1
|
Proteomic and Genomic Changes in Tau Protein, Which Are Associated with Alzheimer's Disease after Ischemia-Reperfusion Brain Injury. Int J Mol Sci 2020; 21:ijms21030892. [PMID: 32019137 PMCID: PMC7037789 DOI: 10.3390/ijms21030892] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
Recent evidence suggests that transient ischemia of the brain with reperfusion in humans and animals is associated with the neuronal accumulation of neurotoxic molecules associated with Alzheimer’s disease, such as all parts of the amyloid protein precursor and modified tau protein. Pathological changes in the amyloid protein precursor and tau protein at the protein and gene level due to ischemia may lead to dementia of the Alzheimer’s disease type after ischemic brain injury. Some studies have demonstrated increased tau protein immunoreactivity in neuronal cells after brain ischemia-reperfusion injury. Recent research has presented many new tau protein functions, such as neural activity control, iron export, protection of genomic DNA integrity, neurogenesis and long-term depression. This review discusses the potential mechanisms of tau protein in the brain after ischemia, including oxidative stress, apoptosis, autophagy, excitotoxicity, neurological inflammation, endothelium, angiogenesis and mitochondrial dysfunction. In addition, attention was paid to the role of tau protein in damage to the neurovascular unit. Tau protein may be at the intersection of many regulatory mechanisms in the event of major neuropathological changes in ischemic stroke. Data show that brain ischemia activates neuronal changes and death in the hippocampus in a manner dependent on tau protein, thus determining a new and important way to regulate the survival and/or death of post-ischemic neurons. Meanwhile, the association between tau protein and ischemic stroke has not been well discussed. In this review, we aim to update the knowledge about the proteomic and genomic changes in tau protein following ischemia-reperfusion injury and the connection between dysfunctional tau protein and ischemic stroke pathology. Finally we present the positive correlation between tau protein dysfunction and the development of sporadic Alzheimer’s disease type of neurodegeneration.
Collapse
|
2
|
Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ. Tau Protein Dysfunction after Brain Ischemia. J Alzheimers Dis 2019; 66:429-437. [PMID: 30282370 PMCID: PMC6218135 DOI: 10.3233/jad-180772] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Brain ischemia comprises blood-brain barrier, glial, and neuronal cells. The blood–brain barrier controls permeability of different substances and the composition of the neuronal cells ‘milieu’, which is required for their physiological functioning. Recent evidence indicates that brain ischemia itself and ischemic blood-brain barrier dysfunction is associated with the accumulation of neurotoxic molecules within brain tissue, e.g., different parts of amyloid-β protein precursor and changed pathologically tau protein. All these changes due to ischemia can initiate and progress neurodegeneration of the Alzheimer’s disease-type. This review presents brain ischemia and ischemic blood-brain barrier as a trigger for tau protein alterations. Thus, we hypothesize that the changes in pattern of phosphorylation of tau protein are critical to microtubule function especially in neurons, and contribute to the neurodegeneration following brain ischemia-reperfusion episodes with Alzheimer’s disease phenotype.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
3
|
Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer's Disease Phenotype. Int J Mol Sci 2018; 19:E4002. [PMID: 30545070 PMCID: PMC6320958 DOI: 10.3390/ijms19124002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, ongoing interest in ischemic brain injury research has provided data showing that ischemic episodes are involved in the development of Alzheimer's disease-like neuropathology. Brain ischemia is the second naturally occurring neuropathology, such as Alzheimer's disease, which causes the death of neurons in the CA1 region of the hippocampus. In addition, brain ischemia was considered the most effective predictor of the development of full-blown dementia of Alzheimer's disease phenotype with a debilitating effect on the patient. Recent knowledge on the activation of Alzheimer's disease-related genes and proteins-e.g., amyloid protein precursor and tau protein-as well as brain ischemia and Alzheimer's disease neuropathology indicate that similar processes contribute to neuronal death and disintegration of brain tissue in both disorders. Although brain ischemia is one of the main causes of death in the world, there is no effective therapy to improve the structural and functional outcomes of this disorder. In this review, we consider the promising role of the protective action of curcumin after ischemic brain injury. Studies of the pharmacological properties of curcumin after brain ischemia have shown that curcumin has several therapeutic properties that include anti-excitotoxic, anti-oxidant, anti-apoptotic, anti-hyperhomocysteinemia and anti-inflammatory effects, mitochondrial protection, as well as increasing neuronal lifespan and promoting neurogenesis. In addition, curcumin also exerts anti-amyloidogenic effects and affects the brain's tau protein. These results suggest that curcumin may be able to serve as a potential preventive and therapeutic agent in neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland.
| |
Collapse
|
4
|
Yi HA, Won KS, Chang HW, Kim HW. Association between white matter lesions and cerebral Aβ burden. PLoS One 2018; 13:e0204313. [PMID: 30248123 PMCID: PMC6152974 DOI: 10.1371/journal.pone.0204313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/05/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION White matter lesions (WMLs), detected as hyperintensities on T2-weighted MRI, represent small vessel disease in the brain and are considered a potential risk factor for memory and cognitive impairment in older adults. The purpose of this study was to evaluate the association between WMLs and cerebral amyloid-β (Aβ) burden in patients with cognitive impairment. METHODS A total of 83 patients with cognitive impairment, who underwent brain MRI and F-18 florbetaben PET, were included prospectively: 19 patients were cognitively unimpaired, 30 exhibited mild cognitive impairment (MCI), and 34 exhibited dementia. The Fazekas scale was used to quantify WMLs on T2-weighted brain MR images. Cerebral Aβ burden was quantitatively estimated using volume-of-interest analysis. Differences in cerebral Aβ burden were evaluated between low-WML (Fazekas scale ≤1) and high-WML (Fazekas scale ≥2) groups. The relationship between the Fazekas rating and cerebral Aβ burden was evaluated using linear regression analysis after adjusting for age and sex. RESULTS In the overall cohort, the high-WML group exhibited significantly higher Aβ burden compared with the low-WML group (P = 0.011) and cerebral Aβ burden was positively correlated with Fazekas rating (β = 0.299, P = 0.006). In patients with MCI, the high-WML group exhibited significantly higher Aβ burden compared with the low-WML group (P = 0.019) and cerebral Aβ burden was positively correlated with Fazekas rating (β = 0.517, P = 0.003). CONCLUSION The presence of WMLs was associated with cerebral Aβ burden in patients with MCI. Our findings suggest that small vessel disease in the brain is related to Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Hyon-Ah Yi
- Department of Neurology, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Hyuk Won Chang
- Department of Radiology, Semyung Radiology Clinic, Gumi, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
Prineas JW, Parratt JDE, Kirwan PD. Fibrosis of the Choroid Plexus Filtration Membrane. J Neuropathol Exp Neurol 2016; 75:855-67. [PMID: 27444353 PMCID: PMC5015658 DOI: 10.1093/jnen/nlw061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report a previously undescribed inflammatory lesion consisting of deposition of activated complement (C3d and C9neo) in association with major histocompatibility complex type II (MHC2)-positive activated microglia in choroid plexus villi exhibiting classical fibrous thickening of the pericapillary filtration membrane. The proportion of villi affected ranged from 5% to 90% in 56 adult subjects with diseases of the CNS and 11 subjects with no preexisting disease of the CNS. In 3 of the 4 children studied, 2% or less of examined villi showed stromal thickening, complement deposition, and the presence of MHC2-positive microglia; in adults, the proportion of villi affected increased with age. Other features of the lesion included loss of capillaries and failure by macrophages to clear extracellular particulate electron-dense material by clathrin-mediated phagocytosis. This choroid plexus lesion may relate pathogenetically to age-related macular degeneration and to Alzheimer disease, 2 other conditions with no known risk factors other than increasing age. All 3 conditions are characterized by the presence of damaged capillaries, inflammatory extracellular aggregates of mixed molecular composition and defective clearance of the deposits by macrophages.
Collapse
Affiliation(s)
- John W Prineas
- From the The Institute of Clinical Neurosciences and the Nerve Research Foundation, Department of Medicine, University of Sydney, NSW, Australia (JWP, JDEP)Department of Neurology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, Australia (JDEP)Electron Microscope Unit, Department of Anatomical Pathology, Concord Repatriation Hospital, Concord, Sydney, NSW, Australia (PDK)
| | - John D E Parratt
- From the The Institute of Clinical Neurosciences and the Nerve Research Foundation, Department of Medicine, University of Sydney, NSW, Australia (JWP, JDEP)Department of Neurology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, Australia (JDEP)Electron Microscope Unit, Department of Anatomical Pathology, Concord Repatriation Hospital, Concord, Sydney, NSW, Australia (PDK)
| | - Paul D Kirwan
- From the The Institute of Clinical Neurosciences and the Nerve Research Foundation, Department of Medicine, University of Sydney, NSW, Australia (JWP, JDEP)Department of Neurology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, Australia (JDEP)Electron Microscope Unit, Department of Anatomical Pathology, Concord Repatriation Hospital, Concord, Sydney, NSW, Australia (PDK)
| |
Collapse
|
6
|
Ułamek-Kozioł M, Pluta R, Bogucka-Kocka A, Januszewski S, Kocki J, Czuczwar SJ. Brain ischemia with Alzheimer phenotype dysregulates Alzheimer's disease-related proteins. Pharmacol Rep 2016; 68:582-91. [PMID: 26940197 DOI: 10.1016/j.pharep.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/04/2023]
Abstract
There are evidences for the influence of Alzheimer's proteins on postischemic brain injury. We present here an overview of the published evidence underpinning the relationships between β-amyloid peptide, hyperphosphorylated tau protein, presenilins, apolipoproteins, secretases and neuronal survival/death decisions after ischemia and development of postischemic dementia. The interactions of above molecules and their influence and contribution to final ischemic brain degeneration resulting in dementia of Alzheimer phenotype are reviewed. Generation and deposition of β-amyloid peptide and tau protein pathology are essential factors involved in Alzheimer's disease development as well as in postischemic brain dementia. Postischemic injuries demonstrate that ischemia may stimulate pathological amyloid precursor protein processing by upregulation of β- and γ-secretases and therefore are capable of establishing a vicious cycle. Functional postischemic brain recovery is always delayed and incomplete by an injury-related increase in the amount of the neurotoxic C-terminal of amyloid precursor protein and β-amyloid peptide. Finally, we present here the concept that Alzheimer's proteins can contribute to and/or precipitate postischemic brain neurodegeneration including dementia with Alzheimer's phenotype.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland.
| | - Anna Bogucka-Kocka
- Department of Pharmaceutical Botany, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
7
|
Fonseca ACRG, Moreira PI, Oliveira CR, Cardoso SM, Pinton P, Pereira CF. Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells. Mol Neurobiol 2014; 51:610-22. [PMID: 24833600 DOI: 10.1007/s12035-014-8740-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022]
Abstract
In Alzheimer's disease, the accumulation of amyloid-beta (Aβ) in the brain occurs in the parenchyma and cerebrovasculature. Several evidences support that the neuronal demise is potentiated by vascular alterations in the early stages of the disease, but the mechanisms responsible for the dysfunction of brain endothelial cells that underlie these cerebrovascular changes are unknown. Using rat brain microvascular endothelial cells, we found that short-term treatment with a toxic dose of Aβ1-40 inhibits the Ca(2+) refill and retention ability of the endoplasmic reticulum and enhances the mitochondrial and cytosolic response to adenosine triphosphate (ATP)-stimulated endoplasmic reticulum Ca(2+) release. Upon prolonged Aβ1-40 exposure, Ca(2+) homeostasis was restored concomitantly with a decrease in the levels of proteins involved in its regulation operating at the plasma membrane, endoplasmic reticulum, and mitochondria. Along with perturbations in Ca(2+) regulation, an early increase in the levels of oxidants and a decrease in the ratio between reduced and oxidized glutathione were observed in Aβ1-40-treated endothelial cells. Under these conditions, the nuclear levels of oxidative stress-related transcription factors, namely, hypoxia-inducible factor 1α and nuclear factor (erythroid-derived 2)-related factor 2, were enhanced as well as the protein levels of target genes. In conclusion, Aβ1-40 affects several mechanisms involved in Ca(2+) homeostasis and impairs the redox homeostasis simultaneously with stimulation of protective stress responses in brain endothelial cells. However, the imbalance between cell death and survival pathways leads to endothelial dysfunction that in turn contributes to cerebrovascular impairment in Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Catarina R G Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
8
|
Horstman LL, Jy W, Bidot CJ, Nordberg ML, Minagar A, Alexander JS, Kelley RE, Ahn YS. Potential roles of cell-derived microparticles in ischemic brain disease. Neurol Res 2013; 31:799-806. [DOI: 10.1179/016164109x12445505689526] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Pluta R, Jabłoński M, Ułamek-Kozioł M, Kocki J, Brzozowska J, Januszewski S, Furmaga-Jabłońska W, Bogucka-Kocka A, Maciejewski R, Czuczwar SJ. Sporadic Alzheimer's disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer's disease genes. Mol Neurobiol 2013; 48:500-15. [PMID: 23519520 PMCID: PMC3825141 DOI: 10.1007/s12035-013-8439-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022]
Abstract
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106, Warsaw, Poland,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
11
|
Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct Funct 2011; 217:411-20. [PMID: 21706330 DOI: 10.1007/s00429-011-0336-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 06/13/2011] [Indexed: 12/20/2022]
Abstract
MRI was employed to follow the neurodegenerative foci and the localization of inflammatory cells by magnetically labeled CD4+ or CD8+ lymphocytes in the ischemia/reperfusion long-lived rats (9 and 13 months after 10 min of cardiac arrest). MRI of ischemic rats showed: (1) blood-brain barrier (BBB) leakage in the area of the dorsal hippocampus and brainstem-hindbrain level in basal cerebellum, (2) unlike anti-CD8 magnetic antibodies anti-CD4 ultra small paramagnetic iron oxide particles (USPIO) antibodies revealed hypointense areas in the brainstem-interbrain region and caudoputamen not found in animals that were not injected with USPIO antibodies, and (3) dilation in the retrosplenial area. Immunocytochemistry revealed microglial activation in the hippocampus and striatum, with indications of activation in thalamic lateral dorsal nuclei and the subventricular zone. In the CA1 and CA3 regions, it was noted that OX42- and ED1-positive granules appear in neuronal somata. Immunostaining of lymphocytes with TCR confirmed the T-cell presence in ischemic brain parenchyma of the hippocampus and striatum. The above observations thus point to a persistent dysfunction of BBB that in long-term may still lead to infiltration of T cells that are predominantly of helper (CD4+) type. Such inflammatory processes are backed by microglial activity even up to 1 year after ischemia/reperfusion. Moreover, in these animals an augmented expression of neurogenesis markers and neuroblast migration was also revealed in the subventricular zone. Thus, a balance of degenerative processes and inflammatory surveillance with neurogenesis could determine the long-term outcome of global ischemia survival or the previously proposed formation of amyloid plaques and Alzheimer's-type dementia.
Collapse
|
12
|
Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 2011; 27:3-20. [PMID: 21035308 PMCID: PMC3478067 DOI: 10.1016/j.nut.2010.07.021] [Citation(s) in RCA: 417] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
Lower brain glucose metabolism is present before the onset of clinically measurable cognitive decline in two groups of people at risk of Alzheimer's disease--carriers of apolipoprotein E4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and therefore contribute to the neuropathologic cascade leading to cognitive decline in AD. The reason brain hypometabolism develops is unclear but may include defects in brain glucose transport, disrupted glycolysis, and/or impaired mitochondrial function. Methodologic issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization, which, in turn, may increase the risk of declining brain glucose uptake, at least in some brain regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e., that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and hence reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to (1) improve insulin sensitivity by improving systemic glucose utilization, or (2) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia.
Collapse
Affiliation(s)
- Stephen Cunnane
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Scott Nugent
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maggie Roy
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Courchesne-Loyer
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Tremblay
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Castellano
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Christian Bocti
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hadi Begdouri
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M'hamed Bentourkia
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michèle Allard
- UMR CNRS 5231 and Ecole Pratique des Hautes Etudes, France
| | - Pascale Barberger-Gateau
- INSERM U897, Bordeaux F-33076, France; Université Victor Segalen Bordeaux 2, Bordeaux F-33076, France
| | - Tamas Fulop
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute of Aging, Bethesda, MD, USA
| |
Collapse
|
13
|
Ciborowski P. Biomarkers of HIV-1-associated neurocognitive disorders: challenges of proteomic approaches. Biomark Med 2009; 3:771-85. [PMID: 20477714 PMCID: PMC3544489 DOI: 10.2217/bmm.09.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HIV-1 enters the brain shortly after infection, which may lead to neurological complications and in the most severe cases to encephalitis, dementia and death. The introduction of antiretroviral therapy reduced the incidence of the most severe conditions, nevertheless, approximately half of those infected with this virus will suffer to various degrees from HIV-1-associated neurocognitive disorders. Despite many years of research, there are no biomarkers that can objectively measure and, more importantly, predict the onset and the tempo of HIV-1-associated neurocognitive disorders. Here we review biomarker candidates of neurocognitive impairment due to HIV infection of the brain that have been proposed during the last two decades, and discuss perspectives and limitations of proteomic approaches in the search for new, more sensitive and specific biomarkers.
Collapse
Affiliation(s)
- Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
14
|
Significant negative correlations between capillary expressed eNOS and Alzheimer lesion burden. Neurosci Lett 2009; 463:244-8. [DOI: 10.1016/j.neulet.2009.07.091] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 01/31/2023]
|
15
|
Pluta R, Amek MU. Brain ischemia and ischemic blood-brain barrier as etiological factors in sporadic Alzheimer's disease. Neuropsychiatr Dis Treat 2008; 4:855-64. [PMID: 19183778 PMCID: PMC2626921 DOI: 10.2147/ndt.s3739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of neuronal death and amyloid plaques is a characteristic feature of ischemic- and Alzheimer-type dementia. An important aspect of neuronal loss and amyloid plaques are their topography and neuropathogenesis. This review was performed to present the hypothesis that different fragments of blood-borne amyloid precursor protein are able to enter the ischemic blood-brain barrier. Chronic disruption of the blood-brain barrier after ischemic injury was shown. As an effect of chronic ischemic blood-brain barrier injury, a visible connection of amyloid plaques with neurovasculature was observed. This neuropathology appears to have similar distribution and mechanisms to Alzheimer's disease. The usefulness of rival ischemic theory in elucidating the neuropathogenesis of amyloid plaques formation and neuronal death in Alzheimer's disorder is discussed.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Department of Neurodegenerative Disorders, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
16
|
Zeitouni S, Ford BS, Harris SM, Whitney MJ, Gregory CA, Prockop DJ. Pharmaceutical induction of ApoE secretion by multipotent mesenchymal stromal cells (MSCs). BMC Biotechnol 2008; 8:75. [PMID: 18823563 PMCID: PMC2596794 DOI: 10.1186/1472-6750-8-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 09/29/2008] [Indexed: 12/23/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a molecular scavenger in the blood and brain. Aberrant function of the molecule causes formation of protein and lipid deposits or "plaques" that characterize Alzheimer's disease (AD) and atherosclerosis. There are three human isoforms of ApoE designated ε2, ε3, and ε4. Each isoform differentially affects the structure and function of the protein and thus the development of disease. Homozygosity for ApoE ε4 is associated with atherosclerosis and Alzheimer's disease whereas ApoE ε2 and ε3 tend to be protective. Furthermore, the ε2 form may cause forms of hyperlipoproteinemia. Therefore, introduction of ApoE ε3 may be beneficial to patients that are susceptible to or suffering from these diseases. Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) are adult progenitor cells found in numerous tissues. They are easily expanded in culture and engraft into host tissues when administered appropriately. Furthermore, MSCs are immunosuppressive and have been reported to engraft as allogeneic transplants. In our previous study, mouse MSCs (mMSCs) were implanted into the brains of ApoE null mice, resulting in production of small amounts of ApoE in the brain and attenuation of cognitive deficits. Therefore human MSCs (hMSCs) are a promising vector for the administration of ApoE ε3 in humans. Results Unlike mMSCs, hMSCs were found not to express ApoE in culture; therefore a molecular screen was performed for compounds that induce expression. PPARγ agonists, neural stem cell conditioned medium, osteo-inductive media, dexamethasone, and adipo-inductive media (AIM) were tested. Of the conditions tested, only AIM or dexamethasone induced sustained secretion of ApoE in MSCs and the duration of secretion was only limited by the length of time MSCs could be sustained in culture. Upon withdrawal of the inductive stimuli, the ApoE secretion persisted for a further 14 days. Conclusion The data demonstrated that pre-treatment and perhaps co-administration of MSCs homozygous for ApoE ε3 and dexamethasone may represent a novel therapy for severe instances of AD, atherosclerosis and other ApoE-related diseases.
Collapse
Affiliation(s)
- Suzanne Zeitouni
- Center for Gene Therapy, Tulane University Medical School, New Orleans, LA, 70115, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Levy LM. Exceeding the limits of the normal blood-brain barrier: quo vadis gadolinium? AJNR Am J Neuroradiol 2007; 28:1835-6. [PMID: 17898191 PMCID: PMC8134245 DOI: 10.3174/ajnr.a0725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|