1
|
Osborne NN, Nesselhut T, Nicholas DA, Cuello AC. Serotonin: A transmitter candidate in the vertebrate retina. Neurochem Int 2012; 3:171-6. [PMID: 20487822 DOI: 10.1016/0197-0186(81)90037-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/1981] [Indexed: 11/17/2022]
Abstract
It has been established by a combination of high performance liquid chromatographic and immunohistochemical methods that serotonin occurs in amacrine cell bodies and terminals situated in the inner plexiform layer of the frog retina, where enzymes for the synthesis of the same amine are also present. Potassium stimulation causes a release of previously accumulated radioactive serotonin by the retina. These findings support the opinion that serotonin is a retinal transmitter.
Collapse
Affiliation(s)
- N N Osborne
- Nuffield Laboratory of Ophthalmology and Dept. of Pharmacology and Human Anatomy, Oxford University, England
| | | | | | | |
Collapse
|
2
|
Localization of αvβ3-like integrin in cultivated larval cells of the mussel Mytilus trossulus during neuronal and muscle differentiation. J Mol Histol 2012; 43:449-59. [PMID: 22673772 DOI: 10.1007/s10735-012-9428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/24/2012] [Indexed: 12/28/2022]
Abstract
Using immunofluorescence phenotyping, the expression of αvβ3-like integrin was examined during neuronal and muscle differentiation in cell cultures derived from trochophore larvae of the mussel Mytilus trossulus. We have demonstrated that some mussel cells grown on fibronectin in vitro express the extracellular matrix (ECM) αvβ3 integrin-like receptor. At the same time, the distribution of αvβ3-like integrin is not ubiquitous, i.e. it depends on the cell type and the time of cultivation. Using immunohistochemical staining, we have found that only in some cells this integrin is co-localized with molluscan neuronal markers, neurotransmitters serotonin (5-HT) or Phe-Met-Arg-Phe-NH(2) neuropeptide (FMRFamide), and also with filament actin but not with paramyosin. Although we have previously shown that an integrin-dependent mechanism is involved in cell adhesion and differentiation of muscle cells of Mytilus, in this study, αvβ3-like integrin has not been found to participate in fibronectin adhesion of muscle cells but may be a linking agent between the ECM and the neuron-like cells.
Collapse
|
3
|
Gibbs KM, Chittur SV, Szaro BG. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. Eur J Neurosci 2010; 33:9-25. [PMID: 21059114 DOI: 10.1111/j.1460-9568.2010.07477.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Throughout the vertebrate subphylum, the regenerative potential of central nervous system axons is greatest in embryonic stages and declines as development progresses. For example, Xenopus laevis can functionally recover from complete transection of the spinal cord as a tadpole but is unable to do so after metamorphosing into a frog. Neurons of the reticular formation and raphe nucleus are among those that regenerate axons most reliably in tadpole and that lose this ability after metamorphosis. To identify molecular factors associated with the success and failure of spinal cord axon regeneration, we pharmacologically manipulated thyroid hormone (TH) levels using methimazole or triiodothyronine, to either keep tadpoles in a permanently larval state or induce precocious metamorphosis, respectively. Following complete spinal cord transection, serotonergic axons crossed the lesion site and tadpole swimming ability was restored when metamorphosis was inhibited, but these events failed to occur when metamorphosis was prematurely induced. Thus, the metamorphic events controlled by TH led directly to the loss of regenerative potential. Microarray analysis identified changes in hindbrain gene expression that accompanied regeneration-permissive and -inhibitory conditions, including many genes in the permissive condition that have been previously associated with axon outgrowth and neuroprotection. These data demonstrate that changes in gene expression occur within regenerating neurons in response to axotomy under regeneration-permissive conditions in which normal development has been suspended, and they identify candidate genes for future studies of how central nervous system axons can successfully regenerate in some vertebrates.
Collapse
Affiliation(s)
- Kurt M Gibbs
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | | |
Collapse
|
4
|
Hidaka S. Serotonergic synapses modulate generation of spikes from retinal ganglion cells of teleosts. J Integr Neurosci 2010; 8:299-322. [PMID: 19938208 DOI: 10.1142/s0219635209002198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/27/2009] [Indexed: 11/18/2022] Open
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is a common neurotransmitter/neuromodulator found widely in the nervous system. Cellular morphology and retinal distribution of serotonergic amacrine cells in the channel catfish (Ictalurus punctatus) retina are identified using monoclonal anti-5HT antibody. These cells receive ribbon synapses from OFF-center (hyperpolarizing) bipolar cells as well as conventional synapses with other non-serotonergic amacrine cells. Output synapses from the serotonergic cells are mainly channel onto retinal ganglion cells. Output synapses from the serotonergic cells occur as "the branched synapses" onto the ganglion cell dendrites at the dyads of the ribbon synaptic sites, and are made onto the ganglion cells, apart from the ribbon synapses. Application of serotonin receptor agonist: 5HT(1A) serotonin receptor agonist, (+)-8-hydroxy-dipropylaminotetralin [8-OH-DPAT; 1-10 muM] is also known to activate 5HT(7) serotonin receptor, coupled with activation of adenylate cyclase, generated continuous repetitive spikes from large retinal ganglion cells of the adult goldfish (Carassius auratus) in flat-mounted preparations, using amphotericin-B-perforated patch-clamp. Under control conditions of bleached retina with continuous light illumination, goldfish large retinal ganglion cells had generated only few spikes. This is the first observation of positive neuromodulation promoting retinal ganglion cell excitation in the retina. The results confirm previous reports of a serotonergic system in the mammalian retina. These results support the presence of developed postsynaptic serotonin receptors in cyprinid fish retina together with other physiological and anatomical studies, and suggest that the action of serotonin in the retina may be more important than previously believed.
Collapse
Affiliation(s)
- Soh Hidaka
- Department of Physiology, Fujita Health University, School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
5
|
Abstract
AbstractThe serotoninergic and peptidergic components of the nervous system of the cercaria ofSanguinicola inermis(Digenea: Sanguinicolidae) were examined using whole-mount immunocytochemistry and a plan of the nervous system has been described. Antibodies to serotonin (5-hydroxytryptamine, 5-HT) and the neuropeptides, FMRFamide, GFNSALMFamide (S1) and SGPYSFNSGLTFamide (S2) were used in the study. Immunoreactivity (IR) was demonstrated to all but the S2 antisera and showed a similar fundamental distribution. IR was found in paired cerebral ganglia located anteriorly within the body and connected by a cerebral commissure. From the ganglia paired ventral and dorsal longitudinal nerve cords extend anteriorly into the cephalic organ and into the body. There is no apparent connection with the tail. Several transverse commissures connect the longitudinal nerve cords throughout the body and several associated cell bodies have been located. A double-stranded dorsal and ventral longitudinal nerve cord extends the length of the tail and six cell bodies are associated with these cords, uniquely demonstrating either FMRFamide and S1, or 5-HT-like IR. Only 5-HT-like IR was found to extend into the posterior tail furcae and there appears to be a lack of any peripheral tegumental innervation. Double-labelling experiments suggest that the serotoninergic and peptidergic components of the cercarial nervous system are distinct.
Collapse
|
6
|
Wilander E, Nordgren H, Oberg K. Nonantral gastric carcinoid tumours associated with hypergastrinaemia. ACTA MEDICA SCANDINAVICA 2009; 219:393-7. [PMID: 3716881 DOI: 10.1111/j.0954-6820.1986.tb03329.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonantral gastric carcinoid tumours in association with pronounced hypergastrinaemia are reported in 6 patients. It is suggested that the hypergastrinaemia, as a result of lack of a negative acid feedback inhibition in an achlorhydric stomach, promoted the tumour development, possibly initiated by action of carcinogenic nitrosamines, in the gastric juice.
Collapse
|
7
|
Shin M, Nakamuta H, Oda-Ueda N, Larsson LI, Fujiwara K. Immunocytochemical demonstration of polyamines in nucleoli and nuclei. Histochem Cell Biol 2008; 129:659-65. [PMID: 18301910 DOI: 10.1007/s00418-008-0400-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2008] [Indexed: 01/11/2023]
Abstract
Although biochemical studies have shown that polyamines (PAs) occur in the nucleus, only few studies have examined the intranuclear distribution of these organic cations. By immunocytochemistry, we have previously demonstrated that PAs are located in ribosomes. We now show that PAs also are present in both nucleoli and nuclei of a variety of cell types. Detection of nucleolar and nuclear PAs required novel pretreatment procedures involving protease and/or DNase digestion of specimens prior to immunoreaction. Double fluorescence staining confirmed the localizations. This suggests that PAs may be important to the formation of ribosomes in nucleoli, as well as adds support to biochemical studies suggesting that PAs are involved in many biological events in the nucleus. Further biochemical studies will be needed to substantiate this hypothesis.
Collapse
Affiliation(s)
- Masashi Shin
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | | | | | | | | |
Collapse
|
8
|
Xu C, Giuliano F, Sun XQ, Brisorgueil MJ, Leclerc P, Vergé D, Conrath M. Serotonin 5-HT2A and 5-HT5A receptors are expressed by different motoneuron populations in rat Onuf's nucleus. J Comp Neurol 2007; 502:620-34. [PMID: 17394137 DOI: 10.1002/cne.21344] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Motoneurons of Onuf's nucleus innervate the pelvic striated muscles, which play a crucial role in erection, ejaculation, and urinary continence. Serotonergic descending projections from the brain are involved in the modulation of Onuf's motoneuron activity. However, conflicting results regarding the effects of spinal serotonin (5-HT) on pelvi-perineal functions have been reported. They may be partly accounted for by the multiplicity of neuronal targets and receptor subtypes on which 5-HT is acting. In order to provide comparative data regarding 5-HT receptor expression in various groups of Onuf's motoneurons, we used retrograde tracing techniques from different pelvic muscles combined with immunocytochemistry of 5-HT2A and 5-HT5A receptors in male and female rats. In males, 5-HT2A receptor immunolabeling was very dense in motoneurons innervating the ischiocavernosus muscle. By contrast, in female rats, 5-HT2A receptor expression in Onuf's nucleus was very weak. In both genders, 5-HT5A receptor immunoreactivity was found in motoneurons innervating the external urethral sphincter. In males, a moderate or low 5-HT5A immunolabeling was observed in motoneurons innervating the bulbospongiosus and ischiocavernosus muscles, respectively. These data show a preferential localization of 5-HT2A and 5-HT5A receptors to motoneurons controlling the striated muscles located at the penile crus and sphincter muscles, respectively, suggesting a specific serotoninergic control on different pelvic functions. In addition, the subcellular distribution of receptors suggests a different mode of action of 5-HT, paracrine at 5-HT2A receptors and synaptic at 5-HT5A receptors. This might have implications for pharmacological research targeting different pelvic functions e.g., micturition and ejaculation.
Collapse
Affiliation(s)
- Chen Xu
- Groupe de Recherche en Urologie, UPRESS EA 1602, Faculté de Médecine Paris-Sud, 94270 Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Rosin DL, Chang DA, Guyenet PG. Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 2006; 499:64-89. [PMID: 16958085 DOI: 10.1002/cne.21105] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rat retrotrapezoid nucleus (RTN) contains candidate central chemoreceptors that have extensive dendrites within the marginal layer (ML). This study describes the axonal projections of RTN neurons and their probable synaptic inputs. The ML showed a dense plexus of nerve terminals immunoreactive (ir) for markers of glutamatergic (vesicular glutamate transporters VGLUT1-3), gamma-aminobutyric acid (GABA)-ergic, adrenergic, serotonergic, cholinergic, and peptidergic transmission. The density of VGLUT3-ir terminals tracked the location of RTN chemoreceptors. The efferent and afferent projections of RTN were studied by placing small iontophoretic injections of anterograde (biotinylated dextran amine; BDA) and retrograde (cholera toxin B) tracers where RTN chemoreceptors have been previously recorded. BDA did not label the nearby C1 cells. BDA-ir varicosities were found in the solitary tract nucleus (NTS), all ventral respiratory column (VRC) subdivisions, A5 noradrenergic area, parabrachial complex, and spinal cord. In each target region, a large percentage of the BDA-ir varicosities was VGLUT2-ir (41-83%). Putative afferent input to RTN originated from spinal cord, caudal NTS, area postrema, VRC, dorsolateral pons, raphe nuclei, lateral hypothalamus, central amygdala, and insular cortex. The results suggest that 1) whether or not the ML is specialized for CO(2) sensing, its complex neuropil likely regulates the activity of RTN chemosensitive neurons; 2) the catecholaminergic, cholinergic, and serotonergic innervation of RTN represents a possible substrate for the known state-dependent control of RTN chemoreceptors; 3) VGLUT3-ir terminals are a probable marker of RTN; and 4) the chemosensitive neurons of RTN may provide a chemical drive to multiple respiratory outflows, insofar as RTN innervates the entire VRC.
Collapse
Affiliation(s)
- Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
10
|
Bjarkam CR, Sørensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive axons in the retrohippocampal areas of the New Zealand white rabbit. ACTA ACUST UNITED AC 2005; 210:199-207. [PMID: 16170538 DOI: 10.1007/s00429-005-0004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2005] [Indexed: 12/19/2022]
Abstract
This study provides a detailed light microscopic description of the morphology and distribution of serotonin-immunoreactive axons in the paleocortical retrohippocampal areas, viz. the subiculum, presubiculum, parasubiculum and entorhinal area, and the adjoining neocortical perirhinal and retrosplenial cortices of the New Zealand white rabbit. Serotonergic axons could be segregated into three different fiber types named fine fibers, beaded fibers and stem-axons. Fine fibers were evenly distributed thin axons with small fusiform/granular varicosities. Beaded fibers were thin axons with large varicosities, predominantly located in the retrohippocampal supragranular layers, where they often formed pericellular arrays. Stem-axons were thick straight, nonvaricose axons seen in the white matter of psalterium dorsale, alveus and the plexiform layer. The paleocortical retrohippocampal areas had a dense supragranular innervation with numerous tortuous fine and beaded fibers, intermingled in conglomerates with conspicuous varicosities forming pericellular arrays. In contrast, the neocortical area 17 and the lateral part of the perirhinal cortex (area 36) were innervated by evenly distributed fine fibers with a moderate number of small varicosities and few ramifications, whereas, the retrosplenial cortex (areas 29e, 29ab and 29cd), and the medial part of the perirhinal cortex (area 35) displayed an intermediate innervation pattern, probably reflecting the transitional nature of these areas being located between the paleo- and the neocortex. The described dualistic innervation pattern may functionally enable the serotonergic system to exert a strong influence on the supragranular layers of the retrohippocampal areas and thus on the neural input entering these areas from the perirhinal and neighboring polymodal association neocortices, whereas the innervation pattern in the adjoining neocortical areas points towards a more diffuse and general modulation of neural activity herein.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
11
|
Waselus M, Valentino RJ, Van Bockstaele EJ. Ultrastructural evidence for a role of gamma-aminobutyric acid in mediating the effects of corticotropin-releasing factor on the rat dorsal raphe serotonin system. J Comp Neurol 2005; 482:155-65. [PMID: 15611993 DOI: 10.1002/cne.20360] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsal raphe nucleus (DRN) serotonin (5-HT) system has been implicated in acute responses to stress and in stress-related psychiatric disorders such as anxiety and depression. Substantial findings suggest that the neuropeptide corticotropin-releasing factor (CRF) is instrumental in modulating the activity of this system during stress. Because the DRN is neurochemically heterogeneous, dual immunoelectron microscopy was used to examine cellular substrates for interactions between CRF and either 5-HT or gamma-aminobutyric acid (GABA) in the dorsolateral and ventromedial DRN. CRF immunoreactivity was identified primarily within axon terminals, where immunolabeling was particularly enriched in dense-core vesicles. Although CRF terminals targeted 5-HT-containing dendrites in the dorsolateral DRN (16%; n = 251 terminals), synaptic contacts with dendrites that lacked detectable 5-HT immunolabeling were more numerous (48%). In contrast, dual labeling for CRF and GABA (n = 240 terminals) in the dorsolateral DRN revealed that substantially more CRF terminals contacted GABA dendrites (42%) as opposed to unlabeled dendrites (29%). In the ventromedial DRN, contacts between CRF axon terminals and either 5-HT-labeled dendrites or GABA-containing dendrites were fewer than in the dorsolateral DRN. As in the dorsolateral DRN, CRF terminals more frequently contacted GABA dendrites than 5-HT dendrites (30% vs. 8%, respectively). The findings support physiological studies suggesting that CRF has both direct and indirect effects on DRN-5-HT neurons and further implicate GABA as a primary mediator by which CRF and stressors alter the activity of the DRN-5-HT system.
Collapse
Affiliation(s)
- Maria Waselus
- Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
12
|
Bjarkam CR, Sørensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive axons in the hippocampal region of the New Zealand white rabbit. I. Area dentata and hippocampus. Hippocampus 2003; 13:21-37. [PMID: 12625454 DOI: 10.1002/hipo.10042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study provides a detailed light microscopic description of the morphology and distribution of immunohistochemically stained serotonergic axons in the hippocampal region of the New Zealand white rabbit. The serotonergic axons were segregated morphologically into three types: beaded fibers, fine fibers, and stem-axons, respectively. Beaded fibers were thin serotonergic axons with large varicosities, whereas thin axons with small fusiform or granular varicosities were called fine fibers. Finally, thick straight non-varicose axons were called stem-axons. Beaded fibers often formed large conglomerates with numerous boutons (pericellular arrays) in close apposition to the cell-rich layers in the hippocampal region, e.g., the granular and hilar cell layers of the dentate area and the pyramidal cell layer ventrally in CA3. The pericellular arrays in these layers were often encountered in relation to small calbindin-D2BK-positive cells, as shown by immunohistochemical double staining for serotonin and calbindin-D28K. The beaded and fine serotonergic fibers displayed a specific innervation pattern in the hippocampal region and were encountered predominantly within the terminal field of the perforant path, e.g., the stratum moleculare hippocampi and the outer two-thirds of the dentate molecular layer. These fibers were also frequently seen in the deep part of the stratum oriens and the alveus, forming a dense plexus in relation to large multipolar calbindin-D28K-positive cells and their basal extensions. Stem-axons were primarily seen in the fimbria and alveus. This innervation pattern was present throughout the entire hippocampal formation, but there were considerable septotemporal differences in the density of the serotonergic innervation. A high density of innervation prevailed in the ventral/temporal part of the hippocampal formation, whereas the dorsal/septal part received only a moderate to weak serotonergic innervation. These results suggest that the serotonergic system could modulate the internal hippocampal circuitry by way of its innervation in the terminal field of the perforant path, the hilus fasciae dentatae, and ventrally in the zone closely apposed to the mossy fiber layer and the pyramidal cells of CA3. This modulation could be of a dual nature, mediated directly by single serotonergic fibers traversing the hippocampal layers or indirectly by the pericellular arrays and their close relation to the calbindin-D28K-positive cells. The marked septotemporal differences in innervation density point toward a difference between the ventral and dorsal parts of the hippocampal formation with respect to serotonergic function and need for serotonergic modulation.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark.
| | | | | |
Collapse
|
13
|
Interplexiform, horizontal and bipolar-like cells of the rabbit retina take up exogenous serotonin during early developmental stages. Int J Dev Neurosci 2003; 3:643-6. [DOI: 10.1016/0736-5748(85)90054-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/1985] [Indexed: 11/16/2022] Open
|
14
|
Abstract
The effects of leptin on food intake, metabolism, sleep patterns and reproduction may be mediated, in part, by the midbrain serotonergic systems. Here, we report on the distribution of neurones that accumulate leptin in the raphe nuclei of male and female rats after intracerebroventricular administration of mouse recombinant leptin labelled with digoxigenin. Direct leptin-targeted cells were present in the periventricular grey, pontine and raphe nuclei. Confocal microscopy revealed that raphe neurones which accumulated leptin were predominantly serotonergic. The temporal pattern of leptin accumulation by raphe neurones showed a marked gender difference: 6 h after leptin administration, all male and female rats showed massive leptin binding in the dorsal raphe, while 30 min after leptin treatment, only 10% of male rats exhibited leptin-labelled cells in contrast to 50% of females. The present observations reveal that leptin can be selectively accumulated by serotonergic neurones in the raphe nuclei and that this mechanism is gender specific. These findings support the idea that the midbrain serotonergic system is an important mediator of the effects of leptin on brain function and may provide an explanation for gender differences in metabolism regulation and its coordination with higher functions of the brain.
Collapse
Affiliation(s)
- M C Fernández-Galaz
- Departamento Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Kawasaki T, Nishio T, Kawaguchi S, Kurosawa H. Spatiotemporal distribution of GAP-43 in the developing rat spinal cord: a histological and quantitative immunofluorescence study. Neurosci Res 2001; 39:347-58. [PMID: 11248375 DOI: 10.1016/s0168-0102(00)00234-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the rat spinal cord we studied developmental changes in spatiotemporal expression of the growth-associated protein GAP-43, which is known to play an important role in neural development, axonal regeneration, and modulation of synaptic function. GAP-43 was expressed predominantly in the white matter at embryonic day 13 to postnatal day 7, evenly in the white and gray matter at the 2nd to the 3rd postnatal week, and predominantly in the gray matter after the 5th postnatal week. The shifting of predominance was quantitatively assessed. On the basis of histological findings and quantitative assessment of GAP-43 immunoreactivity, it appears likely that the development proceeds from the phase of mostly axonal elongation during the embryonic period and the 1st postnatal week, via the phase of axonal elongation and formation of end arbors and synaptic organization during the 2nd to the 4th postnatal week, to the phase of final maturation of synaptic organization. GAP-43 was continuously expressed through adulthood in neuropil of the gray matter, the pyramidal tract, and the dorsal portion of the lateral funiculus that was identified as serotonergic by confocal laser scanning microscopic studies. The continuous expression may imply perpetual remodeling in these structures even in adulthood.
Collapse
Affiliation(s)
- T Kawasaki
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, 606-8501, Kyoto, Japan
| | | | | | | |
Collapse
|
16
|
Lovick TA, Parry DM, Stezhka VV, Lumb BM. Serotonergic transmission in the periaqueductal gray matter in relation to aversive behaviour: morphological evidence for direct modulatory effects on identified output neurons. Neuroscience 2000; 95:763-72. [PMID: 10670443 DOI: 10.1016/s0306-4522(99)00480-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intracellular recordings were made from 21 cells in the dorsolateral periaqueductal gray matter in coronal midbrain slices. In the majority (n = 20) bath application of 5-hydroxytryptamine (30 or 150 mM) evoked either hyperpolarizing (n = 11) or depolarizing (n = 9) responses. Reconstructions of 11 neurons in the dorsolateral periaqueductal gray matter after filling with biocytin revealed a population of output neurons whose axons followed a dorsolateral trajectory towards the perimeter of the ipsilateral periaqueductal gray matter. In seven cells, the axon could be followed into the adjacent mesencephalic reticular formation. At the light microscopic level, immunostaining for 5-hydroxytryptamine revealed immunoreactive processes throughout the dorsolateral periaqueductal gray matter but no labelled somata or dendrites. Close associations (i.e. no discernible gap) were observed between serotonergic profiles and the somata and dendrites of biocytin-filled cells. At the ultrastructural level, serial sections through 21 appositions on to biocytin-filled dendrites in three slices revealed 19 true appositions (i.e. having closely parallel plasma membranes with no intervening glial cell profiles) with the biocytin-filled dendrite. Only four of the appositions (21%) showed evidence of synaptic specializations which included aggregations of synaptic vesicles, and some thickening of the apposing membrane. The dense reaction product in the biocytin-filled cells precluded identification of the ultrastructure of postsynaptic elements. However, examination of contacts between 5-hydroxytryptamine-immunoreactive profiles and unlabelled elements in material taken from the contralateral side of the periaqueductal gray matter (i.e. no biocytin present) or in material taken from perfusion-fixed whole brain, in which ultrastructural preservation was superior compared with slices, revealed a similar incidence (21% and 23%, respectively) of synaptic specializations. The data indicate that serotonergic transmission on to output neurons in the dorsolateral periaqueductal gray matter is largely mediated by non-junctional contacts, suggesting that the actions of 5-hydroxytryptamine on these cells are mediated predominantly by volume rather than wiring transmission.
Collapse
Affiliation(s)
- T A Lovick
- Department of Physiology, The Medical School, University of Birmingham, UK
| | | | | | | |
Collapse
|
17
|
Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci 1998. [PMID: 9712661 DOI: 10.1523/jneurosci.18-17-06914.1998] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic loss or pharmacological inhibition of monoamine oxidase A (MAOA) in mice leads to a large increase in whole-brain levels of serotonin (5-HT). Excess 5-HT in mouse neonates prevents the normal barrel-like clustering of thalamic axons in the somatosensory cortex. Projection fields of other neuron populations may develop abnormally. In the present study, we have analyzed the localization of 5-HT immunolabeling in the developing brain of MAOA knock-out mice. We show numerous atypical locations of 5-HT during embryonic and postnatal development. Catecholaminergic cells of the substantia nigra, ventral tegmental area, hypothalamus, and locus ceruleus display transient 5-HT immunoreactivity. Pharmacological treatments inhibiting specific monoamine plasma membrane transporters and genetic crosses with mice lacking the dopamine plasma membrane transporter show that the accumulation of 5-HT in these catecholaminergic cells is attributable to 5-HT uptake via the dopamine or the norepinephrine plasma membrane transporter. In the telencephalon, transient 5-HT immunolabeling is observed in neurons in the CA1 and CA3 fields of the hippocampus, the central amygdala, the indusium griseum, and the deep layers of the anterior cingulate and retrosplenial cortices. In the diencephalon, primary sensory nuclei, as well as the mediodorsal, centrolateral, oval paracentral, submedial, posterior, and lateral posterior thalamic nuclei, are transiently 5-HT immunolabeled. The cortical projections of these thalamic nuclei are also labeled. In the brainstem, neurons in the lateral superior olivary nucleus and the anteroventral cochlear nucleus are transiently 5-HT immunolabeled. None of these structures appear to express the monoamine biosynthetic enzyme L-aromatic amino acid decarboxylase. The administration of monoamine plasma membrane transporter inhibitors indicates that the 5-HT immunolabeling in these structures is attributable to an uptake of 5-HT by the 5-HT plasma membrane transporter. This points to neuron populations that form highly precise projection maps that could be affected by 5-HT during specific developmental stages.
Collapse
|
18
|
Vitalis T, Cases O, Callebert J, Launay JM, Price DJ, Seif I, Gaspar P. Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J Comp Neurol 1998; 393:169-84. [PMID: 9548695 DOI: 10.1002/(sici)1096-9861(19980406)393:2<169::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic inactivation of monoamine oxidase A (MAOA) in C3H/HeJ mice causes a complete absence of barrels in the somatosensory cortex, and similar alterations are caused by pharmacological inhibition of MAOA in wild type mice. To determine when and how MAOA inhibition affects the development of the barrel field, the MAOA inhibitor clorgyline was administered to mice of the outbred strain OF1 for various time periods between embryonic day 15 (E15) and postnatal day 7 (P7), and the barrel fields were analyzed with cytochrome oxidase and Nissl stains in P10 and adult mice. High-pressure liquid chromatography measures of brain serotonin (5-HT) showed three- to eightfold increases during the periods of clorgyline administration. Perinatal mortality was increased and weight gain was slowed between P3 and P6. Clorgyline treatments from E15 to P7 or from P0 to P7 disrupted the formation of barrels in the anterior snout representation and in parts of the posteromedial barrel subfield (PMBSF). Treatments from P0 to P4 caused similar although less severe barrel field alterations. Clorgyline treatments only during embryonic life or starting on P4 caused no detectable abnormalities. In cases with barrel field alterations, a rostral-to-caudal gradient of changes was noted: Rostral barrels of the PMBSF were most frequently fused and displayed an increased size tangentially. Thus, MAOA inhibition resulting in increased brain levels of 5-HT affects barrel development during the entire first postnatal week, with a sensitive period between P0 and P4. The rostral-to-caudal gradient of changes in the barrel field parallels known developmental gradients in the sensory periphery and in the maturation thalamocortical afferents. The observed barrel fusions could correspond to a default in the initial segregation of thalamic fibers or to a continued, exuberant growth of these fibers that overrides the tangential domain that is normally devoted to individual whiskers.
Collapse
Affiliation(s)
- T Vitalis
- INSERM U106, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Kinnunen A, Kinnunen T, Kaksonen M, Nolo R, Panula P, Rauvala H. N-syndecan and HB-GAM (heparin-binding growth-associated molecule) associate with early axonal tracts in the rat brain. Eur J Neurosci 1998; 10:635-48. [PMID: 9749725 DOI: 10.1046/j.1460-9568.1998.00082.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heparin-Binding Growth-Associated Molecule (HB-GAM)/pleiotrophin is an 18 kDa extracellular matrix- and cell-surface-associated protein shown to enhance neurite outgrowth of perinatal forebrain neurones in vitro. The heparan sulphate proteoglycan N-syndecan (Raulo et al., 1994) has been isolated as a receptor/coreceptor for the HB-GAM. We have investigated, whether HB-GAM and N-syndecan could have a similar role in neurite outgrowth and axon guidance in early axonal tracts of brain. In the present study N-syndecan was found to be spatiotemporally associated with the developing axonal tracts already on embryonic day 9 in rat, as revealed by coexpression with class III beta-tubulin, which is one of the earliest neuronal markers (Easter et al., 1993; Brittis et al., 1995). Later, N-syndecan and HB-GAM were detected in the first afferent serotonergic projections arising from the pontine raphe nuclei. The expression pattern of HB-GAM peaked in the developing rhombencephalon at embryonic stage (E) 13-14. At the same time, N-syndecan was expressed in the developing raphe neurones growing neurites towards the diencephalon along HB-GAM immunoreactive pathways. When rhombencephalic neurones were cultured on decreasing concentrations of substrate-bound HB-GAM, E13 neurones showed a significantly better neurite outgrowth response than E11, E16 or E18 neurones. The neurite outgrowth of raphe neurones in vitro was inhibited by adding soluble heparin or N-syndecan into the culture medium, whereas addition of chondroitin sulphate had no effect. In a simple pathway assay, E13 raphe neurones selectively preferred attaching and growing neurites on pathways containing HB-GAM as compared with regions containing either laminin or fibronectin alone. Our results suggest that HB-GAM may function as a developmentally regulated cue for rhombencephalic neurones that possess N-syndecan on their cell membrane.
Collapse
Affiliation(s)
- A Kinnunen
- Institute of Biomedicine, Department of Anatomy, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Bjarkam CR, S�rensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970421)380:4<507::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, El Mestikawy S, Seif I, Gaspar P. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 1996; 17:823-35. [PMID: 8938116 DOI: 10.1016/s0896-6273(00)80215-9] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Serotonin (5-HT) has been shown to affect the development and patterning of the mouse barrelfield. We show that the dense transient 5-HT innervation of the somatosensory, visual, and auditory cortices originates in the thalamus rather than in the raphe: 5-HT is detected in thalamocortical fibers and most 5-HT cortical labeling disappears after thalamic lesions. Thalamic neurons do not synthesize 5-HT but take up exogenous 5-HT through 5-HT high affinity uptake sites located on thalamocortical axons and terminals. 3H-5-HT injected into the cortex is retrogradely transported to thalamic neurons. In situ hybridization shows a transient expression of the genes encoding the serotonin transporter and the vesicular monoamine transporter in thalamic sensory neurons. In these glutamatergic neurons, internalized 5-HT might thus be stored and used as a "borrowed transmitter" for extraneuronal signaling or could exert an intraneuronal control on thalamic maturation.
Collapse
Affiliation(s)
- C Lebrand
- INSERM U106, IFR des Neurosciences, Hôpital de la Salpêtrière, Paris,France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Van Bockstaele EJ, Chan J, Pickel VM. Pre- and postsynaptic sites for serotonin modulation of GABA-containing neurons in the shell region of the rat nucleus accumbens. J Comp Neurol 1996; 371:116-28. [PMID: 8835722 DOI: 10.1002/(sici)1096-9861(19960715)371:1<116::aid-cne7>3.0.co;2-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The shell of the nucleus accumbens received a dense serotonergic innervation and contains abundant gamma-aminobutyric acid (GABA)-immunoreactive neurons. Moreover, serotonin (5-hydroxytryptamine: 5-HT) and GABA have been implicated in a variety of common motivational and motor-related functions partially ascribed in this brain area. We used immunoelectron microscopy of antisera directed against 5-HT and GABA in the same section of tissue to examine whether there were cellular substrates that might indicate more specific sites for functional interactions involving these transmitters in the shell region of the rat nucleus accumbens. Immunogold-silver labeling for GABA was localized to perikarya, dendrites, axons and axon terminals, whereas immunoperoxidase labeling for 5-HT was restricted to axons and axon terminals. Approximately half (187/366) of the 5-HT-immunoreactive axon terminals apposed or formed synaptic junctions with postsynaptic neurons. These junctions were mainly of the symmetric-type (83/187) characteristic of inhibitory transmitters, and were equally prevalent on dendrites with and without detectable gold-silver labeling for GABA. Of the 187 5-HT-labeled axon terminals with recognized synaptic contacts, 36% also showed convergence on a common dendrite with a GABA-labeled axon terminal. In addition, 5-HT- and GABA-immunoreactive axon terminals were commonly (83/366) identified in direct apposition to one another. Within a single plane of section, 41% of the apposed GABA-immunoreactive axon terminals formed symmetric-type junctions with dendrites or somata, whereas, the apposed 5-HT-labeled axon terminals rarely showed postsynaptic contacts. These results indicate that 5-HT-containing axon terminals may postsynaptically inhibit GABAergic neurons and their targets within the shell of the rat nucleus accumbens. Additionally, our results strongly suggest that, in this brain region, appositions between 5-HT and GABA axons and axon terminals may facilitate presynaptic interactions between these transmitter systems.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
23
|
Brusco A, Pecci Saavedra J, Scicolone G, Flores V. Development of serotonergic innervation of the chick embryo tectum opticum. Int J Dev Neurosci 1995; 13:835-43. [PMID: 8770657 DOI: 10.1016/0736-5748(95)00068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This paper describes the development of the serotonergic innervation of the chick tectum opticum as revealed by an immunohistochemical methodology. The development of this innervation was previously described simply as the formation of an irregular network of serotonergic fibers that gradually invades the organ and increases in density. Our results show that the developmental pattern of serotonergic innervation differs significantly through the distinct tectal layers and that it progresses through a characteristic temporospatial pattern related to the lamination process. These findings support the idea that the concept of laminar segregation can be applied to describe the development of the serotonergic innervation. On the other hand, it is clear that the existence of a typical ordered developmental pattern of innervation makes it possible to detect embryonic or post-hatching alterations. Thus, the tectal serotonergic innervation could be used as a suitable model to investigate possible plastic changes in experimental conditions.
Collapse
Affiliation(s)
- A Brusco
- Institute of Cell Biology and Neurosciences Prof. Eduardo De Robertis, School of Medicine, University of Buenos Aires, Argentina
| | | | | | | |
Collapse
|
24
|
Abstract
In this study we examined whether the serotonergic raphe-hippocampal projection preserves its characteristic target selectivity for GABAergic interneurons when developing in vitro, in organotypic cultures. Hippocampal slices from one- to three-day-old rats were co-cultured with slices derived from the raphe nuclei of the same animals. After several weeks of in vitro incubation, a large number of raphe fibres--visualized by immunostaining for serotonin--were found to innervate the hippocampal tissue. In our random sample of over 250 serially sectioned boutons--52 of which were completely reconstructed from serial sections--only two were found to form conventional synapses in the electron microscope, and contacted dendritic spines. These results demonstrate that raphe-hippocampal serotonergic afferent are unable to form synaptic contacts with their normal targets in vitro, if explanted one to three days postnatally. Neurons in the afferent and/or target area may have passed a critical age when selective synaptic contacts can be formed, or unknown chemical or electrical signals may be missing under these conditions, which should serve to guide subcortical afferents to their synaptic target elements.
Collapse
Affiliation(s)
- E C Papp
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
25
|
The distribution of neurones immunoreactive for ?-tyrosine hydroxylase, dopamine and serotonin in the ventral nerve cord of the cricket, Gryllus bimaculatus. Cell Tissue Res 1995. [DOI: 10.1007/bf00318362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Batten TF. Immunolocalization of putative neurotransmitters innervating autonomic regulating neurons (correction of neurones) of cat ventral medulla. Brain Res Bull 1995; 37:487-506. [PMID: 7633897 DOI: 10.1016/0361-9230(95)00029-e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study investigated possible sites of contact of nerve fibers containing a range of putative neurotransmitter substances onto neurons in the cat ventral medulla oblongata concerned with autonomic, particularly cardiovascular, regulation. The parasympathetic preganglionic neurons of the nucleus ambiguous (correction of ambiguus) were identified by retrograde horseradish peroxidase tracing from the vagus nerve, and the groups of neurons in the A1 and C1 cell areas and the raphe nucleus by catecholamine enzyme or 5-hydroxytryptamine (5-HT) immunohistochemistry, respectively. Immunoreactive (-ir)nerve fibers and terminals in the vicinity if these neurons were visualized by subjecting the sections to a dual-staining technique using a brown peroxidase-diaminobenzidine reaction product and a blue alkaline phosphatase-Fast blue reaction product. By employing monochrome photography with combinations of blue and orange-red filters, it was possible to discriminate neural elements displaying one or the other reaction product, or colocalization of reaction products. The results revealed the presence of calcitonin gene-related peptide (CGRP) and galanin (GAL)-ir in some motoneurons of the nucleus ambiguus, but not in those innervating the heart via the cardiac vagus nerve. The latter group of parasympathetic efferent neurons were found to be densely innervated by fibers immunoreactive for dopamine beta-hydroxylase (DBH, indicating noradrenaline), glycine (GLY), gamma-aminobutyric acid (GABA), 5-HT, enkephalin (ENK), neuropeptide Y (NPY), substance P (SP), and thyrotropin-releasing hormone (TRH), and, to a lesser extent, by other neuropeptide-ir fibers. The catecholamine cells of the rostral C1 and caudal A1 groups showed a broadly similar pattern of innervation, most noticeably by fibers immunoreactive for DBH, GABA, 5-HT, cholecystokinin (CCK), CGRP, ENK, GAL, NPY, and SP. The 5-HT-ir neurons of the raphe nucleus, some also containing SP, TRH, ENK, or corticotropin-releasing factor (CRF)-ir, were most prominently innervated by terminals containing DBH, GABA, CCK, ENK, NPY, TRH, somatostatin (SRIF), and vasoactive intestinal polypeptide (VIP)-ir. Although the proof that these groups of neurons receive functional synaptic contacts from the immunoreactive fibers awaits further ultrastructural studies, the results do suggest that a wide range of putative transmitters may influence the activity of efferent neurons in the cat medulla controlling autonomic functions.
Collapse
Affiliation(s)
- T F Batten
- Institute for Cardiovascular Research, Research School of Medicine University of Leeds, UK
| |
Collapse
|
27
|
Richter-Levin G, Acsády L, Freund TF, Segal M. Differential effects of serotonin and raphe grafts in the hippocampus and hypothalamus: a combined behavioural and anatomical study in the rat. Eur J Neurosci 1994; 6:1720-8. [PMID: 7874311 DOI: 10.1111/j.1460-9568.1994.tb00564.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Combined with a partial cholinergic deficiency, serotonergic lesions induce severe spatial learning deficits. Serotonergic lesions, however, have additional effects, such as reduced body weight and disruption of thermoregulation, which may be the cause of the observed learning deficits. Restoration of the serotonergic innervation of the hippocampus by raphe grafts reduces these learning deficits. The effects of the grafts may result from a direct support of spatial learning but may also be an indirect result of preventing some of the other effects of serotonergic lesions. In the present study we used raphe grafts to examine the selectivity and specificity of the effects of serotonergic lesions in the rat, and used the behavioural effects as an indication of successful transplantation in order to examine the fine details of such grafts. Raphe grafts in the hippocampus did not prevent the effects of the lesions on body weight, thermoregulation and exploratory behaviour but did minimize the effects of the lesions on spatial learning. In contrast, raphe grafts in the hypothalamus reduced the effects of the lesions on thermoregulation but failed to support learning. The grafted fibres showed termination specificity with the interneurons, which is typical of the serotonergic innervation of the normal hippocampus. The results indicate that the serotonergic innervation of the hippocampus functions locally to support spatial learning. This role of serotonin is independent of its involvement in modulation of body weight, thermoregulation or exploratory behaviour. The results confirm that the modes of serotonergic action in the hippocampus include the selective innervation of specific interneuron subpopulations.
Collapse
Affiliation(s)
- G Richter-Levin
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | |
Collapse
|
28
|
Vanhala A, Yamatodani A, Panula P. Distribution of histamine-, 5-hydroxytryptamine-, and tyrosine hydroxylase-immunoreactive neurons and nerve fibers in developing rat brain. J Comp Neurol 1994; 347:101-14. [PMID: 7798375 DOI: 10.1002/cne.903470108] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the general patterns of the developing histaminergic system in the rat brain are known, no comparative studies between the development of the brain histaminergic system and the development of other neuroactive substances have yet been published. Interestingly, separate immunohistochemical studies on the development of the 5-HT system and on the catecholaminergic system in the rat imply common features in the different aminergic systems. Therefore, the spatial distribution of histamine-immunoreactive (HA-ir) neurons and nerve fibers was compared to the distribution of 5-hydroxytryptamine (5-HT)-, and tyrosine hydroxylase-immunoreactive (TH-ir) ones in the developing rat brain between embryonic days 12 (E12) and 20 (E20) by using a double-immunostaining method. The high-pressure liquid chromatography (HPLC) fluorometric method was used for determination of histamine concentration in different brain regions during the same period of development and synthetic oligonucleotide probes complementary to the rat histidine decarboxylase (HDC) to determine the origin of HA in the brain during the development with in situ hybridization. The immunohistochemical results revealed co-localization of HA and 5-HT within a subgroup of cells in the developing raphe nuclei between E14 and E18. From E18 onwards HA immunoreactivity started to gradually disappear from the rhombencephalon, and was totally abolished by E20, while 5-HT-ir cells continued to establish their adult positions. No significant colocalization of HA and TH immunoreactivities was detected. The biochemical results were in agreement with the immunohistochemical ones and confirmed that histamine detected in the early developing brain is authentic. A positive in situ hybridization signal for HDC was detected in a small area in the ventrolateral pons in the same areas as HA- and HDC-ir cell bodies at E16, suggesting that at least some HA may be synthesized locally. These results confirm that HA is one of the first neurotransmitters to appear in the developing brain. In addition, the transient co-localization of HA and 5-HT immunoreactivities and the transient HDC expression at E16 within the developing pontine raphe nuclei may imply an interesting and a more general role for HA in modification of brain development.
Collapse
Affiliation(s)
- A Vanhala
- Department of Anatomy, University of Helsinki, Finland
| | | | | |
Collapse
|
29
|
Wasowicz K, Panula P. Distribution of neuropeptide FF in porcine spinal cord in comparison with other neuropeptides and serotonin. J Comp Neurol 1994; 346:530-40. [PMID: 7527061 DOI: 10.1002/cne.903460406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A large number of neurotransmitters and neuropeptides are concentrated in the dorsal horn of the spinal cord, where they interact in a complex manner and modulate sensory mechanisms. Most studies are carried out in the rat, and little is known of other species. It is relevant to study mammals with a more complex central nervous system, because pain mechanisms are central in both human and veterinary medicine. Immunoreactivity for neuropeptide FF, an amidated octapeptide originally isolated from bovine brain, was found immunocytochemically at all levels of porcine spinal cord. In contrast to other species studied so far, the peptide immunoreactivity in porcine spinal cord was confined to the intermediolateral gray matter, especially to the intermediolateral cell column and lamina X of the gray matter. This distribution was remarkably different from that of substance P, proenkephalin A-derived peptides, thyrotropin-releasing hormone, serotonin, and neuropeptide Y. Pharmacologic administration of neuropeptide FF alters behavior in assays for analgesia. The distribution of neuropeptide FF immunoreactivity as revealed by this study suggests that there may be marked species differences in the distribution and function of the peptide.
Collapse
Affiliation(s)
- K Wasowicz
- Department of Biology, Abo Akademi University, Biocity, Turku, Finland
| | | |
Collapse
|
30
|
Siddall PJ, Polson JW, Dampney RA. Descending antinociceptive pathway from the rostral ventrolateral medulla: a correlative anatomical and physiological study. Brain Res 1994; 645:61-8. [PMID: 7914818 DOI: 10.1016/0006-8993(94)91638-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microinjections of the excitatory amino acid L-glutamate were made into the rostral ventrolateral medulla (RVLM) of anesthetised cats, to map the sites at which selective stimulation of cell bodies elicited a significant antinociceptive response (> or = 15% inhibition of the increase in L7 ventral root activity reflexly evoked by stimulation of C-fiber afferents). Antinociceptive sites were largely confined to the RVLM subregion ventromedial to the retrofacial nucleus, extending from the caudal pole of the facial nucleus to the level approximately 2.5 mm more caudal. Increases in arterial pressure were also elicited from some sites in the RVLM, but these were mainly lateral to the antinociceptive sites. In a second series of experiments, rhodamine labeled microspheres or cholera toxin B-gold (CTB-gold) were injected into the dorsal horn of the L7 segment. In three of these experiments in which the injection sites were restricted to the dorsal horn, retrogradely labeled cells in the caudal pons and medulla were virtually all within either the nucleus raphe magnus or the RVLM. Furthermore, the labeled cells in the RVLM were virtually confined to a discrete group located just ventromedial to the retrofacial nucleus, i.e. within the antinociceptive region as mapped by glutamate microinjection. The results of the present study indicate that antinociceptive effects are elicited by stimulation of a subregion in the RVLM, which is located medial to the pressor region. Further, the antinociceptive effects may be mediated, at least in part, by cells projecting directly to the dorsal horn in the spinal cord.
Collapse
Affiliation(s)
- P J Siddall
- Department of Physiology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
31
|
Charara A, Parent A. Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 1994; 640:155-70. [PMID: 7911724 DOI: 10.1016/0006-8993(94)91870-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The retrograde tracer cholera toxin B subunit (CTb) was used in combination with immunohistochemistry for tyrosine hydroxylase (TH), calbindin D-28k (CaBP), choline acetyltransferase (ChAT) and 5-hydroxytryptamine (5-HT) to determine the distribution and relative proportion of brainstem chemospecific neurons that project to the pallidum in the squirrel monkey (Saimiri sciureus). Large injections of CTb involving both pallidal segments produce numerous retrogradely labeled neurons in the substantia nigra (SN), the pedunculopontine tegmental nucleus (PPN) and the dorsal raphe nucleus (DR). Labeled neurons are distributed uniformly in SN with a slight numerical increase at the junction between the pars compacta (SNc) and the ventral tegmental area (VTA). Retrogradely labeled neurons abound also in PPN, principally in its pars dissipata, whereas other CTb-labeled cells are scattered throughout the rostrocaudal extent of DR. After CTb injection involving specifically the internal pallidal segment (GPi), the same pattern of cell distribution is found in SN, PPN and DR, except that the number of retrogradely labeled cells is lower than after large pallidal complex injections. Approximately 70% of all CTb-labeled neurons in SNc-VTA complex display TH immunoreactivity, whereas 20% are immunoreactive for CaBP. About 39% of all retrogradely labeled neurons in PPN are immunoreactive for ChAT, whereas approximately 38% of the labeled neurons in DR display 5-HT immunoreactivity. Following CTb injection in the external pallidal segment (GPe), the number of labeled cells is much smaller than after GPi injection. The majority of CTb-labeled cells in SNc-VTA complex are located in the lateral half of SNc and approximately 93% of these neurons display TH immunoreactivity compared to 10% that are immunoreactive for CaBP; very few CTb-labeled cells occur in PPN. Retrogradely labeled cells in DR are located more laterally than those that projects to the GPi and about 25% of them are immunoreactive for 5-HT. These results suggest that, in addition to their action at striatal and/or nigral levels, the brainstem dopaminergic, cholinergic and serotoninergic neurons influence the output of the primate basal ganglia by acting directly upon GPi neurons.
Collapse
Affiliation(s)
- A Charara
- Centre de recherche en neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| | | |
Collapse
|
32
|
Sykes RM, Spyer KM, Izzo PN. Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla. Neuroscience 1994; 59:195-210. [PMID: 7514769 DOI: 10.1016/0306-4522(94)90110-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The central distribution of vagal afferents in the medulla containing either substance P, calcitonin gene-related peptide or 5-hydroxytryptamine was examined using a double-labelling technique and laser scanning confocal microscopy. Areas of the nucleus tractus solitarii, dorsal motonucleus of the vagus nerve and area postrema were scanned for double-labelled axon profiles. Analysis of this material revealed that all three neurochemicals were contained within the central terminals of vagal nerve sensory neurons. However, the distribution of vagal nerve afferents containing each of these putative transmitters differed. Afferents containing 5-hydroxytryptamine were detected mainly in the areas postrema and the adjacent nucleus tractus solitarii, with a smaller number in the ventral subnuclei of the solitary tract. In contrast afferents containing calcitonin gene-related peptide were found primarily in the medial and commissural regions of the nucleus tractus solitarii. Afferents containing substance P-immunoreactivity were surprisingly few in number and did not appear to be associated with any particular region. These results establish the presence of 5-hydroxytryptamine, substance P and calcitonin gene-related peptide in the central axons of vagal sensory afferents. Furthermore, the differential distribution of afferents immunoreactive for these neurochemicals seen in this study, together with previous demonstrations of the viscerotopic organization of vagal sensory afferents suggests a possible "chemical coding" for individual end organs.
Collapse
Affiliation(s)
- R M Sykes
- Department of Physiology, Royal Free Hospital School of Medicine, London, U.K
| | | | | |
Collapse
|
33
|
Osterheld-Haas MC, Van der Loos H, Hornung JP. Monoaminergic afferents to cortex modulate structural plasticity in the barrelfield of the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 77:189-202. [PMID: 8174228 DOI: 10.1016/0165-3806(94)90196-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Electrolytic lesions of the follicles of a set of mystacial vibrissae, and their innervation, of the mouse placed during the early postnatal period result in a modification in appearance of the corresponding and of adjacent barrels in the somatosensory cortex of the adult animal. These changes can be evoked during the first 6 days of postnatal life--the so-called critical period. The pattern of these modifications varies with the age of the animal at which the lesion was placed. In order to evaluate the contribution of the monoaminergic cortical input to this type of plasticity, the noradrenergic and/or serotonergic afferents to the cerebral cortex of newborn mice were destroyed by systemic administration of various selective neurotoxic drugs (6-hydroxydopamine, 5,7-dihydroxytryptamine, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine). The animals were then subjected, on postnatal day 3 (P3; P0 = day of birth), to a lesion of the follicles of the large, caudal mystacial vibrissae of row C. Control animals were injected with vehicle solution only but had the same follicles lesioned. Compared with animals with intact monoaminergic afferents, those treated with neurotoxins showed a different changed barrel pattern, i.e. one that corresponded to a pattern normally obtained after a lesion placed at an earlier stage of development, i.e. at P2 or P1. Thus, monoaminergic depletion of the cortex results in a retardation of the maturation of the parietal cortex as defined by its plastic response to peripheral nerve injury.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
34
|
Izzo PN, Deuchars J, Spyer KM. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol 1993; 327:572-83. [PMID: 8440781 DOI: 10.1002/cne.903270408] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The origin of cardiac vagal preganglionic motoneurones in the rat is still controversial and knowledge of the chemistry of synaptic inputs onto these neurones is limited. In this investigation vagal preganglionic motoneurones innervating the heart were identified by the retrograde transport of cholera toxin conjugated to horseradish peroxidase (CT-HRP) combined with the immunocytochemical localization of 5-hydroxytryptamine. Injection of CT-HRP into the myocardium resulted in the retrograde labelling of neurones primarily in the ventral regions of the nucleus ambiguus (75.1%). Labelled neurones were also distributed in a narrow band through the reticular formation extending between the dorsal motor nucleus of the vagus nerve and the nucleus ambiguus (17.3%) as well as in the dorsal motor nucleus itself (7.6%). A combination of retrograde labelling with immunocytochemistry for 5-hydroxytryptamine revealed that the neuronal perikarya and the dendrites of cardiac vagal motoneurones in the nucleus ambiguus were often ensheathed in 5-hydroxytryptamine-immunoreactive axonal boutons. Electron microscopic examination of this material confirmed that there were synaptic specializations between these boutons and the cardiac vagal motoneurones. The identification of 5-hydroxytryptamine-containing synaptic inputs to this population of vagal motoneurones provides further detail towards the understanding of the regulation of heart rate by the parasympathetic nervous system.
Collapse
Affiliation(s)
- P N Izzo
- Department of Physiology, Royal Free Hospital School of Medicine, London, England
| | | | | |
Collapse
|
35
|
Batten TF, Berry PA, Maqbool A, Moons L, Vandesande F. Immunolocalization of catecholamine enzymes, serotonin, dopamine and L-dopa in the brain of Dicentrarchus labrax (Teleostei). Brain Res Bull 1993; 31:233-52. [PMID: 8098256 DOI: 10.1016/0361-9230(93)90214-v] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antisera to serotonin (5-HT), dopamine, and L-dopa, and to the catecholamine synthesizing enzymes, tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and phenylethanolamine N-methyl transferase (PNMT), were used to localize monoamine containing neurones in the brain of Dicentrarchus labrax (sea bass). In the brain stem, 5-HT-immunoreactive (ir) neurones were recognized in the ventrolateral medulla, vagal motor area, medullary, and mesencephalic raphe nuclei and in the dorsolateral isthmal tegmentum. In the hypothalamus, liquor-contacting 5-HT neurones were seen in various regions of the paraventricular organ. Virtually all regions of the brain contained a dense innervation by 5-HT fibres and terminals. DBH-ir neurones were restricted to three brain stem areas: the locus coeruleus, the area postrema, and the reticular formation of the lower medulla. Neurones in these three groups also displayed TH-ir, and in the latter area, PNMT-ir in addition. In the locus coeruleus and area postrema, TH-ir neurones outnumbered DBH-ir neurones, an observation substantiated by the presence of dopamine-ir neurones. In the forebrain, dopamine- and TH-ir neurones were found in the olfactory bulb, ventral/central telencephalon, periventricular preoptic, and suprachiasmatic areas, dorsolateral and ventromedial thalamus, and posterior tuberal nucleus. In the paraventricular organ, the distribution and morphology of dopamine-ir neurones was similar to that observed with anti-5-HT, but the vast majority of cells were not TH-ir, suggesting accumulation of dopamine by uptake from the ventricle, rather than by synthesis. L-dopa-ir neurones were found only in the central telencephalon, preoptic recess, and dorsolateral thalamus. Fibres and terminals immunoreactive for dopamine, TH, and DBH showed a broadly similar distribution. The results are discussed in relation to the monoaminergic systems previously reported in other teleostean species and the mammalian brain.
Collapse
Affiliation(s)
- T F Batten
- Department of Clinical Medicine, University of Leeds, UK
| | | | | | | | | |
Collapse
|
36
|
Immunocytochemistry and in situ hybridization of catecholamine-synthesizing enzymes and the related neurotransmitters. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/b978-0-444-81369-5.50010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Pecci Saavedra J, Brusco A, López-Costa JJ, Gómez LA, López EM. Antibodies as molecular probes in neurobiology. Identification of chemically defined neurons and synapses in tissues and tissue cultures. Mol Neurobiol 1992; 6:387-405. [PMID: 1285932 DOI: 10.1007/bf02757943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immunocytochemical localization of 5-hydroxytryptamine (5-HT) in the nervous system and aggregate tissue cultures was performed employing an antibody to 6-OH-1,2,3,4-tetrahydro-beta-carboline. A number of immunochemical and biochemical tests with the antigen and the antibody and some procedural changes in the methodology applied for immunolocalization revealed the anti-5-HT-like affinity of the antibody, if applied in paraformaldehyde-fixed tissues. Studies in the hypothalamus, striatum, brainstem, spinal cord, and pineal gland show the complexities of the serotoninergic system. Ultrastructural immunocytochemistry with the preembedding technique reveals that 5-HT synapses are of the asymmetric type. The presynaptic element contains clear, round, small vesicles, with some large dense-core vesicles. The contacts are made with the somata and primary, secondary dendrites or with spines of non-5-HT neurons. Presynaptic dendrites are found in the n. raphe dorsalis, contacting non-5-HT dendrites. Double immunocytochemical methods demonstrated contacts of 5-HT fibers on enkephalin containing neurons of the spinal trigeminal nucleus and on somatostatin containing neurons of the medullary reticular formation. In vitro studies of cultured mesencephalic neurons were performed with the method of aggregating cultures. Such development of a miniature organized nerve tissue was followed up to 35 d in culture. Organization of the neuropil and synaptogenesis was studied using standard electron microscopy. The differentiation of neurons and astrocytes was studied using antibodies to 5-HT and GFAP. Serotonin immunoreactivity could be observed in neuronal bodies and processes at light microscope level as early as the fourth day of culture.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Pecci Saavedra
- Instituto de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
38
|
Semba K, Fibiger HC. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 1992; 323:387-410. [PMID: 1281170 DOI: 10.1002/cne.903230307] [Citation(s) in RCA: 393] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasingly strong evidence suggests that cholinergic neurons in the mesopontine tegmentum play important roles in the control of wakefulness and sleep. To understand better how the activity of these neurons is regulated, the potential afferent connections of the laterodorsal (LDT) and pedunculopontine tegmental nuclei (PPT) were investigated in the rat. This was accomplished by using retrograde and anterograde axonal transport methods and NADPH-diaphorase histochemistry. Immunohistochemistry was also used to identify the transmitter content of some of the retrogradely identified afferents. Following injections of the retrograde tracer wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) into either the LDT or the PPT, labelled neurons were seen in a number of limbic forebrain structures. The medial prefrontal cortex and lateral habenula contained more retrogradely labelled neurons from the LDT, whereas in the bed nucleus of the stria terminalis and central nucleus of the amygdala, more cells were labelled from the PPT. Moderate numbers of neurons were seen in the magnocellular regions of the basal forebrain, and many labelled neurons were observed in the lateral hypothalamus, the zona incerta, and the midbrain central gray from both the LDT and the PPT. Accessory oculomotor nuclei in the midbrain as well as eye movement-related structures in the lower brainstem contained some neurons labelled from the LDT, and fewer neurons from the PPT. A few labelled neurons were seen in somatosensory and other sensory relay nuclei in the brainstem and the spinal cord. Retrograde labelling was seen in a number of extrapyramidal structures, including the globus pallidus, entopenduncular and subthalamic nuclei, and substantia nigra following PPT injections; with LDT injections, labelling was similar in density in the substantia nigra but virtually absent in the entopeduncular and subthalamic nuclei. Data with the fluorescent retrograde tracer fluorogold combined with immunofluorescence indicated that many neurons in the zona incerta-lateral hypothalamic region that were retrogradely labelled from the LDT contained alpha-melanocyte-stimulating hormone. Numerous neurons were labelled throughout the reticular formation of the brainstem following either LDT or PPT injections. Many neurons retrogradely labelled in the LDT and PPT, the dorsal and median raphe nuclei, and the locus ceruleus contained choline acetyltransferase, serotonin, and tyrosine hydroxylase, respectively. The anterograde tracers WGA-HRP and phaseolus vulgaris leucoagglutinin were used to confirm some of the projections indicated by the retrograde labelling data; anterograde labelling was seen in the LDT and PPT following injections of one of these tracers into the medial prefrontal cortex, lateral hypothalamus, and the contralateral LDT.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Semba
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
39
|
Hornung JP, Celio MR. The selective innervation by serotoninergic axons of calbindin-containing interneurons in the neocortex and hippocampus of the marmoset. J Comp Neurol 1992; 320:457-67. [PMID: 1629398 DOI: 10.1002/cne.903200404] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The serotoninergic input to the mammalian cerebral cortex originates in the median and the dorsal raphe nuclei. Median raphe neurons have been previously shown to give rise to beaded varicose axons which form dense pericellular arrays (baskets) surrounding the soma and the proximal dendrites of certain cortical neurons. In the present study, we have searched for specific markers characterizing the neurons of the marmoset neocortex and hippocampus surrounded by these thick varicose serotonin-containing fibers. The non-pyramidal nature of these neurons, suggested by their dendritic arborization, was correlated, in immunocytochemical experiments with double-labelling to demonstrate their surrounding serotonin-containing basket and their content of glutamic acid decarboxylase (GAD) or of the calcium-binding protein calbindin. Another calcium-binding protein common in numerous non-pyramidal cortical neurons, parvalbumin, was never found in neurons surrounded by serotonin-containing baskets. This organization was found in all areas of the neocortex and of the hippocampus where serotonin-containing baskets were present. One of the serotoninergic cortical inputs which originates from the brainstem tegmentum, traditionally described as "diffuse," proves to be highly selective in that a subset of its axons terminates preferentially on a subpopulation of inhibitory interneurons of the cerebral cortex. It may be emphasized that this subset of cortical interneurons has now been shown to be characterized not only by its axonal and dendritic arborization and its neurotransmitter, but also by a specific type of input which can modulate cortical function in a unique manner.
Collapse
Affiliation(s)
- J P Hornung
- Institute of Anatomy, Faculty of Medicine, University of Lausanne, Switzerland
| | | |
Collapse
|
40
|
Abstract
Pancreata of guinea-pigs were investigated for the presence and cellular distribution of biogenic amines. Out of the established endocrine cell types only insulin (B-) cells contained immunoreactivity for serotonin and noradrenaline. However, the B-cells' content of both amines was quite variable. Serotonin was also confined to enterochromaffin (EC-) cells. No immunoreactivity for dopamine or histamine was present in any islet cell. Treatment of guinea-pigs with Ro-4-4602 led to a marked decrease of serotonin and noradrenaline in pancreatic endocrine cells. The present findings suggest that serotonin and noradrenaline are involved in the function of the endocrine pancreas, particularly of islet B-cells.
Collapse
Affiliation(s)
- Y Cetin
- Abt. Anatomie 1, Medizinische Hochschule Hannover, Federal Republic of Germany
| |
Collapse
|
41
|
Nilsson O, Wängberg B, Theodorsson E, Skottner A, Ahlman H. Presence of IGF-I in human midgut carcinoid tumours--an autocrine regulator of carcinoid tumour growth? Int J Cancer 1992; 51:195-203. [PMID: 1314781 DOI: 10.1002/ijc.2910510206] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The presence of IGF-I and IGF-I receptors in human midgut carcinoid tumours has been investigated. Using immunocytochemistry, IGF-I-positive tumour cells were demonstrated in 11/11 tumour cases studied. Labelling of consecutive sections with antibodies against IGF-I and proliferating cell nuclear antigen (PCNA)/cyclin demonstrated a co-distribution of the 2 antigens in carcinoid tumours. Extracts of tumour tissues were subjected to radioimmunoassay and shown to contain significant amounts of IGF-I. Reverse-phase HPLC of tumour extracts demonstrated a major IGF-I-immunoreactive component eluting in the position of rhIGF-I, but also 2 other more hydrophobic forms. Conditioned serum-free media from primary cultures of carcinoid tumors contained detectable amounts of IGF-I, indicating a spontaneous release of IGF-I from tumour cells into the culture medium. Levels of IGF-I in media were reduced (19%) after incubation of cultures with a somatostatin analogue for 4 days. IGF-I receptors were observed on tumour cells in 4/10 tumours by immunocytochemistry. Tumour cells with immunoreactive IGF-I receptors could be stimulated to enhanced growth, measured as an increase in DNA contents, by exogenous administration of IGF-I every 3-4 days for 2 weeks. The results show that cultured human midgut carcinoid tumours secrete IGF-I and that some of the tumours also have IGF-I receptors. We therefore suggest that IGF-I may act as an autocrine or paracrine regulator of carcinoid tumour-cell growth.
Collapse
Affiliation(s)
- O Nilsson
- Department of Histology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
42
|
Polson JW, Halliday GM, McAllen RM, Coleman MJ, Dampney RA. Rostrocaudal differences in morphology and neurotransmitter content of cells in the subretrofacial vasomotor nucleus. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1992; 38:117-37. [PMID: 1377728 DOI: 10.1016/0165-1838(92)90232-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rostral ventrolateral medulla (RVLM) contains sympathoexcitatory neurons that exert a powerful control over the sympathetic outflow to the cardiovascular system. In the cat there is a concentration of such neurons (but not neurons subserving other functions) within a narrow longitudinal column in the RVLM termed the subretrofacial (SRF) nucleus. Furthermore, it has been suggested that there are subgroups of cells, located at different rostrocaudal levels of the SRF nucleus, that preferentially or exclusively control different vascular beds (e.g. in the kidney and hindlimb). The aim of this study was to map quantitatively the rostrocaudal distribution within the nucleus of different cell types, defined according to morphological and/or chemical criteria, and to correlate this with the regional vasomotor effects (in hindlimb and kidney) evoked by stimulation of SRF cells at the corresponding rostrocaudal levels. SRF cells were highly heterogeneous with respect to both their morphology and chemical properties. They varied greatly in size (equivalent diameter ranging from 10-40 microns) as well as in shape and orientation. An immunohistochemical examination using the avidin-biotin procedure revealed that many SRF cells (estimated 57% of all SRF cells) were immunoreactive for tyrosine hydroxylase (TH, a marker of catecholamine cells). In addition, there were SRF cells immunoreactive for neuropeptide Y (NPY, 11% of total), enkephalin (ENK, 16% of total), and serotonin (5HT, 10% of total), but not for substance P, galanin or somatostatin. Different cell types, defined according to their morphology and/or chemical properties, were unevenly distributed throughout the nucleus. In the most caudal part of the SRF nucleus, virtually all cells were TH-positive, and the large majority (estimated 80%) were NPY-positive, suggesting that many cells at this level contained both TH and NPY. In contrast, in the most rostral part of the SRF nucleus, only 30% of cells were TH-positive, and no NPY-positive cells were observed. Both 5HT- and ENK-positive cells were found throughout the rostrocaudal extent of the nucleus, but predominantly within its rostral part. Furthermore, TH-positive cells in the rostral SRF nucleus were on average significantly larger (mean equivalent diameter 18-43% greater) than TH/NPY-positive cells in the caudal part of the nucleus, but smaller than 5HT- or ENK-positive cells at the same level. Overall, rostral cells (regardless of their chemical type) were larger than caudal cells within the SRF nucleus (mean equivalent diameter 13-28% greater).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J W Polson
- Department of Physiology, University of Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
43
|
Distribution of 5-HT (serotonin) immunoreactivity in the central nervous system of the inshore hagfish,Eptatretus burgeri. Cell Tissue Res 1991. [DOI: 10.1007/bf00678717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Sakamoto H, Atsumi S. Species differences in the coexistence of 5-hydroxytryptamine and substance P in presynaptic boutons in the cervical ventral horn. Cell Tissue Res 1991; 264:221-30. [PMID: 1715239 DOI: 10.1007/bf00313959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Substance P (SP)- and 5-hydroxytryptamine (5-HT)-containing presynaptic boutons in the cervical ventral horn were studied in chicken, hamster, rat and monkey spinal cords, using PAP and protein A-gold double-labeling techniques in conjunction with monoclonal antibodies. In the chicken, the PAP method demonstrated that SP-immunoreactive boutons contained large spherical dense-cored vesicles (DCVs) whereas 5-HT-immunoreactive boutons displayed both elongated and spherical DCVs. Using the protein A-gold double-labeling technique, 10-nm gold particles for SP were localized over the spherical DCV-containing boutons whereas 15-nm gold particles for 5-HT were localized on elongated DCV-containing boutons. On the other hand, in the other species investigated, both SP- and 5-HT-immunoreactive boutons had similar morphological features as shown by the PAP method; both contained elongated and spherical DCVs. The two different sized gold particles, each of which labeled either 5-HT or SP, were found together over DCVs in a single bouton. These results indicate that 5-HT and SP are contained in different presynaptic boutons in the chicken, although in the hamster, rat and Japanese macaque, the two neurotransmitters/modulators coexist in the same DCVs in a single bouton. Species differences have thus been demonstrated for the coexistence of 5-HT and SP in the spinal ventral horn.
Collapse
Affiliation(s)
- H Sakamoto
- Department of Anatomy, Yamanashi Medical College, Japan
| | | |
Collapse
|
45
|
Ito H, Yasui W, Yoshida K, Nakayama H, Tahara E. Depressed tubular adenoma of the stomach: pathological and immunohistochemical features. Histopathology 1990; 17:419-26. [PMID: 1981768 DOI: 10.1111/j.1365-2559.1990.tb00762.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We examined 12 depressed tubular adenomas of the stomach pathologically and immunohistochemically in order to clarify the difference between the depressed type and the elevated type. Depressed tubular adenomas showed shallow mucosal depression and, of the 12, nine were endoscopically diagnosed as early gastric cancer. Histologically, the adenoma cells showed dysplasia in varying degree and focal adenocarcinoma occurred in two adenomas measuring over 2 cm. The mean height of the adenoma glands was 0.63 +/- 0.31 mm in the 12 depressed adenomas and 1.32 +/- 0.43 mm in 44 elevated adenomas, while the mean heights of the subjacent mucosa were 0.18 +/- 0.19 mm and 1.07 +/- 0.71 mm, respectively. Thus, depressed adenomas resulted from paucity of the mucosa subjacent to the adenoma glands and the height of the adenomatous glands was half that found in the elevated type. Goblet cells, a variety of endocrine cells and lysozyme-containing cells were found in nine, nine and eight depressed adenomas, respectively, in variable numbers. Hyperplasia of these cells was also detected in depressed adenomas showing mild or moderate dysplasia. Immunohistochemical examination revealed no difference in the phenotypic expression of adenoma cells as between the depressed and the elevated type.
Collapse
Affiliation(s)
- H Ito
- Department of Pathology, Hiroshima University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- I Törk
- School of Anatomy, University of New South Wales, Kensington, Sydney, Australia
| |
Collapse
|
47
|
Hornung JP, Fritschy JM, Törk I. Distribution of two morphologically distinct subsets of serotoninergic axons in the cerebral cortex of the marmoset. J Comp Neurol 1990; 297:165-81. [PMID: 2115053 DOI: 10.1002/cne.902970202] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The serotoninergic innervation of the marmoset (New World monkey, Callithrix jacchus) cerebral cortex has been analyzed by using immunocytochemistry. The use of a sensitive monoclonal antibody against serotonin allowed the visualization of the fine morphology of individual axons. Two types of terminal axons were demonstrated: one has sparse, small, ovoid varicosities (dia. less than 1 micron), and the other has large, spheroidal varicosities (up to 5 microns in dia.), which are more densely clustered. The first type of axon is distributed through all cortical layers, with a characteristic laminar distribution that varies from area to area. The second type of axons was distributed sparsely in all regions but was markedly denser in the frontal and anterior parietal lobes, and in the hippocampal formation. Axons with large varicosities typically surrounded certain cell bodies and proximal dendrites, forming pericellular arrays, or baskets. These morphological specializations were most frequent in the frontal and anterior parietal cortex, where they were found around stellate and horizontal cells in layer I and around stellate and bipolar cells in layer II and III. Similar baskets were also found in the hippocampal formation, mainly along the border between the hilus and the granule cell layer of the dentate gyrus, across the CA4 field, and at each side of the pyramidal cell layer of the CA3 regions. The distribution and cellular morphology of the cell surrounded by the 5-HT basket fibres were suggestive of a subpopulation of interneurons, possibly GABAergic and/or peptidergic. In agreement with previous reports on the innervation of the cerebral cortex of other mammalian species, the marmoset cerebral cortex is innervated by two separate subsystems of serotoninergic axons. One of these may have a strong and specific influence on the cortical inhibitory circuitry, via relay through cortical interneurons.
Collapse
|
48
|
Young HM, Vaney DI. The retinae of Prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae. Vis Neurosci 1990; 5:61-6. [PMID: 2271460 DOI: 10.1017/s0952523800000079] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study has shown that the retinae of Prototherian (egg-laying) mammals possess two neuronal types that are present in non-mammalian retinae, but absent or morphologically different in the retinae of Eutherian (placental) mammals. First, endogenous serotonin-like immunoreactivity has been localized in a population of presumptive amacrine cells in the platypus retina, the first such report in a mammalian retina. Second, the protein kinase C-immunoreactive (PKC-IR) bipolar cells in the echidna retina appear similar to the PKC-IR bipolars in the chicken retina, in that their dendrites give rise to a Landolt's club and their axons are multistratified. By contrast, the PKC-IR rod bipolar cells in the rabbit and in the brushtail possum, a Metatherian (marsupial) mammal, have no Landolt's clubs and their axons form terminal lobes in the innermost stratum of the inner plexiform layer.
Collapse
Affiliation(s)
- H M Young
- Department of Physiology and Pharmacology, University of Queensland, Australia
| | | |
Collapse
|
49
|
Abstract
Various endocrine cells contain biogenic amines in addition to their peptide hormones. In the digestive tract, one of these amines is serotonin that is regularly present in enterochromaffin (EC-) cells. Previously, it has been assumed that other entero-endocrine cell types also contain this amine. Moreover, it was presumed that chromogranin A, an acidic glycoprotein, is involved in storage mechanisms for biogenic amines in endocrine cells. Using immunohistochemical techniques, we now exemplarily investigated cholecystokinin (CCK-) and secretin (S-) cells of five adult mammalian species for their content of serotonin and of chromogranin A. In all mammalian species, CCK-cells were devoid of serotonin but contained chromogranin A immunoreactivity of varying densities. In contrast, S-cells of all mammals were immunoreactive for serotonin; however, immunoreactivities for this biogenic monoamine were heterogeneous and varied from dense to faint or lacking immunostainings. Likewise, immunoreactivities for chromogranin A in S-cells showed inter-species and inter-cellular heterogeneities. S-cells containing serotonin were simultaneously immunoreactive for chromogranin A and the density of immunoreactivities for both were correlated in given S-cells. Based on mutual relationships of chromogranin A and serotonin immunoreactivities, we assume that chromograinin A is virtually a prerequisite for the S-cells' content of serotonin and that this protein participates in storage mechanisms for biogenic amines in endocrine cells. S-cells have now to be added to the family of amine-storing endocrine cells. Basically, serotonin-storing endocrine cells in the digestive tract cannot be simply regarded as enterochromaffin (EC-) cells any longer; the current nomenclature and classification of entero-endocrine cells should be reviewed in this respect.
Collapse
Affiliation(s)
- Y Cetin
- Abteilung Anatomie I der Medizinischen Hochschule Hannover, Federal Republic of Germany
| |
Collapse
|
50
|
Amine handling properties of human carcinoid tumour cells in tissue culture. Neurochem Int 1990; 17:331-41. [DOI: 10.1016/0197-0186(90)90156-n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1990] [Accepted: 04/30/1990] [Indexed: 11/27/2022]
|