1
|
Choi JW, Kim SW, Kim HS, Kang MJ, Kim SA, Han JY, Kim H, Ku SY. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int J Mol Sci 2024; 25:751. [PMID: 38255823 PMCID: PMC10815572 DOI: 10.3390/ijms25020751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.
Collapse
Affiliation(s)
- Jung-Won Choi
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee-Sun Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Moon-Joo Kang
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Ah Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Ji-Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
3
|
Bhatt K, Garimella R, Taugir R, Mehta I, Jamal M, Vijayan R, Offor R, Nwankwo K, Arif U, Waheed K, Kumari P, Lathiya M, Michel G, Pandya N, Halpern J, Nasir H, Sanchez-Gonzalez MA. Effectiveness of Mavrilimumab in Viral Infections Including SARS-CoV-2 Infection - A Brief Review. Infect Chemother 2021; 53:1-12. [PMID: 34409778 PMCID: PMC8032909 DOI: 10.3947/ic.2020.0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Hyperinflammation and cytokine storm has been noted as a poor prognostic factor in patients with severe pneumonia related to coronavirus disease 2019 (COVID-19). In COVID-19, pathogenic myeloid cell overactivation is found to be a vital mediator of damage to tissues, hypercoagulability, and the cytokine storm. These cytokines unselectively infiltrate various tissues, such as the lungs and heart, and nervous system. This cytokine storm can hence cause multi-organ dysfunction and life-threatening complications. Mavrilimumab is a monoclonal antibody (mAb) that may be helpful in some cases with COVID-19. During an inflammation, Granulocyte-macrophage colony-stimulating factor (GM-CSF) release is crucial to driving both innate and adaptive immune responses. The GM-CSF immune response is triggered when an antigen attaches to the host cell and induces the signaling pathway. Mavrilimumab antagonizes the action of GM-CSF and decreases the hyperinflammation associated with pneumonia in COVID-19, therefore strengthening the rationale that mavrilimumab when added to the standard protocol of treatment could improve the clinical outcomes in COVID-19 patients, specifically those patients with pneumonia. With this review paper, we aim to demonstrate the inhibitory effect of mavrilimumab on cytokine storms in patients with COVID-19 by reviewing published clinical trials and emphasize the importance of extensive future trials.
Collapse
Affiliation(s)
- Kinal Bhatt
- Division of Clinical & Translational Research, Larkin Health System, South Miami, FL, USA.
| | | | - Rahima Taugir
- Medical University of the Americas, St. Kitts and Nevis
| | - Isha Mehta
- Windsor University School of Medicine, St. Kitts and Nevis
| | | | | | - Rita Offor
- Texas A and M University, College Station, Texas, USA
| | | | - Uroosa Arif
- Khyber Teaching Hospital, Peshawar, Pakistan
| | | | | | | | - George Michel
- Department of Internal Medicine, Larkin Health System, South Miami, FL, USA
| | | | | | | | | |
Collapse
|
4
|
Ricafrente A, Nguyen H, Tran N, Donnelly S. An Evaluation of the Fasciola hepatica miRnome Predicts a Targeted Regulation of Mammalian Innate Immune Responses. Front Immunol 2021; 11:608686. [PMID: 33584684 PMCID: PMC7878377 DOI: 10.3389/fimmu.2020.608686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding mechanisms by which parasitic worms (helminths) control their hosts’ immune responses is critical to the development of effective new disease interventions. Fasciola hepatica, a global scourge of humans and their livestock, suppresses host innate immune responses within hours of infection, ensuring that host protective responses are quickly incapacitated. This allows the parasite to freely migrate from the intestine, through the liver to ultimately reside in the bile duct, where the parasite establishes a chronic infection that is largely tolerated by the host. The recent identification of micro(mi)RNA, small RNAs that regulate gene expression, within the extracellular vesicles secreted by helminths suggest that these non-coding RNAs may have a role in the parasite-host interplay. To date, 77 miRNAs have been identified in F. hepatica comprising primarily of ancient conserved species of miRNAs. We hypothesized that many of these miRNAs are utilized by the parasite to regulate host immune signaling pathways. To test this theory, we first compiled all of the known published F. hepatica miRNAs and critically curated their sequences and annotations. Then with a focus on the miRNAs expressed by the juvenile worms, we predicted gene targets within human innate immune cells. This approach revealed the existence of targets within every immune cell, providing evidence for the universal management of host immunology by this parasite. Notably, there was a high degree of redundancy in the potential for the parasite to regulate the activation of dendritic cells, eosinophils and neutrophils, with multiple miRNAs predicted to act on singular gene targets within these cells. This original exploration of the Fasciola miRnome offers the first molecular insight into mechanisms by which F. hepatica can regulate the host protective immune response.
Collapse
Affiliation(s)
- Alison Ricafrente
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Hieu Nguyen
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Nham Tran
- Faculty of Engineering and Information Technology, School of Biomedical Engineering, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- Faculty of Science, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
5
|
Knobloch J, Yanik SD, Körber S, Stoelben E, Jungck D, Koch A. TNFα-induced airway smooth muscle cell proliferation depends on endothelin receptor signaling, GM-CSF and IL-6. Biochem Pharmacol 2016; 116:188-99. [PMID: 27422754 DOI: 10.1016/j.bcp.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Pathological proliferation of human airway smooth muscle cells (HASMCs) causes hyperplasia in chronic lung diseases. Signaling pathways that link airway inflammation to HASMC proliferation might provide therapeutic targets for the prevention of airway remodeling and chronic lung diseases. Endothelin-1 (ET-1) signals via endothelin-A- and B-receptors (ETAR, ETBR) to perpetuate HASMC-associated and TNFα-dependent inflammatory processes. HYPOTHESIS endothelin receptor antagonists (ERAs) suppress HASMC proliferation induced by inflammatory cytokines. HASMCs were stimulated ex vivo with cytokines in the presence or absence of ERAs (ETAR-specific/selective: BQ123, ambrisentan; ETBR-specific: BQ788; non-selective: bosentan, macitentan, ACT-132577) or cytokine-blocking antibodies. Cell counts, DNA-synthesis (BrdU-incorporation assay), cytokine production (ELISA) and ETBR expression (whole-genome microarray data, western blot) were analyzed. ET-1-induced HASMC proliferation and DNA-synthesis were reduced by protein kinase inhibitors and ETAR-specific/selective ERAs but not by BQ788. TNFα-induced HASMC proliferation and DNA-synthesis were reduced by all ERAs. TNFα induced ET-1 and ETBR expression. TNFα- and ET-1-induced GM-CSF releases were both reduced by BQ123 and BQ788. TNFα- and ET-1-induced IL-6 releases were both reduced by BQ123 but not by BQ788. Combined but not single blockade of GM-CSF-receptor-α-chain and IL-6 reduced TNFα- and ET-1-induced HASMC proliferation and DNA-synthesis. Combined but not single treatment with GM-CSF and IL-6 induced HASMC proliferation and DNA-synthesis in the presence of ET-1. In conclusion, TNFα induces HASMC proliferation via ET-1/GM-CSF/IL-6. ETBR requires up-regulation by TNFα to mediate ET-1 effects on HASMC proliferation. This signaling cascade links airway inflammation to HASMC-associated remodeling processes and is sensitive to ERAs. Therefore, ERAs could prevent inflammation-induced airway smooth muscle hyperplasia.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany.
| | - Sarah Derya Yanik
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Sandra Körber
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Erich Stoelben
- Thoracic Surgery, Lungenklinik, Hospital of Cologne, University Witten/Herdecke, Germany
| | - David Jungck
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Andrea Koch
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| |
Collapse
|
6
|
Broughton SE, Hercus TR, Nero TL, Dottore M, McClure BJ, Dhagat U, Taing H, Gorman MA, King-Scott J, Lopez AF, Parker MW. Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity Conversion and Receptor Signaling. Structure 2016; 24:1271-1281. [PMID: 27396825 DOI: 10.1016/j.str.2016.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
The GM-CSF, IL-3, and IL-5 receptors constitute the βc family, playing important roles in inflammation, autoimmunity, and cancer. Typical of heterodimeric type I cytokine receptors, signaling requires recruitment of the shared subunit to the initial cytokine:α subunit binary complex through an affinity conversion mechanism. This critical process is poorly understood due to the paucity of crystal structures of both binary and ternary receptor complexes for the same cytokine. We have now solved the structure of the binary GM-CSF:GMRα complex at 2.8-Å resolution and compared it with the structure of the ternary complex, revealing distinct conformational changes. Guided by these differences we performed mutational and functional studies that, importantly, show GMRα interactions playing a major role in receptor signaling while βc interactions control high-affinity binding. These results support the notion that conformational changes underlie the mechanism of GM-CSF receptor activation and also suggest how related type I cytokine receptors signal.
Collapse
Affiliation(s)
- Sophie E Broughton
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Timothy R Hercus
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Mara Dottore
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Barbara J McClure
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Urmi Dhagat
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Houng Taing
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jack King-Scott
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia.
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 2016; 48:e242. [PMID: 27364892 PMCID: PMC4973317 DOI: 10.1038/emm.2016.64] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications.
Collapse
Affiliation(s)
- In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
8
|
Broughton SE, Nero TL, Dhagat U, Kan WL, Hercus TR, Tvorogov D, Lopez AF, Parker MW. The βc receptor family – Structural insights and their functional implications. Cytokine 2015; 74:247-58. [DOI: 10.1016/j.cyto.2015.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
|
9
|
Abstract
Erythropoiesis is a vital process governed through various factors. There is extreme unavailability of suitable donor due to rare phenotypic blood groups and other related complications like hemoglobinopathies, polytransfusion patients, and polyimmunization. Looking at the worldwide scarcity of blood, especially in low income countries and the battlefield, mimicking erythropoiesis using ex vivo methods can provide an efficient answer to various problems associated with present donor derived blood supply system. Fortunately, there are many ex vivo erythropoiesis methodologies being developed by various research groups using stem cells as the major source material for large scale blood production. Most of these ex vivo protocols use a cocktail of similar growth factors under overlapping growth conditions. Erythropoietin (EPO) is a key regulator in most ex vivo protocols along with other growth factors such as SCF, IL-3, IGF-1, and Flt-3. Now transfusable units of blood can be produced by using these protocols with their set of own limitations. The present paper focuses on the molecular mechanism and significance of various growth factors in these protocols that shall remain helpful for large scale production.
Collapse
|
10
|
Dobbs KB, Khan FA, Sakatani M, Moss JI, Ozawa M, Ealy AD, Hansen PJ. Regulation of pluripotency of inner cell mass and growth and differentiation of trophectoderm of the bovine embryo by colony stimulating factor 2. Biol Reprod 2013; 89:141. [PMID: 24198123 DOI: 10.1095/biolreprod.113.113183] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Colony-stimulating factor 2 (CSF2) enhances competence of the bovine embryo to establish and maintain pregnancy after the embryo is transferred into a recipient. Mechanisms involved could include regulation of lineage commitment, growth, or differentiation of the inner cell mass (ICM) and trophectoderm (TE). Experiments were conducted to evaluate regulation by CSF2 of pluripotency of the ICM and differentiation and growth of the TE. Embryos were cultured with 10 ng/ml recombinant bovine CSF2 or a vehicle control from Days 5 to 7 or 6 to 8 postinsemination. CSF2 increased the number of putative zygotes that developed to blastocysts when the percent of embryos becoming blastocysts in the control group was low but decreased blastocyst yield when blastocyst development in controls was high. ICM isolated from blastocysts by lysing the trophectoderm using antibody and complement via immunosurgery were more likely to survive passage when cultured on mitomycin C-treated fetal fibroblasts if derived from blastocysts treated with CSF2 than if from control blastocysts. There was little effect of CSF2 on characteristics of TE outgrowths from blastocysts. The exception was a decrease in outgrowth size for embryos treated with CSF2 from Days 5 to 7 and an increase in expression of CDX2 when treatment was from Days 6 to 8. Expression of the receptor subunit gene CSF2RA increased from the zygote stage to the 9-16 cell stage before decreasing to the blastocyst stage. In contrast, CSF2RB was undetectable at all stages. In conclusion, CSF2 improves competence of the ICM to survive in a pluripotent state and alters TE outgrowths. Actions of CSF2 occur through a signaling pathway that is likely to be independent of CSF2RB.
Collapse
Affiliation(s)
- Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida
| | | | | | | | | | | | | |
Collapse
|
11
|
Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor. Med Oncol 2013; 31:774. [DOI: 10.1007/s12032-013-0774-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
|
12
|
Li BZ, Ye QL, Xu WD, Li JH, Ye DQ, Xu Y. GM-CSF alters dendritic cells in autoimmune diseases. Autoimmunity 2013; 46:409-18. [PMID: 23786272 DOI: 10.3109/08916934.2013.803533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University , Anhui , PR China
| | | | | | | | | | | |
Collapse
|
13
|
Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, Lopez AF, Parker MW. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev 2013; 250:277-302. [PMID: 23046136 DOI: 10.1111/j.1600-065x.2012.01164.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
Collapse
|
14
|
Atanasova M, Whitty A. Understanding cytokine and growth factor receptor activation mechanisms. Crit Rev Biochem Mol Biol 2012; 47:502-30. [PMID: 23046381 DOI: 10.3109/10409238.2012.729561] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our understanding of the detailed mechanism of action of cytokine and growth factor receptors - and particularly our quantitative understanding of the link between structure, mechanism and function - lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article, we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years which promise to revolutionize our understanding of this large and biologically and medically important class of receptors.
Collapse
Affiliation(s)
- Mariya Atanasova
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
15
|
Hercus TR, Broughton SE, Ekert PG, Ramshaw HS, Perugini M, Grimbaldeston M, Woodcock JM, Thomas D, Pitson S, Hughes T, D'Andrea RJ, Parker MW, Lopez AF. The GM-CSF receptor family: mechanism of activation and implications for disease. Growth Factors 2012; 30:63-75. [PMID: 22257375 DOI: 10.3109/08977194.2011.649919] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pluripotent cytokine produced by many cells in the body, which regulates normal and malignant hemopoiesis as well as innate and adaptive immunity. GM-CSF assembles and activates its heterodimeric receptor complex on the surface of myeloid cells, initiating multiple signaling pathways that control key functions such as cell survival, cell proliferation, and functional activation. Understanding the molecular composition of these pathways, the interaction of the various components as well as the kinetics and dose-dependent mechanics of receptor activation provides valuable insights into the function of GM-CSF as well as the related cytokines, interleukin-3 and interleukin-5. This knowledge provides opportunities for the development of new therapies to block the action of these cytokines in hematological malignancy and chronic inflammation.
Collapse
Affiliation(s)
- Timothy R Hercus
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brown AL, Salerno DG, Sadras T, Engler GA, Kok CH, Wilkinson CR, Samaraweera SE, Sadlon TJ, Perugini M, Lewis ID, Gonda TJ, D'Andrea RJ. The GM-CSF receptor utilizes β-catenin and Tcf4 to specify macrophage lineage differentiation. Differentiation 2011; 83:47-59. [PMID: 22099176 DOI: 10.1016/j.diff.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 01/31/2023]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor β subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of β-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised β-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate β-catenin stability, most likely via GSK3β. Consistent with this pathway being active in primary cells we show that inhibition of GSK3β activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.
Collapse
Affiliation(s)
- Anna L Brown
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF)/interleukin (IL)–3/IL-5 receptor family regulates the production and function of myeloid cells. These cytokines signal through receptor complexes that consist of unique ligand-binding α-chains and common signaling β-chains. IL-5 is distinct from IL-3 and GM-CSF in its capacity to induce eosinophil development, however, the molecular mechanisms that generate functional diversity within this receptor family are mostly unknown. Here, we characterized the selective IL-5Rα–binding adapter protein syntenin in IL-5R function. Syntenin and IL-5Rα colocalize at the plasma membrane and in early endosomal compartments. Manipulation of syntenin expression by ectopic expression or knockdown selectively modulated IL-5R but not GM-CSF receptor signaling, and severely affected IL-5–induced eosinophil differentiation from primary human CD34+ hematopoietic progenitor cells. We found syntenin up-regulated during eosinophilopoiesis but down-regulated during neutropoiesis. Syntenin forms complexes with multiple IL-5Rα chains, suggesting that syntenin-enhanced IL-5R output may result from stabilization of an IL-5–induced oligomeric receptor complex. These data demonstrate that cytokine-specific functions can be transduced by unique receptor α-chain–associating adapter proteins.
Collapse
|
18
|
The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 2009; 114:1289-98. [PMID: 19436055 DOI: 10.1182/blood-2008-12-164004] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Already 20 years have passed since the cloning of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, the first member of the GM-CSF/interleukin (IL)-3/IL-5 family of hemopoietic cytokine receptors to be molecularly characterized. The intervening 2 decades have uncovered a plethora of biologic functions transduced by the GM-CSF receptor (pleiotropy) and revealed distinct signaling networks that couple the receptor to biologic outcomes. Unlike other hemopoietin receptors, the GM-CSF receptor has a significant nonredundant role in myeloid hematologic malignancies, macrophage-mediated acute and chronic inflammation, pulmonary homeostasis, and allergic disease. The molecular mechanisms underlying GM-CSF receptor activation have recently been revealed by the crystal structure of the GM-CSF receptor complexed to GM-CSF, which shows an unexpected higher order assembly. Emerging evidence also suggests the existence of intracellular signosomes that are recruited in a concentration-dependent fashion to selectively control cell survival, proliferation, and differentiation by GM-CSF. These findings begin to unravel the mystery of cytokine receptor pleiotropy and are likely to also apply to the related IL-3 and IL-5 receptors as well as other heterodimeric cytokine receptors. The new insights in GM-CSF receptor activation have clinical significance as the structural and signaling nuances can be harnessed for the development of new treatments for malignant and inflammatory diseases.
Collapse
|
19
|
Calicchio ML, Collins T, Kozakewich HP. Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genome-wide transcriptional profiling. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1638-49. [PMID: 19349369 DOI: 10.2353/ajpath.2009.080517] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Infantile hemangiomas are characterized by rapid capillary growth during the first year of life followed by involution during early childhood. The natural history of these lesions creates a unique opportunity to study the changes in gene expression that occur in the vessels of these tumors as they proliferate and regress. Here we use laser capture microdissection and genome-wide transcriptional profiling of vessels from proliferating and involuting hemangiomas to identify differentially expressed genes. Relative to normal placental vessels, proliferating hemangiomas were characterized by increased expression of genes involved in endothelial-pericyte interactions, such as angiopoietin-2 (ANGPT2), jagged-1 (JAG1), and notch-4 (NOTCH4), as well as genes involved in neural and vascular patterning, such as neuropilin-2 (NETO2), a plexin domain containing receptor (plexinC1), and an ephrin receptor (EPHB3). Insulin-like growth factor binding protein-3 (IGFBP3) was down-regulated in proliferating hemangiomas. Involuting hemangiomas were characterized by the expression of chronic inflammatory mediators, such as the chemokine, stromal cell-derived factor-1 (SDF-1), and factors that may attenuate the angiogenic response, such as a member of the Down syndrome critical region (DSCR) family. The identification of genes differentially expressed in proliferating and involuting hemangiomas in vivo will contribute to our understanding of this vascular lesion, which remains a leading cause of morbidity in newborn children.
Collapse
Affiliation(s)
- Monica L Calicchio
- Department of Pathology, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
20
|
Hansen G, Hercus TR, McClure BJ, Stomski FC, Dottore M, Powell J, Ramshaw H, Woodcock JM, Xu Y, Guthridge M, McKinstry WJ, Lopez AF, Parker MW. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 2008; 134:496-507. [PMID: 18692472 DOI: 10.1016/j.cell.2008.05.053] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/18/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.
Collapse
Affiliation(s)
- Guido Hansen
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hansen G, Hercus TR, Xu Y, Lopez AF, Parker MW, McKinstry WJ. Crystallization and preliminary X-ray diffraction analysis of the ternary human GM-CSF receptor complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:711-4. [PMID: 18678938 PMCID: PMC2494959 DOI: 10.1107/s1744309108019404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/26/2008] [Indexed: 11/10/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a haemopoietic growth factor that acts though a ternary receptor signalling complex containing specific alpha (GMRalpha) and common beta (betac) receptor subunits. Human GM-CSF is encoded by the gene csf2, while the genes for GMRalpha and betac are csf2ra and csf2rb, respectively. Crystals of the ternary ectodomain complex comprising GM-CSF and the soluble extracellular regions of both the GMRalpha subunit and either betac or its glutamine-substitution mutant N346Q were obtained using the hanging-drop vapour-diffusion method. The best diffracting crystals of the ternary complex were obtained using the N346Q mutation of the betac subunit. These crystals grew using polyethylene glycol 3350 with a high concentration of proline, belonged to space group P6(3)22 and diffracted to 3.3 A resolution.
Collapse
Affiliation(s)
- Guido Hansen
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Timothy R. Hercus
- Cytokine Receptor Laboratory, Division of Human Immunology, Institute of Medical and Veterinary Science (IMVS), Frome Road, Adelaide, South Australia 5001, Australia
| | - Yibin Xu
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Angel F. Lopez
- Cytokine Receptor Laboratory, Division of Human Immunology, Institute of Medical and Veterinary Science (IMVS), Frome Road, Adelaide, South Australia 5001, Australia
| | - Michael W. Parker
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - William J. McKinstry
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
- Department of Medicine (St Vincent’s Hospital), The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
22
|
Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol 2008; 86:598-607. [PMID: 18626488 DOI: 10.1038/icb.2008.49] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heparan sulphate (HS) glycosaminoglycans (GAGs) are an integral part of the signalling complex of fibroblast derived growth factor (FGF) family members, HS being regarded as a coreceptor. FGFs are also retained in the tissues by binding to HS structures. Early studies on the contribution of the bone marrow stroma to haemopoiesis suggested that cytokines with a role in haemopoiesis were similarly retained in the stroma through interactions with HS. However, the functional outcomes of these cytokines binding HS were poorly understood. Here the GAG-binding properties of cytokines of the four alpha-helical bundle family and the biological consequences of such binding are reviewed. From this analysis it is apparent that although many of these cytokines do bind GAGs, GAG binding is not a consistent feature, nor is the site of GAG binding conserved among these cytokines. The biological outcome of GAG binding depends, in part, on the location of the GAG-binding site on the cytokine. In some cases GAG binding appears to block signalling, whereas in others signalling is likely to be facilitated by binding. It is postulated that the interactions of these cytokines with their receptor complexes evolved independently of GAG binding, with GAG binding being an additional feature for a subset of this cytokine family. Nevertheless, because GAG binding localizes cytokines to sites within tissues, these interactions are likely to be critically important for the biology of these cytokines.
Collapse
|
23
|
Zaks-Zilberman M, Harrington AE, Ishino T, Chaiken IM. Interleukin-5 receptor subunit oligomerization and rearrangement revealed by fluorescence resonance energy transfer imaging. J Biol Chem 2008; 283:13398-406. [PMID: 18326494 DOI: 10.1074/jbc.m710230200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-5 exerts hematopoietic functions through binding to the IL-5 receptor subunits, alpha and betac. Specific assembly steps of full-length subunits as they occur in cell membranes, ultimately leading to receptor activation, are not well understood. We tracked the oligomerization of IL-5 receptor subunits using fluorescence resonance energy transfer (FRET) imaging. Full-length IL-5Ralpha and betac were expressed in Phoenix cells as chimeric proteins fused to enhanced cyan or yellow fluorescent protein (CFP or YFP, respectively). A time- and dose-dependent increase in FRET signal between IL-5Ralpha-CFP and betac-YFP was observed in response to IL-5, indicative of heteromeric receptor alpha-betac subunit interaction. This response was inhibited by AF17121, a peptide antagonist of IL-5Ralpha. Substantial FRET signals with betac-CFP and betac-YFP co-expressed in the absence of IL-5Ralpha demonstrated that betac subunits exist as preformed homo-oligomers. IL-5 had no effect on this betac-alone FRET signal. Interestingly, the addition of IL-5 to cells co-expressing betac-CFP, betac-YFP, and nontagged IL-5Ralpha led to further increase in FRET efficiency. Observation of preformed betac oligomers fits with the view that this form can lead to rapid cellular responses upon IL-5 stimulation. The IL-5-induced effects on betac assembly in the presence of nontagged IL-5Ralpha provide direct evidence that IL-5 can cause higher order rearrangements of betac homo-oligomers. These results suggest that IL-5 and perhaps other betac cytokines (IL-3 and granulocyte/macrophage colony-stimulating factor) trigger cellular responses by the sequential binding of cytokine ligand to the specificity receptor (subunit alpha), followed by binding of the ligand-subunit alpha complex to, and consequent rearrangement of, a ground state form of betac oligomers.
Collapse
Affiliation(s)
- Meirav Zaks-Zilberman
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
24
|
Ishino T, Harrington AE, Zaks-Zilberman M, Scibek JJ, Chaiken I. Slow-dissociation effect of common signaling subunit beta c on IL5 and GM-CSF receptor assembly. Cytokine 2008; 42:179-190. [PMID: 18294864 DOI: 10.1016/j.cyto.2007.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 10/25/2007] [Accepted: 12/19/2007] [Indexed: 11/26/2022]
Abstract
Receptor activation by IL5 and GM-CSF is a sequential process that depends on their interaction with a cytokine-specific subunit alpha and recruitment of a common signaling subunit beta (betac). In order to elucidate the assembly dynamics of these receptor subunits, we performed kinetic interaction analysis of the cytokine-receptor complex formation by a surface plasmon resonance biosensor. Using the extracellular domains of receptor fused with C-terminal V5-tag, we developed an assay method to co-anchor alpha and betac subunits on the biosensor surface. We demonstrated that dissociation of the cytokine-receptor complexes was slower when both subunits were co-anchored on the biosensor surface than when alpha subunit alone was anchored. The slow-dissociation effect of betac had a similar impact on GM-CSF receptor stabilization to that of IL5. The effects were abolished by alanine replacement of either Tyr18 or Tyr344 residue in betac, which together constitute key parts of a cytokine binding epitope. The data argue that betac plays an important role in preventing the ligand-receptor complexes from rapidly dissociating. This slow-dissociation effect of betac explains how, when multiple betac cytokine receptor alpha subunits are present on the same cell surface, selective betac usage can be controlled by sequestration in stabilized cytokine-alpha-betac complexes.
Collapse
Affiliation(s)
- Tetsuya Ishino
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Adrian E Harrington
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Meirav Zaks-Zilberman
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Jeffery J Scibek
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA
| | - Irwin Chaiken
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 North, 15th Street, Mail Stop 497, New College Building, Room 11102, Philadelphia, PA 19102-1192, USA.
| |
Collapse
|
25
|
Murphy JM, Young IG. IL-3, IL-5, and GM-CSF signaling: crystal structure of the human beta-common receptor. VITAMINS AND HORMONES 2006; 74:1-30. [PMID: 17027509 DOI: 10.1016/s0083-6729(06)74001-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony stimulating factor (GM-CSF), are polypeptide growth factors that exhibit overlapping activities in the regulation of hematopoietic cells. They appear to be primarily involved in inducible hematopoiesis in response to infections and are involved in the pathogenesis of allergic and inflammatory diseases and possibly in leukemia. The X-ray structure of the beta common (betac) receptor ectodomain has given new insights into the structural biology of signaling by IL-3, IL-5, and GM-CSF. This receptor is shared between the three ligands and functions together with three ligand-specific alpha-subunits. The structure shows betac is an intertwined homodimer in which each chain contains four domains with approximate fibronectin type-III topology. The two betac-subunits that compose the homodimer are interlocked by virtue of the swapping of beta-strands between domain 1 of one subunit and domain 3 of the other subunit. Site-directed mutagenesis has shown that the interface between domains 1 and 4 in this unique structure forms the functional epitope. This epitope is similar to those of other members of the cytokine class I receptor family but is novel in that it is formed by two different receptor chains. The chapter also reviews knowledge on the closely related mouse beta(IL-3) receptor and on the alpha-subunit-ligand interactions. The knowledge on the two beta receptors is placed in context with advances in understanding of the structural biology of other members of the cytokine class I receptor family.
Collapse
Affiliation(s)
- James M Murphy
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia 0200
| | | |
Collapse
|
26
|
Ishino T, Robertson N, Chaiken I. Cytokine recognition by human interleukin 5 receptor. VITAMINS AND HORMONES 2005; 71:321-44. [PMID: 16112273 DOI: 10.1016/s0083-6729(05)71011-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The activation of interleukin 5 (IL-5) receptor is a dynamic process that depends on specific interaction of IL-5 with IL-5 receptor alpha, the formation of oligomeric receptor complexes with receptor beta, and the initiation of cytoplasmic phosphorylation events. These steps culminate in the triggering of a cellular response. Important advances have been made recently in understanding the molecular mechanisms of cytokine recognition, receptor assembly, and signal triggering. Cytokine recognition can be envisioned by relating structure to function in IL-5 and IL-5 receptor alpha. A pair of charge-complementary regions plays an essential role in the specific interaction between IL-5 receptor alpha and IL-5. Moreover, peptide library methodology has led to the discovery of IL-5 receptor alpha antagonists that mimic key elements in IL-5 receptor recognition. Because IL-5 has been implicated in the pathology of eosinophil-related inflammatory diseases, revealing the key recognition elements of IL-5, IL-5 mimetic peptides, and IL-5 receptor alpha could help drive the design of new compounds for therapeutic treatment against allergic inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Tetsuya Ishino
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
27
|
Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005; 6:484-94. [PMID: 15928718 DOI: 10.1038/nrn1687] [Citation(s) in RCA: 395] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Erythropoietin mediates an evolutionarily conserved, ancient immune response that limits damage to the heart, the nervous system and other tissues following injury. New evidence indicates that erythropoietin specifically prevents the destruction of viable tissue surrounding the site of an injury by signalling through a non-haematopoietic receptor. Engineered derivatives of erythropoietin that have a high affinity for this receptor have been developed, and these show robust tissue-protective effects in diverse preclinical models without stimulating erythropoiesis. A recent successful proof-of-concept clinical trial that used erythropoietin to treat human patients who had suffered a stroke encourages the evaluation of both this cytokine and non-erythropoietic derivatives as therapeutic agents to limit tissue injury.
Collapse
Affiliation(s)
- Michael Brines
- The Kenneth S. Warren Institute and Warren Pharmaceuticals, Inc., 712 Kitchawan Road, Ossining, New York 10562, USA.
| | | |
Collapse
|
28
|
Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, Latini R, Xie QW, Smart J, Su-Rick CJ, Pobre E, Diaz D, Gomez D, Hand C, Coleman T, Cerami A. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci U S A 2004; 101:14907-12. [PMID: 15456912 PMCID: PMC522054 DOI: 10.1073/pnas.0406491101] [Citation(s) in RCA: 533] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytokine erythropoietin (Epo) is tissue-protective in preclinical models of ischemic, traumatic, toxic, and inflammatory injuries. We have recently characterized Epo derivatives that do not bind to the Epo receptor (EpoR) yet are tissue-protective. For example, carbamylated Epo (CEpo) does not stimulate erythropoiesis, yet it prevents tissue injury in a wide variety of in vivo and in vitro models. These observations suggest that another receptor is responsible for the tissue-protective actions of Epo. Notably, prior investigation suggests that EpoR physically interacts with the common beta receptor (betacR), the signal-transducing subunit shared by the granulocyte-macrophage colony stimulating factor, and the IL-3 and IL-5 receptors. However, because betacR knockout mice exhibit normal erythrocyte maturation, betacR is not required for erythropoiesis. We hypothesized that betacR in combination with the EpoR expressed by nonhematopoietic cells constitutes a tissue-protective receptor. In support of this hypothesis, membrane proteins prepared from rat brain, heart, liver, or kidney were greatly enriched in EpoR after passage over either Epo or CEpo columns but covalently bound in a complex with betacR. Further, antibodies against EpoR coimmunoprecipitated betacR from membranes prepared from neuronal-like P-19 cells that respond to Epo-induced tissue protection. Immunocytochemical studies of spinal cord neurons and cardiomyocytes protected by Epo demonstrated cellular colocalization of Epo betacR and EpoR. Finally, as predicted by the hypothesis, neither Epo nor CEpo was active in cardiomyocyte or spinal cord injury models performed in the betacR knockout mouse. These data support the concept that EpoR and betacR comprise a tissue-protective heteroreceptor.
Collapse
|
29
|
Thomas D, Vadas M, Lopez A. Regulation of haematopoiesis by growth factors - emerging insights and therapies. Expert Opin Biol Ther 2004; 4:869-79. [PMID: 15174969 DOI: 10.1517/14712598.4.6.869] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Haematopoiesis is regulated by a wide variety of glycoprotein hormones, including stem cell factor, granulocyte-macrophage colony-stimulating factor, thrombopoietin and IL-3. These haematopoietic growth factors (HGFs) share a number of properties, including redundancy, pleiotropy, autocrine and paracrine effects, receptor subunit oligomerisation and similar signal transduction mechanisms, yet each one has a unique spectrum of haematopoietic activity. Ongoing studies with knockout mice have discovered previously unrecognised physiological roles for HGFs, linking haematopoiesis to innate immunity, pulmonary physiology and bone metabolism. The regulation of stem cells by HGFs within niches of the bone marrow microenvironment is now well recognised and similar mechanisms appear to exist in the regulation of other stem cell compartments. Alternative signalling strategies, other than tyrosine kinase activation and phosphotyrosine cascades, may account for some of the more subtle differences between HGFs. Accumulating evidence suggests that some, but not all, HGF receptors can transduce a genuine lineage-determining signal at certain points in haematopoiesis. Further studies, primarily at the receptor level, are needed to determine the mechanisms of instructive signalling, which may include phosphoserine cascades. Novel haematopoietic regulators, as well as the development of biological therapies, including growth factor antagonists and peptide mimetics, are also discussed.
Collapse
Affiliation(s)
- Daniel Thomas
- The Hanson Institute, Division of Human Immunology, The Institute of Medical and Veterinary Science, Adelaide, SA, Australia
| | | | | |
Collapse
|
30
|
Ruggiero G, Terrazzano G, Becchimanzi C, Sica M, Andretta C, Masci AM, Racioppi L, Rotoli B, Zappacosta S, Alfinito F. GPI-defective monocytes from paroxysmal nocturnal hemoglobinuria patients show impaired in vitro dendritic cell differentiation. J Leukoc Biol 2004; 76:634-40. [PMID: 15197238 DOI: 10.1189/jlb.1203607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal, acquired hematopoietic disorder characterized by a phosphatidylinositol (PI) glycan-A gene mutation, which impairs the synthesis of the glycosyl-PI (GPI) anchor, thus causing the absence of all GPI-linked proteins on the membrane of the clonal-defective cells. The presence of a consistent GPI-defective monocyte compartment is a common feature in PNH patients. To investigate the functional behavior of this population, we analyzed its in vitro differentiation ability toward functional dendritic cells (DCs). Our data indicate that GPI-defective monocytes from PNH patients are unable to undergo full DC differentiation in vitro after granulocyte macrophage-colony stimulating factor and recombinant interleukin (IL)-4 treatment. In this context, the GPI-defective DC population shows mannose receptor expression, high levels of the CD86 molecule, and impaired CD1a up-regulation. The analysis of lipopolysaccharide and CD40-dependent, functional pathways in these DCs revealed a strong decrease in tumor necrosis factor alpha and IL-12 production. Finally, GPI-defective DCs showed a severe impairment in delivering accessory signals for T cell receptor-dependent T cell proliferation.
Collapse
MESH Headings
- Adult
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- B7-2 Antigen
- CD40 Antigens/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Female
- Glycosylphosphatidylinositols/deficiency
- Glycosylphosphatidylinositols/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Hemoglobinuria, Paroxysmal/blood
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/immunology
- Humans
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-4/pharmacology
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lipopolysaccharides/immunology
- Male
- Mannose Receptor
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/metabolism
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Monocytes/cytology
- Monocytes/immunology
- Mutation/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Giuseppina Ruggiero
- Cattera di Immunologia, Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universitá Frederico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|