1
|
Wen Y, Xia Y, Yang X, Li H, Gao Q. CCR8: a promising therapeutic target against tumor-infiltrating regulatory T cells. Trends Immunol 2025; 46:153-165. [PMID: 39890548 DOI: 10.1016/j.it.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Tumor-infiltrating regulatory T (TI-Treg) cells constitute key components within the tumor microenvironment (TME) to suppress antitumor immunity and facilitate tumor progression. Although multiple therapies have been developed to eliminate TI-Treg cells, most of them exhibit only modest efficacy and harbor risks of inducing immune-related adverse events (irAEs). Recent studies demonstrate that CC chemokine receptor (CCR)8 is highly and specifically expressed on effector TI-Treg cells in mice and humans, highlighting CCR8 as a promising target for selective TI-Treg cell depletion in the treatment of various cancers. Here, we concentrate on the latest understanding of CCR8 regarding its expression, functions, and regulation, and summarize the current landscape of CCR8-targeted therapies. With favorable efficacy and safety, the latter represent an important class of next-generation putative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuanjia Wen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Diaz JA, Gianesini S, Khalil RA. Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease. INT ANGIOL 2024; 43:563-590. [PMID: 39873224 PMCID: PMC11839207 DOI: 10.23736/s0392-9590.24.05339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology. Genetic aberrations accentuated by environmental factors, behavioral tendencies, and hormonal disturbances promote venous reflux, valve incompetence, and venous blood stasis. Increased venous hydrostatic pressure and changes in shear-stress cause glycocalyx injury, endothelial dysfunction, secretion of adhesion molecules, leukocyte recruitment/activation, and release of cytokines, chemokines, and hypoxia-inducible factor, causing smooth muscle cell switch from contractile to synthetic proliferative phenotype, imbalance in matrix metalloproteinases (MMPs), degradation of collagen and elastin, and venous tissue remodeling, leading to venous dilation and varicose veins. In the advanced stages of CVD, leukocyte infiltration of the vein wall causes progressive inflammation, fibrosis, disruption of junctional proteins, accumulation of tissue metabolites and reactive oxygen and nitrogen species, and iron deposition, leading to skin changes and venous leg ulcer (VLU). CVD management includes compression stockings, venotonics, and surgical intervention. In addition to its antithrombotic and fibrinolytic properties, literature suggests sulodexide benefits in reducing inflammation, promoting VLU healing, improving endothelial function, exhibiting venotonic properties, and inhibiting MMP-9. Understanding the role of glycocalyx, endothelial dysfunction, and vascular remodeling should help delineate the underlying mechanisms and develop improved biomarkers and targeted therapy for CVD and VLU.
Collapse
Affiliation(s)
- Jose A. Diaz
- Division of Surgical Research, Light Surgical Research and Training Laboratory, Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sergio Gianesini
- Vascular Diseases Center, Translational Surgery Unit, University of Ferrara, Ferrara, Italy, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Wei X, Fang X, Yu X, Li H, Guo Y, Qi Y, Sun C, Han D, Liu X, Li N, Hu H. Integrative analysis of single-cell embryo data reveals transcriptome signatures for the human pre-implantation inner cell mass. Dev Biol 2023; 502:39-49. [PMID: 37437860 DOI: 10.1016/j.ydbio.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
As the source of embryonic stem cells (ESCs), inner cell mass (ICM) can form all tissues of the embryo proper, however, its role in early human lineage specification remains controversial. Although a stepwise differentiation model has been proposed suggesting the existence of ICM as a distinct developmental stage, the underlying molecular mechanism remains unclear. In the present study, we perform an integrated analysis on the public human preimplantation embryonic single-cell transcriptomic data and apply a trajectory inference algorithm to measure the cell plasticity. In our results, ICM population can be clearly discriminated on the dimension-reduced graph and confirmed by compelling evidences, thus validating the two-step hypothesis of lineage commitment. According to the branch probabilities and differentiation potential, we determine the precise time points for two lineage segregations. Further analysis on gene expression dynamics and regulatory network indicates that transcription factors including GSC, PRDM1, and SPIC may underlie the decisions of ICM fate. In addition, new human ICM marker genes, such as EPHA4 and CCR8 are discovered and validated by immunofluorescence. Given the potential clinical applications of ESCs, our analysis provides a further understanding of human ICM cells and facilitates the exploration of more unique characteristics in early human development.
Collapse
Affiliation(s)
- Xinshu Wei
- School of Medicine, South China University of Technology, Guangzhou, China; Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiang Fang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Xiu Yu
- School of Medicine, Jiaying University, Meizhou, 514015, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yuyang Guo
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yifei Qi
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiaonan Liu
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Third Affiliatied Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Lin MJ, Hu SL, Tian Y, Zhang J, Liang N, Sun R, Gong SX, Wang AP. Targeting Vascular Smooth Muscle Cell Senescence: A Novel Strategy for Vascular Diseases. J Cardiovasc Transl Res 2023; 16:1010-1020. [PMID: 36973566 DOI: 10.1007/s12265-023-10377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vascular diseases are a major threat to human health, characterized by high rates of morbidity, mortality, and disability. VSMC senescence contributes to dramatic changes in vascular morphology, structure, and function. A growing number of studies suggest that VSMC senescence is an important pathophysiological mechanism for the development of vascular diseases, including pulmonary hypertension, atherosclerosis, aneurysm, and hypertension. This review summarizes the important role of VSMC senescence and senescence-associated secretory phenotype (SASP) secreted by senescent VSMCs in the pathophysiological process of vascular diseases. Meanwhile, it concludes the progress of antisenescence therapy targeting VSMC senescence or SASP, which provides new strategies for the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Meng-Juan Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shi-Liang Hu
- Department of Rheumatology, Shaoyang Central Hospital, Shaoyang, 422000, China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Na Liang
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Rong Sun
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| |
Collapse
|
6
|
Gao X, DeSantis AJ, Enten GA, Weche M, Marcet JE, Majetschak M. Heteromerization between α 1B -adrenoceptor and chemokine (C-C motif) receptor 2 biases α 1B -adrenoceptor signaling: Implications for vascular function. FEBS Lett 2022; 596:2706-2716. [PMID: 35920096 PMCID: PMC9830583 DOI: 10.1002/1873-3468.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023]
Abstract
Previously, we reported that chemokine (C-C motif) receptor 2 (CCR2) heteromerizes with α1B -adrenoceptor (α1B -AR) in leukocytes, through which α1B -AR controls CCR2. Whether such heteromers are expressed in human vascular smooth muscle cells (hVSMCs) is unknown. Bioluminescence resonance energy transfer confirmed formation of recombinant CCR2:α1b -AR heteromers. Proximity ligation assays detected CCR2:α1B -AR heteromers in hVSMCs and human mesenteric arteries. CCR2:α1B -AR heteromerization per se enhanced α1B -AR-mediated Gαq -coupling. Chemokine (C-C motif) ligand 2 (CCL2) binding to CCR2 inhibited Gαq activation via α1B -AR, cross-recruited β-arrestin to and induced internalization of α1B -AR in recombinant systems and in hVSMCs. Our findings suggest that CCR2 within CCR2:α1B -AR heteromers biases α1B -AR signaling and provide a mechanism for previous observations suggesting a role for CCL2/CCR2 in the regulation of cardiovascular function.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jorge E Marcet
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Wang Q, Wang Y, Xu D. Research progress on Th17 and T regulatory cells and their cytokines in regulating atherosclerosis. Front Cardiovasc Med 2022; 9:929078. [PMID: 36211578 PMCID: PMC9534355 DOI: 10.3389/fcvm.2022.929078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Coronary heart disease due to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is considered a chronic inflammatory state in the arterial wall that promotes disease progression and outcome, and immune cells play an important role in the inflammatory process. Purpose We review the mechanisms of CD4+ T subsets, i.e., helper T17 (Th17) cells and regulatory T cells (Tregs), in regulating atherosclerosis, focusing on the role of interleukin (IL)-17, IL-10, and other cytokines in this disease and the factors influencing the effects of these cytokines. Results IL-17 secreted by Th17 cells can promote atherosclerosis, but few studies have reported that IL-17 can also stabilize atherosclerotic plaques. Tregs play a protective role in atherosclerosis, and Th17/Treg imbalance also plays an important role in atherosclerosis. Conclusion The immune response is important in regulating atherosclerosis, and studying the mechanism of action of each immune cell on atherosclerosis presents directions for the treatment of atherosclerosis. Nevertheless, the current studies are insufficient for elucidating the mechanism of action, and further in-depth studies are needed to provide a theoretical basis for clinical drug development.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Moser B. Chemokine Receptor-Targeted Therapies: Special Case for CCR8. Cancers (Basel) 2022; 14:511. [PMID: 35158783 PMCID: PMC8833710 DOI: 10.3390/cancers14030511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade inhibitors (CBIs) targeting cytotoxic T lymphocyte associated protein-4 (CTLA-4) and program death receptor-1 (PD-1) or its ligand-1 (PD-L1) have transformed the outlook of many patients with cancer. This remarkable progress has highlighted, from the translational point of view, the importance of immune cells in the control of tumor progression. There is still room for improvement, since current CBI therapies benefit a minority of patients. Moreover, interference with immune checkpoint receptors frequently causes immune related adverse events (irAEs) with life-threatening consequences in some of the patients. Immunosuppressive cells in the tumor microenvironment (TME), including intratumoral regulatory T (Treg) cells, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), contribute to tumor progression and correlate with a negative disease outlook. Recent reports revealed the selective expression of the chemokine receptor CCR8 on tumor Treg cells, making CCR8 a promising target in translational research. In this review, I summarize our current knowledge about the cellular distribution and function of CCR8 in physiological and pathophysiological processes. The discussion includes an assessment of how the removal of CCR8-expressing cells might affect both anti-tumor immunity as well as immune homeostasis at remote sites. Based on these considerations, CCR8 appears to be a promising novel target to be considered in future translational research.
Collapse
Affiliation(s)
- Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
9
|
Sakic A, Chaabane C, Ambartsumian N, Klingelhöfer J, Lemeille S, Kwak BR, Grigorian M, Bochaton-Piallat ML. Neutralization of S100A4 induces stabilization of atherosclerotic plaques: role of smooth muscle cells. Cardiovasc Res 2022; 118:141-155. [PMID: 33135065 PMCID: PMC8752361 DOI: 10.1093/cvr/cvaa311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS During atherosclerosis, smooth muscle cells (SMCs) accumulate in the intima where they switch from a contractile to a synthetic phenotype. From porcine coronary artery, we isolated spindle-shaped (S) SMCs exhibiting features of the contractile phenotype and rhomboid (R) SMCs typical of the synthetic phenotype. S100A4 was identified as a marker of R-SMCs in vitro and intimal SMCs, in pig and man. S100A4 exhibits intra- and extracellular functions. In this study, we investigated the role of extracellular S100A4 in SMC phenotypic transition. METHODS AND RESULTS S-SMCs were treated with oligomeric recombinant S100A4 (oS100A4), which induced nuclear factor (NF)-κB activation. Treatment of S-SMCs with oS100A4 in combination with platelet-derived growth factor (PDGF)-BB induced a complete SMC transition towards a pro-inflammatory R-phenotype associated with NF-κB activation, through toll-like receptor-4. RNA sequencing of cells treated with oS100A4/PDGF-BB revealed a strong up-regulation of pro-inflammatory genes and enrichment of transcription factor binding sites essential for SMC phenotypic transition. In a mouse model of established atherosclerosis, neutralization of extracellular S100A4 decreased area of atherosclerotic lesions, necrotic core, and CD68 expression and increased α-smooth muscle actin and smooth muscle myosin heavy chain expression. CONCLUSION We suggest that the neutralization of extracellular S100A4 promotes the stabilization of atherosclerotic plaques. Extracellular S100A4 could be a new target to influence the evolution of atherosclerotic plaques.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Neutralizing/pharmacology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Phenotype
- Plaque, Atherosclerotic
- S100 Calcium-Binding Protein A4/antagonists & inhibitors
- S100 Calcium-Binding Protein A4/metabolism
- S100 Calcium-Binding Protein A4/pharmacology
- Signal Transduction
- Smooth Muscle Myosins/metabolism
- Sus scrofa
- Toll-Like Receptor 4/metabolism
- Mice
Collapse
Affiliation(s)
- Antonija Sakic
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Noona Ambartsumian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jörg Klingelhöfer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mariam Grigorian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | |
Collapse
|
10
|
Raffetto JD, Khalil RA. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. VESSEL PLUS 2021; 5. [PMID: 34250453 DOI: 10.20517/2574-1209.2021.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic venous disease (CVD) is a common venous disorder of the lower extremities. CVD can be manifested as varicose veins (VVs), with dilated and tortuous veins, dysfunctional valves and venous reflux. If not adequately treated, VVs could progress to chronic venous insufficiency (CVI) and lead to venous leg ulcer (VLU). Predisposing familial and genetic factors have been implicated in CVD. Additional environmental, behavioral and dietary factors including sedentary lifestyle and obesity may also contribute to CVD. Alterations in the mRNA expression, protein levels and proteolytic activity of matrix metalloproteinases (MMPs) have been detected in VVs and VLU. MMP expression/activity can be modulated by venous hydrostatic pressure, hypoxia, tissue metabolites, and inflammation. MMPs in turn increase proteolysis of different protein substrates in the extracellular matrix particularly collagen and elastin, leading to weakening of the vein wall. MMPs could also promote venous dilation by increasing the release of endothelium-derived vasodilators and activating potassium channels, leading to smooth muscle hyperpolarization and relaxation. Depending on VVs severity, management usually includes compression stockings, sclerotherapy and surgical removal. Venotonics have also been promoted to decrease the progression of VVs. Sulodexide has also shown benefits in VLU and CVI, and recent data suggest that it could improve venous smooth muscle contraction. Other lines of treatment including induction of endogenous tissue inhibitors of metalloproteinases (TIMPs) and administration of exogenous synthetic inhibitors of MMPs are being explored, and could provide alternative strategies in the treatment of CVD.
Collapse
Affiliation(s)
- Joseph D Raffetto
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Tanaka T, Nanamiya R, Takei J, Nakamura T, Yanaka M, Hosono H, Sano M, Asano T, Kaneko MK, Kato Y. Development of Anti-Mouse CC Chemokine Receptor 8 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:65-70. [PMID: 33900818 DOI: 10.1089/mab.2021.0005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CC chemokine receptor 8 (CCR8) belongs to the class A of G protein-coupled receptor. It is highly expressed on Treg and T helper 2 (TH2) cells recruited to the inflammation site and is implicated in allergy and asthma. Recently, CCR8+Treg cells have been suggested to be a master regulator in the immunosuppressive tumor microenvironment; therefore, developing sensitive monoclonal antibodies (mAbs) for CCR8 has been desired. This study established a specific and sensitive mAb for mouse CCR8 (mCCR8), which is useful for flow cytometry by using the Cell-Based Immunization and Screening (CBIS) method. The established anti-mCCR8 mAb, C8Mab-2 (rat IgG2b, kappa), reacted with mCCR8-overexpressed Chinese hamster ovary-K1 (CHO/mCCR8) cells and P388 (mouse lymphoid neoplasma) or J774-1 (mouse macrophage-like) cells, which express endogenous mCCR8 by flow cytometry. C8Mab-2, which was established by the CBIS method, could be useful for elucidating the mCCR8-related biological response by flow cytometry.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
CC chemokine CCL1 receptor CCR8 mediates conversion of mesenchymal stem cells to embryoid bodies expressing FOXP3+CCR8+ regulatory T cells. PLoS One 2019; 14:e0218944. [PMID: 31314754 PMCID: PMC6636727 DOI: 10.1371/journal.pone.0218944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022] Open
Abstract
Embryoid bodies (EBs) are three dimensional aggregates of pluripotent stem cells primarily used to investigate morphogenesis and cell toxicity, are also attractive tools in regenerative medicine. While embryonic stem cells (ESCs) and induced pluripotent cells (IPSCs) have been shown to form EBs in mouse, primate and humans, EB formation have not been previously demonstrated in mesenchymal stem cells (MSCs). Here we show that rat MSCs form EBs; which express regulatory T cell (Treg) marker Foxp3 and CC chemokine CCL1 receptor CCR8. We show a novel method for formation of EBs from MSCs under stress and demonstrate that the induction of FoxP3+ CCR8+ EBs is dependent upon CCL1 gradients which mediate cell proliferation, migration and invasion of mTregs. The identification of EBs and novel FoxP3+ CCR8+ regulatory T cells (mTregs) for selective conversion and isolation of bone marrow derived MSCs offers novel avenues for research, diagnosis and treatment.
Collapse
|
13
|
Vila-Caballer M, González-Granado JM, Zorita V, Abu Nabah YN, Silvestre-Roig C, Del Monte-Monge A, Molina-Sánchez P, Ait-Oufella H, Andrés-Manzano MJ, Sanz MJ, Weber C, Kremer L, Gutiérrez J, Mallat Z, Andrés V. Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. J Mol Cell Cardiol 2019; 132:154-163. [PMID: 31121182 DOI: 10.1016/j.yjmcc.2019.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022]
Abstract
The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.
Collapse
Affiliation(s)
- Marian Vila-Caballer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; Universidad Cardenal Herrera-CEU (CEU Universities), Valencia, Spain
| | - José M González-Granado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain; LamImSys Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yafa N Abu Nabah
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Carlos Silvestre-Roig
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | | | - Hafid Ait-Oufella
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - María J Sanz
- Departamento de Farmacología, Universidad de Valencia and Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Leonor Kremer
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Julio Gutiérrez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Ziad Mallat
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain.
| |
Collapse
|
14
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
15
|
Goikuria H, Vandenbroeck K, Alloza I. Inflammation in human carotid atheroma plaques. Cytokine Growth Factor Rev 2018; 39:62-70. [PMID: 29396056 DOI: 10.1016/j.cytogfr.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
Inflammation in carotid atherosclerotic plaque is linked to plaque rupture and cerebrovascular accidents. The balance between pro- and anti-inflammatory mediators governs development of the plaque, and may mediate enhancement of lesion broadening or, on the contrary, delay progression. In addition to macrophages and endothelial cells, smooth muscle cells (SMCs), which are the dominant cell subset in advanced plaques, are crucial players in carotid atherosclerosis development given their ability to differentiate into distinct phenotypes in reponse to specific signals received from the environment of the lesion. Carotid atheroma SMCs actively contribute to the inflammation in the lesion because of their acquired capacity to produce inflammatory mediators. We review the successive stages of carotid atheroma plaque formation via fatty streak early-stage toward more advanced rupture-prone lesions and document involvement of cytokines and chemokines and their cellular sources and targets in plaque progression and rupture.
Collapse
Affiliation(s)
- Haize Goikuria
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain
| | - Koen Vandenbroeck
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Iraide Alloza
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain.
| |
Collapse
|
16
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
18
|
Alcolea JM, Hernández E, Martínez-Carpio PA, Vélez M, Khomchenko V, Sola A, Trelles MA. Treatment of Chronic Lower Extremity Ulcers with A New Er:Yag Laser Technology. Laser Ther 2017; 26:211-222. [PMID: 29133969 DOI: 10.5978/islsm.17-or-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/26/2017] [Indexed: 11/06/2022]
Abstract
Chronic lower extremity ulcers (CLEUs) have a high prevalence and are difficult to treat due to their various aetiologies. The aim of this study is to evaluate the results achieved in treating CLEUs using an Erbium: YAG (Er:YAG) laser with RecoSMA technology. This laser emits thousands of microbeams of energy causing superficial epidermal ablation and a separation of dermal fibres due to a mechanical-acoustic and resonance effect. The evaluation of the results achieved was carried out by questionnaires completed by 18 patients enrolled in the study. Histological studies and photographs taken before each session (16 sessions in total) were analysed to visually monitor the clinical progress. The analyses were carried out with the help of computer software. The results after 16 treatment sessions showed the complete healing of ulcers or a decrease in their initial area of at least 55% in over 65% of the patients treated. The Student's t-test and Fisher's exact test were used for statistical analysis. The Er:YAG laser and RecoSMA technology ablates few epidermal cell layers, producing a mechanical-acoustic effect with resonance action leading to tissue regeneration mechanisms. This technology offers an effective and safe alternative for treating CLEUs.
Collapse
Affiliation(s)
- J M Alcolea
- Clínica Alcolea, Barcelona, Spain.,Instituto Médico Vilafortuny, Cambrils (Tarragona), Spain
| | - E Hernández
- Vascular Surgery Service, Hospital Viamed Monegal, Tarragona, Spain
| | - P A Martínez-Carpio
- Investilaser, Sabadell (Barcelona), Spain.,Instituto Médico Vilafortuny, Cambrils (Tarragona), Spain
| | - M Vélez
- Dermatology Service, Hospital del Mar, Barcelona, Spain.,Instituto Médico Vilafortuny, Cambrils (Tarragona), Spain
| | | | - A Sola
- Computer Engineering Department, University of Malaga, Spain
| | - M A Trelles
- Instituto Médico Vilafortuny, Cambrils (Tarragona), Spain
| |
Collapse
|
19
|
Johnson RM, Bergmann KR, Manaloor JJ, Yu X, Slaven JE, Kharbanda AB. Pediatric Kawasaki Disease and Adult Human Immunodeficiency Virus Kawasaki-Like Syndrome Are Likely the Same Malady. Open Forum Infect Dis 2016; 3:ofw160. [PMID: 27704015 PMCID: PMC5047405 DOI: 10.1093/ofid/ofw160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/19/2016] [Indexed: 11/14/2022] Open
Abstract
Background. Pediatric Kawasaki disease (KD) and human immunodeficiency virus (HIV)+ adult Kawasaki-like syndrome (KLS) are dramatic vasculitides with similar physical findings. Both syndromes include unusual arterial histopathology with immunoglobulin (Ig)A+ plasma cells, and both impressively respond to pooled Ig therapy. Their distinctive presentations, histopathology, and therapeutic response suggest a common etiology. Because blood is in immediate contact with inflamed arteries, we investigated whether KD and KLS share an inflammatory signature in serum. Methods. A custom multiplex enzyme-linked immunosorbent assay (ELISA) defined the serum cytokine milieu in 2 adults with KLS during acute and convalescent phases, with asymptomatic HIV+ subjects not taking antiretroviral therapy serving as controls. We then prospectively collected serum and plasma samples from children hospitalized with KD, unrelated febrile illnesses, and noninfectious conditions, analyzing them with a custom multiplex ELISA based on the KLS data. Results. Patients with KLS and KD subjects shared an inflammatory signature including acute-phase reactants reflecting tumor necrosis factor (TNF)-α biologic activity (soluble TNF receptor I/II) and endothelial/smooth muscle chemokines Ccl1 (Th2), Ccl2 (vascular inflammation), and Cxcl11 (plasma cell recruitment). Ccl1 was specifically elevated in KD versus febrile controls, suggesting a unique relationship between Ccl1 and KD/KLS pathogenesis. Conclusions. This study defines a KD/KLS inflammatory signature mirroring a dysfunctional response likely to a common etiologic agent. The KD/KLS inflammatory signature based on elevated acute-phase reactants and specific endothelial/smooth muscle chemokines was able to identify KD subjects versus febrile controls, and it may serve as a practicable diagnostic test for KD.
Collapse
Affiliation(s)
| | - Kelly R Bergmann
- Department of Pediatric Emergency Medicine , Children's Hospitals and Clinics of Minnesota , Minneapolis
| | - John J Manaloor
- Ryan White Center for Pediatric Infectious Diseases and Global Health
| | - Xiaoqing Yu
- Biostatistics , Yale University School of Medicine , New Haven, Connecticut
| | - James E Slaven
- Biostatistics , Indiana University School of Medicine , Indianapolis
| | - Anupam B Kharbanda
- Department of Pediatric Emergency Medicine , Children's Hospitals and Clinics of Minnesota , Minneapolis
| |
Collapse
|
20
|
Gramolelli S, Schulz TF. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol 2015; 235:368-80. [PMID: 25212381 DOI: 10.1002/path.4441] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/07/2023]
Abstract
Kaposi sarcoma (KS) is an unusual vascular tumour caused by an oncogenic-herpesvirus, Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV 8). KS lesions are characterized by an abundant inflammatory infiltrate, the presence of KSHV-infected endothelial cells that show signs of aberrant differentiation, as well as faulty angiogenesis/ vascularization. Here we discuss the molecular mechanisms that lead to the development of these histological features of KS, with an emphasis on the viral proteins that are responsible for their development.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany; German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | |
Collapse
|
21
|
Paslin DA, Reykjalin E, Tsadik E, Schour L, Lucas A. A Molluscum contagiosum fusion protein inhibits CCL1-induced chemotaxis of cells expressing CCR8 and penetrates human neonatal foreskins: clinical applications proposed. Arch Dermatol Res 2014; 307:275-80. [DOI: 10.1007/s00403-014-1516-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/20/2014] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
|
22
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 687] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Das S, Sarrou E, Podgrabinska S, Cassella M, Mungamuri SK, Feirt N, Gordon R, Nagi CS, Wang Y, Entenberg D, Condeelis J, Skobe M. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. ACTA ACUST UNITED AC 2013; 210:1509-28. [PMID: 23878309 PMCID: PMC3727324 DOI: 10.1084/jem.20111627] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lymphatic vessels are thought to contribute to metastasis primarily by serving as a transportation system. It is widely believed that tumor cells enter lymph nodes passively by the flow of lymph. We demonstrate that lymph node lymphatic sinuses control tumor cell entry into the lymph node, which requires active tumor cell migration. In human and mouse tissues, CCL1 protein is detected in lymph node lymphatic sinuses but not in the peripheral lymphatics. CCR8, the receptor for CCL1, is strongly expressed by human malignant melanoma. Tumor cell migration to lymphatic endothelial cells (LECs) in vitro is inhibited by blocking CCR8 or CCL1, and recombinant CCL1 promotes migration of CCR8(+) tumor cells. The proinflammatory mediators TNF, IL-1β, and LPS increase CCL1 production by LECs and tumor cell migration to LECs. In a mouse model, blocking CCR8 with the soluble antagonist or knockdown with shRNA significantly decreased lymph node metastasis. Notably, inhibition of CCR8 led to the arrest of tumor cells in the collecting lymphatic vessels at the junction with the lymph node subcapsular sinus. These data identify a novel function for CCL1-CCR8 in metastasis and lymph node LECs as a critical checkpoint for the entry of metastases into the lymph nodes.
Collapse
Affiliation(s)
- Suvendu Das
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Eruslanov E, Stoffs T, Kim WJ, Daurkin I, Gilbert SM, Su LM, Vieweg J, Daaka Y, Kusmartsev S. Expansion of CCR8(+) inflammatory myeloid cells in cancer patients with urothelial and renal carcinomas. Clin Cancer Res 2013; 19:1670-80. [PMID: 23363815 DOI: 10.1158/1078-0432.ccr-12-2091] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Chemokines are involved in cancer-related inflammation and malignant progression. In this study, we evaluated expression of CCR8 and its natural cognate ligand CCL1 in patients with urothelial carcinomas of bladder and renal cell carcinomas. EXPERIMENTAL DESIGN We examined CCR8 expression in peripheral blood and tumor tissues from patients with bladder and renal carcinomas. CCR8-positive myeloid cells were isolated from cancer tissues with magnetic beads and tested in vitro for cytokine production and ability to modulate T-cell function. RESULTS We show that monocytic and granulocytic myeloid cell subsets in peripheral blood of patients with cancer with urothelial and renal carcinomas display increased expression of chemokine receptor CCR8. Upregulated expression of CCR8 is also detected within human cancer tissues and primarily limited to tumor-associated macrophages. When isolated, CD11b(+)CCR8(+) cell subset produces the highest levels of proinflammatory and proangiogenic factors among intratumoral CD11b myeloid cells. Tumor-infiltrating CD11b(+)CCR8(+) cells selectively display activated Stat3 and are capable of inducing FoxP3 expression in autologous T lymphocytes. Primary human tumors produce substantial amounts of the natural CCR8 ligand CCL1. CONCLUSIONS This study provides the first evidence that CCR8(+) myeloid cell subset is expanded in patients with cancer. Elevated secretion of CCL1 by tumors and increased presence of CCR8(+) myeloid cells in peripheral blood and cancer tissues indicate that CCL1/CCR8 axis is a component of cancer-related inflammation and may contribute to immune evasion. Obtained results also implicate that blockade of CCR8 signals may provide an attractive strategy for therapeutic intervention in human urothelial and renal cancers.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Urology and Prostate Disease Center, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kundumani-Sridharan V, Van Quyen D, Subramani J, Singh NK, Chin YE, Rao GN. Novel interactions between NFATc1 (Nuclear Factor of Activated T cells c1) and STAT-3 (Signal Transducer and Activator of Transcription-3) mediate G protein-coupled receptor agonist, thrombin-induced biphasic expression of cyclin D1, with first phase influencing cell migration and second phase directing cell proliferation. J Biol Chem 2012; 287:22463-82. [PMID: 22566696 DOI: 10.1074/jbc.m112.362996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin, a G protein-coupled receptor agonist, induced a biphasic expression of cyclin D1 in primary vascular smooth muscle cells. Although both phases of cyclin D1 expression require binding of the newly identified cooperative complex, NFATc1·STAT-3, to its promoter, the second phase, which is more robust, depends on NFATc1-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT-3. In addition, STAT-3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires NFATc1-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT-3 by overexpression of acetylation null STAT-3 mutant led to the loss of the late phase of cyclin D1 expression. EMSA analysis and reporter gene assays revealed that NFATc1·STAT-3 complex binding to the cyclin D1 promoter led to an enhanceosome formation and facilitated cyclin D1 expression. In the early phase of its expression, cyclin D1 is localized mostly in the cytoplasm and influenced cell migration. However, during the late and robust phase of its expression, cyclin D1 is translocated to the nucleus and directed cell proliferation. Together, these results demonstrate for the first time that the dual function of cyclin D1 in cell migration and proliferation is temperospatially separated by its biphasic expression, which is mediated by cooperative interactions between NFATc1 and STAT-3.
Collapse
|
26
|
Reipschläger S, Kubatzky K, Taromi S, Burger M, Orth J, Aktories K, Schmidt G. Toxin-induced RhoA activity mediates CCL1-triggered signal transducers and activators of transcription protein signaling. J Biol Chem 2012; 287:11183-94. [PMID: 22311973 DOI: 10.1074/jbc.m111.313395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RhoA is reportedly involved in signal transducers and activators of transcription (STAT)-dependent transcription. However, the pathway connecting the GTPase and STAT signaling has not been characterized. Here, we made use of bacterial toxins, which directly activate Rho GTPases to analyze this pathway. Cytotoxic necrotizing factors (CNFs) are produced by pathogenic Escherichia coli strains and by Yersinia pseudotuberculosis. They activate small GTPases of the Rho family by deamidation of a glutamine, which is crucial for GTP hydrolysis. We show that RhoA activation leads to phosphorylation and activation of STAT3 and identify signal proteins involved in this pathway. RhoA-dependent STAT3 stimulation requires ROCK and Jun kinase activation as well as AP1-induced protein synthesis. The secretion of one or more factors activates the JAK-STAT pathway in an auto/paracrine manner. We identify CCL1/I-309 as an essential cytokine, which is produced and secreted upon RhoA activation and which is able to activate STAT3-dependent signaling pathways.
Collapse
Affiliation(s)
- Simone Reipschläger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albert-Str. 25, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
28
|
CCR8 signaling influences Toll-like receptor 4 responses in human macrophages in inflammatory diseases. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2050-9. [PMID: 21976223 DOI: 10.1128/cvi.05275-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CCR8 immunity is generally associated with Th2 responses in allergic diseases. In this study, we demonstrate for the first time a pronounced attenuated influx of macrophages in ovalbumin (OVA)-challenged CCR8 knockout mice. To explore whether macrophages in human inflamed lung tissue also were CCR8 positive, human lung tissue from patients with chronic obstructive pulmonary disease (COPD) was evaluated. Indeed, CCR8 expression was pronounced in invading monocytes/macrophages from lungs of patients with Global Initiative for Obstructive Lung Disease (GOLD) stage IV COPD. Given this expression pattern, the functional role of CCR8 on human macrophages was evaluated in vitro. Human peripheral blood monocytes expressed low levels of CCR8, while macrophage colony-stimulating factor (M-CSF)-derived human macrophages expressed significantly elevated surface levels of CCR8. Importantly, CCL1 directly regulated the expression of CD18 and CD49b and hence influenced the adhesion capacity of human macrophages. CCL1 drives chemotaxis in M-CSF-derived macrophages, and this could be completely inhibited by lipopolysaccharide (LPS). Whereas both CCL1 and LPS monotreatment inhibited spontaneous superoxide release in macrophages, CCL1 significantly induced superoxide release in the presence of LPS in a dose-dependent manner. Finally, CCL1 induced production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and could inhibit LPS-induced cytokine production in a dose-dependent manner. Our data demonstrate, for the first time, the presence of CCR8 on inflammatory macrophages in human COPD lung tissue. Importantly, the functional data from human macrophages suggest a potential cross talk between the CCR8 and the Toll-like receptor 4 (TLR4) pathways, both of which are present in COPD patients.
Collapse
|
29
|
Maddaluno M, Di Lauro M, Di Pascale A, Santamaria R, Guglielmotti A, Grassia G, Ialenti A. Monocyte chemotactic protein-3 induces human coronary smooth muscle cell proliferation. Atherosclerosis 2011; 217:113-9. [DOI: 10.1016/j.atherosclerosis.2011.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/31/2011] [Accepted: 04/02/2011] [Indexed: 11/26/2022]
|
30
|
Wykrzykowska JJ, Garcia-Garcia HM, Goedhart D, Zalewski A, Serruys PW. Differential protein biomarker expression and their time-course in patients with a spectrum of stable and unstable coronary syndromes in the Integrated Biomarker and Imaging Study-1 (IBIS-1). Int J Cardiol 2011; 149:10-6. [DOI: 10.1016/j.ijcard.2009.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/30/2009] [Accepted: 11/29/2009] [Indexed: 11/25/2022]
|
31
|
Implication de l’immunité innée au-delà de la réponse à l’infection — Rôle de l’inflammation dans l’hypertension artérielle pulmonaire: chimiokines et remodelage vasculaire. MEDECINE INTENSIVE REANIMATION 2011. [DOI: 10.1007/s13546-010-0115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Coreceptor usage by HIV-1 and HIV-2 primary isolates: The relevance of CCR8 chemokine receptor as an alternative coreceptor. Virology 2010; 408:174-82. [DOI: 10.1016/j.virol.2010.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/20/2010] [Accepted: 09/20/2010] [Indexed: 11/17/2022]
|
33
|
Abstract
Human herpesvirus (HHV)-8, also called Kaposi's sarcoma-associated herpesvirus, was discovered in 1994 and was rapidly sequenced, revealing several unique and surprising features of its genetic makeup. Among these discoveries was the identification of the first viral homolog of IL-6 and three CC/beta-chemokine ligands (viral CCL-1, -2 and -3), not previously found in gamma-herpesviruses. Viral IL-6 was immediately recognized as a potential contributor to HHV-8 pathogenesis, specifically endothelial-derived Kaposi's sarcoma and the B-cell malignancy multicentric Castleman's disease with which IL-6, a proangiogenic and B-cell growth factor, had previously been implicated. The roles of the viral chemokines were speculated to involve immune evasion; however, like viral IL-6, the viral chemokines have the potential to contribute to pathogenesis through their shared angiogenic activities, known to be important for Kaposi's sarcoma and HHV-8-associated primary effusion lymphoma, and also via direct prosurvival activities. This article will discuss the molecular properties, activities and functions of viral IL-6 and the viral CCLs, proteins that could provide appropriate targets for antiviral and therapeutic strategies.
Collapse
Affiliation(s)
- John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins School of Medicine, 1650 Orleans Street, Room 309, Baltimore, MD 21287, USA, Tel.: +1 410 502 6801, ,
| |
Collapse
|
34
|
Shimizu K, Minami M, Shubiki R, Lopez-Ilasaca M, MacFarlane L, Asami Y, Li Y, Mitchell RN, Libby P. CC chemokine receptor-1 activates intimal smooth muscle-like cells in graft arterial disease. Circulation 2009; 120:1800-13. [PMID: 19841301 PMCID: PMC2996873 DOI: 10.1161/circulationaha.109.859595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Graft arterial disease (GAD) limits long-term solid-organ allograft survival. The thickened intima in GAD contains smooth muscle-like cells (SMLCs), leukocytes, and extracellular matrix. The intimal SMLCs in mouse GAD lesions differ from medial smooth muscle cells in their function and phenotype. Although intimal SMLCs may originate by migration and modulation of donor medial cells or by recruitment of host-derived precursors, the mechanisms that underlie their localization within grafts and the factors that drive these processes remain unclear. METHODS AND RESULTS This study of aortic transplantation in mice demonstrated an important function for chemokines beyond their traditional role in leukocyte recruitment and activation. Intimal SMLCs, but not medial smooth muscle cells, express functional CC chemokine receptor-1 (CCR1) and respond to RANTES by increased migration and proliferation. Although RANTES infusion in vivo promoted inflammatory cell accumulation in the adventitia of aortic allografts of wild-type and CCR1-deficient recipients, it increased GAD intimal thickening with SMLC proliferation in only the wild-type hosts. Aortic allografts transplanted into CCR1-deficient mice after wild-type bone marrow transplantation did not develop intimal lesions, which indicates that CCR1-bearing inflammatory cells do not contribute to intimal lesion formation. Moreover, RANTES induced SMLC proliferation in vitro but did not promote medial smooth muscle cell growth. Blockade of CCR5 attenuated RANTES-induced T-cell and monocyte/macrophage proliferation but did not affect RANTES-induced SMLC proliferation, consistent with a larger role of CCR1-binding chemokines in SMLC migration and proliferation and GAD development. CONCLUSIONS These studies provide a novel mechanistic insight into the formation of vascular intimal hyperplasia and suggest a novel therapeutic strategy for preventing allograft arteriopathy.
Collapse
Affiliation(s)
- Koichi Shimizu
- Donald W. Reynolds Cardiovascular Clinical Research Center, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
N'Diaye M, Le Ferrec E, Kronenberg F, Dieplinger H, Le Vee M, Fardel O. TNFα- and NF-κB-dependent induction of the chemokine CCL1 in human macrophages exposed to the atherogenic lipoprotein(a). Life Sci 2009; 84:451-7. [DOI: 10.1016/j.lfs.2009.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/19/2008] [Accepted: 01/21/2009] [Indexed: 11/29/2022]
|
36
|
|
37
|
Shi YL, Luo XZ, Zhu XY, Li DJ. Combination of 17β-estradiol with the environmental pollutant TCDD is involved in pathogenesis of endometriosis via up-regulating the chemokine I-309–CCR8. Fertil Steril 2007; 88:317-25. [PMID: 17693327 DOI: 10.1016/j.fertnstert.2006.11.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the effects of the combined E(2) with the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on CCR8-I-309 expression by the endometriotic lesion-associated cells in the pathogenesis of endometriosis. DESIGN Prospective laboratory study. SETTING University hospital. PATIENT(S) Chinese women with endometriosis. INTERVENTION(S) The endometriotic tissue and matched eutopic endometrium were collected. Endometrial stromal cells (ESCs), HPMC, and U937 cells were treated with 17beta-E(2) or TCDD. The ESCs were stimulated with I-309. MAIN OUTCOME MEASURE(S) The expression of CCR8 in tissues was analyzed by reverse transcription-polymerase chain reaction and immunohistochemistry. The effect of I-309 on integrin beta1 and alphavbeta3 expression intensity was analyzed by flow cytometry, and the chemotactic activity of I-309 on the ESC was explored by chemotactic assay. Concentration of I-309 in the culture supernatant was quantified by enzyme-linked immunosorbent assay. RESULT(S) CCR8 was overexpressed in the endometriotic tissue. I-309 promoted the expression of integrin beta1. Estradiol and TCDD up-regulated CCR8 expression by ESCs. Estradiol magnified the stimulatory effect of TCDD on I-309 secretion by U937. The interaction of HPMC and U937 cells promoted I-309 secretion. CONCLUSION(S) These findings imply that the combination of 17beta-E(2) with the environmental pollutant TCDD is involved in the pathogenesis of endometriosis via up-regulating the chemokine CCR8-I-309.
Collapse
Affiliation(s)
- Ying-Li Shi
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | |
Collapse
|
38
|
Abstract
Chemokines are critical mediators of cell migration during routine immune surveillance, inflammation, and development. Chemokines bind to G protein-coupled receptors and cause conformational changes that trigger intracellular signaling pathways involved in cell movement and activation. Although chemokines evolved to benefit the host, inappropriate regulation or utilization of these proteins can contribute to or cause many diseases. Specific chemokine receptors provide the portals for HIV to get into cells, and others contribute to inflammatory diseases and cancer. Thus, there is significant interest in developing receptor antagonists. To this end, the structures of ligands coupled with mutagenesis studies have revealed mechanisms for antagonism based on modified proteins. Although little direct structural information is available on the receptors, binding of small molecules to mutant receptors has allowed the identification of key residues involved in the receptor-binding pockets. In this review, we discuss the current knowledge of chemokine:receptor structure and function, and its contribution to drug discovery.
Collapse
Affiliation(s)
- Samantha J Allen
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
39
|
Vischer HF, Vink C, Smit MJ. A viral conspiracy: hijacking the chemokine system through virally encoded pirated chemokine receptors. Curr Top Microbiol Immunol 2007; 303:121-54. [PMID: 16570859 DOI: 10.1007/978-3-540-33397-5_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several herpesviruses and poxviruses contain genes encoding for G protein-coupled receptor (GPCR) proteins that are expressed on the surface of infected host cells and/or the viral envelope. Most of these membrane-associated proteins display highest homology to the subfamily of chemokine receptors known to play a key role in the immune system. Virally encoded chemokine receptors have been modified through evolutionary selection both in chemokine binding profile and signaling capacity, ultimately resulting in immune evasion and cellular reprogramming in favor of viral survival and replication. Insight in the role of virally encoded GPCRs during the viral lifecycle may reveal their potential as future drug targets.
Collapse
Affiliation(s)
- H F Vischer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Hoshino A, Kawamura YI, Yasuhara M, Toyama-Sorimachi N, Yamamoto K, Matsukawa A, Lira SA, Dohi T. Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. THE JOURNAL OF IMMUNOLOGY 2007; 178:5296-304. [PMID: 17404314 DOI: 10.4049/jimmunol.178.8.5296] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peritoneal adhesions are a significant complication of surgery and visceral inflammation; however, the mechanism has not been fully elucidated. The aim of this study was to clarify the mechanism of peritoneal adhesions by focusing on the cell trafficking and immune system in the peritoneal cavity. We investigated the specific recruitment of peritoneal macrophages (PMphi) and their expression of chemokine receptors in murine models of postoperative and postinflammatory peritoneal adhesions. PMphi aggregated at the site of injured peritoneum in these murine models of peritoneal adhesions. The chemokine receptor CCR8 was up-regulated in the aggregating PMphi when compared with naive PMphi. The up-regulation of CCR8 was also observed in PMphi, but not in bone marrow-derived Mphi, treated with inflammatory stimulants including bacterial components and cytokines. Importantly, CCL1, the ligand for CCR8, a product of both PMphi and peritoneal mesothelial cells (PMCs) following inflammatory stimulation, was a potent enhancer of CCR8 expression. Cell aggregation involving PMphi and PMCs was induced in vitro in the presence of CCL1. CCL1 also up-regulated mRNA levels of plasminogen activator inhibitor-1 in both PMphi and PMCs. CCR8 gene-deficient mice or mice treated with anti-CCL1-neutralizing Ab exhibited significantly reduced postoperational peritoneal adhesion. Our study now establishes a unique autocrine activation system in PMphi and the mechanism for recruitment of PMphi together with PMCs via CCL1/CCR8, as immune responses of peritoneal cavity, which triggers peritoneal adhesions.
Collapse
Affiliation(s)
- Akiyoshi Hoshino
- Department of Medical Ecology and Informatics, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Oxidative stress and inflammation are accepted as major factors in the pathogenesis of atherosclerosis, but how they interact to produce a plaque has not been delineated clearly. Recent data suggest that oxidized lipids may act in part by regulating production of chemokines and chemokine receptors, which in turn, may direct monocytes and other blood leukocytes to the vessel wall, where they may interact with endothelial cells and smooth muscle cells. The receptors may act at the level of recruitment, retention, and egress, not only through classic, chemotactic mechanisms but also through direct, intercellular adhesion. The results suggest a coordinated mechanism for inflammatory cell accumulation in plaque and identify novel targets, such as CCR2 and CX3CR1, for potential drug development in coronary artery disease.
Collapse
Affiliation(s)
- Jana Barlic
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007; 5:265-82. [PMID: 17338671 DOI: 10.1586/14779072.5.2.265] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerotic plaque rupture, with subsequent occlusive thrombosis, is the underlying cause of most cases of sudden cardiac death. Matrix metalloproteinases (MMPs) are thought to mediate the progression of stable atherosclerotic lesions to an unstable phenotype that is prone to rupture through the destruction of strength-giving extracellular matrix (ECM) proteins. Smooth muscle cells secrete and deposit ECM proteins and are, therefore, considered protective against atherosclerotic plaque destabilization. However, similar to inflammatory cells (e.g., macrophages), smooth muscle cells release numerous MMPs that are capable of digesting ECM proteins. Thus, the interaction of smooth muscle cells and MMPs in atherosclerotic plaques is complex and not fully understood. Recently, research into the roles of MMPs and their endogenous inhibitors (tissue inhibitors of metalloproteinases), and their effects on smooth muscle behavior during plaque destabilization has been aided by the development of reproducible animal models of plaque instability. A plethora of studies has demonstrated that MMPs directly modulate smooth muscle behavior with both beneficial and deleterious effects on atherosclerotic plaque stability, in addition to their canonical effects on ECM remodeling. Consequently, broad-spectrum MMP inhibition may inhibit plaque-stabilizing mechanisms, such as smooth muscle cell growth, while conversely retarding ECM destruction and subsequent rupture. Hence the development of selective MMP inhibitors, that spare inhibitory effects on smooth muscle cell function, may be useful therapies to prevent plaque rupture and in this regard MMP-12 appears to be a particularly attractive target.
Collapse
Affiliation(s)
- Jason Lee Johnson
- University of Bristol, Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
43
|
Li C, Xu Q. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 2007; 19:881-91. [PMID: 17289345 DOI: 10.1016/j.cellsig.2007.01.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/08/2007] [Indexed: 12/29/2022]
Abstract
Increasing evidence has been demonstrated that hypertension-initiated abnormal biomechanical stress is strongly associated with cardio-/cerebrovascular diseases e.g. atherosclerosis, stroke, and heart failure, which is main cause of morbidity and mortality. How the cells in the cardiovascular system sense and transduce the extracellular physical stimuli into intracellular biochemical signals is a crucial issue for understanding the mechanisms of the disease development. Recently, collecting data derived from our and other laboratories showed that many kinds of molecules in the cells such as receptors, ion channels, caveolin, G proteins, cell cytoskeleton, kinases and transcriptional factors could serve as mechanoceptors directly or indirectly in response to mechanical stimulation implying that the activation of mechanoceptors represents a non-specific manner. The sensed signals can be further sorted and/or modulated by processing of the molecules both on the cell surface and by the network of intracellular signaling pathways resulting in a sophisticated and dynamic set of cues that enable cardiovascular cell responses. The present review will summarise the data on mechanotransduction in vascular smooth muscle cells and formulate a new hypothesis, i.e. a non-specific activation of mechanoceptors followed by a variety of signal cascade activation. The hypothesis could provide us some clues for exploring new therapeutic targets for the disturbed mechanical stress-initiated diseases such as hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Chaohong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | | |
Collapse
|
44
|
Marquez-Martin A, De La Puerta R, Fernandez-Arche A, Ruiz-Gutierrez V, Yaqoob P. Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Cytokine 2006; 36:211-7. [PMID: 17292619 DOI: 10.1016/j.cyto.2006.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/28/2006] [Accepted: 12/16/2006] [Indexed: 10/23/2022]
Abstract
Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption. Maslinic acid, oleanolic acid, erythrodiol, and uvaol are pentacyclic triterpenes, found in the non-glyceride fraction of orujo oil, which have previously been reported to have anti-inflammatory properties. In the present work, we investigated the effect of these minor components on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in six different samples. Uvaol, erythrodiol, and oleanolic acid significantly decreased IL-1beta and IL-6 production in a dose-dependent manner. All three compounds significantly reduced TNF-alpha production at 100microM; however, at 10microM, uvaol and oleanolic acid enhanced the generation of TNF-alpha. In contrast, maslinic acid did not significantly alter the concentration of those cytokines, with the exception of a slight inhibitory effect at 100microM. All four triterpenes inhibited production of I-309, at 50microM and 100microM. However, uvaol enhanced I-309 production at 10microM. The triterpenic dialcohols had a similar effect on MIG production. In conclusion, this study demonstrates that pentacyclic triterpenes in orujo oil exhibit pro- and anti-inflammatory properties depending on chemical structure and dose, and may be useful in modulating the immune response.
Collapse
Affiliation(s)
- Ana Marquez-Martin
- Instituto de la Grasa (C.S.I.C.) Avda, Padre García Tejero n degrees 4, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
45
|
Karakiulakis G, Papakonstantinou E, Aletras AJ, Tamm M, Roth M. Cell type-specific effect of hypoxia and platelet-derived growth factor-BB on extracellular matrix turnover and its consequences for lung remodeling. J Biol Chem 2006; 282:908-15. [PMID: 17099219 DOI: 10.1074/jbc.m602178200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia is associated with extracellular matrix remodeling in several inflammatory lung diseases, such as fibrosis, chronic obstructive pulmonary disease, and asthma. In a human cell culture model, we assessed whether extracellular matrix modification by hypoxia and platelet-derived growth factor (PDGF) involves the action of matrix metalloproteinases (MMPs) and thereby affects cell proliferation. Expression of MMP and its activity were assessed by zymography and enzyme-linked immunosorbent assay in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMCs), and synthesis of soluble collagen type I was assessed by enzyme-linked immunosorbent assay. In both cell types, hypoxia up-regulated the expression of MMP-1, -2, and -9 precursors without subsequent activation. MMP-13 was increased by hypoxia only in fibroblasts. PDGF-BB inhibited the synthesis and secretion of all hypoxia-dependent MMP via Erk1/2 mitogen-activated protein (MAP) kinase activation. Hypoxia and PDGF-BB induced synthesis of soluble collagen type I via Erk1/2 and p38 MAP kinase. Hypoxia-induced cell proliferation was blocked by antibodies to PDGF-BB or by inhibition of Erk1/2 but not by the inhibition of MMP or p38 MAP kinase in fibroblasts. In VSMCs, hypoxia-induced proliferation involved Erk1/2 and p38 MAP kinases and was further increased by fibroblast-conditioned medium or soluble collagen type I via Erk1/2. In conclusion, hypoxia controls tissue remodeling and proliferation in a cell type-specific manner. Furthermore, fibroblasts may affect proliferation of VSMC indirectly by inducing the synthesis of soluble collagen type I.
Collapse
MESH Headings
- Becaplermin
- Cells, Cultured
- Collagen Type I/metabolism
- Enzyme Precursors/metabolism
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Feedback, Physiological/drug effects
- Feedback, Physiological/physiology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gelatinases/metabolism
- Humans
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung/cytology
- Lung/metabolism
- Matrix Metalloproteinase 13/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Metalloendopeptidases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-sis
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tissue Inhibitor of Metalloproteinase-1/metabolism
Collapse
Affiliation(s)
- George Karakiulakis
- Department of Pharmacology, School of Medicine, Aristotle University, GR-54124 Thessaloniki, Greece, and Pulmonary Cell Research and Pneumology, University Hospital Basel, CH-4031 Basel, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Ito I, Laporte JD, Fiset PO, Asai K, Yamauchi Y, Martin JG, Hamid Q. Downregulation of a disintegrin and metalloproteinase 33 by IFN-gamma in human airway smooth muscle cells. J Allergy Clin Immunol 2006; 119:89-97. [PMID: 17208589 DOI: 10.1016/j.jaci.2006.08.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 08/22/2006] [Accepted: 08/24/2006] [Indexed: 01/28/2023]
Abstract
BACKGROUND A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma. ADAM33 is expressed in airway smooth muscle (ASM) cells and is suggested to play a role in the function of these cells. However, there is little information on the regulation of ADAM33. OBJECTIVE To investigate whether ADAM33 is more highly expressed in ASM cells of patients with asthma than in those of normal subjects, and whether there is any inflammatory mediator (asthma-related cytokine/chemokine) that could modulate the expression of ADAM33 in ASM cells. METHOD smRNA and protein expression of ADAM33 in bronchial biopsy specimens was investigated (in situ hybridization and immunohistochemistry). Effects of cytokines on expression of ADAM33 in cultured human ASM cells were evaluated by measuring mRNA (real-time RT-PCR) and protein (Western blotting). RESULTS ADAM33 mRNA and protein in biopsied specimens were more highly expressed in ASM cells of patients with asthma than in cells of normal subjects. Cultured ASM cells expressed ADAM33 at both the mRNA and the protein levels. IFN-gamma reduced the mRNA expression dose-dependently and time-dependently, whereas IL-4 and IL-13 or chemokines did not affect the expression. The reduction by IFN-gamma was partially restored by U0126, inhibitor for mitogen-activated protein kinase kinase 1/2, suggesting a role for extracellular signal-regulated kinase pathway. Further studies using cycloheximide and actinomycin-D suggested that the downregulation was at the transcriptional level. CONCLUSION The expression of ADAM33 by ASM cells is increased in patients with asthma, and its expression may be regulated by IFN-gamma. CLINICAL IMPLICATIONS IFN-gamma might have a role in suppressing ADAM33 in ASM cells.
Collapse
Affiliation(s)
- Isao Ito
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada, H2X 2P2
| | | | | | | | | | | | | |
Collapse
|
47
|
Marro ML, Daniels DA, Andrew DP, Chapman TD, Gearing KL. In vitro selection of RNA aptamers that block CCL1 chemokine function. Biochem Biophys Res Commun 2006; 349:270-6. [PMID: 16930539 DOI: 10.1016/j.bbrc.2006.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/08/2006] [Indexed: 11/26/2022]
Abstract
CCL1, the CCR8 ligand, is a CC chemokine secreted by activated monocytes and lymphocytes and is a potent chemoattractant for these cell types. The in vivo role of the CCL1/CCR8 axis in Th2-mediated inflammation is far from clear. Ligand neutralisation studies reported discrepancies in the effect of CCL1/CCR8 and CCR8 knockout studies showed very different insights into the functional role of the CCR8. To further study the biological function of CCL1, we focused on the generation and characterisation of RNA aptamers. We report here the in vitro isolation of the first nuclease resistant and selective RNA aptamer (T48) with high-binding affinity for human and mouse CCL1. The T48 aptamer but not a random control aptamer antagonises CCL1 function in a dose-dependent fashion in both heparin binding and chemotaxis assays. To our knowledge, the T48 aptamer constitutes one of the most potent CCL1 antagonists reported to date and is an excellent tool to dissect CCL1-specific function in vivo. The T48 aptamer may also have potential as new generation of therapeutic tools.
Collapse
Affiliation(s)
- Martin L Marro
- Gene Expression and Protein Biochemistry, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | | | | | | | | |
Collapse
|
48
|
Friedrich EB, Clever YP, Wassmann S, Werner N, Böhm M, Nickenig G. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II. Biochem Biophys Res Commun 2006; 349:883-9. [PMID: 16962068 DOI: 10.1016/j.bbrc.2006.07.217] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 12/13/2022]
Abstract
Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Erik B Friedrich
- Klinik für Innere Medizin III Kardiologie, Angiologie, Internistische Intensivmedizin, Universitätskliniken des Saarlandes, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Takabatake N, Shibata Y, Abe S, Wada T, Machiya JI, Igarashi A, Tokairin Y, Ji G, Sato H, Sata M, Takeishi Y, Emi M, Muramatsu M, Kubota I. A single nucleotide polymorphism in the CCL1 gene predicts acute exacerbations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 174:875-85. [PMID: 16864713 DOI: 10.1164/rccm.200603-443oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Acute exacerbations (AEs) in chronic obstructive pulmonary disease (COPD) are a major cause of morbidity and mortality in COPD. OBJECTIVES The marked heterogeneity in the host defense mechanisms may be attributed to single nucleotide polymorphisms (SNPs) in the inflammatory chemokines that show enhanced expression in the airway of patients with COPD who experience AEs. METHODS We investigated four SNPs of the CCL11, CCL1, and CCL5 genes in relation to the frequency and severity of AEs in retrospective and prospective studies of a cohort of 276 male patients with COPD. MEASUREMENTS AND MAIN RESULTS In the 2-yr retrospective study , one SNP (National Center for Biotechnology Information SNP reference: rs2282691) in the predicted enhancer region of the CCL1 gene, encoding a chemotactic factor for a series of leukocytes, was significantly associated with the frequency of AEs in a dominant model (Fisher's exact test: odds ratio [OR], 2.70; 95% confidence interval [CI], 1.36-5.36; p=0.004; logistic regression: OR, 3.06; 95% CI, 1.46-6.41; p=0.003; and Kruskal-Wallis test: p=0.003). In the 30-mo prospective study, the "A" allele was a significant risk allele for the severity of AEs, with a gene-dosage effect (Kaplan-Meier method with log-rank test: AA vs. TT; log-rank statistic: 7.67, p=0.006; Cox proportional hazards regression method: OR, 5.93; 95% CI, 1.28-27.48; p=0.023). The electromobility shift assay showed that C/EBPbeta, a key transcriptional factor in response to pulmonary infections, binds to the "T" allele, but not to the "A" allele. CONCLUSIONS Variants in the CCL1 gene are associated with susceptibility to AEs through their potential implication in the host defense mechanisms against AEs.
Collapse
Affiliation(s)
- Noriaki Takabatake
- First Department of Internal Medicine, Yamagata University School of Medicine. 2-2-2, Iida-Nishi, Yamagata 990-9585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
N'Diaye M, Le Ferrec E, Lagadic-Gossmann D, Corre S, Gilot D, Lecureur V, Monteiro P, Rauch C, Galibert MD, Fardel O. Aryl hydrocarbon receptor- and calcium-dependent induction of the chemokine CCL1 by the environmental contaminant benzo[a]pyrene. J Biol Chem 2006; 281:19906-15. [PMID: 16679317 DOI: 10.1074/jbc.m601192200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed immunotoxic environmental contaminants well known to regulate expression of pro-inflammatory cytokines such as interleukine-1beta and tumor necrosis factor-alpha. In the present study, we demonstrated that the chemokine CCL1, notably involved in cardiovascular diseases and inflammatory or allergic processes, constitutes a new molecular target for PAHs. Indeed, exposure to PAHs such as benzo[a]pyrene (BP) markedly increased mRNA expression and secretion of CCL1 in primary human macrophage cultures. Moreover, intranasal administration of BP to mice enhanced mRNA levels of TCA3, the mouse orthologue of CCL1, in lung. CCL1 induction in cultured human macrophages was fully prevented by targeting the aryl hydrocarbon receptor (AhR) through chemical inhibition or small interfering RNA-mediated down-modulation of its expression. In addition, BP and the potent AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin were found to enhance activity of a CCL1 promoter sequence containing a consensus xenobiotic-responsive element known to specifically interact with AhR. Moreover, 2,3,7,8-tetrachlorodibenzo-p-dioxin triggered AhR binding to this CCL1 promoter element as revealed by chromatin immunoprecipitation experiments and electrophoretic mobility shift assays. In an attempt to further characterize the mechanism of CCL1 induction, we demonstrated that BP was able to induce an early and transient increase of intracellular calcium concentration in human macrophages. Inhibition of this calcium increase, using the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or the calcium store-operated channel inhibitor 2-aminoethoxydiphenyl borate, fully blocked CCL1 up-regulation. Taken together, these results bring the first demonstration that PAHs induce expression of the chemokine CCL1 in an AhR- and calcium-dependent manner.
Collapse
Affiliation(s)
- Monique N'Diaye
- INSERM U620, Unité Mixte de Recherche 6061, Laboratoire de Génétique et Développement, Facultéde Médecine, Université de Rennes 1, IFR140, 35043 Rennes Cedex
| | | | | | | | | | | | | | | | | | | |
Collapse
|