1
|
Hernández-Durán S, Walter J, Won SY, Gessler F. In Reply: Necrosectomy Versus Stand-Alone Suboccipital Decompressive Craniectomy for the Management of Space-Occupying Cerebellar Infarctions-A Retrospective Multicenter Study. Neurosurgery 2024:00006123-990000000-01366. [PMID: 39356159 DOI: 10.1227/neu.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Affiliation(s)
| | - Johannes Walter
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sae-Yeon Won
- Department of Neurosurgery, University Medicine Rostock, Rostock, Germany
| | - Florian Gessler
- Department of Neurosurgery, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
2
|
Brooks B, D'Egidio F, Borlongan MC, Borlongan MC, Lee JY. Stem cell grafts enhance endogenous extracellular vesicle expression in the stroke brain. Brain Res Bull 2024; 214:110999. [PMID: 38851436 DOI: 10.1016/j.brainresbull.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Endogenous brain repair occurs following an ischemic stroke but is transient, thus unable to fully mount a neuroprotective response against the evolving secondary cell death. Finding a treatment strategy that may render robust and long-lasting therapeutic effects stands as a clinically relevant therapy for stroke. Extracellular vesicles appear to be upregulated after stroke, which may represent a candidate target for neuroprotection. In this study, we probed whether transplanted stem cells could enhance the expression of extracellular vesicles to afford stable tissue remodeling in the ischemic stroke brain. Aged rats were initially exposed to the established ischemic stroke model of middle cerebral artery occlusion then received intravenous delivery of either bone marrow-derived mesenchymal stem cell transplantation or vehicle. A year later, the animals were assayed for brain damage, inflammation, and extracellular vesicle expression. Our findings revealed that while core infarction was not reduced, the stroke animals transplanted with stem cells displayed a significant reduction in peri-infarct cell loss that coincided with downregulated Iba1-labeled inflammatory cells and upregulated CD63-positive extracellular vesicles that appeared to be co-localized with GFAP-positive astrocytes. Interestingly, grafted stem cells were not detected at one year post-transplantation period, suggesting that the extracellular vesicles likely originated within the host brain. That long-lasting functional benefits persisted in the absence of surviving transplanted stem cells, but with upregulation of endogenous extracellular vesicles, advances the concept that transplantation of stem cells acutely after stroke propels host extracellular vesicles to the ischemic brain, altogether promoting chronic brain remodeling.
Collapse
Affiliation(s)
- Beverly Brooks
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Francesco D'Egidio
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Maximillian C Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Mia C Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, United States.
| |
Collapse
|
3
|
Fournier AP, Morvan MI, Martinez de Lizarrondo S, Gauberti M. Immuno-MRI for Stroke Diagnosis and Prognosis. Neuroscience 2024; 550:53-61. [PMID: 38141809 DOI: 10.1016/j.neuroscience.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Following a stroke, an inflammatory response occurs, characterized by an increased blood-brain barrier permeability, expression of endothelial trafficking molecules, and infiltration of immune cells. Adhesion molecules expressed on activated brain endothelial cells are potential biomarkers of intraparenchymal inflammation. However, in current clinical practice, it is not possible to measure endothelial activation using clinically available imaging. Using targeted micro-sized particles of iron oxide (MPIO), immuno-MRI enables the detection of endothelial adhesion molecules at high resolution and, consequently, facilitates the detection of stroke-induced brain inflammation. In this review, we highlight the most recent studies that used immuno-MRI in models of neurovascular disorders, including transient ischemic attack, ischemic stroke, intracranial hemorrhage, and subarachnoid hemorrhage. We also discuss the potential of immuno-MRI in clinical practice and the necessary next steps for its implementation in patients.
Collapse
Affiliation(s)
- Antoine Philippe Fournier
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France.
| | - Marion Isabelle Morvan
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Maxime Gauberti
- Normandie Université, UNICAEN, INSERM, PhIND (Physiopathology and Imaging of Neurological Disorders), Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France; CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, Caen, France
| |
Collapse
|
4
|
Hernandez-Duran S, Walter J, Behmanesh B, Bernstock JD, Czabanka M, Dinc N, Dubinski D, Freiman TM, Günther A, Hellmuth K, Herrmann E, Konczalla J, Maier I, Melkonian R, Mielke D, Müller SJ, Naser P, Rohde V, Schaefer JH, Senft C, Storch A, Unterberg A, Walter U, Wittstock M, Gessler F, Won SY. Necrosectomy Versus Stand-Alone Suboccipital Decompressive Craniectomy for the Management of Space-Occupying Cerebellar Infarctions-A Retrospective Multicenter Study. Neurosurgery 2024; 94:559-566. [PMID: 37800900 DOI: 10.1227/neu.0000000000002707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Space-occupying cerebellar stroke (SOCS) when coupled with neurological deterioration represents a neurosurgical emergency. Although current evidence supports surgical intervention in such patients with SOCS and rapid neurological deterioration, the optimal surgical methods/techniques to be applied remain a matter of debate. METHODS We conducted a retrospective, multicenter study of patients undergoing surgery for SOCS. Patients were stratified according to the type of surgery as (1) suboccipital decompressive craniectomy (SDC) or (2) suboccipital craniotomy with concurrent necrosectomy. The primary end point examined was functional outcome using the modified Rankin Scale (mRS) at discharge and at 3 months (mRS 0-3 defined as favorable and mRS 4-6 as unfavorable outcome). Secondary end points included the analysis of in-house postoperative complications, mortality, and length of hospitalization. RESULTS Ninety-two patients were included in the final analysis: 49 underwent necrosectomy and 43 underwent SDC. Those with necrosectomy displayed significantly higher rate of favorable outcome at discharge as compared with those who underwent SDC alone: 65.3% vs 27.9%, respectively ( P < .001, odds ratios 4.9, 95% CI 2.0-11.8). This difference was also observed at 3 months: 65.3% vs 41.7% ( P = .030, odds ratios 2.7, 95% CI 1.1-6.7). No significant differences were observed in mortality and/or postoperative complications, such as hemorrhagic transformation, infection, and/or the development of cerebrospinal fluid leaks/fistulas. CONCLUSION In the setting of SOCS, patients treated with necrosectomy displayed better functional outcomes than those patients who underwent SDC alone. Ultimately, prospective, randomized studies will be needed to confirm this finding.
Collapse
Affiliation(s)
| | - Johannes Walter
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg , Germany
| | - Bedjan Behmanesh
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main , Germany
| | - Nazife Dinc
- Department of Neurosurgery, Jena University Hospital, Jena , Germany
| | - Daniel Dubinski
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| | - Thomas M Freiman
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| | - Albrecht Günther
- Department of Neurology, Jena University Hospital, Jena , Germany
| | - Kara Hellmuth
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| | - Eva Herrmann
- Department of Medicine, Institute of Biostatistics and Mathematical Modelling, Goethe University, Frankfurt am Main , Germany
| | - Juergen Konczalla
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt am Main , Germany
| | - Ilko Maier
- Department of Neurology, Göttingen University Hospital, Göttingen , Germany
| | | | - Dorothee Mielke
- Department of Neurosurgery, Göttingen University Hospital, Göttingen , Germany
| | - Sebastian Johannes Müller
- Department of Neuroradiology, Göttingen University Hospital, Göttingen , Germany
- Department of Neuroradiology, Klinikum Stuttgart, Stuttgart , Germany
| | - Paul Naser
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg , Germany
| | - Veit Rohde
- Department of Neurosurgery, Göttingen University Hospital, Göttingen , Germany
| | - Jan Hendrik Schaefer
- Department of Neurology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main , Germany
| | - Christian Senft
- Department of Neurosurgery, Jena University Hospital, Jena , Germany
| | - Alexander Storch
- Department of Neurology, University Medicine Rostock, Rostock , Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg , Germany
| | - Uwe Walter
- Department of Neurology, University Medicine Rostock, Rostock , Germany
| | | | - Florian Gessler
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| | - Sae-Yeon Won
- Department of Neurosurgery, University Medicine Rostock, Rostock , Germany
| |
Collapse
|
5
|
Won SY, Hernández-Durán S, Behmanesh B, Bernstock JD, Czabanka M, Dinc N, Dubinski D, Freiman TM, Günther A, Hellmuth K, Herrmann E, Konczalla J, Maier I, Melkonian R, Mielke D, Naser P, Rohde V, Senft C, Storch A, Unterberg A, Walter J, Walter U, Wittstock M, Schaefer JH, Gessler F. Functional Outcomes in Conservatively vs Surgically Treated Cerebellar Infarcts. JAMA Neurol 2024:2815568. [PMID: 38407889 PMCID: PMC10897822 DOI: 10.1001/jamaneurol.2023.5773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
Importance According to the current American Heart Association/American Stroke Association guidelines, decompressive surgery is indicated in patients with cerebellar infarcts that demonstrate severe cerebellar swelling. However, there is no universal definition of swelling and/or infarct volume(s) available to support a decision for surgery. Objective To evaluate functional outcomes in surgically compared with conservatively managed patients with cerebellar infarcts. Design, Setting, and Participants In this retrospective multicenter cohort study, patients with cerebellar infarcts treated at 5 tertiary referral hospitals or stroke centers within Germany between 2008 and 2021 were included. Data were analyzed from November 2020 to November 2023. Exposures Surgical treatment (ie, posterior fossa decompression plus standard of care) vs conservative management (ie, medical standard of care). Main Outcomes and Measures The primary outcome examined was functional status evaluated by the modified Rankin Scale (mRS) at discharge and 1-year follow-up. Secondary outcomes included the predicted probabilities for favorable outcome (mRS score of 0 to 3) stratified by infarct volumes or Glasgow Coma Scale score at admission and treatment modality. Analyses included propensity score matching, with adjustments for age, sex, Glasgow Coma Scale score at admission, brainstem involvement, and infarct volume. Results Of 531 included patients with cerebellar infarcts, 301 (57%) were male, and the mean (SD) age was 68 (14.4) years. After propensity score matching, a total of 71 patients received surgical treatment and 71 patients conservative treatment. There was no significant difference in favorable outcomes (ie, mRS score of 0 to 3) at discharge for those treated surgically vs conservatively (47 [66%] vs 45 [65%]; odds ratio, 1.1; 95% CI, 0.5-2.2; P > .99) or at follow-up (35 [73%] vs 33 [61%]; odds ratio, 1.8; 95% CI, 0.7-4.2; P > .99). In patients with cerebellar infarct volumes of 35 mL or greater, surgical treatment was associated with a significant improvement in favorable outcomes at 1-year follow-up (38 [61%] vs 3 [25%]; odds ratio, 4.8; 95% CI, 1.2-19.3; P = .03), while conservative treatment was associated with favorable outcomes at 1-year follow-up in patients with infarct volumes of less than 25 mL (2 [34%] vs 218 [74%]; odds ratio, 0.2; 95% CI, 0-1.0; P = .047). Conclusions and Relevance Overall, surgery was not associated with improved outcomes compared with conservative management in patients with cerebellar infarcts. However, when stratifying based on infarct volume, surgical treatment appeared to be beneficial in patients with larger infarct volumes, while conservative management appeared favorable in patients with smaller infarct volumes.
Collapse
Affiliation(s)
- Sae-Yeon Won
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | | | - Bedjan Behmanesh
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcus Czabanka
- Department of Neurosurgery, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Nazife Dinc
- Department of Neurosurgery, Jena University Hospital, Jena, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Thomas M. Freiman
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Albrecht Günther
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Kara Hellmuth
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Eva Herrmann
- Department of Medicine, Institute of Biostatistics and Mathematical Modelling, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Juergen Konczalla
- Department of Neurosurgery, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Ilko Maier
- Department of Neurology, Göttingen University Hospital, Göttingen, Germany
| | | | - Dorothee Mielke
- Department of Neurosurgery, Göttingen University Hospital, Göttingen, Germany
| | - Paul Naser
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Veit Rohde
- Department of Neurosurgery, Göttingen University Hospital, Göttingen, Germany
| | - Christian Senft
- Department of Neurosurgery, Jena University Hospital, Jena, Germany
| | - Alexander Storch
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Johannes Walter
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Matthias Wittstock
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Jan Hendrik Schaefer
- Department of Neurology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Florian Gessler
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
6
|
Zhang Y, Jiang Y, Zou Y, Fan Y, Feng P, Fu X, Li K, Zhang J, Dong Y, Yan S, Zhang Y. Peripheral blood CD19 positive B lymphocytes increase after ischemic stroke and correlate with carotid atherosclerosis. Front Neurol 2023; 14:1308041. [PMID: 38221996 PMCID: PMC10784375 DOI: 10.3389/fneur.2023.1308041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Atherosclerosis is the primary pathological basis of ischemic stroke, and dyslipidemia is one of its major etiological factors. Acute ischemic stroke patients exhibit imbalances in lymphocyte subpopulations, yet the correlation between these dynamic changes in lymphocyte subpopulations and lipid metabolism disorders, as well as carotid atherosclerosis in stroke patients remains poorly understood. Methods We retrospectively analyzed the demographic data, risk factors of cerebrovascular disease, laboratory examination (lymphocyte subsets, lipid indexes, etc.), clinical features and c;/]-sity from December 2017 to September 2019 and non-stroke patients with dizziness/vertigo during the same period. Results The results showed that peripheral B lymphocyte proportions are elevated in acute ischemic stroke patients compared with those of the control group (13.6 ± 5.3 vs. 11.7 ± 4.4%, p = 0.006). Higher B lymphocyte proportions are associated with concurrent dyslipidemia, increased levels of vascular risk factors including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and very-low-density lipoprotein cholesterol (VLDL-C), as well as decreased levels of the protective factor high-density lipoprotein cholesterol (HDL-C). Elevated B lymphocyte proportions are independently correlated with carotid atherosclerosis in stroke patients. Discussion We found CD19 positive B Lymphocytes increase after ischemic stroke and correlate with Carotid Atherosclerosis. Lymphocyte subpopulations should be highlighted in stroke patients.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yutian Zou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Afflliated Changshu Hospital of Nantong University, Changshu, China
| | - Yinyin Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Keru Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunlei Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuying Yan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanlin Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Cai X, Song S, Hu J, Wang L, Shen D, Zhu Q, Yang W, Luo Q, Hong J, Li N. Systemic Inflammation Response Index as a Predictor of Stroke Risk in Elderly Patients with Hypertension: A Cohort Study. J Inflamm Res 2023; 16:4821-4832. [PMID: 37901383 PMCID: PMC10612501 DOI: 10.2147/jir.s433190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Objective This study aimed to evaluate the relationship between the systemic inflammation response index (SIRI) and the risk of stroke and its subtypes in elderly patients with hypertension and to explore its predictive accuracy and any potential effect modifiers. Methods The study included 4749 participants with no history of stroke at baseline. Cox regression was used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CIs). Interaction tests and subgroup analyses were conducted. The predictive performance of various inflammatory indicators for stroke was compared using the area under the curve (AUC), continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results During a median follow-up period of 3.2 years, 640 strokes were recorded, of which 526 were ischemic and the remainder hemorrhagic. After adjustment for confounders, compared to the reference group, the HRs (95% CI) of stroke were 1.28 (95% CI, 1.01-1.64) and 1.46 (95% CI, 1.14-1.88) for participants in the second and third tertiles, respectively. We observed interactions between SIRI and homocysteine levels (< 15 vs. ≥ 15 μmol/L) (p for interaction = 0.014) on ischemic stroke risk. Furthermore, the AUC, NRI, and IDI analyses demonstrated that SIRI exhibited better predictive value for stroke risk when compared to other indicators. Similar results were observed for both ischemic and hemorrhagic strokes. Conclusion Elevated SIRI levels were significantly associated with the risk of stroke and its subtypes in elderly patients with hypertension, suggesting its potential as a promising indicator for stroke risk in this population. However, larger prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Xintian Cai
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Shuaiwei Song
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Junli Hu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Lei Wang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Di Shen
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Qing Zhu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Wenbo Yang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Qin Luo
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Jing Hong
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Nanfang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
8
|
Dehkharghani S, Vogel A, Jandhyala N, Chung C, Shu L, Frontera J, Yaghi S. Continued Infarction Growth and Penumbral Consumption After Reperfusion in Vaccine-Naive Patients With COVID-19: A Case-Control Study. AJR Am J Roentgenol 2023; 221:517-525. [PMID: 37195793 DOI: 10.2214/ajr.23.29296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND. Neurologic sequelae of SARS-CoV-2 include potentially malignant cerebrovascular events arising from complex hemodynamic, hematologic, and inflammatory processes occurring in concert. OBJECTIVE. This study concerns the hypothesis that despite angiographic reperfusion COVID-19 promotes continued consumption of at-risk tissue volumes after acute ischemic stroke (AIS), yielding critical insights into prognostication and monitoring paradigms in vaccine-naive patients experiencing AIS. METHODS. This retrospective study compared 100 consecutive COVID-19 patients with AIS presenting between March 2020 and April 2021 with a contemporaneous cohort of 282 AIS patients without COVID-19. Reperfusion classes were dichotomized into positive (extended thrombolysis in cerebral ischemia [eTICI] score = 2c-3) and negative (eTICI score < 2c) groups. All patients underwent endovascular therapy after initial CT perfusion imaging (CTP) to document infarction core and total hypoperfusion volumes. RESULTS. Ten COVID-positive (mean age ± SD, 67 ± 12 years; seven men, three women) and 144 COVID-negative patients (mean age, 71 ± 16 years; 76 men, 68 women) undergoing endovascular reperfusion, with antecedent CTP and follow-up imaging, comprised the final dataset. Initial infarction core and total hypoperfusion volumes (mean ± SD) were 1.5 ± 18 mL and 85 ± 100 mL in COVID-negative patients and 30.5 ± 34 mL and 117 ± 80.5 mL in COVID-positive patients, respectively. Final infarction volumes were significantly larger in patients with COVID-19, with median volumes of 77.8 mL versus 18.2 mL among control patients (p = .01), as were normalized measures of infarction growth relative to baseline infarction volume (p = .05). In adjusted logistic parametric regression models, COVID positivity emerged as a significant predictor for continued infarct growth (OR, 5.10 [95% CI, 1.00-25.95]; p = .05). CONCLUSION. These findings support the potentially aggressive clinical course of cerebrovascular events in patients with COVID-19, suggesting greater infarction growth and ongoing consumption of at-risk tissues, even after angiographic reperfusion. CLINICAL IMPACT. SARS-CoV-2 infection may promote continued infarction progression despite angiographic reperfusion in vaccine-naive patients with large-vessel occlusion AIS. The findings carry potential implications for prognostication, treatment selection, and surveillance for infarction growth among revascularized patients in future waves of infection by novel viral strains.
Collapse
Affiliation(s)
- Seena Dehkharghani
- Department of Radiology, New York University Langone Medical Center, Center for Biomedical Imaging, 660 1st Ave, 2nd Fl, New York, NY 10016
- Department of Neurology, New York University Langone Health, New York, NY
| | - Andre Vogel
- Department of Radiology, New York University Grossman School of Medicine, New York, NY
| | - Nora Jandhyala
- Department of Radiology, New York University Grossman School of Medicine, New York, NY
| | - Charlotte Chung
- Department of Radiology, New York University Langone Medical Center, Center for Biomedical Imaging, 660 1st Ave, 2nd Fl, New York, NY 10016
| | - Liqi Shu
- Department of Neurology, Brown University, Providence, RI
| | - Jennifer Frontera
- Department of Neurology, New York University Langone Health, New York, NY
| | - Shadi Yaghi
- Department of Neurology, Brown University, Providence, RI
| |
Collapse
|
9
|
Lee RD, Chen YJ, Singh L, Nguyen HM, Wulff H. Immunocytoprotection after reperfusion with Kv1.3 inhibitors has an extended treatment window for ischemic stroke. Front Pharmacol 2023; 14:1190476. [PMID: 37180699 PMCID: PMC10166874 DOI: 10.3389/fphar.2023.1190476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Mechanical thrombectomy has improved treatment options and outcomes for acute ischemic stroke with large artery occlusion. However, as the time window of endovascular thrombectomy is extended there is an increasing need to develop immunocytoprotective therapies that can reduce inflammation in the penumbra and prevent reperfusion injury. We previously demonstrated, that by reducing neuroinflammation, KV1.3 inhibitors can improve outcomes not only in young male rodents but also in female and aged animals. To further explore the therapeutic potential of KV1.3 inhibitors for stroke therapy, we here directly compared a peptidic and a small molecule KV1.3 blocker and asked whether KV1.3 inhibition would still be beneficial when started at 72 hours after reperfusion. Methods: Transient middle cerebral artery occlusion (tMCAO, 90-min) was induced in male Wistar rats and neurological deficit assessed daily. On day-8 infarction was determined by T2-weighted MRI and inflammatory marker expression in the brain by quantitative PCR. Potential interactions with tissue plasminogen activator (tPA) were evaluated in-vitro with a chromogenic assay. Results: In a direct comparison with administration started at 2 hours after reperfusion, the small molecule PAP-1 significantly improved outcomes on day-8, while the peptide ShK-223 failed to reduce infarction and neurological deficits despite reducing inflammatory marker expression. PAP-1 still provided benefits when started 72 hours after reperfusion. PAP-1 does not reduce the proteolytic activity of tPA. Discussion: Our studies suggest that KV1.3 inhibition for immunocytoprotection after ischemic stroke has a wide therapeutic window for salvaging the inflammatory penumbra and requires brain-penetrant small molecules.
Collapse
Affiliation(s)
- Ruth D. Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yi-Je Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
- Animal Models Core, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hai M. Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
11
|
Aguado L, Joya A, Garbizu M, Plaza-García S, Iglesias L, Hernández MI, Ardaya M, Mocha N, Gómez-Vallejo V, Cossio U, Higuchi M, Rodríguez-Antigüedad A, Freijo MM, Domercq M, Matute C, Ramos-Cabrer P, Llop J, Martín A. Therapeutic effect of α7 nicotinic receptor activation after ischemic stroke in rats. J Cereb Blood Flow Metab 2023:271678X231161207. [PMID: 36916034 PMCID: PMC10369150 DOI: 10.1177/0271678x231161207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Nicotinic acetylcholine α7 receptors (α7 nAChRs) have a well-known modulator effect in neuroinflammation. Yet, the therapeutical effect of α7 nAChRs activation after stroke has been scarcely evaluated to date. The role of α7 nAChRs activation with PHA 568487 on inflammation after brain ischemia was assessed with positron emission tomography (PET) using [18F]DPA-714 and [18F]BR-351 radiotracers after transient middle cerebral artery occlusion (MCAO) in rats. The assessment of brain oedema, blood brain barrier (BBB) disruption and neurofunctional progression after treatment was evaluated with T2 weighted and dynamic contrast-enhanced magnetic resonance imaging (T2 W and DCE-MRI) and neurological evaluation. The activation of α7 nAChRs resulted in a decrease of ischemic lesion, midline displacement and cell neurodegeneration from days 3 to 7 after ischemia. Besides, the treatment with PHA 568487 improved the neurofunctional outcome. Treated ischemic rats showed a significant [18F]DPA-714-PET uptake reduction at day 7 together with a decrease of activated microglia/infiltrated macrophages. Likewise, the activation of α7 receptors displayed an increase of [18F]BR-351-PET signal in ischemic cortical regions, which resulted from the overactivation of MMP-2. Finally, the treatment with PHA 568487 showed a protective effect on BBB disruption and blood brain vessel integrity after cerebral ischemia.
Collapse
Affiliation(s)
- Laura Aguado
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Leyre Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain
| | | | - María Ardaya
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Naroa Mocha
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | | | - Unai Cossio
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Mari Mar Freijo
- Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain.,Department of Neurology, Cruces University Hospital, Barakaldo, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Toljan K, Ashok A, Labhasetwar V, Hussain MS. Nanotechnology in Stroke: New Trails with Smaller Scales. Biomedicines 2023; 11:biomedicines11030780. [PMID: 36979759 PMCID: PMC10045028 DOI: 10.3390/biomedicines11030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for effective treatment. During acute phase, intravenous administration of recombinant tissue plasminogen activator (tPA), a thrombolytic agent, and endovascular thrombectomy (EVT), a mechanical intervention to retrieve clots, are the only FDA-approved treatments to re-establish cerebral blood flow. Due to a short therapeutic time window and high potential risk of cerebral hemorrhage, a limited number of acute stroke patients benefit from tPA treatment. EVT can be performed within an extended time window, but such intervention is performed only in patients with occlusion in a larger, anatomically more proximal vasculature and is carried out at specialty centers. Regardless of the method, in case of successful recanalization, ischemia-reperfusion injury represents an additional challenge. Further, tPA disrupts the blood-brain barrier integrity and is neurotoxic, aggravating reperfusion injury. Nanoparticle-based approaches have the potential to circumvent some of the above issues and develop a thrombolytic agent that can be administered safely beyond the time window for tPA treatment. Different attributes of nanoparticles are also being explored to develop a multifunctional thrombolytic agent that, in addition to a thrombolytic agent, can contain therapeutics such as an anti-inflammatory, antioxidant, neuro/vasoprotective, or imaging agent, i.e., a theragnostic agent. The focus of this review is to highlight these advances as they relate to cerebrovascular conditions to improve clinical outcomes in stroke patients.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| | - M. Shazam Hussain
- Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence: (V.L.); (M.S.H.)
| |
Collapse
|
13
|
Gärtner Y, Bitar L, Zipp F, Vogelaar CF. Interleukin-4 as a therapeutic target. Pharmacol Ther 2023; 242:108348. [PMID: 36657567 DOI: 10.1016/j.pharmthera.2023.108348] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine mainly known for its role in type 2 immunity. Therapies antagonizing or blocking IL-4 activity have been developed to counteract diseases such as atopic dermatitis and asthma. In contrast, other disorders experimentally benefit from IL-4-related effects and IL-4 recently demonstrated beneficial activity in experimental stroke, spinal cord injury and the animal model of multiple sclerosis. To exploit IL-4-related activity for therapeutic concepts, current experimental efforts include modifying the pathway without inducing type 2 immune response and targeting of the cytokine to specific tissues. Here, we review different activities of IL-4 as well as therapeutic strategies.
Collapse
Affiliation(s)
- Yvonne Gärtner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
14
|
Maïer B, Tsai AS, Einhaus JF, Desilles JP, Ho-Tin-Noé B, Gory B, Sirota M, Leigh R, Lemmens R, Albers G, Olivot JM, Mazighi M, Gaudillière B. Neuroimaging is the new "spatial omic": multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke. Semin Immunopathol 2023; 45:125-143. [PMID: 36786929 PMCID: PMC10026385 DOI: 10.1007/s00281-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Ischemic stroke (IS) is the leading cause of acquired disability and the second leading cause of dementia and mortality. Current treatments for IS are primarily focused on revascularization of the occluded artery. However, only 10% of patients are eligible for revascularization and 50% of revascularized patients remain disabled at 3 months. Accumulating evidence highlight the prognostic significance of the neuro- and thrombo-inflammatory response after IS. However, several randomized trials of promising immunosuppressive or immunomodulatory drugs failed to show positive results. Insufficient understanding of inter-patient variability in the cellular, functional, and spatial organization of the inflammatory response to IS likely contributed to the failure to translate preclinical findings into successful clinical trials. The inflammatory response to IS involves complex interactions between neuronal, glial, and immune cell subsets across multiple immunological compartments, including the blood-brain barrier, the meningeal lymphatic vessels, the choroid plexus, and the skull bone marrow. Here, we review the neuro- and thrombo-inflammatory responses to IS. We discuss how clinical imaging and single-cell omic technologies have refined our understanding of the spatial organization of pathobiological processes driving clinical outcomes in patients with an IS. We also introduce recent developments in machine learning statistical methods for the integration of multi-omic data (biological and radiological) to identify patient-specific inflammatory states predictive of IS clinical outcomes.
Collapse
Affiliation(s)
- Benjamin Maïer
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Neurology Department, Hôpital Saint-Joseph, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jakob F Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jean-Philippe Desilles
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Benoît Ho-Tin-Noé
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Benjamin Gory
- CHRU-Nancy, Department of Diagnostic and Therapeutic Neuroradiology, Université de Lorraine, F-54000, Nancy, France
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences Division of Experimental Neurology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Centre for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Gregory Albers
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Marc Olivot
- Vascular Neurology Department, University Hospital of Toulouse, Toulouse, France
| | - Mikael Mazighi
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France.
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France.
- FHU NeuroVasc, Paris, France.
- Neurology Department, Lariboisière Hospital, Université Paris-Cité, Paris, France.
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA.
| |
Collapse
|
15
|
Hu X, Qian Z, Chen J, Chen M, Zhong W, Shen C, Hu Z, Li R. Effects of edaravone dexborneol on neurological function and serum inflammatory factor levels in patients with acute anterior circulation large vessel occlusion stroke. Transl Neurosci 2023; 14:20220312. [PMID: 37854582 PMCID: PMC10579784 DOI: 10.1515/tnsci-2022-0312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
The goal of this study is to evaluate and analyze the effects of edaravone (EDV) dexborneol on neurological function and serum inflammatory factor levels among patients with acute anterior circulation big artery blockage stroke. A total of 142 patients with acute anterior circulation large vessel occlusion (LVO) were randomly allocated to the study group (69 patients) or the control group (73 patients). In the study group, patients were treated with 37.5 mg EDV dexborneol twice a day for 10-14 days, based on the control group. The primary efficacy outcome was the National Institutes of Health Stroke Scale score change from baseline to 90 days and the proportion of modified Rankin Scale (mRS)score ≤1 at 90 days after randomization. The secondary outcome included the decrease in inflammatory factors at 14 days. The primary safety outcome was the incidence of hemorrhagic transformation assessed according to Heidelberg bleeding classification within 7 days. A higher percentage of patients with HIHSS score ≤5 at 90 days in the EDV dexcamphorol group was observed than in the control group (75.36% vs 64.38%; P = 0.015). A higher percentage of patients with mRS score ≤1 at 90 days in the EDV dexcamphorol group was observed than in the control group (63.77% vs 50.68%; P = 0.012). After treatment, the levels of IL-6 and hs-CRP were significantly lower following treatment and compared to the control group (P < 0.05). In patients receiving the EDV dexborneol group, a significantly decreased risk of radiographic intracranial hemorrhage was found compared with the control group (20.29% vs 39.73%; P = 0.0006). In conclusion, EDV dexborneol can improve the clinical outcomes of patients with acute anterior circulation LVO stroke, which can be used as an effective supplement to thrombectomy therapy.
Collapse
Affiliation(s)
- Xiaohong Hu
- Neurology Department, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, China
| | - Zhenhong Qian
- Neurology Department, Liancheng County Hospital, No. 1, Miaoqian Road, Liancheng, 366200, China
| | - Jianhui Chen
- Emergency Department, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, China
| | - Mingsheng Chen
- Neurology Department, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, China
| | - Wenying Zhong
- Neurology Department, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, China
| | - Chaoxiong Shen
- Neurology Department, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, China
| | - Zhizhou Hu
- Neurology Department, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, China
| | - Rongtong Li
- Neurology Department, Longyan First Affiliated Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Longyan, 364000, China
| |
Collapse
|
16
|
Liu Y, Dong J, Zhang Z, Liu Y, Wang Y. How Brain Infarction Links With the Microbiota-Gut-Brain Axis: Hints From Studies Focusing on the Risk Factors for Ischemic Stroke. Front Neurosci 2022; 16:877937. [PMID: 35685776 PMCID: PMC9170980 DOI: 10.3389/fnins.2022.877937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Ischemic stroke (IS) is among the top prevalent neurologic disorders globally today. Risk factors such as hypertension, diabetes, and aging, contribute to the development of IS, and patients with these risk factors face heavier therapeutic burden and worse prognosis. Microbiota–gut–brain axis describes the crosstalk between the gut flora, intestine, and center nervous system, which conduct homeostatic effects through the bacterial metabolites, the regulation of immune activity, also the contact with enteric nerve ends and vagus nerve. Nowadays, more studies have paid attention to the important roles that microbiota–gut–brain axis played in the risk factors of IS. In the current article, we will review the recent works focusing on the bi-directional impacts of gut dysbiosis and the pathogenic process of IS-related risk factors, for the purpose to summarize some novel findings in this area, and try to understand how probiotics could limit the development of IS via different strategies.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing, China
| | - Ziqing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yiqi Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Mechtouff L, Eker OF, Nighoghossian N, Cho TH. Fisiopatologia dell’ischemia cerebrale. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)46428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Ma W, Zhu K, Yin L, Yang J, Zhang J, Wu H, Liu K, Li C, Liu W, Guo J, Li L. Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke. Bioengineered 2022; 13:14799-14814. [PMID: 36420646 PMCID: PMC9704383 DOI: 10.1080/21655979.2022.2108266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stroke is a main cause of disability and death among adults in China, and acute ischemic stroke accounts for 80% of cases. The key to ischemic stroke treatment is to recanalize the blocked blood vessels. However, more than 90% of patients cannot receive effective treatment within an appropriate time, and delayed recanalization of blood vessels causes reperfusion injury. Recent research has revealed that ischemic postconditioning has a neuroprotective effect on the brain, but the mechanism has not been fully clarified. Long non-coding RNAs (lncRNAs) have previously been associated with ischemic reperfusion injury in ischemic stroke. LncRNAs regulate important cellular and molecular events through a variety of mechanisms, but a comprehensive analysis of potential lncRNAs involved in the brain protection produced by ischemic postconditioning has not been conducted. In this review, we summarize the common mechanisms of cerebral injury in ischemic stroke and the effect of ischemic postconditioning, and we describe the potential mechanisms of some lncRNAs associated with ischemic stroke.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Luwei Yin
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinfen Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chunyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China,Jianhui Guo Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650034, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China,CONTACT Liyan Li Institute of Neurosicence, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
19
|
Goulin Lippi Fernandes E, Ridwan S, Greeve I, Schäbitz WR, Grote A, Simon M. Clinical and Computerized Volumetric Analysis of Posterior Fossa Decompression for Space-Occupying Cerebellar Infarction. Front Neurol 2022; 13:840212. [PMID: 35645983 PMCID: PMC9133323 DOI: 10.3389/fneur.2022.840212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeSurgical decompression of the posterior fossa is often performed in cases with a space-occupying cerebellar infarction to prevent coma and death. In this study, we analyzed our institutional experience with this condition. We specifically attempted to address timing issues and investigated the role of cerebellar necrosectomy using imaging data and conducting volumetric analyses.MethodsWe retrospectively studied pertinent clinical and imaging data, including computerized volumetric analyses (preoperative/postoperative infarction volume, necrosectomy volume, and posterior fossa volume), from all 49 patients who underwent posterior fossa decompression surgery for cerebellar infarction in our department from January 2012 to January 2021.ResultsThirty-five (71%) patients had a Glasgow Coma Scale (GCS) of 14–15 at admission vs. only 14 (29%) before vs. 41 (84%) following surgery. Seven (14%) patients had preventive surgery (initial GCS 14–15, preoperative GCS change ≤ 1). Only 18 (37%) patients had an mRS score of 0–3 at discharge. Estimated overall survival was 70.5% at 1 year. Interestingly, 18/20 (90%) surviving cases had a modified Rankin Scale (mRS) outcome of 0–3 (mRS 0–2: 12/20 [60%]) 1 year after surgery. Surgical timing, including preventive surgery and mass effect of the infarct, in the posterior fossa assessed semi-quantitatively (Kirollos grade) and with volumetric parameters that were not predictive of the patients' (functional) outcomes.ConclusionPosterior fossa decompression for cerebellar infarction is a life-saving procedure, but rapid recovery of the GCS after surgery does not necessarily translate into good functional outcome. Many patients died during follow-up, but long-term mRS outcomes of 4–5 are rare. Surgery should probably aim primarily at pressure relief, and our clinical as well as volumetric data suggest that the impact of removing an infarcted tissue may be limited. It is presumably relatively safe to initially withhold surgery in cases with a GCS of 14–15.
Collapse
Affiliation(s)
- Eric Goulin Lippi Fernandes
- Department of Neurosurgery, Evangelisches Klinikum Bethel, University Hospital OWL, University Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Sami Ridwan
- Department of Neurosurgery, Klinikum Ibbenbüren, Ibbenbüren, Germany
| | - Isabell Greeve
- Department of Neurology, Evangelisches Klinikum Bethel, University Hospital OWL, University Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Wolf-Rüdiger Schäbitz
- Department of Neurology, Evangelisches Klinikum Bethel, University Hospital OWL, University Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Alexander Grote
- Department of Neurosurgery, Evangelisches Klinikum Bethel, University Hospital OWL, University Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Matthias Simon
- Department of Neurosurgery, Evangelisches Klinikum Bethel, University Hospital OWL, University Bielefeld, Campus Bielefeld-Bethel, Bielefeld, Germany
- *Correspondence: Matthias Simon
| |
Collapse
|
20
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Gauberti M, Martinez de Lizarrondo S. Molecular MRI of Neuroinflammation: Time to Overcome the Translational Roadblock. Neuroscience 2021; 474:30-36. [PMID: 34450211 DOI: 10.1016/j.neuroscience.2021.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
The ability to detect a molecular target in the central nervous system non-invasively and at high spatial resolution using magnetic resonance imaging (MRI) has attracted the interest of researchers for several decades. Yet, molecular MRI studies remain restricted to the preclinical stage and the path to clinical translation remains unclear. The focus of molecular MRI of neuroinflammation has moved from parenchymal to vascular targets, that are more easily reachable by intravenously injected probes. This has allowed the use of large superparamagnetic probes, such as micro-sized particles of iron oxide (MPIO), that dramatically improved the sensitivity of molecular MRI compared to smaller contrast agents. In particular, recent studies demonstrated the feasibility of unraveling inflammation in the brain by MRI using MPIO able to bind activated endothelial cells with potential applications in neurovascular, neuroinflammatory and neurodegenerative disorders. In the present review, we present the most striking advances in the field and the remaining challenges that must be overcome before clinical use of molecular MRI of neuroinflammation.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France; CHU Caen, Department of Diagnostic Imaging and Interventional radiology, CHU de Caen Côte de Nacre, Caen, France.
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France.
| |
Collapse
|
22
|
Iglesias-Rey R, da Silva-Candal A, Rodríguez-Yáñez M, Estany-Gestal A, Regueiro U, Maqueda E, Ávila-Gómez P, Pumar JM, Castillo J, Sobrino T, Campos F, Hervella P. Neurological Instability in Ischemic Stroke: Relation with Outcome, Latency Time, and Molecular Markers. Transl Stroke Res 2021; 13:228-237. [PMID: 34165728 PMCID: PMC8918467 DOI: 10.1007/s12975-021-00924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
The National Institutes of Health Stroke Scale (NIHSS) is commonly used to evaluate stroke neurological deficits and to predict the patient’s outcome. Neurological instability (NI), defined as the variation of the NIHSS in the first 48 h, is a simple clinical metric that reflects dynamic changes in the area of the brain affected by the ischemia. We hypothesize that NI may represent areas of cerebral instability known as penumbra, which could expand or reduce brain injury and its associated neurological sequels. In this work, our aim was to analyze the association of NI with the functional outcome at 3 months and to study clinical biomarkers associated to NI as surrogate biomarkers of ischemic and inflammatory penumbrae in ischemic stroke (IS) patients. We included 663 IS patients in a retrospective observational study. Neutral NI was defined as a variation in the NI scale between − 5 and 5% (37.1%). Positive NI is attributed to patients with an improvement of > 5% NI after 48 h (48.9%), while negative NI is assigned to patients values lower than − 5% (14.0%). Poor outcome was assigned to patients with mRS ≥ 3 at 3 months. We observed an inverse association of poor outcome with positive NI (OR, 0.35; 95%CI, 0.18–0.67; p = 0.002) and a direct association with negative NI (OR, 6.30; 95%CI, 2.12–18.65; p = 0.001). Negative NI showed a higher association with poor outcome than most clinical markers. Regarding good functional outcome, positive NI was the marker with the higher association (19.31; CI 95%, 9.03–41.28; p < 0.0001) and with the highest percentage of identified patients with good functional outcome (17.6%). Patients with negative NI have higher glutamate levels compared with patients with neutral and positive NI (p < 0.0001). IL6 levels are significantly lower in patients with positive NI compared with neutral NI (p < 0.0001), while patients with negative NI showed the highest IL6 values (p < 0.0001). High glutamate levels were associated with negative NI at short latency times, decreasing at higher latency times. An opposite trend was observed for inflammation, and IL6 levels were similar in patients with positive and negative NI in the first 6 h and then higher in patients with negative NI. These results support NI as a prognosis factor in IS and the hypothesis of the existence of a delayed inflammatory penumbra, opening up the possibility of extending the therapeutic window for IS.
Collapse
Affiliation(s)
- Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| | - Andres da Silva-Candal
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Ana Estany-Gestal
- Unit of Methodology of the Research, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Uxía Regueiro
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Elena Maqueda
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Paulo Ávila-Gómez
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - José Manuel Pumar
- Department of Neuroradiology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Tułowiecka N, Kotlęga D, Bohatyrewicz A, Szczuko M. Could Lipoxins Represent a New Standard in Ischemic Stroke Treatment? Int J Mol Sci 2021; 22:ijms22084207. [PMID: 33921615 PMCID: PMC8074032 DOI: 10.3390/ijms22084207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction: Cardiovascular diseases including stroke are one of the most common causes of death. Their main cause is atherosclerosis and chronic inflammation in the body. An ischemic stroke may occur as a result of the rupture of unstable atherosclerotic plaque. Cardiovascular diseases are associated with uncontrolled inflammation. The inflammatory reaction produces chemical mediators that stimulate the resolution of inflammation. One of these mediators is lipoxins—pro-resolving mediators that are derived from the omega-6 fatty acid family, promoting inflammation relief and supporting tissue regeneration. Aim: The aim of the study was to review the available literature on the therapeutic potential of lipoxins in the context of ischemic stroke. Material and Methods: Articles published up to 31 January 2021 were included in the review. The literature was searched on the basis of PubMed and Embase in terms of the entries: ‘stroke and lipoxin’ and ‘stroke and atherosclerosis’, resulting in over 110 articles in total. Studies that were not in full-text English, letters to the editor, and conference abstracts were excluded. Results: In animal studies, the injection/administration of lipoxin A4 improved the integrity of the blood–brain barrier (BBB), decreased the volume of damage caused by ischemic stroke, and decreased brain edema. In addition, lipoxin A4 inhibited the infiltration of neutrophils and the production of cytokines and pro-inflammatory chemokines, such as interleukin (Il-1β, Il-6, Il-8) and tumor necrosis factor-α (TNF-α). The beneficial effects were also observed after introducing the administration of lipoxin A4 analog—BML-111. BML-111 significantly reduces the size of a stroke and protects the cerebral cortex, possibly by reducing the permeability of the blood–brain barrier. Moreover, more potent than lipoxin A4, it has an anti-inflammatory effect by inhibiting the production of pro-inflammatory cytokines and increasing the amount of anti-inflammatory cytokines. Conclusions: Lipoxins and their analogues may find application in reducing damage caused by stroke and improving the prognosis of patients after ischemic stroke.
Collapse
Affiliation(s)
- Nikola Tułowiecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24 Street, 71-460 Szczecin, Poland;
| | - Dariusz Kotlęga
- Department of Neurology, District Hospital, 67-200 Głogów, Poland;
| | - Andrzej Bohatyrewicz
- Department of Orthopaedics, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24 Street, 71-460 Szczecin, Poland;
- Correspondence: ; Tel.: +48-91-441-4810; Fax: +48-91-441-4807
| |
Collapse
|
24
|
Abbott NT, Baker CJ, Chen C, Liu TT, Love TE. Defining Hypoperfusion in Chronic Aphasia: An Individualized Thresholding Approach. Brain Sci 2021; 11:491. [PMID: 33924446 PMCID: PMC8070458 DOI: 10.3390/brainsci11040491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Within the aphasia literature, it is common to link location of lesioned brain tissue to specific patterns of language impairment. This has provided valuable insight into the relationship between brain structure and function, but it does not capture important underlying alterations in function of regions that remain structurally intact. Research has demonstrated that in the chronic stage of aphasia, variable patterns of reduced cerebral blood flow (CBF; hypoperfusion) in structurally intact regions of the brain contribute to persisting language impairments. However, one consistent issue in this literature is a lack of clear consensus on how to define hypoperfusion, which may lead to over- or underestimation of tissue functionality. In the current study, we conducted an exploratory analysis in six individuals with chronic aphasia (>1 year post-onset) using perfusion imaging to (1) suggest a new, individualized metric for defining hypoperfusion; (2) identify the extent of hypoperfused tissue in perilesional bands; and (3) explore the relationship between hypoperfusion and language impairment. Results indicated that our individualized metric for defining hypoperfusion provided greater precision when identifying functionally impaired tissue and its effects on language function in chronic aphasia. These results have important implications for intervention approaches that target intact (or impaired) brain tissue.
Collapse
Affiliation(s)
- Noelle T. Abbott
- San Diego State University and University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA; (C.J.B.); (T.E.L.)
| | - Carolyn J. Baker
- San Diego State University and University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA; (C.J.B.); (T.E.L.)
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California San Diego, San Diego, CA 92093, USA; (C.C.); (T.T.L.)
| | - Thomas T. Liu
- Center for Functional MRI and Department of Radiology, University of California San Diego, San Diego, CA 92093, USA; (C.C.); (T.T.L.)
| | - Tracy E. Love
- San Diego State University and University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA; (C.J.B.); (T.E.L.)
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
25
|
Huang KL, Hsiao IT, Ho MY, Hsu JL, Chang YJ, Chang TY, Liu CH, Chang CH, Wu YM, Wu KY, Wey SP, Yen TC, Okamura N, Lee TH, Lin KJ. Investigation of reactive astrogliosis effect on post-stroke cognitive impairment. J Neuroinflammation 2020; 17:308. [PMID: 33069238 PMCID: PMC7568828 DOI: 10.1186/s12974-020-01985-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the associations between post-stroke cognitive impairment (PSCI) severity and reactive astrogliosis (RA) extent on normalized 18F-THK-5351 positron-emission tomography (PET) imaging in amyloid-negative patients with first-ever stroke. METHODS We prospectively enrolled 63 amyloid-negative patients with first-ever stroke. Neurocognitive evaluation, MRI, 18F-THK-5351, and 18F-florbetapir PET were performed around 3 months after stroke. The 18F-THK-5351 uptake intensity was normalized using a signal distribution template to obtain the Z-SUM scores as the RA extent in the whole brain and cerebral hemisphere ipsilateral to stroke lesion. We evaluated stroke volume, leukoaraiosis, and brain atrophy on MRI. We used a comprehensive neurocognitive battery to obtain composite cognitive scores, and defined PSCI as a general cognitive function score < - 1. We analyzed the influence of Z-SUM scores on PSCI severity after adjusting for demographic, vascular, and neurodegenerative variables. RESULTS Twenty-five of 63 stroke patients had PSCI. Patients with PSCI had older age, lower education, and more severe cortical atrophy and total Z-SUM scores. Total Z-SUM scores were significantly associated with general cognitive and executive functions at multiple regression models. Path analyses showed that stroke can exert cognitive influence directly by stroke itself as well as indirectly through RA, including total and ipsilateral Z-SUM scores, in patients with either right or left hemisphere stroke. CONCLUSION The patterns and intensity of 18F-THK-5351 uptake in amyloid-negative patients with first-ever stroke were associated with PSCI manifestations, which suggests that RA presents a modulating effect in PSCI development.
Collapse
Affiliation(s)
- Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Yang Ho
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University, New Taipei City, Taiwan
- Taipei Medical University, College of Humanities and Social Sciences, Graduate Institute of Humanities in Medicine and Research Center for Brain and Consciousness, Shuang Ho Hospital, Taipei, Taiwan
| | - Yeu-Jhy Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Ting-Yu Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Chi-Hung Liu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Chien-Hung Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shiaw-Pyng Wey
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nobuyuki Okamura
- Division of Neuro-imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan.
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan, Taoyuan, Taiwan.
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Klyueva LA, Koplik EV, Shvetsov EV, Vasyanina KA. [Neurological status and structural changes in the tracheal lymphoid tissue in rats with different resistance to emotional stress of experimental hemorrhagic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:45-48. [PMID: 33016676 DOI: 10.17116/jnevro202012008245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study neurological status and structural changes in the tracheal lymphoid tissue in rats with different resistance to emotional stress in experimental hemorrhagic stroke. MATERIAL AND METHODS Evaluation of neurological deficit on the Menzies scale and a histological study of structural features of tracheal lymphoid tissue were performed on days 1, 3 and 7 of experimental hemorrhagic stroke in 98 Wistar male rats with different resistance to emotional stress. Stroke simulation was preceded by animal testing to determine individual stress resistance. RESULTS AND CONCLUSION Neurological disorders are more pronounced in non-stress-resistant animals during all periods of observation. Lymphoid nodules of the tracheal wall of rats react with destruction of lymphoid cells and depletion of small lymphocytes observed in stress-resistant rats already on the 1st day of a stroke. On the 3rd day, the neurological deficit and changes in the cellular composition of the lymphoid formations of the trachea are most pronounced in both groups of rats. By the 7th day, a positive trend towards the restoration of the structure of tracheal lymphoid tissue and normal neurological status is detected only in rats resistant to emotional stress.
Collapse
Affiliation(s)
- L A Klyueva
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E V Koplik
- Anokhin Institute of Normal Physiology the Russian Academy Sciences, Moscow, Russia
| | - E V Shvetsov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - K A Vasyanina
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
27
|
Cerebellar Necrosectomy Instead of Suboccipital Decompression: A Suitable Alternative for Patients with Space-Occupying Cerebellar Infarction. World Neurosurg 2020; 144:e723-e733. [PMID: 32977029 DOI: 10.1016/j.wneu.2020.09.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Space-occupying cerebellar ischemic strokes (SOCSs) often lead to neurological deterioration and require surgical intervention to release pressure from the posterior fossa. Current guidelines recommend suboccipital decompressive craniectomy (SDC) with dural expansion when medical therapy is not sufficient. However, no good-quality evidence is available to support this surgical practice, and the surgical timing and technique both remain controversial. We have described an alternative to SDC, surgical evacuation of infarcted tissue (necrosectomy) and its clinical outcomes. METHODS In the present retrospective, single-center study, 34 consecutive patients with SOCS undergoing necrosectomy via osteoplastic craniotomy were included. The patient characteristics and radiological findings were evaluated. To differentiate the effects of age on the functional outcomes, the patients were divided into 2 groups (group I, age ≤60 years; and group II, age >60 years). Functional outcomes were assessed using the Glasgow outcome scale, modified Rankin scale, and Barthel index at discharge and 30 days postoperatively. RESULTS In our cohort, we observed overall mortality of 21%, with good functional outcomes (Glasgow outcome scale score ≥4) for 76% of the patients. No statistically significant differences in mortality or functional outcomes were observed between the 2 patient groups. Comparing our data with a recent meta-analysis of SDC, the number of adverse events and unfavorable outcome showed equipoise between the 2 treatment modalities. CONCLUSIONS Necrosectomy appears to be a suitable alternative to SDC for SOCS, achieving comparable mortality and functional outcomes. Further trials are necessary to evaluate which surgical technique is more beneficial in the setting of SOCSs.
Collapse
|
28
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Barca C, Foray C, Hermann S, Döring C, Schäfers M, Jacobs AH, Zinnhardt B. Characterization of the inflammatory post-ischemic tissue by full volumetric analysis of a multimodal imaging dataset. Neuroimage 2020; 222:117217. [PMID: 32745676 DOI: 10.1016/j.neuroimage.2020.117217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In vivo positron emission tomography (PET) and magnetic resonance imaging (MRI) support non-invasive assessment of the spatiotemporal expression of proteins of interest and functional/structural changes. Our work promotes the use of a volumetric analysis on multimodal imaging datasets to assess the spatio-temporal dynamics and interaction of two imaging biomarkers, with a special focus on two neuroinflammation-related biomarkers, the translocator protein (TSPO) and matrix metalloproteinases (MMPs), in the acute and chronic post-ischemic phase. AIM To improve our understating of the neuroinflammatory reaction and tissue heterogeneity during the post ischemic phase, we aimed (i) to assess the spatio-temporal distribution of two radiotracers, [18F]DPA-714 (TSPO) and [18F]BR-351 (MMPs), (ii) to investigate their spatial interaction, including exclusive and overlapping areas, and (iii) their relationship with the T2w-MRI ischemic lesion in a transient middle cerebral artery occlusion (tMCAo) mouse model using an atlas-based volumetric analysis. METHODS As described by Zinnhardt et al. (2015), a total of N = 30 C57BL/6 mice underwent [18F]DPA-714 and [18F]BR-351 PET-CT and subsequent MR imaging 24-48 h (n = 8), 7 ± 1 days (n = 8), 14 ± 1 days (n = 7), and 21 ± 1 days (n = 7) after 30 min transient middle cerebral artery occlusion (tMCAo). To further investigate the spatio-temporal distribution of [18F]DPA-714 and [18F]BR-351, an atlas-based ipsilesional volume of interest (VOI) was applied to co-registered PET-CT images and thresholded by the mean uptake + 2.5*standard deviation of a contralateral striatal control VOI. Mean lesion-to-contralateral ratios (L/C), volume extension (V in voxel), percentages of overlap and exclusive tracer uptake areas were determined. Both tracer volumes were also compared to the lesion extent depicted by T2w-MR imaging. RESULTS Both imaging biomarkers showed a constant small percentage of overlap across all time points (14.0 ± 14.2%). [18F]DPA-714 reached its maximum extent and uptake at day 14 post ischemia (V = 12,143 ± 6262 voxels, L/C = 2.32 ± 0.48). The majority of [18F]DPA-714 volume (82.4 ± 16.1%) was exclusive for [18F]DPA-714 and showed limited overlap with [18F]BR-351 and T2w-MRI lesion volumes. On the other hand, [18F]BR-351 reached its maximum extent already 24-48 h after tMCAo (V = 7279 ± 4518 voxels) and significantly decreased at day 14 (V = 1706 ± 1202 voxels). Focal spots of residual activity were still observed at day 21 post ischemia (L/C = 2.10 ± 0.37). The majority of [18F]BR-351 volume was exclusive for [18F]BR-351 (81.50 ± 25.07%) at 24-48 h and showed 64.84 ± 28.29% of overlap with [18F]DPA-714 from day 14 post ischemia while only 9.28 ± 13.45% of the [18F]BR-351 volume were overlapping the T2w-MRI lesion. The percentage of exclusive area of [18F]DPA-714 and [18F]BR-351 uptakes regarding T2w-MR lesion increased over time, suggesting that TSPO and MMPs are mostly localized in the peri‑infarct region at latter time points. CONCLUSION This study promotes the use of an unbiased volumetric analyses of multi-modal imaging data sets to improve the characterization of pathological tissue heterogeneity. This approach improves our understanding of (i) the dynamics of disease-related multi-modal imaging biomarkers, (ii) their spatiotemporal interactions and (iii) the post-ischemic tissue heterogeneity. Our results indicate acute MMPs activation after tMCAo preceding TSPO-dependent (micro-)gliosis. The spatial distribution of MMPs and gliosis is regionally independent with only minor (< 20%) overlapping areas in peri‑infarct regions.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany.
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI)
| | - Christian Döring
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany; Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Geriatrics, Johanniter Hospital, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany; Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
30
|
Dehkharghani S, Yaghi S, Bowen MT, Pisani L, Scher E, Haussen DC, Nogueira RG. Mild fever as a catalyst for consumption of the ischaemic penumbra despite endovascular reperfusion. Brain Commun 2020; 2:fcaa116. [PMID: 33033801 PMCID: PMC7532660 DOI: 10.1093/braincomms/fcaa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022] Open
Abstract
Cerebrovascular ischaemia is potentiated by hyperthermia, and even mild temperature elevation has proved detrimental to ischaemic brain. Infarction progression following endovascular reperfusion relates to multiple patient-specific and procedural variables; however, the potential influence of mild systemic temperature fluctuations is not fully understood. This study aims to assess the relationship between systemic temperatures in the early aftermath of acute ischaemic stroke and the loss of at-risk penumbral tissues, hypothesizing consumption of the ischaemic penumbra as a function of systemic temperatures, irrespective of reperfusion status. A cross-sectional, retrospective evaluation of a single-institution, prospectively collected endovascular therapy registry was conducted. Patients with anterior circulation, large vessel occlusion acute ischaemic stroke who underwent initial CT perfusion, and in whom at least four-hourly systemic temperatures were recorded beginning from presentation and until the time of final imaging outcome were included. Initial CT perfusion core and penumbra volumes and final MRI infarction volumes were computed. Systemic temperature indices including temperature maxima were recorded, and pre-defined temperature thresholds varying between 37°C and 38°C were examined in unadjusted and adjusted regression models which included glucose, collateral status, reperfusion status, CT perfusion-to-reperfusion delay, general anaesthesia and antipyretic exposure. The primary outcome was the relative consumption of the penumbra, reflecting normalized growth of the at-risk tissue volume ≥10%. The final study population comprised 126 acute ischaemic stroke subjects (mean 63 ± 14.5 years, 63% women). The primary outcome of penumbra consumption ≥10% occurred in 51 (40.1%) subjects. No significant differences in baseline characteristics were present between groups, with the exception of presentation glucose (118 ± 26.6 without versus 143.1 ± 61.6 with penumbra consumption, P = 0.009). Significant differences in the likelihood of penumbra consumption relating to systemic temperature maxima were observed [37°C (interquartile range 36.5 − 37.5°C) without versus 37.5°C (interquartile range 36.8 − 38.2°C) with penumbra consumption, P = 0.001]. An increased likelihood of penumbra consumption was observed for temperature maxima in unadjusted (odds ratio 3.57, 95% confidence interval 1.65 − 7.75; P = 0.001) and adjusted (odds ratio 3.06, 95% confidence interval 1.33 − 7.06; P = 0.009) regression models. Significant differences in median penumbra consumption were present at a pre-defined temperature maxima threshold of 37.5°C [4.8 ml (interquartile range 0 − 11.5 ml) versus 21.1 ml (0 − 44.7 ml) for subjects not reaching or reaching the threshold, respectively, P = 0.007]. Mild fever may promote loss of the ischaemic penumbra irrespective of reperfusion, potentially influencing successful salvage of at-risk tissue volumes following acute ischaemic stroke.
Collapse
Affiliation(s)
- Seena Dehkharghani
- Department of Radiology, New York University Langone Health, New York, NY, USA
| | - Shadi Yaghi
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Meredith T Bowen
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Leonardo Pisani
- Department of Neurology, Emory University Hospital, Atlanta, GA, USA
| | - Erica Scher
- Department of Neurology, New York University Langone Health, New York, NY, USA
| | - Diogo C Haussen
- Department of Neurology, Emory University Hospital, Atlanta, GA, USA.,Department of Neurology, Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, GA 30303, USA
| | - Raul G Nogueira
- Department of Neurology, Emory University Hospital, Atlanta, GA, USA.,Department of Neurology, Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, GA 30303, USA
| |
Collapse
|
31
|
Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest 2020; 130:2777-2788. [PMID: 32391806 PMCID: PMC7260029 DOI: 10.1172/jci135530] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. Most strokes are caused by occlusion of a major cerebral artery, and substantial advances have been made in elucidating how ischemia damages the brain. In particular, increasing evidence points to a double-edged role of the immune system in stroke pathophysiology. In the acute phase, innate immune cells invade brain and meninges and contribute to ischemic damage, but may also be protective. At the same time, danger signals released into the circulation by damaged brain cells lead to activation of systemic immunity, followed by profound immunodepression that promotes life-threatening infections. In the chronic phase, antigen presentation initiates an adaptive immune response targeted to the brain, which may underlie neuropsychiatric sequelae, a considerable cause of poststroke morbidity. Here, we briefly review these pathogenic processes and assess the potential therapeutic value of targeting immunity in human stroke.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
32
|
Dehkharghani S, Qiu D. MR Thermometry in Cerebrovascular Disease: Physiologic Basis, Hemodynamic Dependence, and a New Frontier in Stroke Imaging. AJNR Am J Neuroradiol 2020; 41:555-565. [PMID: 32139425 DOI: 10.3174/ajnr.a6455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
The remarkable temperature sensitivity of the brain is widely recognized and has been studied for its role in the potentiation of ischemic and other neurologic injuries. Pyrexia frequently complicates large-vessel acute ischemic stroke and develops commonly in critically ill neurologic patients; the profound sensitivity of the brain even to minor intraischemic temperature changes, together with the discovery of brain-to-systemic as well as intracerebral temperature gradients, has thus compelled the exploration of cerebral thermoregulation and uncovered its immutable dependence on cerebral blood flow. A lack of pragmatic and noninvasive tools for spatially and temporally resolved brain thermometry has historically restricted empiric study of cerebral temperature homeostasis; however, MR thermometry (MRT) leveraging temperature-sensitive nuclear magnetic resonance phenomena is well-suited to bridging this long-standing gap. This review aims to introduce the reader to the following: 1) fundamental aspects of cerebral thermoregulation, 2) the physical basis of noninvasive MRT, and 3) the physiologic interdependence of cerebral temperature, perfusion, metabolism, and viability.
Collapse
Affiliation(s)
- S Dehkharghani
- From the Department of Radiology (S.D.), New York University Langone Health, New York, New York
| | - D Qiu
- Department of Radiology (D.Q.), Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
33
|
Liao R, Wood TR, Nance E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng 2020; 14:3. [PMID: 32042309 PMCID: PMC7001228 DOI: 10.1186/s13036-020-0226-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022] Open
Abstract
Background Knowledge of glutamate excitotoxicity has increased substantially over the past few decades, with multiple proposed pathways involved in inflicting damage. We sought to develop a monosodium glutamate (MSG) exposed ex vivo organotypic whole hemisphere (OWH) brain slice model of excitotoxicity to study excitotoxic processes and screen the efficacy of superoxide dismutase (SOD). Results The OWH model is a reproducible platform with high cell viability and retained cellular morphology. OWH slices exposed to MSG induced significant cytotoxicity and downregulation of neuronal excitation-related gene expression. The OWH brain slice model has enabled us to isolate and study components of excitotoxicity, distinguishing the effects of glutamate excitation, hyperosmolar stress, and inflammation. We find that extracellularly administered SOD is significantly protective in inhibiting cell death and restoring healthy mitochondrial morphology. SOD efficacy suggests that superoxide scavenging is a promising therapeutic strategy in excitotoxic injury. Conclusions Using OWH brain slice models, we can obtain a better understanding of the pathological mechanisms of excitotoxic injury, and more rapidly screen potential therapeutics.
Collapse
Affiliation(s)
- Rick Liao
- 1Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA
| | - Thomas R Wood
- 2Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Elizabeth Nance
- 1Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA.,3Department of Radiology, University of Washington, Seattle, WA USA.,4Center on Human Development and Disability, University of Washington, Seattle, WA USA
| |
Collapse
|
34
|
Cirillo C, Brihmat N, Castel-Lacanal E, Le Friec A, Barbieux-Guillot M, Raposo N, Pariente J, Viguier A, Simonetta-Moreau M, Albucher JF, Olivot JM, Desmoulin F, Marque P, Chollet F, Loubinoux I. Post-stroke remodeling processes in animal models and humans. J Cereb Blood Flow Metab 2020; 40:3-22. [PMID: 31645178 PMCID: PMC6928555 DOI: 10.1177/0271678x19882788] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
After cerebral ischemia, events like neural plasticity and tissue reorganization intervene in lesioned and non-lesioned areas of the brain. These processes are tightly related to functional improvement and successful rehabilitation in patients. Plastic remodeling in the brain is associated with limited spontaneous functional recovery in patients. Improvement depends on the initial deficit, size, nature and localization of the infarction, together with the sex and age of the patient, all of them affecting the favorable outcome of reorganization and repair of damaged areas. A better understanding of cerebral plasticity is pivotal to design effective therapeutic strategies. Experimental models and clinical studies have fueled the current understanding of the cellular and molecular processes responsible for plastic remodeling. In this review, we describe the known mechanisms, in patients and animal models, underlying cerebral reorganization and contributing to functional recovery after ischemic stroke. We also discuss the manipulations and therapies that can stimulate neural plasticity. We finally explore a new topic in the field of ischemic stroke pathophysiology, namely the brain-gut axis.
Collapse
Affiliation(s)
- Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Nabila Brihmat
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Evelyne Castel-Lacanal
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | | | - Nicolas Raposo
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Alain Viguier
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Marion Simonetta-Moreau
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-François Albucher
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Jean-Marc Olivot
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Philippe Marque
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - François Chollet
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| |
Collapse
|
35
|
Li H, Kittur FS, Hung CY, Li PA, Ge X, Sane DC, Xie J. Quantitative Proteomics Reveals the Beneficial Effects of Low Glucose on Neuronal Cell Survival in an in vitro Ischemic Penumbral Model. Front Cell Neurosci 2020; 14:272. [PMID: 33033473 PMCID: PMC7491318 DOI: 10.3389/fncel.2020.00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding proteomic changes in the ischemic penumbra are crucial to rescue those salvageable cells and reduce the damage of an ischemic stroke. Since the penumbra region is dynamic with heterogeneous cells/tissues, tissue sampling from animal models of stroke for the molecular study is a challenge. In this study, cultured hippocampal HT22 cells under hypoxia treatment for 17.5 h with 0.69 mM low glucose (H+LG) could mimic ischemic penumbral cells since they had much higher cell viability and viable cell number compared to hypoxia without glucose (H-G) treatment. To validate established cell-based ischemic penumbral model and understand the beneficial effects of low glucose (LG), quantitative proteomics analysis was performed on H+LG, H-G, and normoxia with normal 22 mM glucose (N+G) treated cells. We identified 427 differentially abundant proteins (DAPs) between H-G and N+G and further identified 105 DAPs between H+LG and H-G. Analysis of 105 DAPs revealed that LG promotes cell survival by activating HIF1α to enhance glycolysis; preventing the dysregulations of extracellular matrix remodeling, cell cycle and division, and antioxidant and detoxification; as well as attenuating inflammatory reaction response, protein synthesis and neurotransmission activity. Our results demonstrated that this established cell-based system could mimic penumbral conditions and can be used for molecular studies.
Collapse
Affiliation(s)
- Hua Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Xinghong Ge
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States.,Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - David C Sane
- Carilion Clinic, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
36
|
Amatangelo MP, Thomas SB. Priority Nursing Interventions Caring for the Stroke Patient. Crit Care Nurs Clin North Am 2019; 32:67-84. [PMID: 32014162 DOI: 10.1016/j.cnc.2019.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nearly 20% of all patients with ischemic stroke will require care in an intensive care unit (ICU), particularly those who have received intravenous alteplase or endovascular therapy. Prioritizing nursing intervention and intensive care monitoring can improve patient outcomes and reduce disability. A collaborative interdisciplinary team approach best facilitates the ICU care of an acute stroke patient.
Collapse
Affiliation(s)
- Mary P Amatangelo
- Neurology, Stroke, Neurocritical Care, Brigham and Women's Hospital, 15 Francis Street, BB 335, Boston, MA 02115, USA.
| | - Sarah Beth Thomas
- Neuroscience/Critical Care, Brigham Health/Brigham and Women's Hospital, 75 Francis Street, Tower 10-65, Boston, MA 02115, USA
| |
Collapse
|
37
|
Middleton S, Dale S, Cheung NW, Cadilhac DA, Grimshaw JM, Levi C, McInnes E, Considine J, McElduff P, Gerraty R, Craig LE, Schadewaldt V, Fitzgerald M, Quinn C, Cadigan G, Denisenko S, Longworth M, Ward J, D'Este C. Nurse-Initiated Acute Stroke Care in Emergency Departments: The Triage, Treatment, and Transfer Implementation Cluster Randomized Controlled Trial. Stroke 2019; 50:1346-1355. [PMID: 31092163 DOI: 10.1161/strokeaha.118.020701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- We aimed to evaluate the effectiveness of an intervention to improve triage, treatment, and transfer for patients with acute stroke admitted to the emergency department (ED). Methods- A pragmatic, blinded, multicenter, parallel group, cluster randomized controlled trial was conducted between July 2013 and September 2016 in 26 Australian EDs with stroke units and tPA (tissue-type plasminogen activator) protocols. Hospitals, stratified by state and tPA volume, were randomized 1:1 to intervention or usual care by an independent statistician. Eligible ED patients had acute stroke <48 hours from symptom onset and were admitted to the stroke unit via ED. Our nurse-initiated T3 intervention targeted (1) Triage to Australasian Triage Scale category 1 or 2; (2) Treatment: tPA eligibility screening and appropriate administration; clinical protocols for managing fever, hyperglycemia, and swallowing; (3) prompt (<4 hours) stroke unit Transfer. It was implemented using (1) workshops to identify barriers and solutions; (2) face-to-face, online, and written education; (3) national and local clinical opinion leaders; and (4) email, telephone, and site visit follow-up. Outcomes were assessed at the patient level. Primary outcome: 90-day death or dependency (modified Rankin Scale score of ≥2); secondary outcomes: functional dependency (Barthel Index ≥95), health status (Short Form [36] Health Survey), and ED quality of care (Australasian Triage Scale; monitoring and management of tPA, fever, hyperglycemia, swallowing; prompt transfer). Intention-to-treat analysis adjusted for preintervention outcomes and ED clustering. Patients, outcome assessors, and statisticians were masked to group allocation. Results- Twenty-six EDs (13 intervention and 13 control) recruited 2242 patients (645 preintervention and 1597 postintervention). There were no statistically significant differences at follow-up for 90-day modified Rankin Scale (intervention: n=400 [53.5%]; control n=266 [48.7%]; P=0.24) or secondary outcomes. Conclusions- This evidence-based, theory-informed implementation trial, previously effective in stroke units, did not change patient outcomes or clinician behavior in the complex ED environment. Implementation trials are warranted to evaluate alternative approaches for improving ED stroke care. Clinical Trial Registration- URL: http://www.anzctr.org.au. Unique identifier: ACTRN12614000939695.
Collapse
Affiliation(s)
- Sandy Middleton
- From the Nursing Research Institute, St Vincent's Health Australia, Sydney (S.M., S. Dale., E.M., L.E.C., V.S.)
- Australian Catholic University, Darlinghurst, NSW (S.M., S. Dale., E.M., L.E.C., V.S.)
| | - Simeon Dale
- From the Nursing Research Institute, St Vincent's Health Australia, Sydney (S.M., S. Dale., E.M., L.E.C., V.S.)
- Australian Catholic University, Darlinghurst, NSW (S.M., S. Dale., E.M., L.E.C., V.S.)
| | - N Wah Cheung
- Centre for Diabetes and Endocrinology Research, Westmead Hospital, NSW, Australia (N.W.C.)
- University of Sydney, NSW, Australia (N.W.C.)
| | - Dominique A Cadilhac
- Stroke and Ageing Research Centre and Department of Medicine, Monash University, Clayton, VIC, Australia (D.A.C.)
| | | | - Chris Levi
- The Sydney Partnership for Health Education Research and Enterprise (SPHERE), University of New South Wales, Liverpool, Australia (C.L.)
| | - Elizabeth McInnes
- From the Nursing Research Institute, St Vincent's Health Australia, Sydney (S.M., S. Dale., E.M., L.E.C., V.S.)
- Australian Catholic University, Darlinghurst, NSW (S.M., S. Dale., E.M., L.E.C., V.S.)
| | - Julie Considine
- Centre for Quality and Patient Safety Research, Deakin University, Geelong, VIC, Australia (J.C.)
| | - Patrick McElduff
- School of Medicine and Public Health, University of Newcastle, NSW, Australia (P.M., C.D.)
| | - Richard Gerraty
- Neurosciences Clinical Institute, Epworth Hospital, VIC, Australia (R.G.)
- Department of Medicine, Monash University, Richmond, VIC, Australia (R.G.)
| | - Louise Eisten Craig
- From the Nursing Research Institute, St Vincent's Health Australia, Sydney (S.M., S. Dale., E.M., L.E.C., V.S.)
- Australian Catholic University, Darlinghurst, NSW (S.M., S. Dale., E.M., L.E.C., V.S.)
| | - Verena Schadewaldt
- From the Nursing Research Institute, St Vincent's Health Australia, Sydney (S.M., S. Dale., E.M., L.E.C., V.S.)
- Australian Catholic University, Darlinghurst, NSW (S.M., S. Dale., E.M., L.E.C., V.S.)
| | - Mark Fitzgerald
- Department of Surgery and Central Clinical School, Monash University, Melbourne, VIC, Australia (M.F.)
| | - Clare Quinn
- Speech Pathology Department, Prince of Wales Hospital, Randwick, NSW, Australia (C.Q.)
| | - Greg Cadigan
- Statewide Stroke Clinical Network, Brisbane, QLD, Australia (G.C.)
| | - Sonia Denisenko
- Victorian Stroke Clinical Network, Safer Care Victoria, Australia (S. Denisenko)
| | - Mark Longworth
- NSW Agency for Clinical Innovation, Chatswood, NSW, Australia (M.L.)
| | - Jeanette Ward
- Nulungu Research Institute, University of Notre Dame, Broome, WA, Australia (J.W.)
| | - Catherine D'Este
- School of Medicine and Public Health, University of Newcastle, NSW, Australia (P.M., C.D.)
- National Centre for Epidemiology and Population Health (NCEPH), Australian National University, ACT (C.D.)
| |
Collapse
|
38
|
Kaesmacher J, Maegerlein C, Kaesmacher M, Zimmer C, Poppert H, Friedrich B, Boeckh-Behrens T, Kleine JF. Thrombus Migration in the Middle Cerebral Artery: Incidence, Imaging Signs, and Impact on Success of Endovascular Thrombectomy. J Am Heart Assoc 2017; 6:e005149. [PMID: 28202431 PMCID: PMC5523786 DOI: 10.1161/jaha.116.005149] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/20/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Thrombus migration (TM) in intracranial vessels during ischemic stroke has been reported in the form of case reports, but its incidence, impact on the technical success of subsequent endovascular thrombectomy and patients' outcome have never been studied systematically. METHODS AND RESULTS Retrospective analysis was done of 409 patients with isolated middle cerebral artery occlusions treated with endovascular thrombectomy. TM was observed (1) by analyzing discrepancies between computed tomographic angiography and digital subtraction angiography and (2) by comparing infarct pattern in the striatocapsular region with exact, angiographically assessed thrombus location within the M1-segment and the involvement of the middle cerebral artery perforators. Preinterventional infarction of discrepant regions (infarction in regions supplied by more proximal vessels than those occluded by the clot) was ensured by carefully reviewing available preinterventional multimodal imaging. Adequate imaging inclusion criteria were met by 325 patients. Ninety-seven patients showed signs of TM (26 with direct evidence, 71 with indirect evidence). There was no difference in the frequency of preinterventional intravenous recombinant tissue plasminogen activator administration between patients with TM and those without (63.9% vs 64.9%, P=0.899). TM was associated with lower rates of complete reperfusion (Thrombolysis in Cerebral Infarction score 3) (adjusted odds ratio 0.400, 95% CI 0.226-0.707). Subsequently, preinterventional TM was associated with lower rates of substantial neurologic improvement (adjusted odds ratio 0.541, 95% CI 0.309-0.946). CONCLUSIONS Preinterventional TM does not seem to be facilitated by intravenous recombinant tissue plasminogen activator and often occurs spontaneously. However, TM is associated with the risk of incomplete reperfusion in subsequent thrombectomy, suggesting increased clot fragility. Occurrence of TM may thereby have a substantial impact on the outcome of endovascularly treated stroke patients.
Collapse
Affiliation(s)
- Johannes Kaesmacher
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Christian Maegerlein
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Mirjam Kaesmacher
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Holger Poppert
- Department of Neurology, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Benjamin Friedrich
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany
| | | | - Justus F Kleine
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany
| |
Collapse
|