1
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
3
|
Chai R, Li Y, Shui L, Ni L, Zhang A. The role of pyroptosis in inflammatory diseases. Front Cell Dev Biol 2023; 11:1173235. [PMID: 37250902 PMCID: PMC10213465 DOI: 10.3389/fcell.2023.1173235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Programmed cell death has crucial roles in the physiological maturation of an organism, the maintenance of metabolism, and disease progression. Pyroptosis, a form of programmed cell death which has recently received much attention, is closely related to inflammation and occurs via canonical, non-canonical, caspase-3-dependent, and unclassified pathways. The pore-forming gasdermin proteins mediate pyroptosis by promoting cell lysis, contributing to the outflow of large amounts of inflammatory cytokines and cellular contents. Although the inflammatory response is critical for the body's defense against pathogens, uncontrolled inflammation can cause tissue damage and is a vital factor in the occurrence and progression of various diseases. In this review, we briefly summarize the major signaling pathways of pyroptosis and discuss current research on the pathological function of pyroptosis in autoinflammatory diseases and sterile inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Longxing Ni
- *Correspondence: Longxing Ni, ; Ansheng Zhang,
| | | |
Collapse
|
4
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
5
|
Xu YF, Wu YX, Wang HM, Gao CH, Xu YY, Yan Y. Bone marrow-derived mesenchymal stem cell-conditioned medium ameliorates diabetic foot ulcers in rats. Clinics (Sao Paulo) 2023; 78:100181. [PMID: 36948071 PMCID: PMC10040509 DOI: 10.1016/j.clinsp.2023.100181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/22/2023] Open
Abstract
OBJECTIVES This study aimed to explore the effects of bone marrow-derived Mesenchymal Stem Cell-Conditioned Medium (MSC-CM) treating diabetic foot ulcers in rats. METHODS Models of T2DM rats were induced by a high-fat diet and intraperitoneal injection of STZ in SD rats. Models of Diabetic Foot Ulcers (DFUs) were made by operation on hind limbs in diabetic rats. Rats were divided into four groups (n = 6 for each group), i.e., Normal Control group (NC), Diabetes Control group (DM-C), MSC-CM group and Mesenchymal Stem Cells group (MSCs). MSC-CM group was treated with an injection of conditioned medium derived from preconditioned rats' bone marrow MSCs around ulcers. MSCs group were treated with an injection of rats' bone marrow MSCs. The other two groups were treated with an injection of PBS. After the treatment, wound closure, re-epithelialization (thickness of the stratum granulosums of the skin, by H&E staining), cell proliferation (Ki67, by IHC), angiogenesis (CD31, by IFC), autophagy (LC3B, by IFC and WB; autolysosome, by EM) and pyroptosis (IL-1β, NLRP3, Caspase-1, GSDMD and GSDMD-N, by WB) in ulcers were evaluated. RESULTS After the treatment wound area rate, IL-1β by ELISA, and IL-1β, Caspase-1, GSDMD and GSDMD-N by WB of MSC-CM group were less than those of DM group. The thickness of the stratum granulosums of the skin, proliferation index of Ki67, mean optic density of CD31 and LC3B by IFC, and LC3B by WB of MSC-CM group were more than those of DM group. The present analysis demonstrated that the injection of MSC-CM into rats with DFUs enhanced the wound-healing process by accelerating wound closure, promoting cell proliferation and angiogenesis, enhancing cell autophagy, and reducing cell pyroptosis in ulcers. CONCLUSIONS Studies conducted indicate that MSC-CM administration could be a novel cell-free therapeutic approach to treat DFUs accelerating the wound healing process and avoiding the risk of living cells therapy.
Collapse
Affiliation(s)
- Yi-Feng Xu
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China.
| | - Yan-Xiang Wu
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Hong-Mei Wang
- Department of Hematology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Cui-Hua Gao
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Yang-Yang Xu
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, China
| | - Yang Yan
- Department of Hematology, Air Force Hospital of Northern Theater Command of PLA, China
| |
Collapse
|
6
|
Sahakyan G, Vejux A, Sahakyan N. The Role of Oxidative Stress-Mediated Inflammation in the Development of T2DM-Induced Diabetic Nephropathy: Possible Preventive Action of Tannins and Other Oligomeric Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249035. [PMID: 36558167 PMCID: PMC9786776 DOI: 10.3390/molecules27249035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy is manifested in more than 10% of people with diabetes. It is a common cause of kidney failure and end-stage kidney disease. Understanding of mechanisms underlying the initiation and development of diabetes-induced kidney injuries will allow for the development of more effective methods of prevention and treatment of the disease. Diabetic nephropathy is a wide-ranging complication of diabetes, and it is necessary to discuss the "weight" of pro-inflammatory pathways and molecules in the progress of renal injuries during the development of the disease. A large spectrum of pro-inflammatory molecules and pathways participate in different stages of the pathophysiological progression of diabetic nephropathy, including pro-inflammatory cytokines, chemokines, their receptors, adhesion molecules, and transcription factors. On the other hand, it is known that one of the consequences of hyperglycemia-induced ROS generation is the up-regulation of pro-inflammatory cascades, which, in turn, activate the transcription of genes encoding cytokines-chemokines, growth factors, and extracellular matrix proteins. It is a proven fact that a variety of plant secondary metabolites, such as tannins, flavonoids, and other polyphenols, demonstrate significant anti-diabetic, redox-modulating properties and effectively modulate the inflammatory response. Thus, this review is discussing the possible role of plant phenols in the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gohar Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
| | - Anne Vejux
- Team “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, University Bourgogne Franche-Comté, UFR Sciences Vie Terre et Environnement, 21000 Dijon, France
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| | - Naira Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Department of Biochemistry, Microbiology & Biotechnology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| |
Collapse
|
7
|
Shardlow E, Brown L, Exley C. The influence of aluminium and copper upon the early aggregatory behaviour and size of Islet amyloid polypeptide under simulated physiological conditions. J Trace Elem Med Biol 2022; 73:127027. [PMID: 35868166 DOI: 10.1016/j.jtemb.2022.127027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Islet amyloid polypeptide/amylin deposition in the form of amyloid plaques is a common pathological feature observed in the pancreatic tissue of those with Type II Diabetes Mellitus. Its propensity to form amyloid fibrils and the resultant toxicity of this peptide in vivo is influenced by both the concentration and species of metal present in situ. Herein, we examine the influence of Al (III) and Cu (II), applied at equimolar and supra-stoichiometric concentrations on the initial aggregatory behaviour of amylin under near physiological conditions. METHODS Dynamic light scattering measurements, which monitored the aggregation status and size of the peptide in real time, were performed during the early lag-phase of fibrillogenesis (T ≤ 30 min) in the absence or presence of metal ions. RESULTS Islet amyloid polypeptide (10 µM) rapidly aggregated when introduced into a physiological medium favouring the formation of large, agglomerated structures (> 1000 nm) after 30 min incubation. Neither the addition of equimolar or excess metals significantly influenced the size of the peptide when intensity distributions were consulted; however, number distributions indicated that both Al (III) and Cu (II) may have had, an albeit temporary, stabilising influence upon the conformations present within solution. CONCLUSION These results infer that small oligomeric species are likely transient entities that are rapidly incorporated into large agglomerates during the very initial stages of fibrillogenesis. While both Al (III) and Cu (II) both inhibited agglomeration to some degree, their stabilising affect upon peptide aggregation was limited over the juncture of the experiments performed herein; hence, it is difficult to say whether these metal ions play a role in enhancing the toxicity of these peptides through influencing their aggregation in the short-term.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK.
| | - Lewis Brown
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK
| |
Collapse
|
8
|
Tang H, Sun Y, Ding F. Hydrophobic/Hydrophilic Ratio of Amphiphilic Helix Mimetics Determines the Effects on Islet Amyloid Polypeptide Aggregation. J Chem Inf Model 2022; 62:1760-1770. [PMID: 35311274 PMCID: PMC9123946 DOI: 10.1021/acs.jcim.1c01566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid depositions of human islet amyloid polypeptides (hIAPP) are associated with type II diabetes (T2D) impacting millions of people globally. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Helix mimetics, which modulate the protein-protein interaction by mimicking the side chain residues of a natural α-helix, were found to be a promising strategy for inhibiting hIAPP aggregation. Here, we applied molecular dynamics simulations to investigate two helix mimetics reported to have opposite effects on hIAPP aggregation in solution, the oligopyridylamide-based scaffold 1e promoted, whereas naphthalimide-appended oligopyridylamide scaffold DM 1 inhibited the aggregation of hIAPP in solution. We found that 1e promoted hIAPP aggregation because of the recruiting effects through binding with the N-termini of hIAPP peptides. In contrast, DM 1 with a higher hydrophobic/hydrophilic ratio effectively inhibited hIAPP aggregation by strongly binding with the C-termini of hIAPP peptides, which competed for the interpeptide contacts between amyloidogenic regions in the C-termini and impaired the fibrillization of hIAPP. Structural analyses revealed that DM 1 formed the core of hIAPP-DM 1 complexes and stabilized the off-pathway oligomers, whereas 1e formed the corona outside the hIAPP-1e complexes and remained active in recruiting free hIAPP peptides. The distinct interaction mechanisms of DM 1 and 1e, together with other reported potent antagonists in the literature, emphasized the effective small molecule-based amyloid inhibitors by disrupting peptide interactions that should reach a balanced hydrophobic/hydrophilic ratio, providing a viable and generic strategy for the rational design of novel anti-amyloid nanomedicine.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Physics, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
9
|
García-Aguilar A, Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front Endocrinol (Lausanne) 2022; 13:1052317. [PMID: 36465657 PMCID: PMC9712222 DOI: 10.3389/fendo.2022.1052317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is a very complex disease which is characterized by the appearance of insulin resistance that is primarily compensated by an increase in pancreatic beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells die by apoptosis appearing in the second phase of the disease, and characterized by hypoinsulinemia. There are multiple conditions that can alter pancreatic beta cell homeostasis and viability, being the most relevant ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress, mitochondrial dysfunction, inflammation and alterations in autophagy/mitophagy flux. In addition, the possible effects that different polyphenols could exert in the modulation of these mechanisms and regulating pancreatic beta cell viability are analyzed. It is necessary a profound analysis and understanding of all the possible mechanisms involved in the control and maintenance of pancreatic beta cell viability to develop more accurate and target treatments for controlling beta cell homeostasis and preventing or even reversing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Guillén
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Carlos Guillén,
| |
Collapse
|
10
|
Kaneko N, Mori W, Kurata M, Yamamoto T, Zako T, Masumoto J. Inflammasome assembly is required for intracellular formation of β2-microglobulin amyloid fibrils, leading to IL-1β secretion. Int J Immunopathol Pharmacol 2022; 36:3946320221104554. [PMID: 35615856 PMCID: PMC9152197 DOI: 10.1177/03946320221104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Dialysis-related amyloidosis (DRA) caused by β2-microgloblin (B2M) fibrils is a serious complication for patients with kidney failure on long-term dialysis. Deposition of B2M amyloid fibrils is thought to be due not only to serum extracellular B2M but also to infiltrating inflammatory cells, which may have an important role in B2M amyloid deposition in osteoarticular tissues in patients with DRA. Here, we asked whether B2M amyloid fibrils activate the inflammasome and contribute to formation and deposition of amyloid fibrils in cells. METHODS Amyloid formation was confirmed by a thioflavin T (ThT) spectroscopic assay and scanning electron microscopy (SEM). Activation of inflammasomes was assessed by detecting interleukin (IL)-1β in culture supernatants from human embryonic kidney (HEK) 293T cells ectopically expressing inflammasome components. IL-1β secretion was measured by enzyme-linked immunosorbent assay. Expression and co-localization were analyzed by immunohistochemistry and dual immunofluorescence microscopy. RESULTS B2M amyloid fibrils interacted directly with NLRP3/Pyrin and to activate the NLRP3/Pyrin inflammasomes, resulting in IL-1β secretion. When HEK293T cells were transfected with inflammasome components NLRP3 or Pyrin, along with ASC, pro-caspase-1, pro-IL-1β, and B2M, ThT fluorescence intensity increased. This was accompanied by IL-1β secretion, which increased in line with the amount of transfected B2M. In this case, morphological glowing of amyloid fibrils was observed by SEM. In the absence of ASC, there was no increase in ThT fluorescence intensity or IL-1β secretion, or any morphological glowing of amyloid fibrils. NLRP3 or Pyrin and B2M were co-localized in a "speck" in HEK293T cells, and co-expressed in infiltrated monocytes/macrophages in the osteoarticular synovial tissues in a patient with DRA. CONCLUSION Taken together, these data suggest that inflammasome assembly is required for the subsequent triggering of intracellular formation of B2M amyloid fibrils, which may contribute to osteoarticular deposition of B2M amyloid fibrils and inflammation in patients with DRA.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| | - Wakako Mori
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Toon, Japan
| |
Collapse
|
11
|
Bai Y, Mu Q, Bao X, Zuo J, Fang X, Hua J, Zhang D, Jiang G, Li P, Gao S, Zhao D. Targeting NLRP3 Inflammasome in the Treatment Of Diabetes and Diabetic Complications: Role of Natural Compounds from Herbal Medicine. Aging Dis 2021; 12:1587-1604. [PMID: 34631209 PMCID: PMC8460305 DOI: 10.14336/ad.2021.0318] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes, a common metabolic disease with various complications, is becoming a serious global health pandemic. So far there are many approaches in the management of diabetes; however, it still remains irreversible due to its complicated pathogenesis. Recent studies have revealed that nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a vital role in the progression of diabetes and many of its complications, making it a promising therapeutic target in pharmaceutical design. Natural derived herbal medicine, known for its utilization of natural products such as herbs or its bioactive ingredients, is shown to be able to ameliorate hyperglycemia-associated symptoms and to postpone the progression of diabetic complications due to its anti-inflammatory and anti-oxidative properties. In this review, we summarized the role of NLRP3 inflammasome in diabetes and several diabetic complications, as well as 31 active compounds that exert therapeutic effect on diabetic complications via inhibiting NLRP3 inflammasome. Improving our understanding of these promising candidates from natural compounds in herbal medicine targeting NLRP3 inflammasome inspires us the relationship between inflammation and metabolic disorders, and also sheds light on searching potential agents or therapies in the treatment of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Ying Bai
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianqian Mu
- 2Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Bao
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiacheng Zuo
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Fang
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Hua
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- 3Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sihua Gao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhao
- 1College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Mori W, Kaneko N, Nakanishi A, Zako T, Masumoto J. Insulin amyloid fibrils interact directly with the NLRP3, resulting in inflammasome activation and pyroptotic cell death. Int J Immunopathol Pharmacol 2021; 35:20587384211038357. [PMID: 34396831 PMCID: PMC8371720 DOI: 10.1177/20587384211038357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3), an intracellular pattern recognition receptor, recognizes various pathogen-associated molecular pattern and/or damage-associated molecular pattern molecules to constitute inflammasome that act as an interleukin (IL)-1β processing platform. Injected insulin is reported to induce focal amyloidosis and the formation of subcutaneous lumps called insulin balls, but the formation of subcutaneous lumps and the underlying cytotoxic mechanism has not been elucidated. METHODS Amyloid formation was evaluated by thioflavin T spectroscopic assay and scanning electron microscopy. Binding between insulin amyloid fibrils and NLRP3 was evaluated by immunoprecipitation followed by native polyacrylamide gel electrophoresis. Inflammasome activation was evaluated by immunofluorescence speck formation called "ASC speck" and Western blotting. IL-1β secretion in culture supernatants of peripheral blood mononuclear cells was evaluated by enzyme-linked immunosorbent assay. Cytotoxicity was measured by lactate dehydrogenase release assay. RESULTS Insulin amyloid fibrils interact directly with NLRP3, resulting in NLRP3 inflammasome activation and pyroptotic cell death. CONCLUSION Insulin ball formation and cytotoxicity may be associated with NLRP3 inflammasome activation followed by pyroptotic cell death.
Collapse
Affiliation(s)
- Wakako Mori
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon, Ehime, Japan.,Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Ehime, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon, Ehime, Japan
| | - Ayaka Nakanishi
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Ehime, Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Ehime, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
13
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
14
|
Rees TA, Hay DL, Walker CS. Amylin antibodies frequently display cross-reactivity with CGRP: characterization of eight amylin antibodies. Am J Physiol Regul Integr Comp Physiol 2021; 320:R697-R703. [PMID: 33565362 DOI: 10.1152/ajpregu.00338.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/06/2021] [Indexed: 01/07/2023]
Abstract
Amylin is a 37-amino acid endocrine hormone secreted from the pancreas in response to nutrient intake, acting centrally to promote meal-ending satiation. With many studies linking amylin action to the nervous system, determining the distribution or expression of amylin in the nervous system is critical. However, amylin shares sequence identity and structural homology to the related neuropeptide calcitonin gene-related peptide (CGRP). This creates challenges in identifying selective amylin antibodies that do not cross-react with CGRP, especially in neural tissues, where CGRP is densely packed into secretory vesicles. Here, we characterized eight amylin antibodies to determine their ability to detect amylin and cross-react with rat or human αCGRP, using immunoblots and preabsorption controls in rat pancreas. We observed that amylin antibodies frequently cross-reacted with αCGRP and are therefore not suitable for use in tissues that highly express CGRP. Earlier work using these antibodies should be revisited in light of our findings.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Vong CT, Tseng HHL, Yao P, Yu H, Wang S, Zhong Z, Wang Y. Specific NLRP3 inflammasome inhibitors: promising therapeutic agents for inflammatory diseases. Drug Discov Today 2021; 26:1394-1408. [PMID: 33636340 DOI: 10.1016/j.drudis.2021.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity serves as a first line of defence against danger signals, invading pathogens and microbes. The inflammasomes, as pattern recognition receptors, sense these danger signals to initiate pro-inflammatory cascades. The nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3) inflammasome is the most well characterised inflammasome, and its aberrant activation is implicated in many inflammatory diseases. In the past decade, targeting the NLRP3 inflammasome has become an emerging strategy for inflammatory diseases. To avoid off-target immunosuppressive effects, specific NLRP3 inhibitors have been developed and show promising therapeutic effects. This review discusses the therapeutic effects and clinical perspectives of specific NLRP3 inhibitors, as well as recent progress in the development of these inhibitors for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hisa Hui Ling Tseng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
16
|
Al-Halifa S, Zottig X, Babych M, Côté-Cyr M, Bourgault S, Archambault D. Harnessing the Activation of Toll-Like Receptor 2/6 by Self-Assembled Cross-β Fibrils to Design Adjuvanted Nanovaccines. NANOMATERIALS 2020; 10:nano10101981. [PMID: 33036404 PMCID: PMC7600500 DOI: 10.3390/nano10101981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/30/2022]
Abstract
Protein fibrils characterized with a cross-β-sheet quaternary structure have gained interest as nanomaterials in biomedicine, including in the design of subunit vaccines. Recent studies have shown that by conjugating an antigenic determinant to a self-assembling β-peptide, the resulting supramolecular assemblies act as an antigen delivery system that potentiates the epitope-specific immune response. In this study, we used a ten-mer self-assembling sequence (I10) derived from an amyloidogenic peptide to biophysically and immunologically characterize a nanofibril-based vaccine against the influenza virus. The highly conserved epitope from the ectodomain of the matrix protein 2 (M2e) was elongated at the N-terminus of I10 by solid phase peptide synthesis. The chimeric M2e-I10 peptide readily self-assembled into unbranched, long, and twisted fibrils with a diameter between five and eight nm. These cross-β nanoassemblies were cytocompatible and activated the heterodimeric Toll-like receptor (TLR) 2/6. Upon mice subcutaneous immunization, M2e-fibrils triggered a robust anti-M2e specific immune response, which was dependent on self-assembly and did not require the use of an adjuvant. Overall, this study describes the efficacy of cross-β fibrils to activate the TLR 2/6 and to stimulate the epitope-specific immune response, supporting usage of these proteinaceous assemblies as a self-adjuvanted delivery system for antigens.
Collapse
Affiliation(s)
- Soultan Al-Halifa
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Ximena Zottig
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (S.A.-H.); (X.Z.); (M.B.); (M.C.-C)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (S.B.); (D.A.)
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
- Correspondence: (S.B.); (D.A.)
| |
Collapse
|
17
|
Bubak AN, Beseler C, Como CN, Coughlan CM, Johnson NR, Hassell JE, Burnet AM, Mescher T, Schmid DS, Coleman C, Mahalingam R, Cohrs RJ, Boyd TD, Potter H, Shilleh AH, Russ HA, Nagel MA. Amylin, Aβ42, and Amyloid in Varicella Zoster Virus Vasculopathy Cerebrospinal Fluid and Infected Vascular Cells. J Infect Dis 2020; 223:1284-1294. [PMID: 32809013 DOI: 10.1093/infdis/jiaa513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) vasculopathy is characterized by persistent arterial inflammation leading to stroke. Studies show that VZV induces amyloid formation that may aggravate vasculitis. Thus, we determined if VZV central nervous system infection produces amyloid. METHODS Aβ peptides, amylin, and amyloid were measured in cerebrospinal fluid (CSF) from 16 VZV vasculopathy subjects and 36 stroke controls. To determine if infection induced amyloid deposition, mock- and VZV-infected quiescent primary human perineurial cells (qHPNCs), present in vasculature, were analyzed for intracellular amyloidogenic transcripts/proteins and amyloid. Supernatants were assayed for amyloidogenic peptides and ability to induce amyloid formation. To determine amylin's function during infection, amylin was knocked down with small interfering RNA and viral complementary DNA (cDNA) was quantitated. RESULTS Compared to controls, VZV vasculopathy CSF had increased amyloid that positively correlated with amylin and anti-VZV antibody levels; Aβ40 was reduced and Aβ42 unchanged. Intracellular amylin, Aβ42, and amyloid were seen only in VZV-infected qHPNCs. VZV-infected supernatant formed amyloid fibrils following addition of amyloidogenic peptides. Amylin knockdown decreased viral cDNA. CONCLUSIONS VZV infection increased levels of amyloidogenic peptides and amyloid in CSF and qHPNCs, indicating that VZV-induced amyloid deposition may contribute to persistent arterial inflammation in VZV vasculopathy. In addition, we identified a novel proviral function of amylin.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cheryl Beseler
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Christina N Como
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christina M Coughlan
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Noah R Johnson
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - James E Hassell
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anna M Burnet
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Teresa Mescher
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - D Scott Schmid
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Colin Coleman
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Randall J Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Timothy D Boyd
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ali H Shilleh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
18
|
Armiento V, Hille K, Naltsas D, Lin JS, Barron AE, Kapurniotu A. Das humane Wirtsabwehrpeptid Cathelicidin LL‐37 ist ein nanomolarer Inhibitor der amyloiden Selbstassoziation von Inselamyloid‐Polypeptid (IAPP). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Valentina Armiento
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Kathleen Hille
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Denise Naltsas
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Jennifer S. Lin
- Department of Bioengineering Stanford University 443 Via Ortega, Shriram Center for Bioengineering Stanford CA 94305 USA
| | - Annelise E. Barron
- Department of Bioengineering Stanford University 443 Via Ortega, Shriram Center for Bioengineering Stanford CA 94305 USA
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry TUM School of Life Sciences Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| |
Collapse
|
19
|
Armiento V, Hille K, Naltsas D, Lin JS, Barron AE, Kapurniotu A. The Human Host-Defense Peptide Cathelicidin LL-37 is a Nanomolar Inhibitor of Amyloid Self-Assembly of Islet Amyloid Polypeptide (IAPP). Angew Chem Int Ed Engl 2020; 59:12837-12841. [PMID: 31999880 PMCID: PMC7497016 DOI: 10.1002/anie.202000148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/18/2023]
Abstract
Amyloid self-assembly of islet amyloid polypeptide (IAPP) is linked to pancreatic inflammation, β-cell degeneration, and the pathogenesis of type 2 diabetes (T2D). The multifunctional host-defence peptides (HDPs) cathelicidins play crucial roles in inflammation. Here, we show that the antimicrobial and immunomodulatory polypeptide human cathelicidin LL-37 binds IAPP with nanomolar affinity and effectively suppresses its amyloid self-assembly and related pancreatic β-cell damage in vitro. In addition, we identify key LL-37 segments that mediate its interaction with IAPP. Our results suggest a possible protective role for LL-37 in T2D pathogenesis and offer a molecular basis for the design of LL-37-derived peptides that combine antimicrobial, immunomodulatory, and T2D-related anti-amyloid functions as promising candidates for multifunctional drugs.
Collapse
Affiliation(s)
- Valentina Armiento
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Kathleen Hille
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Denise Naltsas
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| | - Jennifer S. Lin
- Department of BioengineeringStanford University443 Via Ortega, Shriram Center for BioengineeringStanfordCA94305USA
| | - Annelise E. Barron
- Department of BioengineeringStanford University443 Via Ortega, Shriram Center for BioengineeringStanfordCA94305USA
| | - Aphrodite Kapurniotu
- Division of Peptide BiochemistryTUM School of Life SciencesEmil-Erlenmeyer-Forum 585354FreisingGermany
| |
Collapse
|
20
|
Söderbom G, Zeng BY. The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:345-391. [PMID: 32739011 DOI: 10.1016/bs.irn.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence increasingly suggests that type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). These diseases share many pathological processes, including oxidative stress, local inflammation/neuroinflammation and chronic, low-grade (systemic) inflammation, which are exacerbated by aging, a common risk factor for T2DM and NDDs. Here, we focus on the link between chronic inflammation driven by peripheral metabolic disease and how this may impact neurodegeneration in AD and PD. We review the relationship between these common pathological processes in AD and PD from the perspective of the "pro-inflammatory" signaling of the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat- (LRR)-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complex. Since the need for effective disease-modifying therapies in T2DM, AD and PD is significant, the relationship between these diseases is important as a positive clinical impact on one may benefit the others. We briefly consider how novel strategies may target neuro-inflammation and provide potential therapies for AD and PD.
Collapse
Affiliation(s)
| | - Bai-Yun Zeng
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
21
|
The role of miRNA-155 in monocrotaline-induced pulmonary arterial hypertension through c-Fos/NLRP3/caspase-1. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Pirzada RH, Javaid N, Choi S. The Roles of the NLRP3 Inflammasome in Neurodegenerative and Metabolic Diseases and in Relevant Advanced Therapeutic Interventions. Genes (Basel) 2020; 11:E131. [PMID: 32012695 PMCID: PMC7074480 DOI: 10.3390/genes11020131] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are intracellular multiprotein complexes in the cytoplasm that regulate inflammation activation in the innate immune system in response to pathogens and to host self-derived molecules. Recent advances greatly improved our understanding of the activation of nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasomes at the molecular level. The NLRP3 belongs to the subfamily of NLRP which activates caspase 1, thus causing the production of proinflammatory cytokines (interleukin 1β and interleukin 18) and pyroptosis. This inflammasome is involved in multiple neurodegenerative and metabolic disorders including Alzheimer's disease, multiple sclerosis, type 2 diabetes mellitus, and gout. Therefore, therapeutic targeting to the NLRP3 inflammasome complex is a promising way to treat these diseases. Recent research advances paved the way toward drug research and development using a variety of machine learning-based and artificial intelligence-based approaches. These state-of-the-art approaches will lead to the discovery of better drugs after the training of such a system.
Collapse
Affiliation(s)
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (R.H.P.); (N.J.)
| |
Collapse
|
23
|
Heller A, Coffman SS, Friedman KA. Obesity-Dependent Accumulation of Titanium in the Pancreas of Type 2 Diabetic Donors. Chem Res Toxicol 2019; 32:1351-1356. [DOI: 10.1021/acs.chemrestox.8b00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Adam Heller
- John J. McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
| | - Sheryl S. Coffman
- John J. McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
| | - Keith A. Friedman
- John J. McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39:12. [PMID: 31182982 PMCID: PMC6551897 DOI: 10.1186/s41232-019-0101-5] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological significances and play an important role in health and disease. In this decade, interleukin-1 family members have been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the definition of "inflammation" in traditional general pathology and discuss new insights into interleukin-1 in view of its history and the molecular bases of diseases, as well as current progress in therapeutics.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|