Cells in Response to Porcine Epidemic Diarrhea Virus. J Proteome Res 2019; 18:1623-1633. [PMID: 30730140 DOI: 10.1021/acs.jproteome.8b00897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Outbreaks of porcine epidemic diarrhea virus (PEDV) have caused significant lethality rates in neonatal piglets, which pose a serious threat to the swine industry worldwide. Available commercial vaccines fail to protect against the emergence of high virulence of PEDV variants. Therefore, the endemic state of the PEDV infection in suckling piglets highlights the urgent need for uncovering the molecular determinants of the disease pathogenesis. In this study, stable isotope labeling by amino acids in cell culture (SILAC), combined with high-performance liquid chromatography/tandem mass spectrometry was performed to determine proteomic differences between PEDV-infected and mock-infected Vero cells at 18 h postinfection. The SILAC-based approach identified 4508 host-cell proteins, of which 120 were significantly up-regulated and 103 were significantly down-regulated at ≥95% confidence. Alterations in the expression of selected proteins were verified by Western blot. Several signaling metabolic pathways including mevalonate pathway I and the superpathway of cholesterol biosynthesis were triggered by the infection of the highly virulent strain and are linked to host innate immunity. 25-HC, an inhibitor of the mevalonate pathway, exhibited potent antiviral activity against PEDV infection. Meanwhile, the cell-cycle-related functions were significantly regulated, which may likely be responsible for the viral replication and pathogenicity of PEDV.
Collapse
Affiliation(s)
- Yu Ye
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Jun Zhu
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China
| | - Qiangyun Ai
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Chengcheng Wang
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Ming Liao
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| | - Huiying Fan
- College of Veterinary Medicine , South China Agricultural University , Guangzhou 510642 , China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou 510642 , China.,Key Laboratory of Animal Vaccine Development , Ministry of Agriculture , Guangzhou 510642 , China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong , Guangzhou 510642 , China
| |
Collapse
|
24
|
van Gijn SE, Wierenga E, van den Tempel N, Kok YP, Heijink AM, Spierings DCJ, Foijer F, van Vugt MATM, Fehrmann RSN. TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells. Oncogene 2019; 38:852-867. [PMID: 30177840 PMCID: PMC6367211 DOI: 10.1038/s41388-018-0470-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/30/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
Genomic instability is a hallmark feature of cancer cells, and can be caused by defective DNA repair, for instance due to inactivation of BRCA2. Paradoxically, loss of Brca2 in mice results in embryonic lethality, whereas cancer cells can tolerate BRCA2 loss. This holds true for multiple DNA repair genes, and suggests that cancer cells are molecularly "rewired" to cope with defective DNA repair and the resulting high levels of genomic instability. In this study, we aim to identify genes that genomically unstable cancer cells rely on for their survival. Using functional genomic mRNA (FGmRNA) profiling, 16,172 cancer samples were previously ranked based on their degree of genomic instability. We analyzed the top 250 genes that showed a positive correlation between FGmRNA levels and the degree of genomic instability, in a co-functionality network. Within this co-functionality network, a strong cluster of 11 cell cycle-related genes was identified, including TPX2. We then assessed the dependency on these 11 genes in the context of survival of genomically unstable cancer cells, induced by BRCA2 inactivation. Depletion of TPX2 or its associated kinase Aurora-A preferentially reduced cell viability in a panel of BRCA2-deficient cancer cells. In line with these findings, BRCA2-depleted and BRCA2-mutant human cell lines, or tumor cell lines derived from Brca2-/-;p53-/- mice showed increased sensitivity to the Aurora-A kinase inhibitor alisertib, with delayed mitotic progression and frequent mitotic failure. Our findings reveal that BRCA2-deficient cancer cells show enhanced sensitivity to inactivation of TPX2 or its partner Aurora-A, which points at an actionable dependency of genomically unstable cancers.
Collapse
Affiliation(s)
- Stephanie E van Gijn
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elles Wierenga
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Margriet Heijink
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Zou Z, Zheng B, Li J, Lv X, Zhang H, Yu F, Kong L, Li Y, Yu M, Fang L, Liang B. TPX2 level correlates with cholangiocarcinoma cell proliferation, apoptosis, and EMT. Biomed Pharmacother 2018; 107:1286-1293. [DOI: 10.1016/j.biopha.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/27/2022] Open
|
26
|
Wang S, Chen Y, Chai Y. Prognostic role of targeting protein for Xklp2 in solid tumors: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13018. [PMID: 30412141 PMCID: PMC6221728 DOI: 10.1097/md.0000000000013018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prognostic role of targeting protein for Xklp2 (TPX2) in solid tumors has been investigated in several researches, but the results remain controversial. Here we present a meta-analysis to systematically review the association between TPX2 expression levels and prognosis of human solid tumors. METHODS Studies published until December 2017 were searched in PubMed, Web of Science, and EBSCO, 13 studies (2134 patients) were collected for analysis. Odds ratios (ORs) for overall survival (OS) and disease-free survival (DFS) from individual studies were calculated by the application of Mantel-Haenszel random effect model. Pooled ORs were estimated by Z test. Publication bias and interstudy heterogeneity analyses were also performed. RESULTS TPX2 overexpression was associated with poor OS at 3 and 5 years [OR = 4.63, 95% confidence interval (CI): 3.27-6.56, P < .00001; OR = 4.05, 95% CI: 2.32-7.07, P < .00001, respectively] of solid tumors. Similar results were observed with DFS at 3 and 5 years (OR = 3.35, 95% CI: 1.83-6.14, P < .0001; OR = 2.94, 95% CI: 1.74-4.98, P < .0001, respectively). Subgroup analysis revealed that increased TPX2 expression was related to worse prognosis of gastric cancer and hepatocellular cancer, while irrelevant to esophageal squamous cell cancer at 5-year survival rate. CONCLUSIONS Overexpression of TPX2 is related to poor survival rate in most solid tumors, which indicates that the expression level of TPX2 is a significant prognostic parameter and potential therapeutic target in various solid tumors.
Collapse
|
27
|
Jiang T, Sui D, You D, Yao S, Zhang L, Wang Y, Zhao J, Zhang Y. MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2. Cell Cycle 2018; 17:1268-1278. [PMID: 29888640 DOI: 10.1080/15384101.2018.1475829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study was aimed to explore the effects of miR-29a-5p expression and its target gene TPX2 (target protein for Xenopus kinesin-like protein 2) on endometrial cancer (EC) devel on EC development and to assess the prognostic impacts of TPX2. Microarray-based GEO and TCGA (the Cancer Genome Atlas) EC expression data were used to identify differentially expressed miRNAs and mRNAs. The observed potential target relationship between miR-29a-5p and TPX2 was verified using TargetScan and luciferase reporter assays. The mRNA and protein expression levels of miR-29a-5p and TPX2 were confirmed by qRT-PCR and western blot, respectively. Associations between TPX2 expression and patient prognosis were assessed using Kaplan-Meier and log-rank assays. Changes in EC-derived cell proliferation, invasion and apoptosis after exogenous miR-29a-5p and TPX2 over-expression and/or silencing were assessed using CCK-8 (cell counting kit-8), colony formation, Transwell and flow cytometry assays, respectively. We found that in primary EC tissues the expression of miR-29a-5p was down-regulated and the expression of TPX2 was up-regulated. We also found that low expression of TPX2 were associated with a better prognosis, and vice versa. Subsequent exogenous miR-29a-5p over-expression and TPX2 silencing could inhibit EC-derived cell proliferation and invasion, and to induce apoptosis. We also found that miR-29a-5p might target and repress TPX2, thereby inhibiting EC-derived cell proliferation and invasion and enhancing apoptosis. We conclude that miR-29a-5p could inhibit the proliferation and invasion of EC-derived cells and enhance the apoptosis of EC-derived cells via TPX2 down-regulation. A high TPX2 expression in primary EC tissues was found to be associated with a poor prognosis. As such, these biomarkers may serve as promising prognostic indicators. ABBREVIATIONS EC: Endometrial cancer; 3'-UTR: 3'-untranslated regions; TPX2: target protein for Xenopus kinesin-like protein 2; TCGA: the Cancer Genome Atlas; UCEC: uterine corpus endometrial carcinoma; CCK-8: cell counting kit-8; OD: optical density; FCM: flow cytometry; EMT: epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Tiechao Jiang
- a Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin , China.,b Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis , Jilin , China
| | - Dongming Sui
- c Department of Asset Management , The First Hospital of Jilin University , Jilin , China
| | - Dong You
- d Department of Thoracic Surgery , The First Hospital of Jilin University , Jilin , China
| | - Songmei Yao
- e Department of Traditional Chinese Medicine , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Lirong Zhang
- f Department of Pathology , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Yingjian Wang
- g Department of Gynaecology and Obstetrics , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Jixue Zhao
- h Department of Pediatric Surgery , The First Hospital of Jilin University , Jilin , China
| | - Yaozhong Zhang
- i Department of Anesthesiology , China-Japan Union Hospital of Jilin University , Jilin , China
| |
Collapse
|
28
|
Zou J, Huang RY, Jiang FN, Chen DX, Wang C, Han ZD, Liang YX, Zhong WD. Overexpression of TPX2 is associated with progression and prognosis of prostate cancer. Oncol Lett 2018; 16:2823-2832. [PMID: 30127868 PMCID: PMC6096215 DOI: 10.3892/ol.2018.9016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
Targeting protein for Xenopus kinesin-like protein 2 (TPX2) activates Aurora kinase A during mitosis and targets its activity to the mitotic spindle, serving an important role in mitosis. It has been associated with different types of cancer and is considered to promote tumor growth. The aim of the present study was to explore the role of TPX2 in diagnosing prostate cancer (PCa). It was identified that TPX2 expression in PCa tissues was increased compared with benign prostate tissues. Microarray analysis demonstrated that TPX2 was positively associated with the Gleason score, tumor-node-metastasis (TNM) stage, clinicopathological stage, metastasis, overall survival and biochemical relapse-free survival. In vitro studies revealed that the high expression of TPX2 in PCa cells improved proliferative, invasive and migratory abilities, and repressed apoptosis of the PCa cells, without affecting tolerance to docetaxel. The results suggested that TPX2 serves as a tumorigenesis-promoting gene in PCa, and a potential therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Jun Zou
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Rui-Yan Huang
- Department of Ultrasonography and Electrocardiograms, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - De-Xiong Chen
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Cong Wang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China.,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| |
Collapse
|
29
|
Huang D, Chen J, Yang C, Wang M. TPX2 silencing mediated by joint action of microvesicles and ultrasonic radiation inhibits the migration and invasion of SKOV3 cells. Mol Med Rep 2018; 17:7627-7635. [PMID: 29620263 PMCID: PMC5983958 DOI: 10.3892/mmr.2018.8810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer, with its high morbidity, has one of the highest mortality rates among gynecological malignant tumors. Overexpression of targeting protein for Xklp2 (TPX2) has been identified in numerous malignant tumors. The present study sought to determine whether TPX2 silencing inhibited the growth and metastasis of ovarian cancer cells, and whether microvesicles‑ and ultrasonic radiation‑mediated small interfering (si)RNA‑TPX2 transfection may improve the therapeutic effect. The SKOV3 cell line, derived from papillary serous cytadenocarcinoma of the human ovary, was selected as a cell model. Cells were divided into five groups: Control, siRNA‑TPX2, siRNA‑TPX2 + microvesicle (M), siRNA‑TPX2 + ultrasonic irradiation (UI), and siRNA‑TPX2 + M + UI. Cell viability was evaluated under the aforementioned conditions via the Cell Counting kit 8 (CCK8) assay. Cell migration and invasion were detected using Transwell assays. The expression levels of associated genes, including epithelial cadherin (E‑cadherin), metalloproteinase inhibitor 2 (TIMP‑2), metastasis associated 1 (MTA1) and matrix metallopeptidase 2 (MMP2), were analyzed using reverse transcription‑quantitative polymerase chain reaction analysis and western blotting. MMP2 activity was determined using a gelatin zymography assay. The results suggested that TPX2 serves an important role in the development of SKOV3 cells; it is additionally able to inhibit cell migration and invasion by upregulating E‑cadherin and TIMP2, downregulating MMP2 and MTA1, and inhibiting the phosphorylation of p38 and c‑Jun N‑terminal kinase. The inhibitory effect of siRNA‑TPX2 on SKOV3 cellular metastasis in the presence of microvesicles and ultrasonic radiation was observed to be improved compared with the control. It is proposed that the combination of microvesicles and ultrasonic radiation with TPX2 silencing has the potential to be an effective gene therapy against ovarian cancer.
Collapse
Affiliation(s)
- Dong Huang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jianmin Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Cuiyu Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Minzhen Wang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
30
|
Acquisition of an oncogenic fusion protein serves as an initial driving mutation by inducing aneuploidy and overriding proliferative defects. Oncotarget 2018; 7:62814-62835. [PMID: 27588498 PMCID: PMC5325330 DOI: 10.18632/oncotarget.11716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
While many solid tumors are defined by the presence of a particular oncogene, the role that this oncogene plays in driving transformation through the acquisition of aneuploidy and overcoming growth arrest are often not known. Further, although aneuploidy is present in many solid tumors, it is not clear whether it is the cause or effect of malignant transformation. The childhood sarcoma, Alveolar Rhabdomyosarcoma (ARMS), is primarily defined by the t(2;13)(q35;q14) translocation, creating the PAX3-FOXO1 fusion protein. It is unclear what role PAX3-FOXO1 plays in the initial stages of tumor development through the acquisition and persistence of aneuploidy. In this study we demonstrate that PAX3-FOXO1 serves as a driver mutation to initiate a cascade of mRNA and miRNA changes that ultimately reprogram proliferating myoblasts to induce the formation of ARMS. We present evidence that cells containing PAX3-FOXO1 have changes in the expression of mRNA and miRNA essential for maintaining proper chromosome number and structure thereby promoting aneuploidy. Further, we demonstrate that the presence of PAX3-FOXO1 alters the expression of growth factor related mRNA and miRNA, thereby overriding aneuploid-dependent growth arrest. Finally, we present evidence that phosphorylation of PAX3-FOXO1 contributes to these changes. This is one of the first studies describing how an oncogene and post-translational modifications drive the development of a tumor through the acquisition and persistence of aneuploidy. This mechanism has implications for other solid tumors where large-scale genomics studies may elucidate how global alterations contribute to tumor phenotypes allowing the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
31
|
Viganó C, von Schubert C, Ahrné E, Schmidt A, Lorber T, Bubendorf L, De Vetter JRF, Zaman GJR, Storchova Z, Nigg EA. Quantitative proteomic and phosphoproteomic comparison of human colon cancer DLD-1 cells differing in ploidy and chromosome stability. Mol Biol Cell 2018; 29:1031-1047. [PMID: 29496963 PMCID: PMC5921571 DOI: 10.1091/mbc.e17-10-0577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 11/11/2022] Open
Abstract
Although aneuploidy is poorly tolerated during embryogenesis, aneuploidy and whole chromosomal instability (CIN) are common hallmarks of cancer, raising the question of how cancer cells can thrive in spite of chromosome aberrations. Here we present a comprehensive and quantitative proteomics analysis of isogenic DLD-1 colorectal adenocarcinoma cells lines, aimed at identifying cellular responses to changes in ploidy and/or CIN. Specifically, we compared diploid (2N) and tetraploid (4N) cells with posttetraploid aneuploid (PTA) clones and engineered trisomic clones. Our study provides a comparative data set on the proteomes and phosphoproteomes of the above cell lines, comprising several thousand proteins and phosphopeptides. In comparison to the parental 2N line, we observed changes in proteins associated with stress responses and with interferon signaling. Although we did not detect a conspicuous protein signature associated with CIN, we observed many changes in phosphopeptides that relate to fundamental cellular processes, including mitotic progression and spindle function. Most importantly, we found that most changes detectable in PTA cells were already present in the 4N progenitor line. This suggests that activation of mitotic pathways through hyper-phosphorylation likely constitutes an important response to chromosomal burden. In line with this conclusion, cells with extensive chromosome gains showed differential sensitivity toward a number of inhibitors targeting cell cycle kinases, suggesting that the efficacy of anti-mitotic drugs may depend on the karyotype of cancer cells.
Collapse
Affiliation(s)
| | | | - Erik Ahrné
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Thomas Lorber
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | | | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V., 5340 Oss, The Netherlands
| | | | - Erich A. Nigg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
32
|
Wang G, Wang Q, Li Z, Liu C, He X. Clinical value of Xenopus kinesin-like protein 2 as a prognostic marker in patients with digestive system cancers: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:1229-1243. [PMID: 29551902 PMCID: PMC5843138 DOI: 10.2147/ott.s150829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein that plays an important role in spindle assembly and dynamics. However, the clinical and prognostic value of TPX2 in the digestive system cancers remains unclear. The objective of this review was to evaluate the association of TPX2 expression with disease-free survival (DFS), overall survival (OS), and clinicopathological features of digestive system cancers. The software Stata 12.0 was used to analyze the outcomes, including OS, disease-free survival (DFS), and clinicopathological characteristics. A total of 10 eligible studies with 906 patients were included. Elevated TPX2 expression was significantly associated with poor DFS (pooled hazard ratio [HR] =2.48, 95% confidence interval [CI]: 1.96–3.13) and OS (pooled HR =2.66, 95% CI: 2.04–3.48) of digestive system malignancies. Subgroup analyses showed that cancer type, sample size, study quality, and laboratory detection methods did not alter the significant prognostic value of TPX2. Additionally, TPX2 expression was found to be an independent predictive factor for DFS (HR =2.31, 95% CI: 1.78–3.01). TPX2 expression might be associated with TNM stage and pathological grade in digestive system cancer. In conclusion, TPX2 is an independent prognostic factor for survival of patients with digestive system cancer. Furthermore, its overexpression is associated with TNM stage and pathological grade in digestive system cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengyan Li
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Chaoxu Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Constructing Bayesian networks by integrating gene expression and copy number data identifies NLGN4Y as a novel regulator of prostate cancer progression. Oncotarget 2018; 7:68688-68707. [PMID: 27626693 PMCID: PMC5356583 DOI: 10.18632/oncotarget.11925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
To understand the heterogeneity of prostate cancer (PCa) and identify novel underlying drivers, we constructed integrative molecular Bayesian networks (IMBNs) for PCa by integrating gene expression and copy number alteration data from published datasets. After demonstrating such IMBNs with superior network accuracy, we identified multiple sub-networks within IMBNs related to biochemical recurrence (BCR) of PCa and inferred the corresponding key drivers. The key drivers regulated a set of common effectors including genes preferentially expressed in neuronal cells. NLGN4Y—a protein involved in synaptic adhesion in neurons—was ranked as the top gene closely linked to key drivers of myogenesis subnetworks. Lower expression of NLGN4Y was associated with higher grade PCa and an increased risk of BCR. We show that restoration of the protein expression of NLGN4Y in PC-3 cells leads to decreased cell proliferation, migration and inflammatory cytokine expression. Our results suggest that NLGN4Y is an important negative regulator in prostate cancer progression. More importantly, it highlights the value of IMBNs in generating biologically and clinically relevant hypotheses about prostate cancer that can be validated by independent studies.
Collapse
|
34
|
Ma S, Rong X, Gao F, Yang Y, Wei L. TPX2 promotes cell proliferation and migration via PLK1 in OC. Cancer Biomark 2018; 22:443-451. [PMID: 29865033 DOI: 10.3233/cbm-171056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated proteinrequired for mitosis and spindle assembly. It has been revealed that TPX2 is overexpressedin various human cancers and promotes cancer progression. METHODS The expression of TPX2 was examined in ovarian cancer (OC) tissues and by Western blotting, quantitative real-time reverse transcription PCR (qRT-PCR) and immunohistochemistry. The effects of TPX2 on proliferation and migration of two OC cell lines SKOV3and RMG1 were analyzed using the methylthiazol tetrazolium (MTT) assay, flow cytometry and transwell assay. The mechanisms underlying the effects of TPX2 on OC cells were explored by qRT-PCR and Western blot. RESULTS In this study, we found that TPX2 was upregulated in OC tissues. We observed knockdown of TPX2 inhibited the expression of Polo-like kinase 1 (PLK1), which has an important role in the regulation of M phase of the cell cycle, and the activity of Cdc2, induced cell arrested at the G2/M phase and decreased proliferation. Moreover, our data revealed that the levels of PLK1, β-catenin, MMP7 and MMP9 were inhibited following TPX2 knockdown, leading to decrease of cell migration. Finally, we showed that the restoration of PLK1 expression attenuated the anti-proliferation and anti-migration effects of TPX2 knockdown in OC cells. CONCLUSIONS TPX2 promotes the proliferation and migration of human OC cells by regulating PLK1 expression.
Collapse
Affiliation(s)
- Shuyun Ma
- Clinical Experimental Teaching Center, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Xuan Rong
- Department of Gynaecology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Fei Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Yang Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Lin Wei
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| |
Collapse
|
35
|
Zhang R, Roostalu J, Surrey T, Nogales E. Structural insight into TPX2-stimulated microtubule assembly. eLife 2017; 6. [PMID: 29120325 PMCID: PMC5679754 DOI: 10.7554/elife.30959] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/29/2017] [Indexed: 11/13/2022] Open
Abstract
During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements ('ridge' and 'wedge') in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation.
Collapse
Affiliation(s)
- Rui Zhang
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | | | | - Eva Nogales
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
36
|
Hsu CW, Chen YC, Su HH, Huang GJ, Shu CW, Wu TTL, Pan HW. Targeting TPX2 Suppresses the Tumorigenesis of Hepatocellular Carcinoma Cells Resulting in Arrested Mitotic Phase Progression and Increased Genomic Instability. J Cancer 2017. [PMID: 28638452 PMCID: PMC5479243 DOI: 10.7150/jca.17478] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most difficult cancers to treat, with chemotherapies being relatively ineffective. Therefore, a better knowledge of molecular hepatocarcinogenesis will provide opportunities for designing targeted therapies. TPX2 (targeting protein for Xklp2) is overexpressed as a consequence of oncogenic alterations and is likely to alter the proper regulation of chromosome segregation in cancer cells. Disrupting the machinery which is responsible for mitosis and chromosome instability in cancer cells can be one of the most successful strategies for cancer therapy. Therefore, we consider the targeting TPX2 could provide novel therapeutic strategies for cancer. In this study, increased TPX2 protein expression was present in 16 (42%) of 38 primary HCCs and was associated with advanced stage, distant metastatic HCCs and poor prognosis. Knockdown of TPX2 inhibited cancer cell growth and downregulation of cyclin A, cyclin E and CDK2 proteins. However, over-expressed EGFP-TPX2 protein enhanced the in vitro tumor spheroid formation and rescued the TPX2 depleted cell growth. Targeting TPX2 caused a rising impaired chromosomal instability resulting in multinuclearity, cell cycle progression arrest, apotosis, senescence and an increased polyploidy in cells. An image-cytometry analysis revealed cell cycle progression arrest after TPX2 inhibition. A correlation was observed between the downregulation of the protein levels of genes related to chromosomal segregation and spindle assembly checkpoint (securin, seprase, Aurora A, Aurora B, Cyclin B1, Cyclin B2, MPS1, BUB1, BUB3, MAD1 and MAD2) and increased cell ploidy, indicating mitotic progression failure and the loss of the balance of genomic instability. In vitro tumor spheroid assay and in vivo xenografts mouse model showed a therapeutic opportunity. Our findings indicate that targeting TPX2 lead to suppress tumorigenicity in liver cancer cells, suggesting that TPX2 is a potential target for anticancer therapy in HCC.
Collapse
Affiliation(s)
- Chao-Wen Hsu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Veteran General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chia Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsing-Hao Su
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Guan-Jin Huang
- Department of Pathology, National Chung Kung University Hospital, Tainan, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tony Tong-Lin Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Wei Pan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Glaser ZA, Love HD, Guo S, Gellert L, Chang SS, Herrell SD, Barocas DA, Penson DF, Cookson MS, Clark PE. TPX2 as a prognostic indicator and potential therapeutic target in clear cell renal cell carcinoma. Urol Oncol 2017; 35:286-293. [PMID: 28108243 DOI: 10.1016/j.urolonc.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Our aims were to determine if targeting protein for Xklp2 (TPX2) is correlated with clear cell renal cell carcinoma (ccRCC) histology and oncologic outcomes using The Cancer Genome Atlas (TCGA) and an institutional tissue microarray (TMA). METHODS Clinicopathological data obtained from the TCGA consisted of 415 samples diagnosed with ccRCC. A TMA was constructed from tumors of 207 patients who underwent radical nephrectomy for ccRCC. TPX2 expression by immunohistochemistry on TMA was assessed by a genitourinary pathologist. Clinical data were extracted and linked to TMA cores. TPX2 and Aurora-A mRNA coexpression were evaluated in the TCGA cohort. Overall survival (OS), cancer-specific survival, and recurrence-free survival (RFS) were analyzed using the Kaplan-Meier method and log-rank statistics. Univariate and multivariate analyses were conducted using Cox proportional hazard models. RESULTS Median follow-up time for the TCGA cohort was 3.07 years. Aurora-A and TPX2 mRNA coexpression were significantly correlated (Pearson correlation = 0.918). High TPX2 mRNA expression was associated with advanced stage, metastasis, poor OS, and RFS. Median follow-up time for the TMA cohort was 5.3 years. Elevated TPX2 protein expression, defined as greater than 75th percentile staining intensity, was identified in 47/207 (22.7%) patients. Increased TPX2 immunostaining was associated with poor OS (P = 0.0327, 53% 5-year mortality), cancer-specific survival (P<0.01, 47.8% 5-year cancer-specific mortality), RFS (P = 0.0313, 73.6%, 5-year recurrence rate), grade, T stage, and metastasis. Multivariate analysis demonstrated elevated expression served as an independent predictor of RFS (hazard ratio = 3.62 (1.13-11.55), P = 0.029). CONCLUSIONS We show TPX2, a regulator of Aurora-A, is associated with high grade and stage of ccRCC, and is an independent predictor of recurrence. Future studies are warranted testing its role in ccRCC biology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zachary A Glaser
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN.
| | - Harold D Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Shunhua Guo
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN
| | - Lan Gellert
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN
| | - Sam S Chang
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Stanley Duke Herrell
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel A Barocas
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - David F Penson
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Michael S Cookson
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Peter E Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
38
|
Tomii C, Inokuchi M, Takagi Y, Ishikawa T, Otsuki S, Uetake H, Kojima K, Kawano T. TPX2 expression is associated with poor survival in gastric cancer. World J Surg Oncol 2017; 15:14. [PMID: 28069036 PMCID: PMC5223319 DOI: 10.1186/s12957-016-1095-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein required for microtubule formation in human cells. Several studies have demonstrated that TPX2 is overexpressed in multiple tumor types and promotes tumor growth and metastasis. However, there have been few reports regarding its role in gastric cancer. In this study, we evaluated TPX2 expression and investigated its correlations with gastric cancer clinicopathological features and prognosis. METHODS Tumor samples were obtained from 290 patients with gastric adenocarcinoma who had undergone gastrectomy. The expression of TPX2 protein was examined using immunohistochemical staining. TPX2 messenger RNA (mRNA) levels were evaluated using real-time quantitative reverse transcription PCR in 19 of the gastric cancer tumors and adjacent normal tissues. RESULTS The mRNA levels of TPX2 were significantly higher in gastric cancer tissues than in matched adjacent normal tissues (p = 0.004). In the immunohistochemical analysis, TPX2 overexpression was found in 123 (42.4%) of 290 patients. High TPX2 expression was positively associated with age, type of histology, depth of tumor, lymph node metastasis, stage, and remote metastasis or recurrence. High TPX2 expression was significantly associated with poorer disease-specific survival (p = 0.004) and relapse-free interval (p = 0.013). CONCLUSIONS Our results indicated that high TPX2 expression was associated with tumor progression and poor survival in gastric cancer.
Collapse
Affiliation(s)
- Chiharu Tomii
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Mikito Inokuchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Yoko Takagi
- Department of Surgical Specialties, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Surgical Specialties, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Otsuki
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hiroyuki Uetake
- Department of Surgical Specialties, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
39
|
Profiling DNA damage response following mitotic perturbations. Nat Commun 2016; 7:13887. [PMID: 27976684 PMCID: PMC5172227 DOI: 10.1038/ncomms13887] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/09/2016] [Indexed: 01/01/2023] Open
Abstract
Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude and dynamics of DNA breakage associated with mitotic aberrations and suggest that replication stress might limit propagation of cells with abnormal karyotypes.
DNA damage arising from replication stress is well studied, but the effect of mitotic errors on genome integrity is less understood. Here the authors knock down 47 mitotic regulators and record how they impact on DNA breakage events, providing a resource for future studies on the relation between cell division and genome integrity.
Collapse
|
40
|
Liang B, Zheng W, Fang L, Wu L, Zhou F, Yin X, Yu X, Zou Z. Overexpressed targeting protein for Xklp2 (TPX2) serves as a promising prognostic marker and therapeutic target for gastric cancer. Cancer Biol Ther 2016; 17:824-32. [PMID: 27314162 DOI: 10.1080/15384047.2016.1195046] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a putative oncogene in different human cancers. This study assessed TPX2 expression in gastric cancer tissue samples and then determined the effects of TPX2 knockdown on the regulation of gastric cancer cell malignant behaviors in vitro. Tissue samples from 115 gastric cancer patients were analyzed for TPX2 expression. The effects of TPX2 siRNA on gastric cancer cells were assessed in vitro, including cell viability, cell cycle distribution, apoptosis, migration, and invasion. The data showed that TPX2 was overexpressed in gastric cancer tissues compared to that in the adjacent normal epithelia. Moreover, TPX2 overexpression was associated with a poor overall survival and was an independent prognostic predictor of gastric cancer. In addition, the in vitro study further confirmed the ex vivo data, i.e., knockdown of TPX2 expression reduced gastric cancer cell viability but induced apoptosis and arrested cells at the G2/M phase of the cell cycle. Knockdown of TPX2 expression also inhibited the tumor cell migration and invasion capacity in vitro. At the gene level, knockdown of TPX2 expression upregulated the levels of cyclin B1, cdk4, p53, Bax, caspase-3, and E-cadherin, but downregulated the levels of cyclin D1, cdk2, N-cadherin, slug, matrix metalloprotease (MMP)-2, and MMP-9, suggesting that knockdown of TPX2 expression suppressed tumor cell epithelial-mesenchymal transition (EMT). This study demonstrated that detection of TPX2 overexpression could serve as a prognostic marker and therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Bo Liang
- a Department of General Surgery , The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Wenjuan Zheng
- b Jiangxi Provincial Center for Disease Control and Prevention , Nanchang , Jiangxi , China
| | - Lu Fang
- a Department of General Surgery , The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Linquan Wu
- a Department of General Surgery , The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Fan Zhou
- a Department of General Surgery , The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Xiangbao Yin
- a Department of General Surgery , The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Xin Yu
- a Department of General Surgery , The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| | - Zhenhong Zou
- a Department of General Surgery , The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , China
| |
Collapse
|
41
|
Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, Guthke R, Cellerino A, Platzer M, Diekmann S, Hemmerich P. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS One 2016; 11:e0154531. [PMID: 27140416 PMCID: PMC4854426 DOI: 10.1371/journal.pone.0154531] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence correlates with changes in the transcriptome. To obtain a complete view on senescence-associated transcription networks and pathways, we assessed by deep RNA sequencing the transcriptomes of five of the most commonly used laboratory strains of human fibroblasts during their transition into senescence. In a number of cases, we verified the RNA-seq data by real-time PCR. By determining cellular protein levels we observed that the age-related expression of most but not all genes is regulated at the transcriptional level. We found that 78% of the age-affected differentially expressed genes were commonly regulated in the same direction (either up- or down-regulated) in all five fibroblast strains, indicating a strong conservation of age-associated changes in the transcriptome. KEGG pathway analyses confirmed up-regulation of the senescence-associated secretory phenotype and down-regulation of DNA synthesis/repair and most cell cycle pathways common in all five cell strains. Newly identified senescence-induced pathways include up-regulation of endocytotic/phagocytic pathways and down-regulation of the mRNA metabolism and the mRNA splicing pathways. Our results provide an unprecedented comprehensive and deep view into the individual and common transcriptome and pathway changes during the transition into of senescence of five human fibroblast cell strains.
Collapse
Affiliation(s)
- S. Marthandan
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- * E-mail:
| | - M. Baumgart
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Priebe
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - M. Groth
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - J. Schaer
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - C. Kaether
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - R. Guthke
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - A. Cellerino
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- Laboratory of NeuroBiology, Scuola Normale Superiore, Pisa, Italy
| | - M. Platzer
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Diekmann
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - P. Hemmerich
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| |
Collapse
|
42
|
Sun X, Clermont PL, Jiao W, Helgason CD, Gout PW, Wang Y, Qu S. Elevated expression of the centromere protein-A(CENP-A)-encoding gene as a prognostic and predictive biomarker in human cancers. Int J Cancer 2016; 139:899-907. [PMID: 27062469 DOI: 10.1002/ijc.30133] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023]
Abstract
Centromere protein-A (CENP-A), a histone-H3 variant, plays an essential role in cell division by ensuring proper formation and function of centromeres and kinetochores. Elevated CENP-A expression has been associated with cancer development. This study aimed to establish whether elevated CENP-A expression can be used as a prognostic and predictive cancer biomarker. Molecular profiling of CENP-A in human cancers was investigated using genomic, transcriptomic and patient information from databases, including COSMIC, Oncomine, Kaplan-Meier plotter and cBioPortal. A network of CENP-A co-expressed genes was derived from cBioPortal and analyzed using Ingenuity Pathway Analysis (IPA) and Oncomine protocols to explore the function of CENP-A and its predictive potential. Transcriptional and post-transcriptional regulation of CENP-A expression was analyzed in silico. It was found that CENP-A expression was elevated in 20 types of solid cancer compared with normal counterparts. Elevated CENP-A expression highly correlated with cancer progression and poor patient outcome. Genomic analysis indicated that the elevated CENP-A expression was not due to alterations in the sequence or copy number of the CENP-A gene. Furthermore, CENP-A can be regulated by key oncogenic proteins and tumor-suppressive microRNAs. CENP-A co-expression network analysis indicated that CENP-A function is associated with cell cycle progression. Oncomine analysis showed a strong correlation between elevated CENP-A expression and oncolytic response of breast cancer patients to taxane-based chemotherapy. In conclusion, elevated CENP-A expression is coupled to malignant progression of numerous types of cancer. It may be useful as a biomarker of poor patient prognosis and as a predictive biomarker for taxane-based chemotherapy.
Collapse
Affiliation(s)
- Xia Sun
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Pier-Luc Clermont
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Wenlin Jiao
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheryl D Helgason
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Center, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sifeng Qu
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Center, Vancouver, BC, Canada
| |
Collapse
|
43
|
Garrido G, Vernos I. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Front Oncol 2016; 6:88. [PMID: 27148480 PMCID: PMC4831974 DOI: 10.3389/fonc.2016.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.
Collapse
Affiliation(s)
- Georgina Garrido
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
44
|
Roostalu J, Cade NI, Surrey T. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat Cell Biol 2015; 17:1422-34. [PMID: 26414402 PMCID: PMC4826748 DOI: 10.1038/ncb3241] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/21/2015] [Indexed: 01/28/2023]
Abstract
Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.
Collapse
Affiliation(s)
- Johanna Roostalu
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Nicholas I. Cade
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Thomas Surrey
- The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| |
Collapse
|
45
|
Gupta A, Jain R, Wahi D, Goyal S, Jamal S, Grover A. Abrogation of AuroraA-TPX2 by novel natural inhibitors: molecular dynamics-based mechanistic analysis. J Recept Signal Transduct Res 2015; 35:626-33. [PMID: 26390942 DOI: 10.3109/10799893.2015.1041645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Cancer is characterized by uncontrolled cell growth and genetic instabilities. The human Aurora-A kinase protein plays a crucial role in spindle assembly during mitosis and is activated by another candidate oncogene, targeting protein for Xklp2 (TPX2). It has been proposed that dissociation of Aurora A-TPX2 complex leads to disruption of mitotic spindle apparatus, thereby preventing cell division and further tumor growth. MATERIALS AND METHODS A large natural compound library was docked against the active site of Aurora A-TPX2 complex. The protein-ligand complexes were subjected to molecular dynamics simulation to ascertain their binding stability. The drug properties of the compounds were analyzed to observe their drug-like properties. RESULTS The virtual screening of natural compound library yielded two high scoring compounds, the first compound CTOM [ZINC ID: 38143674] (Glide score: -9.49) was stable for 17 ns while the second TTOM (Glide score: -9.07) was stable for 15 ns. While CTOM interacted with His280, Thr288 of Aurora A and Tyr34, Lys38 of TPX2, TTOM interacted with Arg285 and Arg286 in addition to the residues involved with CTOM. CONCLUSIONS We report two natural compounds as potential drugs leads for the disruption of this complex. These ligands show a preferable docking score and have many drugs like properties within in the range of 95% of known drugs. The study provides evidence that CTOM and TTOM can efficiently inhibit the TPX2-mediated activation of Aurora A. Thus, it paves way for an elaborate investigation and establishes the importance of computational approaches as time- and cost-effective techniques.
Collapse
Affiliation(s)
- Ankita Gupta
- a Department of Biotechnology , Delhi Technological University , New Delhi , India and
| | - Ritu Jain
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Divya Wahi
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Sukriti Goyal
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Salma Jamal
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| | - Abhinav Grover
- b School of Biotechnology, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
46
|
Liang B, Jia C, Huang Y, He H, Li J, Liao H, Liu X, Liu X, Bai X, Yang D. TPX2 Level Correlates with Hepatocellular Carcinoma Cell Proliferation, Apoptosis, and EMT. Dig Dis Sci 2015; 60:2360-72. [PMID: 26025609 DOI: 10.1007/s10620-015-3730-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/23/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Targeting protein for Xklp2 (TPX2) is a microtubule-associated protein involved in targeting the motor protein Xklp2 to microtubules. TPX2 overexpression plays a key role in the progression of human cancers. But the underlying mechanism remains unclear. AIMS This study aimed to investigate the effects and mechanisms of TPX2 on the cell cycle, apoptosis, and epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC). METHODS The tissue TPX2 mRNA and protein were assessed by quantitative reverse transcriptase PCR and immunoblot. Cell proliferation, cell cycle, apoptosis, and invasion were determined by CCK-8, FACS, TdT-UTP nick end-labeling, and transwell assays. Immunoblotting was performed to detect the expression of target proteins. RESULTS TPX2 was highly expressed in tumor tissues compared with non-tumoral tissues, and TPX2 overexpression was positively correlated with poor prognosis. Knockdown TPX2 effectively reduced cell growth, G2/M arrest, induced apoptosis and cell death, and inhibited EMT. Mechanistically, in the TPX2-siRNA-treated groups, cell-cycle-related proteins cyclin A1, cyclin B1, cyclin E1, and cdk4 were up-regulated, while cyclin D1, cdk2, and p21 proteins were down-regulated. Cell-apoptosis-related proteins Bax, p53, caspase-3, and caspase-8 levels were increased. EMT-related proteins E-cadherin was up-regulated, while N-cadherin, β-catenin, MMP-9, MMP-2, and Slug were down-regulated. We also found that knockdown TPX2 in HCC cell lines caused a significant decrease in the level of p-Akt and p-ERK which are important signaling pathways in tumor formation. CONCLUSIONS TPX2 expression is associated with proliferation, apoptosis, and EMT in hepatocellular carcinoma cell and patients.
Collapse
Affiliation(s)
- Bo Liang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Claudia D. Andl
- Departments of Surgery and Cancer Biology, Vanderbilt
University Medical Center, Nashville, TN, USA,Digestive Disease Research Center, Vanderbilt University
Medical Center, Nashville, TN, USA,Vanderbilt Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Shim SY, Perez de Castro I, Neumayer G, Wang J, Park SK, Sanada K, Nguyen MD. Phosphorylation of targeting protein for Xenopus kinesin-like protein 2 (TPX2) at threonine 72 in spindle assembly. J Biol Chem 2015; 290:9122-34. [PMID: 25688093 DOI: 10.1074/jbc.m114.591545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 12/23/2022] Open
Abstract
The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr(72)) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr(72), we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr(72) does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr(72) regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.
Collapse
Affiliation(s)
- Su Yeon Shim
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1
| | - Ignacio Perez de Castro
- the Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Gernot Neumayer
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1
| | - Jian Wang
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1
| | - Sang Ki Park
- the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- the Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Minh Dang Nguyen
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1,
| |
Collapse
|
49
|
Verit FF, Yucel O. Endometriosis, leiomyoma and adenomyosis: the risk of gynecologic malignancy. Asian Pac J Cancer Prev 2015; 14:5589-97. [PMID: 24289548 DOI: 10.7314/apjcp.2013.14.10.5589] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The aim of this review article was to evaluate the relationship and the possible etiological mechanisms between endometriosis, leiomyoma (LM) and adenomyosis and gynecological cancers, such as ovarian and endometrial cancer and leiomyosarcoma (LMS). MEDLINE was searched for all articles written in the English literature from July 1966 to May 2013. Reports were collected systematically and all the references were also reviewed. Malignant transformation of gynecologic benign diseases such as endometriosis, adenomyosis and LM to ovarian and endometrial cancer remains unclear. Hormonal factors, inflammation, familial predisposition, genetic alterations, growth factors, diet, altered immune system, environmental factors and oxidative stress may be causative factors in carcinogenesis. Early menarche, low parity, late menopause and infertility have also been implicated in the pathogenesis of these cancers. Ovarian cancers and endometriosis have been shown to have common genetic alterations such as loss of heterozygosity (LOH), PTEN, p53, ARID1A mutations. MicroRNAs have also been implicated in malignant transformation. Inflammation releases proinflammatory cytokines, and activates tumor associated macrophages (TAMS) and nuclear factor kappa b (NF-KB) signaling pathways that promote genetic mutations and carcinogenesis. MED12 mutations in LM and smooth muscle tumors of undetermined malignant potential (STUMP) may contribute to malignant transformation to LMS. A hyperestrogenic state may be shared in common with pathogenesis of adenomyosis, LM and endometrial cancer. However, the effect of these benign gynecologic diseases on endometrial cancer should be studied in detail. This review study indicates that endometriosis, LM, adenomyosis may be associated with increased risk of gynecological cancers such as endometrial and ovarian cancers. The patients who have these gynecological benign diseases should be counseled about the future risks of developing cancer. Further studies are needed to investigate the relationship between STUMPs, LMS and LM and characteristics and outcome endometrial carcinoma in adenomyotic patients.
Collapse
Affiliation(s)
- Fatma Ferda Verit
- Department of Obstetrics and Gynecology, Research and Training Hospital, Infertility Research and Treatment Center, Suleymaniye Maternity, Istanbul, Turkey E-mail :
| | | |
Collapse
|
50
|
Cocchiola R, Grillo C, Altieri F, Chichiarelli S, Turano C, Eufemi M. Upregulation of TPX2 by STAT3: identification of a novel STAT3 binding site. PLoS One 2014; 9:e113096. [PMID: 25401333 PMCID: PMC4234655 DOI: 10.1371/journal.pone.0113096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/19/2014] [Indexed: 11/18/2022] Open
Abstract
TPX2, a protein involved in mitosis, is considered a good marker for actively proliferating tissues, highly expressed in a number of cancer cells. We show the presence of high-affinity binding site for STAT3 in the 5'-flanking region of the Tpx2 gene, which is in vivo bound by activated STAT3. A specific STAT3 peptide inhibitor represses the expression of the Tpx2 gene and inhibits the binding of STAT3 to its consensus sequence in human cell lines where STAT3 is activated. These results indicate that activated STAT3 contributes to the over-expression of Tpx2 through the binding to an enhancer site.
Collapse
Affiliation(s)
- Rossana Cocchiola
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Caterina Grillo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Silvia Chichiarelli
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Carlo Turano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Roma, Italy
- * E-mail:
| |
Collapse
|