1
|
Kong J, Yao ZC, Stelzel JL, Yang YH, Chen J, Feng H, Schmidt C, Zhang C, Krishnan K, Chen L, Pan J, Ding K, Zhu Y, Li X, Doloff JC, Mao HQ, Reddy SK. Granular Nanofiber-Hydrogel Composite-Programmed Regenerative Inflammation and Adipose Tissue Formation. Adv Healthc Mater 2024:e2403094. [PMID: 39580666 DOI: 10.1002/adhm.202403094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/04/2024] [Indexed: 11/26/2024]
Abstract
The interplay between biomaterials and host immune responses critically determines outcomes in tissue restoration. Recent studies suggest that physicochemical properties of materials can dictate pro-regenerative versus pro-fibrotic responses and have begun to define the key immune cell types and signals governing these divergent effects. This emerging understanding enables the engineering of regenerative biomaterials capable of functional restoration in situ. An injectable nanofiber-hydrogel composite (NHC) microparticles are designed and constructed from cross-linked electrospun collagen nanofiber fragments surface-bonded to the hyaluronic acid hydrogel network via covalent conjugation during the cross-linking process. The collagen nanofiber fragments, acting as the structural reinforcement component, increased the overall storage modulus of the NHC to a level comparable to native soft tissues while maintaining a sufficiently high degree of porosity of the hydrogel phase to allow host cell infiltration following subcutaneous injection of the NHC microparticles. More importantly, the NHC promoted macrophage/monocyte infiltration, migration, and spreading, sustained cell recruitment over time, and enhanced the proangiogenic effect and recruitment of PDGFRα+ perivascular progenitor cells, leading to extensive adipose tissue remodeling. This study demonstrates the regenerative potential of the injectable NHC microgels as an off-the-shelf solution for devastating soft tissue losses.
Collapse
Affiliation(s)
- Jiayuan Kong
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhi-Cheng Yao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jessica L Stelzel
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yueh-Hsun Yang
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jeffrey Chen
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hexiang Feng
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Collin Schmidt
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chi Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kedar Krishnan
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Long Chen
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, P. R. China
| | - Jingwen Pan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kailei Ding
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yining Zhu
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaowei Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua C Doloff
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sashank K Reddy
- Translational Tissue Engineering Centre, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
2
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. Polyelectrolyte nanofilms on cell surface can induce brown adipogenic differentiation of DFATs. Biochem Biophys Res Commun 2024; 733:150432. [PMID: 39043001 DOI: 10.1016/j.bbrc.2024.150432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Obesity and its related health issues significantly burden public health systems. Brown adipose tissue holds promise for addressing metabolic disorders and balancing the body's energy, making it a key research focus. Stimulating brown adipogenesis from stem cells could advance regenerative medicine and healthcare. In our previous research, we discovered that poly-l-lysine (PLL) significantly stimulates brown adipogenesis in three-dimensional differentiation of dedifferentiated fat cells (DFATs) within fibrin gels. In this study, we evaluated polyelectrolyte (PE) nanofilms made of PLL and dextran sulfate, applied directly to DFAT surfaces to improve brown adipogenic differentiation through an innovative approach. This approach involved coating the DFAT surfaces with PE nanofilms, forming a multilayer structure that not only provided a supportive matrix but also facilitated the adsorption of essential molecules like T3 and insulin for brown adipogenesis. DFATs coated with three PE layers and encapsulated in fibrin gel showed a significant increase in the adipogenic marker UCP1 gene expression and content. This PLL-based PE nanofilm coating on DFAT surfaces can be a novel and crucial technology for promoting brown adipogenesis in regenerative medicine and healthcare.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Osaka University, Japan; Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan.
| |
Collapse
|
3
|
Hutomo DI, Deandra FA, Ketherin K, García-Gareta E, Bachtiar EW, Amir L, Tadjoedin FM, Widaryono A, Haerani N, Lessang R, Soeroso Y. The Effect of Carbodiimide Crosslinkers on Gelatin Hydrogel as a Potential Biomaterial for Gingival Tissue Regeneration. Gels 2024; 10:674. [PMID: 39590030 PMCID: PMC11593530 DOI: 10.3390/gels10110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Connective tissue grafts for gingival recession treatment present significant challenges as they require an additional surgical site, leading to increased morbidity, extended operative times, and a more painful postoperative recovery for patients. Gelatin contains the arginine-glycine-aspartic acid (RGD) sequence, which supports cell adhesion and interactions. The development of gelatin hydrogels holds significant promise due to their biocompatibility, ease of customization, and structural resemblance to the extracellular matrix, making them a potential candidate for gingival regeneration. This study aimed to assess the physical and biological properties of crosslinked gelatin hydrogels using EDC/NHS with two crosslinker concentrations (GelCL12 and GelCL24) and compare these to non-crosslinked gelatin. Both groups underwent morphological, rheological, and chemical analysis. Biological assessments were conducted to evaluate human gingival fibroblast (HGF) proliferation, migration, and COL1 expression in response to the scaffolds. The crosslinked gelatin group exhibited greater interconnectivity and better physical characteristics without displaying cytotoxic effects on the cells. FTIR analysis revealed no significant chemical differences between the groups. Notably, the GelCL12 group significantly enhanced HGF migration and upregulated COL1 expression. Overall, GelCL12 met the required physical characteristics and biocompatibility, making it a promising scaffold for future gingival tissue regeneration applications.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia;
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Aragon Institute of Health Research (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain;
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6DE, UK
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Fatimah Maria Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Adityo Widaryono
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Robert Lessang
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| |
Collapse
|
4
|
Ma X, Yue Q, Fu S, Liu C, Luan J. Decellularized adipose-derived matrix from Superficial layers of abdominal adipose tissue exhibits superior capacity of adipogenesis compared to deep layers. Mater Today Bio 2024; 28:101235. [PMID: 39318374 PMCID: PMC11421347 DOI: 10.1016/j.mtbio.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
The adipogenic property of decellularized adipose-derived matrix (DAM) varies widely across reports, making it difficult to make a horizontal comparison between reports and posing challenges for the stable clinical translation of DAM. It is possibly due to differences in donor characteristics, but the exact relationship remains unclear. Despite extensive research on the differences between superficial and deep layers of abdominal subcutaneous fat, a main donor of DAM, little is known about their extracellular matrix (ECM) which is promising in regenerative medicine. In this study, we first confirmed the distinct compositional profiles and adipogenic potential between superficial and deep DAM (S-DAM and D-DAM). Both in vitro and in vivo assays confirmed superior adipogenic induction potential in S-DAM over D-DAM. Total amounts of ECM proteins like collagen and laminin were similar, however, the predominant types differed, with collagen I dominating S-DAM and collagen XIV prevailing in D-DAM. S-DAM was enriched with mitochondrial and immunological proteins, whereas D-DAM featured more neuronal, vascular, muscular, and endocrine-related proteins. More proteins involved in mRNA processing were found in D-DAM, with Protein-Protein Interaction (PPI) analysis revealing HNRNPA2B1, HNRNPA1, and HNRNPC as the most tightly interacting members. These findings not only deepen our comprehension of the structural and functional heterogeneity of adipose tissues but also become one of the reason for the large variability between batches of DAM products, providing guidance for constructing more efficient and stable bio-scaffolds.
Collapse
Affiliation(s)
- Xiaomu Ma
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Qiang Yue
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Su Fu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Chunjun Liu
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| | - Jie Luan
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 10014, China
| |
Collapse
|
5
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
6
|
Zambuto SG, Kolluru SS, Hamdaoui A, Mascot AM, Sutcliffe SS, Lowder JL, Oyen ML. Vaginal Tissue Engineering via Gelatin-Elastin Fiber-Reinforced Hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611932. [PMID: 39314486 PMCID: PMC11419003 DOI: 10.1101/2024.09.09.611932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The vagina is a fibromuscular tube-shaped organ spanning from the hymenal ring to the cervix that plays critical roles in menstruation, pregnancy, and female sexual health. Vaginal tissue constituents, including cells and extracellular matrix components, contribute to tissue structure, function, and prevention of injury. However, much microstructural function remains unknown, including how the fiber-cell and cell-cell interactions influence macromechanical properties. A deeper understanding of these interactions will provide critical information needed to reduce and prevent vaginal injuries. Our objectives for this work herein are to first engineer a suite of biomaterials for vaginal tissue engineering and second to characterize the performance of these biomaterials in the vaginal microenvironment. We successfully created fiber-reinforced hydrogels of gelatin-elastin electrospun fibers infiltrated with gelatin methacryloyl hydrogels. These composites recapitulate vaginal material properties, including stiffness, and are compatible with the vaginal microenvironment: biocompatible with primary vaginal epithelial cells and in acidic conditions. This work significantly advances progress in vaginal tissue engineering by developing novel materials and developing a state-of-the-art tissue engineered vagina.
Collapse
|
7
|
Tewelde Hailu G, Lemessa F, Tesfaye Alemea M. Development and characterization of flaxseed mucilage and elastin/collagen biofilms. Heliyon 2024; 10:e35396. [PMID: 39170465 PMCID: PMC11336621 DOI: 10.1016/j.heliyon.2024.e35396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Flaxseed mucilage (FSM)-based biofilms were prepared with varying compositions of the elastin/collagen (ELN/COL) protein matrix. These biofilms were characterized by using fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), and X-ray diffraction (XRD). The thickness, water solubility, moisture content, transparency, and mechanical properties of biofilms were investigated. The biofilms were observed to be homogeneous and flexible. The addition of 40 % w/w ELN/COL to the FSM biofilms (FSM-ELN/COL biofilms) enhanced the thickness from 0.127 to 0.142 mm, water solubility from 59.30 to 84.60 % and elongation at break from 91.4 to 188.6 %. However, the reductions in the tensile strength from 6.56 to 4.69 MPa and melting point from 140 °C to 134 °C of the biofilms were observed. The transparency value of 40 % w/w FSM-ELN/COL biofilms increased from 5.42 to 7.19 due to the presence of ELN/COL within the FSM matrix that hinders the light transmission passing through the biofilm. FTIR and XRD tests indicated hydrogen bonding and electrostatic interactions occurred between FSM and ELN/COL, giving rise to a good compatibility of the system. FSM-ELN/COL biofilms fabricated in this work had appropriate mechanical and thermal stability, thus the promising potential to be employed as food packaging and coating.
Collapse
Affiliation(s)
- Genet Tewelde Hailu
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Fekadu Lemessa
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Melakuu Tesfaye Alemea
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
8
|
Sawadkar P, Mandakhbayar N, Patel KD, Owji N, Rajasekar P, Sarama R, Lee JH, Kim HW, Knowles J, García-Gareta E. 3D Porous Binary Composites of Collagen, Elastin, and Fibrin Proteins Orchestrate Adipose Tissue Regeneration. Macromol Biosci 2024; 24:e2400073. [PMID: 38806184 DOI: 10.1002/mabi.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The objective for this study is to advance the development of a specialized biomaterial that can effectively facilitate the regeneration of adipose tissue. In prior studies, the assessment of collagen (Col), elastin (Ela), and fibrin (Fib) unary scaffolds has been conducted. However, it is important to note that native adipose tissue is comprised of a diverse array of extracellular matrix (ECM) constituents. To mimic this behavior, binary compositions of collagen, elastin, and fibrin are fabricated in a 1:1 ratio, resulting in the formation of Col/Ela, Col/Fib, and Ela/Fib composites through a customized fabrication procedure. The physical properties of these scaffolds are comprehensively analyzed using a range of material characterization techniques. Additionally, the biological properties of the scaffolds are investigated by examining the survival, proliferation, and phenotype of adipose-derived stem cells. Subsequently, the aforementioned binary scaffolds are implanted into a rodent model for 28 days. the explants are analysed through X-ray microtomography, histology, and immunohistochemistry. The findings of the study demonstrate that the utilization of binary combinations of Col/Ela, Col/Fib, and Ela/Fib has a discernible impact on the physical and biological characteristics of the scaffolds. Nevertheless, Ela/Fib exhibits characteristics that make it a suitable candidate for adipogenesis due to its notable upregulation of caveolin-1 expression in both acellular and cellular cohorts. The combination of two natural polymers in this cell-material interaction has significantly enhanced the comprehension of adipogenesis.
Collapse
Affiliation(s)
- Prasad Sawadkar
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
- Regenerative Biomaterials Group, The RAFT Institute at The Griffin Institute, Northwick Park & Saint Mark's Hospitals, London, HA1 3UJ, UK
- Division of Surgery and Interventional Science, University College London, London, WC1E 6BT, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31114, Republic of Korea
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D Patel
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31114, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, WC1E 6BT, UK
| | - Nazanin Owji
- Regenerative Biomaterials Group, The RAFT Institute at The Griffin Institute, Northwick Park & Saint Mark's Hospitals, London, HA1 3UJ, UK
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, WC1E 6BT, UK
| | - Poojitha Rajasekar
- Division of Respiratory Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Roudin Sarama
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Jung-Hwan Lee
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31114, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31114, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jonathan Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31114, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, WC1E 6BT, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute at The Griffin Institute, Northwick Park & Saint Mark's Hospitals, London, HA1 3UJ, UK
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, WC1E 6BT, UK
- Multiscale in Mechanical & Biological Engineering Research Group, Aragón Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragón, 50018, Spain
| |
Collapse
|
9
|
Idriss H, Kutová A, Rimpelová S, Elashnikov R, Kolská Z, Lyutakov O, Švorčík V, Slepičková Kasálková N, Slepička P. Polymer-Metal Bilayer with Alkoxy Groups for Antibacterial Improvement. Polymers (Basel) 2024; 16:508. [PMID: 38399886 PMCID: PMC10892951 DOI: 10.3390/polym16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent. The surface morphology of the created composites was studied by various microscopy methods, and their surface area and porosity were determined by adsorption/desorption nitrogen isotherms. The surface chemical composition was also examined by various spectroscopy techniques and electrokinetic analysis. The distribution of elements on the surface was determined, and the successful bonding of the metal/alloys on one side with the polymer on the other by alkoxy amine was confirmed. The composites show significantly increased hydrophilicity, reliable chemical stability of the bonding, even interaction with solvent for thirty cycles, and up to 95% less bacterial adhesion for the modified samples in comparison with pristine samples, i.e., characteristics that are promising for their application in the biomedical field, such as for implants, prosthetics, etc. All this uses universal, two-step procedures with minimal use of energy and the possibility of production on a mass scale.
Collapse
Affiliation(s)
- Hazem Idriss
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Anna Kutová
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Roman Elashnikov
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Zdeňka Kolská
- Faculty of Science, J. E. Purkyně University, 400 96 Usti nad Labem, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Petr Slepička
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Cheng HY, Anggelia MR, Liu SC, Lin CF, Lin CH. Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells by Hydrogel Encapsulation. Cells 2024; 13:210. [PMID: 38334602 PMCID: PMC10854565 DOI: 10.3390/cells13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) showcase remarkable immunoregulatory capabilities in vitro, positioning them as promising candidates for cellular therapeutics. However, the process of administering MSCs and the dynamic in vivo environment may impact the cell-cell and cell-matrix interactions of MSCs, consequently influencing their survival, engraftment, and their immunomodulatory efficacy. Addressing these concerns, hydrogel encapsulation emerges as a promising solution to enhance the therapeutic effectiveness of MSCs in vivo. Hydrogel, a highly flexible crosslinked hydrophilic polymer with a substantial water content, serves as a versatile platform for MSC encapsulation. Demonstrating improved engraftment and heightened immunomodulatory functions in vivo, MSCs encapsulated by hydrogel are at the forefront of advancing therapeutic outcomes. This review delves into current advancements in the field, with a focus on tuning various hydrogel parameters to elucidate mechanistic insights and elevate functional outcomes. Explored parameters encompass hydrogel composition, involving monomer type, functional modification, and co-encapsulation, along with biomechanical and physical properties like stiffness, viscoelasticity, topology, and porosity. The impact of these parameters on MSC behaviors and immunomodulatory functions is examined. Additionally, we discuss potential future research directions, aiming to kindle sustained interest in the exploration of hydrogel-encapsulated MSCs in the realm of immunomodulation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shiao-Chin Liu
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Fan Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Feng J, Qi J, Fu S, Luan J. Effect of radiation sterilization on the ability to induce adipose regeneration in vivo in decellularized adipose-derived matrix. Biotechnol J 2023; 18:e2300098. [PMID: 37449520 DOI: 10.1002/biot.202300098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Decellularized adipose-derived matrix (DAM), a biological scaffold that can induce adipose regeneration. The balance between its sterilization efficiency and its ability to maintain in situ adipose regeneration should be considered in terminal sterilization. The purpose of this study was to investigate the effects of radiation sterilization of cobalt-60 (60 Co)with different doses on adipogenesis induced by different forms of DAM, so as to reduce radiation dose under the premise of safe and effective sterilization and ensure adipogenesis induced by DAM in vivo. METHODS High dose (25 kGy) and low dose (5 kGy) radiation were used to sterilize freeze-dried and wet DAM, respectively. The sterilization efficiency, macro and micro characteristics, mechanical and mechanical properties of DAM were compared, and then implanted into the immunocompromised mice to evaluate the adipose regeneration. RESULTS Under the two radiation doses, no microbial growth was found in the freeze-dried and wet DAM sterility tests, and no significant changes were observed in the macro and micro structures. In terms of mechanical properties, the elastic modulus of high dose freeze-dried DAM decreased significantly (p < 0.001). In vivo animal experiments, the freeze-dried DAM irradiated with high dose almost completely lost its function of adipogenesis in vivo. Although the wet DAM irradiated with high dose could induce fat regeneration in the early stage, the adipocyte deformation and atrophy appeared in the later stage. The freeze-dried and wet DAM after low dose irradiation was similar to the wet DAM without irradiation in the blank control, which could maintain excellent adipogenic and angiogenic functions in vivo. CONCLUSION High dose 60 Co irradiation can completely destroy the ability of freeze-dried DAM to induce adipose regeneration in situ, while low dose irradiation (5 kGy) can effectively sterilize the DAM without damaging in vivo induced adipose regeneration. Radiation has more damage to freeze-dried DAM than wet DAM in adipogenesis properties.
Collapse
Affiliation(s)
- Jiayi Feng
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Qi
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su Fu
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Luan
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
de Moraes R, Plepis AMDG, Martins VDCA, Garcia CF, Galdeano EA, Maia FLM, Machado EG, Munhoz MDAES, Buchaim DV, Fernandes VAR, Beraldo RA, Buchaim RL, da Cunha MR. Viability of Collagen Matrix Grafts Associated with Nanohydroxyapatite and Elastin in Bone Repair in the Experimental Condition of Ovariectomy. Int J Mol Sci 2023; 24:15727. [PMID: 37958710 PMCID: PMC10649653 DOI: 10.3390/ijms242115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Bone lesions have the capacity for regeneration under normal conditions of the bone metabolism process. However, due to the increasing incidence of major traumas and diseases that cause bone-mineral deficiency, such as osteoporosis, scaffolds are needed that can assist in the bone regeneration process. Currently, natural polymeric scaffolds and bioactive nanoparticles stand out. Therefore, the objective of the study was to evaluate the osteoregenerative potential in tibiae of healthy and ovariectomized rats using mineralized collagen and nanohydroxyapatite (nHA) scaffolds associated with elastin. The in-vivo experimental study was performed with 60 20-week-old Wistar rats, distributed into non-ovariectomized (NO) and ovariectomized (O) groups, as follows: Controls (G1-NO-C and G4-O-C); Collagen with nHA scaffold (G2-NO-MSH and G5-O-MSH); and Collagen with nHA and elastin scaffold (G3-NO-MSHC and G6-O-MSHC). The animals were euthanized 6 weeks after surgery and the samples were analyzed by macroscopy, radiology, and histomorphometry. ANOVA and Tukey tests were performed with a 95% CI and a significance index of p < 0.05. In the histological analyses, it was possible to observe new bone formed with an organized and compact morphology that was rich in osteocytes and with maturity characteristics. This is compatible with osteoconductivity in both matrices (MSH and MSHC) in rats with normal conditions of bone metabolism and with gonadal deficiency. Furthermore, they demonstrated superior osteogenic potential when compared to control groups. There was no significant difference in the rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the immune response but negatively influenced the bone-defect repair process.
Collapse
Affiliation(s)
- Renato de Moraes
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil;
| | | | - Claudio Fernandes Garcia
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ewerton Alexandre Galdeano
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Marcelo de Azevedo e Souza Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | - Victor Augusto Ramos Fernandes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rodrigo Alves Beraldo
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| |
Collapse
|
13
|
Cui L, Zhao Y, Zhong Y, Zhang L, Zhang X, Guo Z, Wang F, Chen X, Tong H, Fan J. Combining decellularized adipose tissue with decellularized adventitia extravascular matrix or small intestinal submucosa matrix for the construction of vascularized tissue-engineered adipose. Acta Biomater 2023; 170:567-579. [PMID: 37683968 DOI: 10.1016/j.actbio.2023.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Adipose tissue is an endocrine organ. It serves many important functions, such as energy storage, hormones secretion, and providing insulation, cushioning and aesthetics to the body etc. Adipose tissue engineering offers a promising treatment for soft tissue defects. Early adipose tissue production and long-term survival are closely associated with angiogenesis. Decellularized matrix has a natural ECM (extracellular matrix) component, good biocompatibility, and low immunogenicity. Therefore, in this study, the injectable composite hydrogels were developed to construct vascularized tissue-engineered adipose by using the pro-angiogenic effects of aortic adventitia extravascular matrix (Adv) or small intestinal submucosa (SIS), and the pro-adipogenic effects of decellularized adipose tissue (DAT). The composite hydrogels were cross-linked by genipin. The adipogenic and angiogenic abilities of composite hydrogels were investigated in vitro, and in a rat dorsal subcutaneous implant model. The results showed that DAT and SIS or Adv 1:1 composite hydrogel promoted the migration and tube formation of endothelial cells. Furthermore, DAT and SIS or Adv 1:1 composite hydrogel enhanced adipogenic differentiation of adipose-derived mesenchymal stem cells (ASCs) through activation of PPARγ and C/EBPα. The in vivo studies further demonstrated that DAT with SIS or Adv in a 1:1 ratio also significantly promoted adipogenesis and angiogenesis. In addition, DAT with SIS or Adv in a 1:1 ratio hydrogel recruited macrophage population with enhanced M2-type macrophage polarization, suggesting a positive effect of inflammatory response on angiogenesis. In conclusion, these data suggest that the composite hydrogels of DAT with SIS or Adv in 1:1 ratio have apparent pro-adiogenic and angiogenic abilities, thus providing a promising cell-free tissue engineering biomaterial with broad clinical applications. STATEMENT OF SIGNIFICANCE: Decellularized adipose tissue (DAT) has emerged as an important biomaterial in adipose tissue regeneration. Early adipose tissue production and long-term survival is tightly related to the angiogenesis. The revascularization of the DAT is a key issue that needs to be solved in adipose regeneration. In this study, the injectable composite hydrogels were developed by using DAT with Adv (aortic adventitia extravascular matrix) or SIS (small intestinal submucosa) in different ratio. We demonstrated that the combination of DAT with SIS or Adv in 1:1 ratio effectively improved the proliferation of adipose stem cells and endothelial cells, and promoted greater adipose regeneration and tissue vascularization as compared to the DAT scaffold. This study provides the potential biomaterial for clinical soft tissue regeneration.
Collapse
Affiliation(s)
- Lu Cui
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Yujia Zhao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Yuxuan Zhong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Lanlan Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xinnan Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Zhenglong Guo
- Second Clinical Medical College, Shengjing Hospital, China Medical University, No.36 Sanhao Road, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin Chen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hao Tong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
14
|
Kyriakou S, Lubig A, Sandhoff CA, Kuhn Y, Jockenhoevel S. Influence of Diameter and Cyclic Mechanical Stimulation on the Beating Frequency of Myocardial Cell-Laden Fibers. Gels 2023; 9:677. [PMID: 37754359 PMCID: PMC10528042 DOI: 10.3390/gels9090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Atrioventricular block (AVB) is a severe disease for pediatric patients. The repetitive operations needed in the case of the pacemaker implantation to maintain the electrical signal at the atrioventricular node (AVN) affect the patient's life quality. In this study, we present a method of biofabrication of multi-cell-laden cylindrical fibrin-based fibers that can restore the electrical signal at the AVN. We used human umbilical vein smooth muscle cells (HUVSMCs), human umbilical vein endothelial cells (HUVECs) and induced pluripotent stem cell cardiomyocytes (iPSC-CMs) cultivated either statically or dynamically to mimic the native AVN. We investigated the influence of cell composition, construct diameter and cyclic stretch on the function of the fibrin hydrogels in vitro. Immunohistochemistry analyses showed the maturity of the iPSC-CMs in the constructs through the expression of sarcomeric alpha actinin (SAA) and electrical coupling through Connexin 43 (Cx43) signal. Simultaneously, the beating frequency of the fibrin hydrogels was higher and easy to maintain whereas the concentration of iPSC-CMs was higher compared with the other types of cylindrical constructs. In total, our study highlights that the combination of fibrin with the cell mixture and geometry is offering a feasible biofabrication method for tissue engineering approaches for the treatment of AVB.
Collapse
Affiliation(s)
- Stavroula Kyriakou
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Andreas Lubig
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Cilia A. Sandhoff
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Yasmin Kuhn
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
- AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Maastricht University, 186260 Geleen, The Netherlands
| |
Collapse
|
15
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
16
|
Pele KG, Amaveda H, Mora M, Marcuello C, Lostao A, Alamán-Díez P, Pérez-Huertas S, Ángeles Pérez M, García-Aznar JM, García-Gareta E. Hydrocolloids of Egg White and Gelatin as a Platform for Hydrogel-Based Tissue Engineering. Gels 2023; 9:505. [PMID: 37367175 DOI: 10.3390/gels9060505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Innovative materials are needed to produce scaffolds for various tissue engineering and regenerative medicine (TERM) applications, including tissue models. Materials derived from natural sources that offer low production costs, easy availability, and high bioactivity are highly preferred. Chicken egg white (EW) is an overlooked protein-based material. Whilst its combination with the biopolymer gelatin has been investigated in the food technology industry, mixed hydrocolloids of EW and gelatin have not been reported in TERM. This paper investigates these hydrocolloids as a suitable platform for hydrogel-based tissue engineering, including 2D coating films, miniaturized 3D hydrogels in microfluidic devices, and 3D hydrogel scaffolds. Rheological assessment of the hydrocolloid solutions suggested that temperature and EW concentration can be used to fine-tune the viscosity of the ensuing gels. Fabricated thin 2D hydrocolloid films presented globular nano-topography and in vitro cell work showed that the mixed hydrocolloids had increased cell growth compared with EW films. Results showed that hydrocolloids of EW and gelatin can be used for creating a 3D hydrogel environment for cell studies inside microfluidic devices. Finally, 3D hydrogel scaffolds were fabricated by sequential temperature-dependent gelation followed by chemical cross-linking of the polymeric network of the hydrogel for added mechanical strength and stability. These 3D hydrogel scaffolds displayed pores, lamellae, globular nano-topography, tunable mechanical properties, high affinity for water, and cell proliferation and penetration properties. In conclusion, the large range of properties and characteristics of these materials provide a strong potential for a large variety of TERM applications, including cancer models, organoid growth, compatibility with bioprinting, or implantable devices.
Collapse
Affiliation(s)
- Karinna Georgiana Pele
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Hippolyte Amaveda
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Mario Mora
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Fundación ARAID, 50018 Zaragoza, Aragon, Spain
| | - Pilar Alamán-Díez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Salvador Pérez-Huertas
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Andalusia, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London NW3 2PF, UK
| |
Collapse
|
17
|
Vach Agocsova S, Culenova M, Birova I, Omanikova L, Moncmanova B, Danisovic L, Ziaran S, Bakos D, Alexy P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4267. [PMID: 37374451 PMCID: PMC10301242 DOI: 10.3390/ma16124267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy.
Collapse
Affiliation(s)
- Sara Vach Agocsova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Martina Culenova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Ivana Birova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Leona Omanikova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Dusan Bakos
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| |
Collapse
|
18
|
Baptista LS, Silva KR, Jobeili L, Guillot L, Sigaudo-Roussel D. Unraveling White Adipose Tissue Heterogeneity and Obesity by Adipose Stem/Stromal Cell Biology and 3D Culture Models. Cells 2023; 12:1583. [PMID: 37371053 PMCID: PMC10296800 DOI: 10.3390/cells12121583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The immune and endocrine dysfunctions of white adipose tissue are a hallmark of metabolic disorders such as obesity and type 2 diabetes. In humans, white adipose tissue comprises distinct depots broadly distributed under the skin (hypodermis) and as internal depots (visceral). Depot-specific ASCs could account for visceral and subcutaneous adipose tissue properties, by regulating adipogenesis and immunomodulation. More importantly, visceral and subcutaneous depots account for distinct contributions to obesity and its metabolic comorbidities. Recently, distinct ASCs subpopulations were also described in subcutaneous adipose tissue. Interestingly, the superficial layer closer to the dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered as having inflammatory properties similar to visceral. The aim of this focus review is to bring the light of recent discoveries into white adipose tissue heterogeneity together with the biology of distinct ASCs subpopulations and to explore adipose tissue 3D models revealing their advantages, disadvantages, and contributions to elucidate the role of ASCs in obesity development. Recent advances in adipose tissue organoids opened an avenue of possibilities to recreate the main cellular and molecular events of obesity leading to a deep understanding of this inflammatory disease besides contributing to drug discovery. Furthermore, 3D organ-on-a-chip will add reproducibility to these adipose tissue models contributing to their translation to the pharmaceutical industry.
Collapse
Affiliation(s)
- Leandra S. Baptista
- Numpex-bio, Campus UFRJ Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240005, Brazil
| | - Karina R. Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550900, Brazil;
- Teaching and Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940070, Brazil
| | - Lara Jobeili
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| | - Lucile Guillot
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
- Urgo Research Innovation and Development, 21300 Chenôve, France
| | - Dominique Sigaudo-Roussel
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| |
Collapse
|
19
|
Dasgupta S, Gope A, Mukhopadhyay A, Kumar P, Chatterjee J, Barui A. Chitosan-collagen-fibrinogen uncrosslinked scaffolds possessing skin regeneration and vascularization potential. J Biomed Mater Res A 2023; 111:725-739. [PMID: 36573698 DOI: 10.1002/jbm.a.37488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Clinical success of regenerative medicine for treating deep-tissue skin injuries depends on the availability of skin grafts. Though bioengineered constructs are tested clinically, lack of neovascularization provide only superficial healing. Thus constructs, which promotes wound healing and supports vascularization has gained priority in tissue engineering. In this study, chitosan-collagen-fibrinogen (CCF) scaffold was fabricated using freeze-drying method without using any chemical crosslinkers. CCF scaffolds proved cytocompatibility and faster healing in in vitro scratch assay of primary human adult dermal fibroblasts cells with progressively increasing vascular endothelial growth factor-A and reducing vascular endothelial growth factor receptor 1 expressions. Skin regeneration evaluated on in vivo full thickness wound model confirmed faster remodeling with angiogenic signatures in CCF scaffold-implanted mice. Histopathological observations corroborated with stereo-zoom and SS-optical coherence tomography images of wound sites to prove the maturation of healing-bed, after 12 days of CCF implantation. Therefore, it is concluded that CCF scaffolds are promising for skin tissue regeneration and demonstrates pro-angiogenic potential.
Collapse
Affiliation(s)
- Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Ayan Gope
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Anurup Mukhopadhyay
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Prashant Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| |
Collapse
|
20
|
Cell-Biomaterial Interactions. Bioengineering (Basel) 2023; 10:bioengineering10020241. [PMID: 36829735 PMCID: PMC9952813 DOI: 10.3390/bioengineering10020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
In animals, the extracellular matrix (ECM) forms a three-dimensional network occupying the intercellular spaces (interstitial matrix) or serving as physical and biochemical support for cells and tissues (basement membrane) [...].
Collapse
|
21
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
22
|
Lin CW, Wu PT, Chuang EY, Fan YJ, Yu J. Design and Investigation of an Eco-Friendly Wound Dressing Composed of Green Bioresources- Soy Protein, Tapioca Starch, and Gellan Gum. Macromol Biosci 2022; 22:e2200288. [PMID: 36106681 DOI: 10.1002/mabi.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/03/2022] [Indexed: 01/15/2023]
Abstract
In the fields of biomedicine and tissue engineering, natural polymer-based tissue-engineered scaffolds are used in multiple applications. As a plant-derived polymer, soy protein, containing multiple amino acids, is structurally similar to components of the extra-cellular matrix (ECM) of tissues. It is biological safety provided a good potential to be material for pure natural scaffolds. Moreover, as a protein, the properties of soy protein can be easily adjusted by modifying the functional groups on it. In addition, by blending soy protein with other synthetic and natural polymers, the mechanical characteristics and bioactive behavior of scaffolds can be facilitated for a variety of bio-applications. In this research, soy protein and polysaccharides tapioca starch are used, and gellan gum to develop a protein-based composite scaffold for cell engineering. The morphology and surface chemical composition are characterized via micro-computed tomography (micro-CT), scanning electron microscope (SEM), and fourier-transform infrared (FTIR) spectroscopy. The soy/tapioca/gellan gum (STG) composite scaffolds selectively help the adhesion and proliferation of L929 fibroblast cells while improving the migration of L929 fibroblast cells in STG composite scaffolds as the increase of soy protein proportion of the scaffold. In addition, STG composite scaffolds show great potential in the wound healing model to enhance rapid epithelialization and tissue granulation.
Collapse
Affiliation(s)
- Che-Wei Lin
- School of Biomedical Engineering, Taipei Medical University, Taipei, 10675, Taiwan
| | - Po-Ting Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Er-Yuan Chuang
- School of Biomedical Engineering, Taipei Medical University, Taipei, 10675, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei, 10675, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
23
|
Alam MR, Shahid MA, Alimuzzaman S, Khan AN. Sources, extractions and applications of bio-maker collagen- A review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Paradiso F, Lenna S, Gazze SA, Garcia Parra J, Murphy K, Margarit L, Gonzalez D, Francis L, Taraballi F. Mechanomimetic 3D Scaffolds as a Humanized In Vitro Model for Ovarian Cancer. Cells 2022; 11:824. [PMID: 35269446 PMCID: PMC8909508 DOI: 10.3390/cells11050824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The mechanical homeostasis of tissues can be altered in response to trauma or disease, such as cancer, resulting in altered mechanotransduction pathways that have been shown to impact tumor development, progression, and the efficacy of therapeutic approaches. Specifically, ovarian cancer progression is parallel to an increase in tissue stiffness and fibrosis. With in vivo models proving difficult to study, tying tissue mechanics to altered cellular and molecular properties necessitate advanced, tunable, in vitro 3D models able to mimic normal and tumor mechanic features. First, we characterized normal human ovary and high-grade serous (HGSC) ovarian cancer tissue stiffness to precisely mimic their mechanical features on collagen I-based sponge scaffolds, soft (NS) and stiff (MS), respectively. We utilized three ovarian cancer cell lines (OVCAR-3, Caov-3, and SKOV3) to evaluate changes in viability, morphology, proliferation, and sensitivity to doxorubicin and liposomal doxorubicin treatment in response to a mechanically different microenvironment. High substrate stiffness promoted the proliferation of Caov-3 and SKOV3 cells without changing their morphology, and upregulated mechanosensors YAP/TAZ only in SKOV3 cells. After 7 days in culture, both OVCAR3 and SKOV3 decreased the MS scaffold storage modulus (stiffness), suggesting a link between cell proliferation and the softening of the matrix. Finally, high matrix stiffness resulted in higher OVCAR-3 and SKOV3 cell cytotoxicity in response to doxorubicin. This study demonstrates the promise of biomimetic porous scaffolds for effective inclusion of mechanical parameters in 3D cancer modeling. Furthermore, this work establishes the use of porous scaffolds for studying ovarian cancer cells response to mechanical changes in the microenvironment and as a meaningful platform from which to investigate chemoresistance and drug response.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - S. Andrea Gazze
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Jezabel Garcia Parra
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Kate Murphy
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK;
| | - Lavinia Margarit
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Lewis Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
25
|
Mesenchymal Stem Cells Isolated from Paediatric Paravertebral Adipose Tissue Show Strong Osteogenic Potential. Biomedicines 2022; 10:biomedicines10020378. [PMID: 35203587 PMCID: PMC8962402 DOI: 10.3390/biomedicines10020378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the basis of novel clinical concepts in cellular therapy and tissue regeneration. Therefore, the isolation of MSCs from various tissues has become an important endeavour for stem cell biobanking and the development of regenerative therapies. Paravertebral adipose tissue is readily exposed during spinal procedures in children and could be a viable source of stem cells for therapeutic applications. Here, we describe the first case of MSCs isolated from paravertebral adipose tissue (PV-ADMSCs), obtained during a routine spinal surgery on a child. Using quantitative real-time PCR and flow cytometry, we show that PV-ADMSCs have different levels of stem marker expression compared to the MSCs from other sources while having the highest proliferation rate. Furthermore, we evaluate the multipotency of PV-ADMSCs by the three-lineage (adipogenic, osteogenic and chondrogenic) differentiation and compare it to the multipotency of MSCs from other sources. It was found that the PV-ADMSCs have a strong osteogenic potential in particular. Taken together, our data indicate that PV-ADMSCs meet the criteria for successful cell therapy, defined by the International Society for Cellular Therapy (ISCT), and thus, could provide a source of MSCs that is relatively easy to isolate and expand in culture. Due to their strong osteogenic potential, these cells provide a promising basis, especially for orthopaedic applications.
Collapse
|