1
|
Chen J, Wu M, Mo J, Hong J, Wang W, Jin Y, Mao X, Liao X, Li K, Yu X, Chen S, Zeng S, Huang W, Xu H, Wu J, Cao J, Zhou Y, Ying M, Zhu C, He Q, Zhang B, Lin N, Dong X, Che J. Auto-RapTAC: A Versatile and Sustainable Platform for the Automated Rapid Synthesis and Evaluation of PROTAC. J Med Chem 2025. [PMID: 39754574 DOI: 10.1021/acs.jmedchem.4c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The tedious synthesis and limited throughput biological evaluation remain a great challenge for discovering new proteolysis targeting chimera (PROTAC). To rapidly identify potential PROTAC lead compounds, we report a platform named Auto-RapTAC. Based on the modular characteristic of the PROTAC molecule, a streamlined workflow that integrates lab automation with "click chemistry" joint building-block libraries was constructed. This facilitates the autonomous generation of a variety of PROTACs, each with distinct linkers and E3 ligase ligands, all stored in biocompatible solutions. The ready-for-screening (R4S) approach, when paired with fluorescence-based assays, enables the efficient assessment of the PROTAC degradation activity in a high-throughput manner. To further test the capability of the platform, we identify six new PROTACs that target CDK2, CDK12, and BCL6 within a mere 8-day time frame for each target. In all, this platform could find broad application not only in discovering new PROTACs but also in the rapid development of novel heterobifunctional modalities.
Collapse
Affiliation(s)
- Jiexuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingfei Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Mo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ju Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuheng Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinfei Mao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueyan Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kailin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sikang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenxin Zeng
- Center of Safety Evaluation and Research, School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenhai Huang
- Center of Safety Evaluation and Research, School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Hongxia Xu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Wu
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
| | - Ji Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meidan Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310024, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310024, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Xie Y, Li K, Yang L, Zeng X, Chen Z, Ma X, Zhang L, Zhou Y, Jin L, Yang Y, Lou X. Expanding the phenotypic and genetic spectrum of GTPBP3 deficiency: findings from nine Chinese pedigrees. Orphanet J Rare Dis 2024; 19:488. [PMID: 39719609 DOI: 10.1186/s13023-024-03469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND GTPBP3 catalyzes τm5(s2) U biosynthesis at the 34th wobble position of mitochondrial tRNAs, the hypomodification of τm5U leads to mitochondrial disease. While twenty-three variants of GTPBP3 have been reported worldwide, the genetic landscape in China remains uncertain. METHODS By using whole-exome sequencing, the candidate individuals carrying GTPBP3 variants were screened and identified. Pathogenicity analysis of variants was biochemically verified by patients-derived immortalized lymphocytes and cell models. RESULTS Through whole-exome sequencing, thirteen variants associated with GTPBP3 were identified in nine Chinese pedigrees, with eight of these variants being newly reported. Affected individuals displayed classic neurologic phenotypes and heart complications including developmental delay, seizures, hypotonia, exercise intolerance, and hypertrophic cardiomyopathy. Additionally, they displayed new symptoms such as eye problems like strabismus and heart issues related to valve function. Studies conducted on patient-derived cells provided evidence of reduced levels of GTPBP3 and impairment in mitochondrial energetic biogenesis. Re-expressing GTPBP3 variants in knockout cell lines further defined the pathogenicity of the novel variants. Analysis of the genetic spectrum in the Chinese population highlighted a concentration in exons 4 and 6, with c.689A > C being the prominent hotspot. CONCLUSION Our findings emphasize the extensive clinical and genetic implications of GTPBP3-related mitochondrial disorders, particularly within the Chinese population, but further investigations are needed to explore the phenotype-genotype correlation.
Collapse
Affiliation(s)
- Yaojun Xie
- Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Genetics Center of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Keyi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Yang
- Department of Pediatrics, Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofei Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xue Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Luyi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuwei Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Jin
- Department of Scientific Research, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Xiaoting Lou
- Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Kelly T, Yang X. Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery. BIOSENSORS 2024; 14:570. [PMID: 39727835 DOI: 10.3390/bios14120570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT. These biosensors have enabled breakthrough discoveries, including the identification of Celastrol as a novel YAP-TEAD inhibitor through NanoBiT-based screening, and the development of TR-FRET assays that successfully identified Ro-31-8220 as a SMAD4R361H/SMAD3 interaction inducer. The integration of biosensors in high throughput screening and validation for cancer drug compounds is examined, highlighting successful applications such as the development of LATS biosensors that revealed VEGFR as an upstream regulator of the Hippo signaling pathway. Real-time monitoring of cellular responses through biosensors has yielded invaluable insights into cancer cell signaling pathways, as demonstrated by NanoBRET assays detecting RAF dimerization and HiBiT systems monitoring protein degradation dynamics. The review addresses challenges linked to biosensor applications, such as maintaining stability in complex tumor microenvironments and achieving consistent sensitivity in HTS applications. Emerging trends are discussed, including integrating artificial intelligence and advanced nanomaterials for enhanced biosensor performance. In conclusion, this review offers a comprehensive analysis of fluorescence- and bioluminescence-based biosensor applications in the dynamic cancer drug discovery field, presenting quantitative evidence of their impact and highlighting their potential to revolutionize targeted cancer treatments.
Collapse
Affiliation(s)
- Tynan Kelly
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
4
|
Williams D, Glasstetter LM, Jong TT, Chen T, Kapoor A, Zhu S, Zhu Y, Calvo R, Gehrlein A, Wong K, Hogan AN, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. High-throughput screening for small-molecule stabilizers of misfolded glucocerebrosidase in Gaucher disease and Parkinson's disease. Proc Natl Acad Sci U S A 2024; 121:e2406009121. [PMID: 39388267 PMCID: PMC11494340 DOI: 10.1073/pnas.2406009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease, PD); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small proluminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and noninhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: The fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 directly visualized GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of small molecules targeting GCase, ultimately leading to a viable therapeutic for GD and PD.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Tiffany Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Raul Calvo
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Kimberly Wong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Andrew N. Hogan
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
5
|
Williams D, Glasstetter LM, Jong TT, Kapoor A, Zhu S, Zhu Y, Gehrlein A, Vocadlo DJ, Jagasia R, Marugan JJ, Sidransky E, Henderson MJ, Chen Y. Development of quantitative high-throughput screening assays to identify, validate, and optimize small-molecule stabilizers of misfolded β-glucocerebrosidase with therapeutic potential for Gaucher disease and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586364. [PMID: 38712038 PMCID: PMC11071283 DOI: 10.1101/2024.03.22.586364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.
Collapse
Affiliation(s)
- Darian Williams
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Logan M. Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tiffany T. Jong
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Abhijeet Kapoor
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Sha Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yanping Zhu
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - David J. Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Juan J. Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mark J. Henderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Hoffman M, Cheah KMH, Wittrup KD. A Novel Gain-of-Signal Assay to Detect Targeted Protein Degradation. ACS Synth Biol 2024; 13:220-229. [PMID: 38171010 DOI: 10.1021/acssynbio.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Targeted protein degradation offers a promising avenue for expanding therapeutic development to previously inaccessible proteins of interest by regulating the target abundance rather than activity. However, current methods to screen for effective degraders serve as major bottlenecks for the development of degrader therapies. Here, we develop a novel assay platform for identification and characterization of macromolecules capable of inducing targeted degradation of oncogenic phosphatase SHP2. Unlike traditional reporter assays that utilize loss-of-signal readouts to detect degradation, our assay platform expresses a robust fluorescence signal in response to the depletion of a target protein and incorporates additional measures intended to prevent undesirable false positives. Using this gain-of-signal assay, we successfully identified novel macromolecule SHP2 degraders from a screen of 192 candidates and proposed design principles for further development of macromolecule degraders. This work demonstrates a proof of concept for gain-of-signal assays as a tool for screening targeted degrader candidates.
Collapse
Affiliation(s)
- Megan Hoffman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith Ming Hong Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Plesniak MP, Taylor EK, Eisele F, Kourra CMK, Michaelides IN, Oram A, Wernevik J, Valencia ZS, Rowbottom H, Mann N, Fredlund L, Pivnytska V, Novén A, Pirmoradian M, Lundbäck T, Storer RI, Pettersson M, De Donatis GM, Rehnström M. Rapid PROTAC Discovery Platform: Nanomole-Scale Array Synthesis and Direct Screening of Reaction Mixtures. ACS Med Chem Lett 2023; 14:1882-1890. [PMID: 38116431 PMCID: PMC10726452 DOI: 10.1021/acsmedchemlett.3c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/21/2023] Open
Abstract
Precise length, shape, and linker attachment points are all integral components to designing efficacious proteolysis targeting chimeras (PROTACs). Due to the synthetic complexity of these heterobifunctional degraders and the difficulty of computational modeling to aid PROTAC design, the exploration of structure-activity relationships remains mostly empirical, which requires a significant investment of time and resources. To facilitate rapid hit finding, we developed capabilities for PROTAC parallel synthesis and purification by harnessing an array of preformed E3-ligand-linker intermediates. In the next iteration of this approach, we developed a rapid, nanomole-scale PROTAC synthesis methodology using amide coupling that enables direct screening of nonpurified reaction mixtures in cell-based degradation assays, as well as logD and EPSA measurements. This approach greatly expands and accelerates PROTAC SAR exploration (5 days instead of several weeks) as well as avoids laborious and solvent-demanding purification of the reaction mixtures, thus making it an economical and more sustainable methodology for PROTAC hit finding.
Collapse
Affiliation(s)
- Mateusz P. Plesniak
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Emilia K. Taylor
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Frederik Eisele
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | | | - Iacovos N. Michaelides
- Fragment
Based Lead Generation, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Alice Oram
- iLAB,
Compound Synthesis & Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Johan Wernevik
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | | | - Hannah Rowbottom
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Nadia Mann
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Linda Fredlund
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Valentyna Pivnytska
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Anna Novén
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Mohammad Pirmoradian
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Thomas Lundbäck
- Mechanistic
& Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - R. Ian Storer
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Mariell Pettersson
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Gian M. De Donatis
- Cellular
Assay Development, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
| | - Marie Rehnström
- Cell
Culture Sciences & Banking, Discovery Biology, Discovery Sciences,
R&D, AstraZeneca, Gothenburg 431 83, Sweden
| |
Collapse
|
8
|
Lanne A, E J Usselmann L, Llowarch P, Michaelides IN, Fillmore M, Holdgate GA. A perspective on the changing landscape of HTS. Drug Discov Today 2023:103670. [PMID: 37328053 DOI: 10.1016/j.drudis.2023.103670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been a change in the types of drug target entering early drug discovery portfolios. A significant increase in the number of challenging targets or which would have historically been classed as intractable has been observed. Such targets often have shallow or non-existent ligand-binding sites, can have disordered structures or domains or can be involved in protein-protein or protein-DNA interactions. The nature of the screens required to identify useful hits has, by necessity, also changed. The range of drug modalities explored has also increased and the chemistry required to design and optimise these molecules has adapted. In this review, we discuss this changing landscape and provide insights into the future requirements for small-molecule hit and lead generation.
Collapse
Affiliation(s)
- Alice Lanne
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, UK
| | - Laura E J Usselmann
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, UK
| | - Poppy Llowarch
- High Throughput Screening, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, UK
| | - Iacovos N Michaelides
- Fragment Based Lead Generation, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Martin Fillmore
- DNA Encoded Library, Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
9
|
Sormunen A, Koivulehto E, Alitalo K, Saksela K, Laham-Karam N, Ylä-Herttuala S. Comparison of Automated and Traditional Western Blotting Methods. Methods Protoc 2023; 6:mps6020043. [PMID: 37104025 PMCID: PMC10142486 DOI: 10.3390/mps6020043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Traditional Western blotting is one of the most used analytical techniques in biological research. However, it can be time-consuming and suffer from a lack of reproducibility. Consequently, devices with different degrees of automation have been developed. These include semi-automated techniques and fully automated devices that replicate all stages downstream of the sample preparation, including sample size separation, immunoblotting, imaging, and analysis. We directly compared traditional Western blotting with two different automated systems, iBind™ Flex, which is a semi-automated system designed to perform the immunoblotting, and JESS Simple Western™, a fully automated and capillary-based system performing all steps downstream of sample preparation and loading, including imaging and image analysis. We found that a fully automated system can save time and importantly offer valuable sensitivity. This is particularly beneficial for limited sample amounts. The downside of automation is the cost of devices and reagents. Nevertheless, automation can be a good option to increase output and facilitate sensitive protein analyses.
Collapse
Affiliation(s)
- Aino Sormunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Emma Koivulehto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Kari Alitalo
- Translational Cancer Biology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, FI-70029 Kuopio, Finland
| |
Collapse
|
10
|
Liu M, Martyn AP, Quinn RJ. Natural product-based PROteolysis TArgeting Chimeras (PROTACs). Nat Prod Rep 2022; 39:2292-2307. [PMID: 36196977 DOI: 10.1039/d2np00038e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: upto 2022Natural products have an embedded recognition of protein surfaces. They possess this property as they are produced by biosynthetic enzymes and are substrates for one or more enzymes in the biosynthetic pathway. The inherent advantages, compared to synthetic compound libraries, is this ligand-protein binding which is, in many cases, a function of the 3-dimensional properties. Protein degradation is a recent novel therapeutic approach with several compounds now in the clinic. This review highlights the potential of PROteolysis TArgeting Chimeras (PROTACs) in the area of natural products. The approach will complement existing approaches such as the direct use of a bioactive natural product or its analogues, pharmacophore development and drug-antibody conjugates. The chemical synthesis and challenges of using natural product-based PROTACs are summarised. The review also highlights methods to detect the ternary complexes necessary for PROTAC mechanism of action.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| | - Alexander P Martyn
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras. BioDrugs 2022; 36:609-623. [PMID: 36098871 DOI: 10.1007/s40259-022-00551-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
In the recent past, proteolysis-targeting chimera (PROTAC) technology has received enormous attention for its ability to overcome the limitations of protein inhibitors and its capability to target undruggable proteins. The PROTAC molecule consists of three components, a ubiquitin E3 ligase ligand, a linker, and a target protein ligand. The application of this technology is rapidly gaining momentum, especially in cancer therapy. In this review, we first look at the history of degraders, followed by a section on the ubiquitin proteasome system (UPS) and E3 ligases used in PROTAC development. PROTACs are dependent on the UPS for degradation of target proteins. We further discuss the scope and design of degraders and mitigation strategies for overcoming the hook effect seen with degraders. As PROTACs do not follow Lipinski's 'Rule of 5', these molecules face drug metabolism and pharmacokinetic challenges. A detailed section on absorption, distribution, metabolism, and excretion of degraders is provided wherein we discuss methodologies and strategies to surmount the challenges faced by these molecules. For understanding PROTAC-mediated degradation, the characterization and measurement of protein levels in cells is important. Currently used techniques and recent advancements in assessment tools for degraders are discussed. Furthermore, we examine the challenges and emerging technologies that need to be focused on in order to competently develop potent degraders. Many companies are working in this area of emerging new modality and a few PROTACs have already entered clinical trials; the details of the trials are included in this review.
Collapse
|
12
|
Payne NC, Maksoud S, Tannous BA, Mazitschek R. A direct high-throughput protein quantification strategy facilitates discovery and characterization of a celastrol-derived BRD4 degrader. Cell Chem Biol 2022; 29:1333-1340.e5. [PMID: 35649410 PMCID: PMC9391279 DOI: 10.1016/j.chembiol.2022.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 12/31/2022]
Abstract
We describe a generalizable time-resolved Förster resonance energy transfer (TR-FRET)-based platform to profile the cellular action of heterobifunctional degraders (or proteolysis-targeting chimeras [PROTACs]) that is capable of both accurately quantifying protein levels in whole-cell lysates in less than 1 h and measuring small-molecule target engagement to endogenous proteins, here specifically for human bromodomain-containing protein 4 (BRD4). The detection mix consists of a single primary antibody targeting the protein of interest, a luminescent donor-labeled anti-species nanobody, and a fluorescent acceptor ligand. Importantly, our strategy can readily be applied to other targets of interest and will greatly facilitate the cell-based profiling of small-molecule inhibitors and PROTACs in a high-throughput format with unmodified cell lines. We furthermore validate our platform in the characterization of celastrol, a p-quinone methide-containing pentacyclic triterpenoid, as a broad cysteine-targeting E3 ubiquitin ligase warhead for potent and efficient targeted protein degradation.
Collapse
Affiliation(s)
- N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Abstract
AbstractThe druggable genome is limited by structural features that can be targeted by small molecules in disease-relevant proteins. While orthosteric and allosteric protein modulators have been well studied, they are limited to antagonistic/agonistic functions. This approach to protein modulation leaves many disease-relevant proteins as undruggable targets. Recently, protein-protein interaction modulation has emerged as a promising therapeutic field for previously undruggable protein targets. Molecular glues and heterobifunctional degraders such as PROTACs can facilitate protein interactions and bring the proteasome into proximity to induce targeted protein degradation. In this review, we discuss the function and rational design of molecular glues, heterobifunctional degraders, and hydrophobic tag degraders. We also review historic and novel molecular glues and targets and discuss the challenges and opportunities in this new therapeutic field.
Collapse
|
14
|
Campbell RM. The SLAS Discovery Editor's Top 10 for 2021. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:77-78. [PMID: 35104635 DOI: 10.1016/j.slasd.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
15
|
Engel M, Belfiore L, Aghaei B, Sutija M. Enabling high throughput drug discovery in 3D cell cultures through a novel bioprinting workflow. SLAS Technol 2022; 27:32-38. [PMID: 35058203 DOI: 10.1016/j.slast.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advanced three dimensional cell culture techniques have been adopted in many laboratories to better model in vivo tissue by recapitulating multi-cellular architecture and the presence of extracellular matrix features. We describe here a 3D cell culture platform in a small molecule screening workflow that uses traditional biomarker and intracellular kinase end point assay readouts. By combining the high throughput bioprinter RASTRUM with the high throughput screening assay AlphaLISA, we demonstrate the utility of the protocol in 3D synthetic hydrogel cultures with breast cancer (MDA-MB-231 and MCF-7) and fibroblast cells. To establish and validate the workflow, we treated the breast cancer cultures with doxorubicin, while fibroblast cultures were stimulated with the pro-inflammatory lipopolysaccharide. 3D and 2D MDA-MB-231 cultures were equally susceptible to doxorubicin treatment, while showing opposite ERK phosphorylation changes. Doxorubicin readily entered embedded MCF-7 spheroids and markedly reduced intracellular GSK3β phosphorylation. Furthermore, quantifying extracellular interleukin 6 levels showed a very similar activation profile for fibroblasts in 2D and 3D cultures, with 3D fibroblast networks being more resistant against the immune challenge. Through these validation experiments we demonstrate the full compatibility of the bioprinted 3D cell cultures with several widely-used 2D culture assays. The efficiency of the workflow, minimal culture handling, and applicability of traditional screening assays, demonstrates that advanced encapsulated 3D cell cultures can be used in 2D cell culture screening workflows, while providing a more holistic view on cell biology to increase the predictability to in vivo drug response.
Collapse
Affiliation(s)
- Martin Engel
- Inventia Life Science Operations Pty Ltd, Alexandria, NSW 2015, Australia.
| | - Lisa Belfiore
- Inventia Life Science Operations Pty Ltd, Alexandria, NSW 2015, Australia
| | - Behnaz Aghaei
- Inventia Life Science Operations Pty Ltd, Alexandria, NSW 2015, Australia
| | | |
Collapse
|
16
|
Villandre J, White V, Lear TB, Chen Y, Tuncer F, Vaiz E, Tuncer B, Lockwood K, Camarco D, Liu Y, Chen BB, Evankovich J. A Repurposed Drug Screen for Compounds Regulating Aquaporin 5 Stability in Lung Epithelial Cells. Front Pharmacol 2022; 13:828643. [PMID: 35145418 PMCID: PMC8821664 DOI: 10.3389/fphar.2022.828643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Aquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial. Here, we optimized a high-throughput assay designed to detect AQP5 abundance using a cell line stably expressing bioluminescent-tagged AQP5. We then screened a library of 1153 compounds composed of FDA-approved drugs for their effects on AQP5 abundance. We show compounds Niclosamide, Panobinostat, and Candesartan Celexitil increased AQP5 abundance, and show that Niclosamide has favorable cellular toxicity profiles. We determine that AQP5 levels are regulated in part by ubiquitination and proteasomal degradation in lung epithelial cells, and mechanistically Niclosamide increases AQP5 levels by reducing AQP5 ubiquitination and proteasomal degradation. Functionally, Niclosamide stabilized AQP5 levels in response to hypotonic stress, a stimulus known to reduce AQP5 levels. In complementary assays, Niclosamide increased endogenous AQP5 in both A549 cells and in primary, polarized human bronchial epithelial cells compared to control-treated cells. Further, we measured rapid cell volume changes in A549 cells in response to osmotic stress, an effect controlled by aquaporin channels. Niclosamide-treated A549 cell volume changes occurred more rapidly compared to control-treated cells, suggesting that increased Niclosamide-mediated increases in AQP5 expression affects functional water transport. Taken together, we describe a strategy to identify repurposed compounds for their effect on AQP5 protein abundance. We validated the effects of Niclosamide on endogenous AQP5 levels and in regulating cell-volume changes in response to tonicity changes. Our findings highlight a unique approach to screen for drug effects on protein abundance, and our workflow can be applied broadly to study compound effects on protein abundance in lung epithelial cells.
Collapse
Affiliation(s)
- John Villandre
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Virginia White
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanwen Chen
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Vaiz
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beyza Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karina Lockwood
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dan Camarco
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bill B. Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - John Evankovich
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Rodriguez-Rivera FP, Levi SM. Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS CENTRAL SCIENCE 2021; 7:1117-1125. [PMID: 34345664 PMCID: PMC8323112 DOI: 10.1021/acscentsci.1c00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Diverging from traditional target inhibition, proteasomal protein degradation approaches have emerged as novel therapeutic modalities that embody distinct pharmacological profiles and can access previously undrugged targets. Small molecule degraders have the potential to catalytically destroy target proteins at substoichiometric concentrations, thus lowering administered doses and extending pharmacological effects. With this mechanistic premise, research efforts have advanced the development of small molecule degraders that benefit from stable and increased affinity ternary complexes. However, a holistic framework that evaluates different degradation modes from a catalytic perspective, including focusing on kinetically favored degradation mechanisms, is lacking. In this Outlook, we introduce the concept of an induced cooperativity spectrum as a unifying framework to mechanistically understand catalytic degradation profiles. This framework is bolstered by key examples of published molecular degraders extending from molecular glues to bivalent degraders. Critically, we discuss remaining challenges and future opportunities in drug discovery to rationally design and phenotypically screen for efficient degraders.
Collapse
Affiliation(s)
- Frances P. Rodriguez-Rivera
- Discovery
Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Samuel M. Levi
- Pfizer
Worldwide Research and Development, Pfizer,
Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Stacey P, Lithgow H, Lewell X, Konopacka A, Besley S, Green G, Whatling R, Law R, Röth S, Sapkota GP, Smith IED, Burley GA, Harling J, Benowitz AB, Queisser MA, Muelbaier M. A Phenotypic Approach for the Identification of New Molecules for Targeted Protein Degradation Applications. SLAS DISCOVERY 2021; 26:885-895. [PMID: 34041938 DOI: 10.1177/24725552211017517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design. Herein we report a novel phenotypic screening approach for the identification of E3 ligase binders. The key concept underlying this approach is the high-throughput modification of screening compounds with a chloroalkane moiety to generate HaloPROTACs in situ, which were then evaluated for their ability to degrade a GFP-HaloTag fusion protein in a cellular context. As proof of concept, we demonstrated that we could generate and detect functional HaloPROTACs in situ, using a validated Von Hippel-Lindau (VHL) binder that successfully degraded the GFP-HaloTag fusion protein in living cells. We then used this method to prepare and screen a library of approximately 2000 prospective E3 ligase-recruiting molecules.
Collapse
Affiliation(s)
| | - Hannah Lithgow
- Medicine Design, GlaxoSmithKline, Stevenage, UK.,Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, UK
| | - Xiao Lewell
- Medicine Design, GlaxoSmithKline, Stevenage, UK
| | | | | | | | | | - Robert Law
- Medicine Design, GlaxoSmithKline, Stevenage, UK
| | - Sascha Röth
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), University of Dundee, Dundee, UK
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), University of Dundee, Dundee, UK
| | | | - Glenn A Burley
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
19
|
Castaldi MP, Fisher SL. Advances in Protein Degradation. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:471-473. [PMID: 33780295 DOI: 10.1177/24725552211001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|