1
|
Wen S, Arakawa H, Tamai I. Uric acid in health and disease: From physiological functions to pathogenic mechanisms. Pharmacol Ther 2024; 256:108615. [PMID: 38382882 DOI: 10.1016/j.pharmthera.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Owing to renal reabsorption and the loss of uricase activity, uric acid (UA) is strictly maintained at a higher physiological level in humans than in other mammals, which provides a survival advantage during evolution but increases susceptibility to certain diseases such as gout. Although monosodium urate (MSU) crystal precipitation has been detected in different tissues of patients as a trigger for disease, the pathological role of soluble UA remains controversial due to the lack of causality in the clinical setting. Abnormal elevation or reduction of UA levels has been linked to some of pathological status, also known as U-shaped association, implying that the physiological levels of UA regulated by multiple enzymes and transporters are crucial for the maintenance of health. In addition, the protective potential of UA has also been proposed in aging and some diseases. Therefore, the role of UA as a double-edged sword in humans is determined by its physiological or non-physiological levels. In this review, we summarize biosynthesis, membrane transport, and physiological functions of UA. Then, we discuss the pathological involvement of hyperuricemia and hypouricemia as well as the underlying mechanisms by which UA at abnormal levels regulates the onset and progression of diseases. Finally, pharmacological strategies for urate-lowering therapy (ULT) are introduced, and current challenges in UA study and future perspectives are also described.
Collapse
Affiliation(s)
- Shijie Wen
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Stepanova M, Aherne CM. Adenosine in Intestinal Epithelial Barrier Function. Cells 2024; 13:381. [PMID: 38474346 DOI: 10.3390/cells13050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
At the intestinal front, several lines of defense are in place to resist infection and injury, the mucus layer, gut microbiome and strong epithelial junctions, to name a few. Their collaboration creates a resilient barrier. In intestinal disorders, such as inflammatory bowel disease (IBD), barrier function is compromised, which results in rampant inflammation and tissue injury. In response to the destruction, the intestinal epithelium releases adenosine, a small but powerful nucleoside that functions as an alarm signal. Amidst the chaos of inflammation, adenosine aims to restore order. Within the scope of its effects is the ability to regulate intestinal epithelial barrier integrity. This review aims to define the contributions of adenosine to mucus production, microbiome-dependent barrier protection, tight junction dynamics, chloride secretion and acid-base balance to reinforce its importance in the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Mariya Stepanova
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carol M Aherne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Tarban N, Papp AB, Deák D, Szentesi P, Halász H, Patsalos A, Csernoch L, Sarang Z, Szondy Z. Loss of adenosine A3 receptors accelerates skeletal muscle regeneration in mice following cardiotoxin-induced injury. Cell Death Dis 2023; 14:706. [PMID: 37898628 PMCID: PMC10613231 DOI: 10.1038/s41419-023-06228-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Skeletal muscle regeneration is a complex process orchestrated by multiple interacting steps. An increasing number of reports indicate that inflammatory responses play a central role in linking initial muscle injury responses to timely muscle regeneration following injury. The nucleoside adenosine has been known for a long time as an endogenously produced anti-inflammatory molecule that is generated in high amounts during tissue injury. It mediates its physiological effects via four types of adenosine receptors. From these, adenosine A3 receptors (A3Rs) are not expressed by the skeletal muscle but are present on the surface of various inflammatory cells. In the present paper, the effect of the loss of A3Rs was investigated on the regeneration of the tibialis anterior (TA) muscle in mice following cardiotoxin-induced injury. Here we report that regeneration of the skeletal muscle from A3R-/- mice is characterized by a stronger initial inflammatory response resulting in a larger number of transmigrating inflammatory cells to the injury site, faster clearance of cell debris, enhanced proliferation and faster differentiation of the satellite cells (the muscle stem cells), and increased fusion of the generated myoblasts. This leads to accelerated skeletal muscle tissue repair and the formation of larger myofibers. Though the infiltrating immune cells expressed A3Rs and showed an increased inflammatory profile in the injured A3R-/- muscles, bone marrow transplantation experiments revealed that the increased response of the tissue-resident cells to tissue injury is responsible for the observed phenomenon. Altogether our data indicate that A3Rs are negative regulators of injury-related regenerative inflammation and consequently also that of the muscle fiber growth in the TA muscle. Thus, inhibiting A3Rs might have a therapeutic value during skeletal muscle regeneration following injury.
Collapse
Affiliation(s)
- Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Albert Bálint Papp
- Doctoral School of Dental Sciences, University of Debrecen, Debrecen, Hungary
| | - Dávid Deák
- Laboratory Animal Facility, Life Science Building, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Halász
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St, Petersburg, FL, USA
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Lee J, Kang J, Kim Y, Lee S, Oh CM, Kim T. Integrated analysis of the microbiota-gut-brain axis in response to sleep deprivation and diet-induced obesity. Front Endocrinol (Lausanne) 2023; 14:1117259. [PMID: 36896179 PMCID: PMC9990496 DOI: 10.3389/fendo.2023.1117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Sleep deprivation (SD) and obesity are common in modern societies. SD and obesity frequently coexist, but research on the combined consequences of SD and obesity has been limited. In this study, we investigated the gut microbiota and host responses to SD and high-fat diet (HFD)-induced obesity. In addition, we attempted to identify key mediators of the microbiota-gut-brain axis. METHODS C57BL/6J mice were divided into four groups based on whether they were sleep deprived and whether they were fed a standard chow diet (SCD) or HFD. We then performed fecal microbiome shotgun sequencing, gut transcriptome analysis using RNA sequencing, and brain mRNA expression analysis using the nanoString nCounter Mouse Neuroinflammation Panel. RESULTS The gut microbiota was significantly altered by the HFD, whereas the gut transcriptome was primarily influenced by SD. Sleep and diet are both important in the inflammatory system of the brain. When SD and the HFD were combined, the inflammatory system of the brain was severely disrupted. In addition, inosine-5' phosphate may be the gut microbial metabolite that mediates microbiota-gut-brain interactions. To identify the major drivers of this interaction, we analyzed the multi-omics data. Integrative analysis revealed two driver factors that were mostly composed of the gut microbiota. We discovered that the gut microbiota may be the primary driver of microbiota-gut-brain interactions. DISCUSSION These findings imply that healing gut dysbiosis may be a viable therapeutic target for enhancing sleep quality and curing obesity-related dysfunction.
Collapse
Affiliation(s)
- Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sunjae Lee
- Department of School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- *Correspondence: Sunjae Lee, ; Chang-Myung Oh, ; Tae Kim,
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- *Correspondence: Sunjae Lee, ; Chang-Myung Oh, ; Tae Kim,
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- *Correspondence: Sunjae Lee, ; Chang-Myung Oh, ; Tae Kim,
| |
Collapse
|
6
|
Fernandes MR, Aggarwal P, Costa RGF, Cole AM, Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer 2022; 22:703-722. [PMID: 36253536 DOI: 10.1038/s41568-022-00513-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms. A better understanding of the taxonomy of the species involved and of the mechanisms of action has since been achieved. Defined bacterial species have been shown to promote an improved response to immune-checkpoint inhibitors by producing different products or metabolites. However, a suppressive effect of Gram-negative bacteria may be dominant in some unresponsive patients. Machine learning approaches trained on the microbiota composition of patients can predict the ability of patients to respond to immunotherapy with some accuracy. Thus, interest in modulating the microbiota composition to improve patient responsiveness to therapy has been mounting. Clinical proof-of-concept studies have demonstrated that faecal microbiota transplantation or dietary interventions might be utilized clinically to improve the success rate of immunotherapy in patients with cancer. Here, we review recent advances and discuss emerging strategies for microbiota-based cancer therapies.
Collapse
Affiliation(s)
- Miriam R Fernandes
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Poonam Aggarwal
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raquel G F Costa
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alicia M Cole
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Valada P, Hinz S, Vielmuth C, Lopes CR, Cunha RA, Müller CE, Lopes JP. The impact of inosine on hippocampal synaptic transmission and plasticity involves the release of adenosine through equilibrative nucleoside transporters rather than the direct activation of adenosine receptors. Purinergic Signal 2022:10.1007/s11302-022-09899-7. [PMID: 36156760 DOI: 10.1007/s11302-022-09899-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Inosine has robust neuroprotective effects, but it is unclear if inosine acts as direct ligand of adenosine receptors or if it triggers metabolic effects indirectly modifying the activity of adenosine receptors. We now combined radioligand binding studies with electrophysiological recordings in hippocampal slices to test how inosine controls synaptic transmission and plasticity. Inosine was without effect at 30 μM and decreased field excitatory post-synaptic potentials by 14% and 33% at 100 and 300 μM, respectively. These effects were prevented by the adenosine A1 receptor antagonist DPCPX. Inosine at 300 (but not 100) μM also decreased the magnitude of long-term potentiation (LTP), an effect prevented by DPCPX and by the adenosine A2A receptor antagonist SCH58261. Inosine showed low affinity towards human and rat adenosine receptor subtypes with Ki values of > 300 µM; only at the human and rat A1 receptor slightly higher affinities with Ki values of around 100 µM were observed. Affinity of inosine at the rat A3 receptor was higher (Ki of 1.37 µM), while it showed no interaction with the human orthologue. Notably, the effects of inosine on synaptic transmission and plasticity were abrogated by adenosine deaminase and by inhibiting equilibrative nucleoside transporters (ENT) with dipyridamole and NBTI. This shows that the impact of inosine on hippocampal synaptic transmission and plasticity is not due to a direct activation of adenosine receptors but is instead due to an indirect modification of the tonic activation of these adenosine receptors through an ENT-mediated modification of the extracellular levels of adenosine.
Collapse
Affiliation(s)
- Pedro Valada
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Sonja Hinz
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Christin Vielmuth
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| |
Collapse
|
8
|
Zhang T, Zhao J, Fu J, Chen G, Ma T. Improvement of the sepsis survival rate by adenosine 2a receptor antagonists depends on immune regulatory functions of regulatory T-cells. Front Immunol 2022; 13:996446. [PMID: 36148230 PMCID: PMC9485829 DOI: 10.3389/fimmu.2022.996446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine shows a significant immunosuppressive effect in sepsis via binding to the adenosine 2a receptor (A2aR). Both genetic deletion and pharmacological inhibition of the A2aR may improve survival in sepsis. However, available research on this protective mechanism is quite limited. We used an A2aR antagonist (ZM241385) to treat a cecal ligation and puncture model of normal mice or regulatory T-cell (Treg)-depletion mice and found that the protective effect of ZM241385 is dependent on Tregs. Mechanically, A2aR inactivation was associated with decreased frequencies and reduced function of Foxp3+ Tregs, as evidenced by Foxp3 and CTLA-4 expression and classical effector T-cell proliferative assays, suggesting Treg modulation is a potential protective mechanism against sepsis. Simultaneously, the function and quantity of abdominal neutrophils were improved with ZM241385 treatment. To see if a link exists between them, Tregs and neutrophils were co-cultured, and it was found that ZM241385 blocked the inhibitory effect of Tregs on neutrophils. According to our research, Tregs play a key role in how A2aR antagonists improve sepsis prognosis and bacterial clearance.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhao
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingnan Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guibing Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
9
|
Zhang ZD, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Yang YJ, Li JY. Uptake and Transport of Naringenin and Its Antioxidant Effects in Human Intestinal Epithelial Caco-2 Cells. Front Nutr 2022; 9:894117. [PMID: 35685871 PMCID: PMC9173001 DOI: 10.3389/fnut.2022.894117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Naringenin, a flavanone, has been reported for a wide range of pharmacological activities. However, there are few reports on the absorption, transport and antioxidant effects of naringenin. The study was to explore the uptake, transport and antioxidant effects of naringenin in vitro. Cell transmembrane resistance, lucifer yellow transmission rate, and alkaline phosphatase activity were used to evaluate the successful construction of cell model. The results showed that the absorption and transport of naringenin by Caco-2 cells were time- and concentration-dependent. Different temperatures (37 and 4°C) had a significant effect on the uptake and transport of naringenin. Verapamil, potent inhibitor of P-glycoprotein, significantly inhibit naringenin transport in Caco-2 cells. The results revealed that naringenin was a moderately absorbed biological macromolecule and can penetrate Caco-2 cells, mainly mediated by the active transport pathway involved in P-glycoprotein. At the same time, naringenin pretreatment could significantly increase the viability of H2O2-induced Caco-2 cells. Twenty four differential metabolites were identified based on cellular metabolite analysis, mainly including alanine, aspartate and glutamate metabolism, histidine metabolism, taurine and hypotaurine metabolism, pyruvate metabolism, purine metabolism, arginine biosynthesis, citrate cycle, riboflavin metabolism, and D-glutamine and D-glutamate metabolism. We concluded that the transport of naringenin by Caco-2 cells is mainly involved in active transport mediated by P-glycoprotein and naringenin may play an important role in oxidative stress-induced intestinal diseases.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
10
|
Kotulová J, Hajdúch M, Džubák P. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose? Int J Mol Sci 2021; 22:12569. [PMID: 34830449 PMCID: PMC8617980 DOI: 10.3390/ijms222212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Collapse
Affiliation(s)
| | | | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.K.); (M.H.)
| |
Collapse
|
11
|
Teixeira FC, Soares MSP, Blödorn EB, Domingues WB, Reichert KP, Zago AM, Carvalho FB, Gutierres JM, Gonçales RA, da Cruz Fernandes M, Campos VF, Chitolina MR, Stefanello FM, Spanevello RM. Investigating the Effect of Inosine on Brain Purinergic Receptors and Neurotrophic and Neuroinflammatory Parameters in an Experimental Model of Alzheimer's Disease. Mol Neurobiol 2021; 59:841-855. [PMID: 34792730 DOI: 10.1007/s12035-021-02627-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology characterized by progressive impairment of memory, associated with neurochemical alterations and limited therapy. The aim of this study was to evaluate the effects of inosine on memory, neuroinflammatory cytokines, neurotrophic factors, expression of purinergic receptors, and morphological changes in the hippocampus and cerebral cortex of the rats with AD induced by streptozotocin (STZ). Male rats were divided into four groups: I, control; II, STZ; III, STZ plus inosine (50 mg/kg); and IV, STZ plus inosine (100 mg/kg). The animals received intracerebroventricular injections of STZ or buffer. Three days after the surgical procedure, animals were treated with inosine (50 mg/kg or 100 mg/kg) for 25 days. Inosine was able to prevent memory deficits and decreased the immunoreactivity of the brain A2A adenosine receptor induced by STZ. Inosine also increased the levels of brain anti-inflammatory cytokines (IL-4 and IL-10) and the expression of brain-derived neurotrophic factor and its receptor. Changes induced by STZ in the molecular layer of the hippocampus were attenuated by treatment with inosine. Inosine also protected against the reduction of immunoreactivity for synaptophysin induced by STZ in CA3 hippocampus region. However, inosine did not prevent the increase in GFAP in animals exposed to STZ. In conclusion, our findings suggest that inosine has therapeutic potential for AD through the modulation of different brain mechanisms involved in neuroprotection.
Collapse
Affiliation(s)
- Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil
| | - Eduardo Bierhaus Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriana Maria Zago
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jessie Martins Gutierres
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Maria Rosa Chitolina
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Programa de Pós - Graduação Em Bioquímica E Bioprospecção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
12
|
Lovászi M, Németh ZH, Gause WC, Gummadova J, Pacher P, Haskó G. Inosine monophosphate and inosine differentially regulate endotoxemia and bacterial sepsis. FASEB J 2021; 35:e21935. [PMID: 34591327 PMCID: PMC9812230 DOI: 10.1096/fj.202100862r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
Inosine monophosphate (IMP) is the intracellular precursor for both adenosine monophosphate and guanosine monophosphate and thus plays a central role in intracellular purine metabolism. IMP can also serve as an extracellular signaling molecule, and can regulate diverse processes such as taste sensation, neutrophil function, and ischemia-reperfusion injury. How IMP regulates inflammation induced by bacterial products or bacteria is unknown. In this study, we demonstrate that IMP suppressed tumor necrosis factor (TNF)-α production and augmented IL-10 production in endotoxemic mice. IMP exerted its effects through metabolism to inosine, as IMP only suppressed TNF-α following its CD73-mediated degradation to inosine in lipopolysaccharide-activated macrophages. Studies with gene targeted mice and pharmacological antagonism indicated that A2A , A2B, and A3 adenosine receptors are not required for the inosine suppression of TNF-α production. The inosine suppression of TNF-α production did not require its metabolism to hypoxanthine through purine nucleoside phosphorylase or its uptake into cells through concentrative nucleoside transporters indicating a role for alternative metabolic/uptake pathways. Inosine augmented IL-β production by macrophages in which inflammasome was activated by lipopolysaccharide and ATP. In contrast to its effects in endotoxemia, IMP failed to affect the inflammatory response to abdominal sepsis and pneumonia. We conclude that extracellular IMP and inosine differentially regulate the inflammatory response.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Zoltán H Németh
- Department of Anesthesiology, Columbia University, New York, NY, USA,Department of Surgery, Morristown Medical Center, Morristown, NJ, USA
| | - William C. Gause
- Center for Immunity and Inflammation and Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - Jennet Gummadova
- Daresbury Proteins Ltd, Sci-Tech Daresbury, Warrington, United Kingdom
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-Dos-Santos F, Santos ARS. Inosine as a Tool to Understand and Treat Central Nervous System Disorders: A Neglected Actor? Front Neurosci 2021; 15:703783. [PMID: 34504414 PMCID: PMC8421806 DOI: 10.3389/fnins.2021.703783] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Francisney Pinto Nascimento
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Fernando Cezar-Dos-Santos
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Adair R S Santos
- Programa de Pós-Graduação em Neurociências, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
14
|
Lazarowski ER, Boucher RC. Purinergic receptors in airway hydration. Biochem Pharmacol 2021; 187:114387. [PMID: 33358825 DOI: 10.1016/j.bcp.2020.114387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States.
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Inosine, an endogenous purine nucleoside, avoids early stages of atherosclerosis development associated to eNOS activation and p38 MAPK/NF-kB inhibition in rats. Eur J Pharmacol 2020; 882:173289. [PMID: 32565337 DOI: 10.1016/j.ejphar.2020.173289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a multifactorial chronic disease, initiated by an endothelial dysfunction. Adenosine and its analogs can change a variety of inflammatory diseases and has shown important effects at different disease models. Inosine is a stable analogous of adenosine, but its effects in inflammatory diseases, like atherosclerosis, have not yet been studied. The aim of this study was to evaluate the pharmacological properties of inosine, administered sub chronically in a hypercholesterolemic model. Male Wistar rats were divided into four groups: control group (C) and control + inosine (C + INO) received standard chow, hypercholesterolemic diet group (HCD) and HCD + inosine (HCD + INO) were fed a hypercholesterolemic diet. At 31st experimentation day, the treatment with inosine was performed for C + INO and HCD + INO groups once daily in the last 15 days. We observed that the hypercholesterolemic diet promoted an increase in lipid levels and inflammatory cytokines production, while inosine treatment strongly decreased these effects. Additionally, HCD group presented a decrease in maximum relaxation acetylcholine induced and an increase in contractile response phenylephrine induced when compared to the control group, as well as it has presented an enhancement in collagen and ADP-induced platelet aggregation. On the other hand, inosine treatment promoted a decrease in contractile response to phenylephrine, evoked an improvement in endothelium-dependent vasorelaxant response and presented antiplatelet properties. Moreover, inosine activated eNOS and reduced p38 MAPK/NF-κB pathway in aortic tissues. Taken together, the present results indicate inosine as a potential drug for the treatment of cardiovascular disorders such as atherosclerosis.
Collapse
|
16
|
Opposing Effects of Adenosine and Inosine in Human Subcutaneous Fibroblasts May Be Regulated by Third Party ADA Cell Providers. Cells 2020; 9:cells9030651. [PMID: 32156055 PMCID: PMC7140481 DOI: 10.3390/cells9030651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Human subcutaneous fibroblasts (HSCF) challenged with inflammatory mediators release huge amounts of ATP, which rapidly generates adenosine. Given the nucleoside’s putative relevance in wound healing, dermal fibrosis, and myofascial pain, we investigated the role of its precursor, AMP, and of its metabolite, inosine, in HSCF cells growth and collagen production. AMP (30 µM) was rapidly (t½ 3 ± 1 min) dephosphorylated into adenosine by CD73/ecto-5′-nucleotidase. Adenosine accumulation (t½ 158 ± 17 min) in the extracellular fluid reflected very low cellular adenosine deaminase (ADA) activity. HSCF stained positively against A2A and A3 receptors but were A1 and A2B negative. AMP and the A2A receptor agonist, CGS21680C, increased collagen production without affecting cells growth. The A2A receptor antagonist, SCH442416, prevented the effects of AMP and CGS21680C. Inosine and the A3 receptor agonist, 2Cl-IB-MECA, decreased HSCF growth and collagen production in a MRS1191-sensitive manner, implicating the A3 receptor in the anti-proliferative action of inosine. Incubation with ADA reproduced the inosine effect. In conclusion, adenosine originated from extracellular ATP hydrolysis favors normal collagen production by HSCF via A2A receptors. Inhibition of unpredicted inosine formation by third party ADA cell providers (e.g., inflammatory cells) may be a novel therapeutic target to prevent inappropriate dermal remodeling via A3 receptors activation.
Collapse
|
17
|
Abd Aziz NAW, Iezhitsa I, Agarwal R, Abdul Kadir RF, Abd Latiff A, Ismail NM. Neuroprotection by trans-resveratrol against collagenase-induced neurological and neurobehavioural deficits in rats involves adenosine A1 receptors. Neurol Res 2020; 42:189-208. [PMID: 32013788 DOI: 10.1080/01616412.2020.1716470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Trans-resveratrol has been shown to have neuroprotective effects and could be a promising therapeutic agent in the treatment of intracerebral haemorrhage (ICH). This study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in trans-resveratrol-induced neuroprotection in rats with collagenase-induced ICH.Methods: Sixty male Sprague-Dawley rats weighing 330-380 g were randomly divided into five groups (n = 12): (i) control, (ii) sham-operated rats, (iii) ICH rats pretreated with vehicle (0.1% DMSO saline, i.c.v.), (iv) ICH rats pretreated with trans-resveratrol (0.9 µg, i.c.v.) and (v) ICH rats pretreated with trans-resveratrol (0.9 µg) and the A1R antagonist, DPCPX (2.5 µg, i.c.v.). Thirty minutes after pretreatment, ICH was induced by intrastriatal injection of collagenase (0.04 U). Forty-eight hours after ICH, the rats were assessed using a variety of neurobehavioural tests. Subsequently, rats were sacrificed and brains were subjected to gross morphological examination of the haematoma area and histological examination of the damaged area.Results: Severe neurobehavioural deficits and haematoma with diffuse oedema were observed after intrastriatal collagenase injection. Pretreatment with trans-resveratrol partially restored general locomotor activity, muscle strength and coordination, which was accompanied with reduction of haematoma volume by 73.22% (P < 0.05) and damaged area by 60.77% (P < 0.05) in comparison to the vehicle-pretreated ICH group. The trans-resveratrol-induced improvement in neurobehavioural outcomes and morphological features of brain tissues was inhibited by DPCPX pretreatment.Conclusion: This study demonstrates that the A1R activation is possibly the mechanism underlying the trans-resveratrol-induced neurological and neurobehavioural protection in rats with ICH.
Collapse
Affiliation(s)
- Noor Azliza Wani Abd Aziz
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Centre of PreClinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Igor Iezhitsa
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Research Centre for Innovative Medicines, Volgograd State Medical University, Volgograd, Russia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | | | - Azian Abd Latiff
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Wang Y, Yang G, You L, Yang J, Feng M, Qiu J, Zhao F, Liu Y, Cao Z, Zheng L, Zhang T, Zhao Y. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol Cancer 2019; 18:173. [PMID: 31785619 PMCID: PMC6885316 DOI: 10.1186/s12943-019-1103-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. Recent studies indicated that development of pancreatic cancer may be intimately connected with the microbiome. In this review, we discuss the mechanisms through which microbiomes affect the development of pancreatic cancer, including inflammation and immunomodulation. Potential therapeutic and diagnostic applications of microbiomes are also discussed. For example, microbiomes may serve as diagnostic markers for pancreatic cancer, and may also play an important role in determining the efficacies of treatments such as chemo- and immunotherapies. Future studies will provide additional insights into the various roles of microbiomes in pancreatic cancer.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| |
Collapse
|
19
|
Soares Dos Santos Cardoso F, Cardoso R, Dos Santos Ramalho B, Bastos Taboada T, Dos Santos Nogueira AC, Blanco Martinez AM, Martins de Almeida F. Inosine Accelerates the Regeneration and Anticipates the Functional Recovery after Sciatic Nerve Crush Injury in Mice. Neuroscience 2019; 423:206-215. [PMID: 31682823 DOI: 10.1016/j.neuroscience.2019.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
Trauma to the peripheral nervous system (PNS) results in loss of motor and sensory functions. After an injury, a complex series of events begins, allowing axonal regeneration and target reinnervation. However, this regenerative potential is limited by several factors such as age, distance from the lesion site to the target and severity of lesion. Many studies look for ways to overcome these limitations. Inosine, a purine nucleoside derived from adenosine, emerges as a potential treatment, due to its capacity to regulate axonal growth, neuroprotection and immunomodulation, contributing to motor recovery. However, no studies demonstrated their effects on PNS. C57/Black6 mice were submitted to sciatic nerve crush and received intraperitoneal injections of saline or inosine (70 mg/kg), one hour after injury and daily for one week. To evaluate axonal regeneration and functional recovery, electroneuromyography, Sciatic Function Index (SFI), rotarod and pinprick tests were performed. Our results showed that the inosine group presented a higher number of myelinated fibers and a large amount of fibers within the ideal G-ratio. In addition, the results of electroneuromyography showed greater amplitude of the compound muscle action potentials in the first and second weeks, suggesting anticipation of regeneration in the inosine group. We also observed in the inosine group, motor and sensory neurons survival, reduction in the number of macrophages and myelin ovoids in the sciatic nerves, and an early recovery of motor and sensory functions. Thus, we conclude that the use of inosine accelerates axonal regeneration promoting an early recovery of motor and sensory functions.
Collapse
Affiliation(s)
- Fellipe Soares Dos Santos Cardoso
- Laboratório de Neurodegeneração e Reparo, Departamento Anatomia Patológica, Hospital Universitário Clementino Fraga Filho HUCFF/UFRJ, Brazil
| | - Ricardo Cardoso
- Laboratório de Neurodegeneração e Reparo, Departamento Anatomia Patológica, Hospital Universitário Clementino Fraga Filho HUCFF/UFRJ, Brazil
| | - Bruna Dos Santos Ramalho
- Laboratório de Neurodegeneração e Reparo, Departamento Anatomia Patológica, Hospital Universitário Clementino Fraga Filho HUCFF/UFRJ, Brazil
| | - Tiago Bastos Taboada
- Laboratório de Neurodegeneração e Reparo, Departamento Anatomia Patológica, Hospital Universitário Clementino Fraga Filho HUCFF/UFRJ, Brazil
| | - Ana Carolina Dos Santos Nogueira
- Laboratório de Neurodegeneração e Reparo, Departamento Anatomia Patológica, Hospital Universitário Clementino Fraga Filho HUCFF/UFRJ, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento Anatomia Patológica, Hospital Universitário Clementino Fraga Filho HUCFF/UFRJ, Brazil
| | - Fernanda Martins de Almeida
- Laboratório de Neurodegeneração e Reparo, Departamento Anatomia Patológica, Hospital Universitário Clementino Fraga Filho HUCFF/UFRJ, Brazil; Instituto de Ciências Biomédicas, ICB/UFRJ, Brazil.
| |
Collapse
|
20
|
Fishman P, Cohen S, Itzhak I, Amer J, Salhab A, Barer F, Safadi R. The A3 adenosine receptor agonist, namodenoson, ameliorates non‑alcoholic steatohepatitis in mice. Int J Mol Med 2019; 44:2256-2264. [PMID: 31638172 PMCID: PMC6844636 DOI: 10.3892/ijmm.2019.4364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023] Open
Abstract
The Wnt/β‑catenin pathway confers a chain of molecular events in livers affected by non‑alcoholic steatohepatitis (NASH). Namodenoson, a selective agonist of the A3 adenosine receptor (A3AR), which is highly expressed in pathological liver cells, induces a robust anti‑inflammatory effect in the liver, mediated via the de‑regulation of the Wnt/β‑catenin pathway. Namodenoson also acts as a liver protective agent by inhibiting ischemia/reperfusion injury. Based on these unique characteristics, we investigated the anti‑NASH effect of Namodenoson in murine models of steatohepatitis and in the LX2 human hepatic stellate cell line (HSC). In the STAM model, Namodenoson significantly decreased the non‑alcoholic fatty liver disease (NAFLD) activity score, NAS, demonstrating anti‑inflammatory and anti‑steatotic effects. In the carbon tetrachloride (CCl4) model, Namodenoson reversed alanine aminotransferase (ALT) to normal values and significantly improved liver inflammation and fibrosis, as well as the adiponectin and leptin levels. Namodenoson de‑regulated the Wnt/β‑catenin pathway in the liver extracts of the CCl4 model mice and in the LX2 HSCs, manifested by a decrease in the expression of phosphoinositide 3‑kinase (PI3K), nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB), β‑catenin, lymphoid enhancer‑binding factor 1 (Lef‑1) and cyclin D1, and an increase in the expression level of glycogen synthase kinase 3β (GSK‑3β). The fibrosis marker, α‑smooth muscle actin (α‑SMA) was also de‑regulated, supporting the anti‑fibrotic effect of Namodenoson. On the whole, the findings of this study demonstrate that Namodenoson exerts an anti‑NASH effect mediated via the de‑regulation of the PI3K/NF‑κB/Wnt/β‑catenin signaling pathway. Thus, targeting A3AR may prove to be a novel direction in the pharmacotherapy of NAFLD/NASH.
Collapse
Affiliation(s)
- Pnina Fishman
- Can‑Fite BioPharma Ltd., Petach‑Tikva 4951778, Israel
| | - Shira Cohen
- Can‑Fite BioPharma Ltd., Petach‑Tikva 4951778, Israel
| | - Inbal Itzhak
- Can‑Fite BioPharma Ltd., Petach‑Tikva 4951778, Israel
| | - Johnny Amer
- Liver Unit, Hadassah University Hospital, Jerusalem 54915, Israel
| | - Ahmad Salhab
- Liver Unit, Hadassah University Hospital, Jerusalem 54915, Israel
| | - Faina Barer
- Can‑Fite BioPharma Ltd., Petach‑Tikva 4951778, Israel
| | - Rifaat Safadi
- Liver Unit, Hadassah University Hospital, Jerusalem 54915, Israel
| |
Collapse
|
21
|
Xiao C, Liu N, Jacobson KA, Gavrilova O, Reitman ML. Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biol 2019; 17:e3000161. [PMID: 30822301 PMCID: PMC6415873 DOI: 10.1371/journal.pbio.3000161] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022] Open
Abstract
Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1−/−;Adora2a−/−;Adora2b−/−;Adora3−/− (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature. The QKO mice demonstrate that ARs are not required for growth, metabolism, breeding, and body temperature regulation (diurnal variation, response to stress, and torpor). However, the mice showed decreased survival starting at about 15 weeks of age. While adenosine agonists cause profound hypothermia via each AR, adenosine did not cause hypothermia (or bradycardia or hypotension) in QKO mice, indicating that AR-independent signals do not contribute to adenosine-induced hypothermia. The hypothermia elicited by adenosine kinase inhibition (with A134974), inosine, or uridine also required ARs, as each was abolished in the QKO mice. The proposed mechanism for uridine-induced hypothermia is inhibition of adenosine transport by uridine, increasing local extracellular adenosine levels. In contrast, adenosine 5′-monophosphate (AMP)–induced hypothermia was attenuated in QKO mice, demonstrating roles for both AR-dependent and AR-independent mechanisms in this process. The physiology of the QKO mice appears to be the sum of the individual knockout mice, without clear evidence for synergy, indicating that the actions of the four ARs are generally complementary. The phenotype of the QKO mice suggests that, while extracellular adenosine is a signal of stress, damage, and/or danger, it is less important for baseline regulation of body temperature. A study of mice lacking all four adenosine receptors shows that while they mediate effects of uridine, inosine and adenosine, these receptors are dispensable for growth, metabolism, breeding, and body temperature regulation. This suggests that extracellular adenosine is a damage or danger signal, rather than a major regulator of baseline physiology. Elevated extracellular adenosine generally indicates metabolic stress or cell damage and regulates many aspects of physiology. We studied “QKO” mice lacking all four adenosine receptors. Young QKO mice do not appear obviously ill, but do show decreased survival later in life. QKO mice demonstrate that adenosine receptors are not required for growth, metabolism, breeding, and body temperature regulation. QKO mice are missing the pharmacologic effects of adenosine on body temperature, heart rate, and blood pressure. Therefore, all of these effects are mediated by the four adenosine receptors. We also determined that the hypothermic effects of a pharmacologic adenosine kinase inhibitor (A134974), uridine, or inosine each requires adenosine receptors. The uridine-induced hypothermia is likely due to its inhibition of adenosine uptake into cells. QKO mouse physiology appears to be the sum of the individual knockout mice, without evidence for synergy, indicating that the actions of the four adenosine receptors are generally complementary.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
23
|
ATP as a Pathophysiologic Mediator of Bacteria-Host Crosstalk in the Gastrointestinal Tract. Int J Mol Sci 2018; 19:ijms19082371. [PMID: 30103545 PMCID: PMC6121306 DOI: 10.3390/ijms19082371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, such as adenosine triphosphate (ATP), are released from host cells including nerve termini, immune cells, injured or dead cells, and the commensal bacteria that reside in the gut lumen. Extracellular ATP interacts with the host through purinergic receptors, and promotes intercellular and bacteria-host communication to maintain the tissue homeostasis. However, the release of massive concentrations of ATP into extracellular compartments initiates acute and chronic inflammatory responses through the activation of immunocompetent cells (e.g., T cells, macrophages, and mast cells). In this review, we focus on the functions of ATP as a pathophysiologic mediator that is required for the induction and resolution of inflammation and inter-species communication.
Collapse
|
24
|
Panebianco C, Adamberg K, Jaagura M, Copetti M, Fontana A, Adamberg S, Kolk K, Vilu R, Andriulli A, Pazienza V. Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemother Pharmacol 2018; 81:773-782. [DOI: 10.1007/s00280-018-3549-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
|
25
|
He B, Hoang TK, Tran DQ, Rhoads JM, Liu Y. Adenosine A 2A Receptor Deletion Blocks the Beneficial Effects of Lactobacillus reuteri in Regulatory T-Deficient Scurfy Mice. Front Immunol 2017; 8:1680. [PMID: 29270168 PMCID: PMC5723640 DOI: 10.3389/fimmu.2017.01680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
The lack of a functional Foxp3 transcription factor and regulatory T (Treg) cells causes lethal, CD4+ T cell-driven autoimmune diseases in scurfy (SF) mice and humans. Recent studies have shown that adenosine A2A receptor activation limits inflammation and tissue damage, thereby playing an anti-inflammatory role. However, the role of the adenosine A2A receptor in the development of disease in SF mice remains unclear. Using a genetic approach, we found that adenosine A2A receptor deletion in SF mice (SF⋅A2A-/-) does not affect early life events, the development of a lymphoproliferative disorder, or hyper-production of pro-inflammatory cytokines seen in the Treg-deficiency state. As shown previously, Lactobacillus reuteri DSM 17938 treatment prolonged survival and reduced multiorgan inflammation in SF mice. In marked contrast, A2A receptor deletion completely blocked these beneficial effects of L. reuteri in SF mice. Altogether, these results suggest that although absence of the adenosine A2A receptor does not affect the development of disease in SF mice, it plays a critical role in the immunomodulation by L. reuteri in Treg-deficiency disease. The adenosine A2A receptor and its activation may have a role in treating other Treg dysfunction-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Baokun He
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas K Hoang
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dat Q Tran
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jon Marc Rhoads
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
26
|
Welihinda AA, Kaur M, Raveendran KS, Amento EP. Enhancement of inosine-mediated A 2AR signaling through positive allosteric modulation. Cell Signal 2017; 42:227-235. [PMID: 29126977 DOI: 10.1016/j.cellsig.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Inosine is an endogenous nucleoside that is produced by metabolic deamination of adenosine. Inosine is metabolically more stable (half-life 15h) than adenosine (half-life <10s). Inosine exerts anti-inflammatory and immunomodulatory effects similar to those observed with adenosine. These effects are mediated in part through the adenosine A2A receptor (A2AR). Relative to adenosine inosine exhibits a lower affinity towards the A2AR. Therefore, it is generally believed that inosine is incapable of activating the A2AR through direct engagement, but indirectly activates the A2AR upon metabolic conversion to higher affinity adenosine. A handful of studies, however, have provided evidence for direct inosine engagement at the A2AR leading to activation of downstream signaling events and inhibition of cytokine production. Here, we demonstrate that under conditions devoid of adenosine, inosine as well as an analog of inosine 6-S-[(4-Nitrophenyl)methyl]-6-thioinosine selectively and dose-dependently activated A2AR-mediated cAMP production and ERK1/2 phosphorylation in CHO cells stably expressing the human A2AR. Inosine also inhibited LPS-stimulated TNF-α, CCL3 and CCL4 production by splenic monocytes in an A2AR-dependent manner. In addition, we demonstrate that a positive allosteric modulator (PAM) of the A2AR enhanced inosine-mediated cAMP production, ERK1/2 phosphorylation and inhibition of pro-inflammatory cytokine and chemokine production. The cumulative effects of allosteric enhancement of adenosine-mediated and inosine-mediated A2AR activation may be the basis for the sustained anti-inflammatory and immunomodulatory effects observed in vivo and thereby provide insights into potential therapeutic interventions for inflammation- and immune-mediated diseases.
Collapse
Affiliation(s)
- Ajith A Welihinda
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085.
| | - Manmeet Kaur
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085
| | - Kaviya S Raveendran
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085
| | - Edward P Amento
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085
| |
Collapse
|
27
|
Deganutti G, Welihinda A, Moro S. Comparison of the Human A 2A Adenosine Receptor Recognition by Adenosine and Inosine: New Insight from Supervised Molecular Dynamics Simulations. ChemMedChem 2017; 12:1319-1326. [PMID: 28517175 DOI: 10.1002/cmdc.201700200] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/04/2017] [Indexed: 01/02/2023]
Abstract
Adenosine deaminase converts adenosine into inosine. In contrast to adenosine, relatively little attention has been paid to the physiological roles of inosine. Nevertheless, recent studies have demonstrated that inosine has neuroprotective, cardioprotective, immunomodulatory, and antidepressive effects. Inosine was recently shown to be a less potent agonist than adenosine at the A2A adenosine receptor. To better depict the differences in the mechanisms of receptor recognition between adenosine and inosine, we carried out supervised molecular dynamics (SuMD) simulations, and the results are analyzed herein.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Ajith Welihinda
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA, 94085, USA
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
28
|
Abstract
Oxidative stress has been implicated as a core contributor to the initiation and progression of multiple neurological diseases. Genetic and environmental factors can produce oxidative stress through mitochondrial dysfunction leading to the degeneration of dopaminergic and other neurons underlying Parkinson disease (PD). Although clinical trials of antioxidants have thus far failed to demonstrate slowed progression of PD, oxidative stress remains a compelling target. Rather than prompting abandonment of antioxidant strategies, these failures have raised the bar for justifying drug and dosing selections and for improving study designs to test for disease modification by antioxidants. Urate, the main antioxidant found in plasma as well as the end product of purine metabolism in humans, has emerged as a promising potential neuroprotectant with advantages that distinguish it from previously tested antioxidant agents. Uniquely, higher urate levels in plasma or cerebrospinal fluid (CSF) have been linked to both a lower risk of developing PD and to a slower rate of its subsequent progression in numerous large prospective epidemiological and clinical cohorts. Laboratory evidence that urate confers neuroprotection in cellular and animal models of PD, possibly via the Nrf2 antioxidant response pathway, further strengthened its candidacy for rapid clinical translation. An early phase trial of the urate precursor inosine demonstrated its capacity to safely produce well tolerated, long-term elevation of plasma and CSF urate in early PD, supporting a phase 3 trial now underway to determine whether oral inosine dosed to elevate urate to concentrations predictive of favorable prognosis in PD slows clinical decline in people with recently diagnosed, dopamine transporter-deficient PD.
Collapse
Affiliation(s)
- Grace F Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Alberto Ascherio
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
29
|
Villalobos-García D, Hernández-Muñoz R. Catalase increases ethanol oxidation through the purine catabolism in rat liver. Biochem Pharmacol 2017; 137:107-112. [PMID: 28527616 DOI: 10.1016/j.bcp.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
Hepatic ethanol oxidation increases according to its concentration and is raised to near-saturation levels of alcohol dehydrogenase (ADH); therefore, re-oxidation of NADH becomes rate limiting in ethanol metabolism by the liver. Adenosine is able to increase liver ethanol oxidation in both in vivo and in vitro conditions; the enhancement being related with the capacity of the nucleoside to accelerate the transport of cytoplasmic reducing equivalents to mitochondria, by modifying the subcellular distribution of the malate-aspartate shuttle components. In the present study, we explored the putative effects of adenosine and other purines on liver ethanol oxidation mediated by non-ADH pathways. Using the model of high precision-cut rat liver slices, a pronounced increase of ethanol oxidation was found in liver slices incubated with various intermediates of the purine degradation pathway, from adenosine to uric acid (175-230%, over controls). Of these, urate had the strongest (230%), whereas xanthine had the less pronounced effect (178% over controls). The enhancement was not abolished by 4-methylpyrazole, indicating that the effect was independent of alcohol dehydrogenase. Conversely, aminotriazole, a catalase inhibitor, completely abolished the effect, pointing out that this enhanced ethanol oxidation is mediated by catalase activity. It is concluded that the H2O2 needed for catalase activity is derived from the oxidation of (hypo)xanthine by xanthine oxidase and the oxidation of urate by uricase. The present and previous data led us to propose that, depending on the metabolic conditions, adenosine might be able to stimulate the metabolism of ethanol through different pathways.
Collapse
Affiliation(s)
- Daniel Villalobos-García
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; Programa de Posgrado en Ciencias Químicas, UNAM, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
30
|
He B, Hoang TK, Wang T, Ferris M, Taylor CM, Tian X, Luo M, Tran DQ, Zhou J, Tatevian N, Luo F, Molina JG, Blackburn MR, Gomez TH, Roos S, Rhoads JM, Liu Y. Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med 2016; 214:107-123. [PMID: 27994068 PMCID: PMC5206500 DOI: 10.1084/jem.20160961] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
He et al. show that T reg deficiency markedly induces autoimmunity and shifts gut microbiota. Remodeling microbiota by Lactobacillus reuteri was found to inhibit autoimmunity via the metabolite inosine, which interacts with the adenosine A2A receptor. This finding establishes a link between the gut microbiota, A2A receptors, and autoimmunity induced by T reg cell deficiency. Regulatory T (T reg) cell deficiency causes lethal, CD4+ T cell–driven autoimmune diseases. Stem cell transplantation is used to treat these diseases, but this procedure is limited by the availability of a suitable donor. The intestinal microbiota drives host immune homeostasis by regulating the differentiation and expansion of T reg, Th1, and Th2 cells. It is currently unclear if T reg cell deficiency–mediated autoimmune disorders can be treated by targeting the enteric microbiota. Here, we demonstrate that Foxp3+ T reg cell deficiency results in gut microbial dysbiosis and autoimmunity over the lifespan of scurfy (SF) mouse. Remodeling microbiota with Lactobacillus reuteri prolonged survival and reduced multiorgan inflammation in SF mice. L. reuteri changed the metabolomic profile disrupted by T reg cell deficiency, and a major effect was to restore levels of the purine metabolite inosine. Feeding inosine itself prolonged life and inhibited multiorgan inflammation by reducing Th1/Th2 cells and their associated cytokines. Mechanistically, the inhibition of inosine on the differentiation of Th1 and Th2 cells in vitro depended on adenosine A2A receptors, which were also required for the efficacy of inosine and of L. reuteri in vivo. These results reveal that the microbiota–inosine–A2A receptor axis might represent a potential avenue for combatting autoimmune diseases mediated by T reg cell dysfunction.
Collapse
Affiliation(s)
- Baokun He
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030.,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Thomas K Hoang
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030.,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Ting Wang
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030.,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Michael Ferris
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70118
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70118
| | - Xiangjun Tian
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70118
| | - Dat Q Tran
- Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Jain Zhou
- Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Nina Tatevian
- Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Thomas H Gomez
- Center for Laboratory Animal Medicine and Care, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.,BioGaia AB, 103 64 Stockholm, Sweden
| | - J Marc Rhoads
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030 .,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Yuying Liu
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030 .,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| |
Collapse
|
31
|
Signaling pathways underlying the antidepressant-like effect of inosine in mice. Purinergic Signal 2016; 13:203-214. [PMID: 27966087 DOI: 10.1007/s11302-016-9551-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A1 and A2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca2+/calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine in a preclinical test of depression.
Collapse
|
32
|
Sepúlveda C, Palomo I, Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci 2016; 166:92-99. [DOI: 10.1016/j.lfs.2016.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023]
|
33
|
Jackson EK, Boison D, Schwarzschild MA, Kochanek PM. Purines: forgotten mediators in traumatic brain injury. J Neurochem 2016; 137:142-53. [PMID: 26809224 DOI: 10.1111/jnc.13551] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022]
Abstract
Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, USA
| | - Michael A Schwarzschild
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Welihinda AA, Kaur M, Greene K, Zhai Y, Amento EP. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal 2016; 28:552-60. [PMID: 26903141 DOI: 10.1016/j.cellsig.2016.02.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Abstract
Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo.
Collapse
Affiliation(s)
- Ajith A Welihinda
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States.
| | - Manmeet Kaur
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| | - Kelly Greene
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| | - Yongjiao Zhai
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| | - Edward P Amento
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| |
Collapse
|
35
|
de Oliveira ED, Schallenberger C, Böhmer AE, Hansel G, Fagundes AC, Milman M, Silva MDP, Oses JP, Porciúncula LO, Portela LV, Elisabetsky E, Souza DO, Schmidt AP. Mechanisms involved in the antinociception induced by spinal administration of inosine or guanine in mice. Eur J Pharmacol 2015; 772:71-82. [PMID: 26712379 DOI: 10.1016/j.ejphar.2015.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/27/2022]
Abstract
It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors.
Collapse
Affiliation(s)
- Enderson D de Oliveira
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristhine Schallenberger
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Elisa Böhmer
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Gisele Hansel
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Aécio C Fagundes
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Michael Milman
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcos D P Silva
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jean P Oses
- Programa de Pós-graduação em Saúde e Comportamento, Centro de Ciências da Vida e da Saúde e Hospital Universitário São Francisco de Paula, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Lisiane O Porciúncula
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luís V Portela
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Department of Pharmacology, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - André P Schmidt
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Anaesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Division of Anaesthesia, Department of Surgery, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
Chung YG, Seth A, Doyle C, Franck D, Kim D, Cristofaro V, Benowitz LI, Tu DD, Estrada CR, Mauney JR, Sullivan MP, Adam RM. Inosine Improves Neurogenic Detrusor Overactivity following Spinal Cord Injury. PLoS One 2015; 10:e0141492. [PMID: 26529505 PMCID: PMC4631513 DOI: 10.1371/journal.pone.0141492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022] Open
Abstract
Neurogenic detrusor overactivity and the associated loss of bladder control are among the most challenging complications of spinal cord injury (SCI). Anticholinergic agents are the mainstay for medical treatment of detrusor overactivity. However, their use is limited by significant side effects such that a search for new treatments is warranted. Inosine is a naturally occurring purine nucleoside with neuroprotective, neurotrophic and antioxidant effects that is known to improve motor function in preclinical models of SCI. However, its effect on lower urinary tract function has not been determined. The objectives of this study were to determine the effect of systemic administration of inosine on voiding function following SCI and to delineate potential mechanisms of action. Sprague−Dawley rats underwent complete spinal cord transection, or cord compression by application of an aneurysm clip at T8 for 30 sec. Inosine (225 mg/kg) or vehicle was administered daily via intraperitoneal injection either immediately after injury or after a delay of 8 wk. At the end of treatment, voiding behavior was assessed by cystometry. Levels of synaptophysin (SYP), neurofilament 200 (NF200) and TRPV1 in bladder tissues were measured by immunofluorescence imaging. Inosine administration decreased overactivity in both SCI models, with a significant decrease in the frequency of spontaneous non−voiding contractions during filling, compared to vehicle−treated SCI rats (p<0.05), including under conditions of delayed treatment. Immunofluorescence staining demonstrated increased levels of the pan-neuronal marker SYP and the Adelta fiber marker NF200, but decreased staining for the C-fiber marker, TRPV1 in bladder tissues from inosine-treated rats compared to those from vehicle-treated animals, including after delayed treatment. These findings demonstrate that inosine prevents the development of detrusor overactivity and attenuates existing overactivity following SCI, and may achieve its effects through modulation of sensory neurotransmission.
Collapse
Affiliation(s)
- Yeun Goo Chung
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abhishek Seth
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Claire Doyle
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Debra Franck
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Daniel Kim
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Urology, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Larry I. Benowitz
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Duong D. Tu
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos R. Estrada
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua R. Mauney
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maryrose P. Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Urology, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MPS); (RMA)
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MPS); (RMA)
| |
Collapse
|
37
|
Jz H, X W, J F, Bj R, Km W, Sc T, Jg P, Ra C, M L, M H. Metabolite Signatures in Hydrophilic Extracts of Mouse Lungs Exposed to Cigarette Smoke Revealed by 1H NMR Metabolomics Investigation. ACTA ACUST UNITED AC 2015; 5. [PMID: 26609465 PMCID: PMC4655886 DOI: 10.4172/2153-0769.1000143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1H-NMR metabolomics was used to investigate the changes of metabolites in the lungs of mice with and without being exposed to a controlled amount of cigarette smoke. It was found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine were significantly changed in the lungs of mice exposed to cigarette smoke when compared with controls regardless the mice were obese or of regular weight. The decreased ATP, ADP, AMP and elevated inosine suggested that the deaminases in charge of adenosine derivatives to inosine derivatives conversion would be significantly changed in the lungs of mice exposed to cigarette smoke. Indeed, transcriptional study confirmed that the concentrations of adenosine monophosphate deaminase 2 and adenosine deaminase 2 were significantly changed in the lungs of mice exposed to cigarette smoke. We also found that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) was significantly increased in the lungs of obese mice compared with those of the regular weight mice. The GPC/PC ratio was further elevated in the lungs of obese group exposed to cigarette smoke.
Collapse
Affiliation(s)
- Hu Jz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wang X
- Pacific Northwest National Laboratory, Richland, WA, USA ; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China
| | - Feng J
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robertson Bj
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Waters Km
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tilton Sc
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pounds Jg
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Corley Ra
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Liu M
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China
| | - Hu M
- Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
38
|
The infarct-sparing effect of IB-MECA against myocardial ischemia/reperfusion injury in mice is mediated by sequential activation of adenosine A3 and A 2A receptors. Basic Res Cardiol 2015; 110:16. [PMID: 25711314 DOI: 10.1007/s00395-015-0473-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/26/2015] [Accepted: 02/18/2015] [Indexed: 01/30/2023]
Abstract
Conflicting results exist regarding the role of A3 adenosine receptors (A3ARs) in mediating cardioprotection during reperfusion following myocardial infarction. We hypothesized that the effects of the A3AR agonist IB-MECA to produce cardioprotection might involve activation of other adenosine receptor subtypes. C57Bl/6 (B6), A3AR KO, A2AAR KO, and A2AAR KO/WT bone marrow chimeric mice were assigned to 12 groups undergoing either hemodynamic studies or 45 min of LAD occlusion and 60 min of reperfusion. IB-MECA (100 μg/kg) or vehicle was administered by iv bolus 5 min before reperfusion. Radioligand binding assays showed that IB-MECA has high affinity for the mouse A3AR (K i = 0.17 ± 0.05 nM), but also can bind with lower affinity to the A1AR (9.0 ± 2.4 nM) or the A2AAR (56.5 ± 10.2 nM). IB-MECA caused bi-phasic hemodynamic changes, which were completely absent in A3AR KO mice and were modified by A2AAR blockade or deletion. IB-MECA stimulated histamine release, increased heart rate, and significantly reduced IF size in B6 mice from 61.5 ± 1.4 to 48.6 ± 2.4% of risk region (RR; 21% reduction, p < 0.05) but not in A3AR KO mice. Compared to B6, A3AR KO mice had significantly reduced IF size (p < 0.05). In B6/B6 bone marrow chimeras, IB-MECA caused a 47% reduction of IF size (from 47.3 ± 3.9 to 24.7 ± 4.5, p < 0.05). However, no significant cardioprotective effect of IB-MECA was observed in A2AARKO/B6 mice, which lacked A2AARs only on their bone marrow-derived cells. Activation of A3ARs induces a bi-phasic hemodynamic response, which is partially mediated by activation of A2AARs. The cardioprotective effect of IB-MECA is due to the initial activation of A3AR followed by activation of A2AARs in bone marrow-derived cells.
Collapse
|
39
|
Lu Y, Zhang R, Ge Y, Carlstrom M, Wang S, Fu Y, Cheng L, Wei J, Roman RJ, Wang L, Gao X, Liu R. Identification and function of adenosine A3 receptor in afferent arterioles. Am J Physiol Renal Physiol 2015; 308:F1020-5. [PMID: 25608966 DOI: 10.1152/ajprenal.00422.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Adenosine plays an important role in regulation of renal microcirculation. All receptors of adenosine, A1, A2A, A2B, and A3, have been found in the kidney. However, little is known about the location and function of the A3 receptor in the kidney. The present study determined the expression and role of A3 receptors in mediating the afferent arteriole (Af-Art) response and studied the interaction of A3 receptors with angiotensin II (ANG II), A1 and A2 receptors on the Af-Art. We found that the A3 receptor expressed in microdissected isolated Af-Art and the mRNA levels of A3 receptor were 59% of A1. In the isolated microperfused Af-Art, A3 receptor agonist IB-MECA did not have a constrictive effect. Activation of A3 receptor dilated the preconstricted Af-Art by norepinephrine and blunted the vasoconstrictive effect of both adenosine A1 receptor activation and ANG II on the Af-Art, respectively. Selective A2 receptor antagonist (both A2A and A2B) had no effect on A3 receptor agonist-induced vasodilation, indicating that the dilatory effect of A3 receptor activation is not mediated by activation of A2 receptor. We conclude that the A3 receptor is expressed in the Af-Art, and activation of the A3 receptor dilates the Af-Art.
Collapse
Affiliation(s)
- Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi;
| | - Rui Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ying Ge
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Yiling Fu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Liang Cheng
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Richard J Roman
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Xichun Gao
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
40
|
Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 2014; 51:1368-78. [PMID: 25064055 DOI: 10.1007/s12035-014-8815-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Inosine is an endogenous nucleoside that has anti-inflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosine-induced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. Inosine antinociception was evaluated using the formalin test in mice. An A1R-selective antagonist (DPCPX), A1R knockout mice (gene deletion) and mice with A1R reduced expression (antisense oligonucleotides) were used to assess the role of A1Rs in the antinociceptive action of inosine. Binding assays were performed to compare the affinity of inosine and adenosine for A1Rs. Finally, the role of adenosine and inosine breakdown was assessed using deoxycoformycin (DCF) and forodesine (FDS) as enzymatic inhibitors of adenosine deaminase and purine nucleoside phosphorylase, respectively. Inosine induced antinociception in the formalin test when given by systemic, spinal and peripheral routes. Systemically, inosine exhibited a potency similar to adenosine, and its effects were inhibited by DPCPX. Inosine did not induce antinociception in A1R knockout mice or in mice with reduced A1R expression. In binding studies, inosine bound to A1Rs with an affinity similar to adenosine. DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.
Collapse
|
41
|
Oral administration of inosine promotes recovery after experimental spinal cord injury in rat. Neurol Sci 2014; 35:1785-91. [DOI: 10.1007/s10072-014-1840-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
|
42
|
Cipriani S, Bakshi R, Schwarzschild MA. Protection by inosine in a cellular model of Parkinson's disease. Neuroscience 2014; 274:242-9. [PMID: 24880154 DOI: 10.1016/j.neuroscience.2014.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
Inosine (hypoxanthine 9-beta-D-ribofuranoside), a purine nucleoside with multiple intracellular roles, also serves as an extracellular modulatory signal. On neurons, it can produce anti-inflammatory and trophic effects that confer protection against toxic influences in vivo and in vitro. The protective effects of inosine treatment might also be mediated by its metabolite urate. Urate in fact possesses potent antioxidant properties and has been reported to be protective in preclinical Parkinson's disease (PD) studies and to be an inverse risk factor for both the development and progression of PD. In this study we assessed whether inosine might protect rodent MES 23.5 dopaminergic cell line from oxidative stress in a cellular model of PD, and whether its effects could be attributed to urate. MES 23.5 cells cultured alone or in presence of enriched murine astroglial cultures MES 23.5-astrocytes co-cultures were pretreated with inosine (0.1-100 μM) for 24 h before addition of the oxidative stress inducer H₂O₂ (200 μM). Twenty-four hours later, cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or immunocytochemistry in pure and MES 23.5-astrocytes co-cultures, respectively. H₂O₂-toxic effect on dopaminergic cells was reduced when they were cultured with astrocytes, but not when they were cultured alone. Moreover, in MES 23.5-astrocytes co-cultures, indicators of free radical generation and oxidative damage, evaluated by nitrite (NO₂(-)) release and protein carbonyl content, respectively, were attenuated. Conditioned medium experiments indicated that the protective effect of inosine relies on the release of a protective factor from inosine-stimulated astrocytes. Purine levels were measured in the cellular extract and conditioned medium using high-performance liquid chromatography (HPLC) method. Urate concentration was not significantly increased by inosine treatment however there was a significant increase in levels of other purine metabolites, such as adenosine, hypoxanthine and xanthine. In particular, in MES 23.5-astrocytes co-cultures, inosine medium content was reduced by 99% and hypoxanthine increased by 127-fold. Taken together these data raise the possibility that inosine might have a protective effect in PD that is independent of any effects mediated through its metabolite urate.
Collapse
Affiliation(s)
- S Cipriani
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th street, Boston, MA 02129, USA.
| | - R Bakshi
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th street, Boston, MA 02129, USA
| | - M A Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, 114 16th street, Boston, MA 02129, USA
| |
Collapse
|
43
|
Ying X, Ma J, Liang Q, Wang Y, Bai G, Luo G. Identification and analysis of the constituents in an aqueous extract of Tricholoma matsutake by HPLC coupled with diode array detection/electrospray ionization mass spectrometry. J Food Sci 2014; 78:C1173-82. [PMID: 23957403 DOI: 10.1111/1750-3841.12219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/30/2013] [Indexed: 12/01/2022]
Abstract
The main constituents in an aqueous extract of Tricholoma matsutake (Tm) were identified by high-performance liquid chromatography coupled with diode array detection and electrospray ionization time-of-flight mass spectrometry (HPLC-DAD/TOF-MS) and ion trap mass spectrometry (HPLC-DAD/Trap-MSn). The main factors in the extraction process which affect the yields of nutrients were optimized by single-factor experiments and orthogonal experiment design. In total, 12 constituents were identified from the aqueous extract of Tm, including tyrosine, cytidine, uridine, eritadenine, phenylalanine, nicotinamide, inosine, guanosine, tryptophan, adenosine, 5'-deoxy-5'-methylthioadenosine and riboflavin. The optimized extraction conditions were: the ratio of water to sample was 10 : 1 (v/w), Tm was extracted by ultrasonic-assisted extraction for 10 min, followed by water bath heating at 60 °C for 1 h. Among these extraction factors, the heating temperature is significant based on analysis of variance (ANOVA). The yields of nutrients were affected dramatically at high temperature leading to the loss of nutrients, especially for nucleosides and some amino acids.
Collapse
Affiliation(s)
- Xuhui Ying
- College of Pharmacy of Nankai Univ, Tianjin 300071, China; Analysis Centre of Tsinghua Univ, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
44
|
Cinalli AR, Guarracino JF, Fernandez V, Roquel LI, Losavio AS. Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction. Br J Pharmacol 2014; 169:1810-23. [PMID: 23731236 DOI: 10.1111/bph.12262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/19/2013] [Accepted: 05/02/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The role of inosine at the mammalian neuromuscular junction (NMJ) has not been clearly defined. Moreover, inosine was classically considered to be the inactive metabolite of adenosine. Hence, we investigated the effect of inosine on spontaneous and evoked ACh release, the mechanism underlying its modulatory action and the receptor type and signal transduction pathway involved. EXPERIMENTAL APPROACH End-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) were recorded from the mouse phrenic-nerve diaphragm preparations using conventional intracellular electrophysiological techniques. KEY RESULTS Inosine (100 μM) reduced MEPP frequency and the amplitude and quantal content of EPPs; effects inhibited by the selective A3 receptor antagonist MRS-1191. Immunohistochemical assays confirmed the presence of A3 receptors at mammalian NMJ. The voltage-gated calcium channel (VGCC) blocker Cd(2+) , the removal of extracellular Ca(2+) and the L-type and P/Q-type VGCC antagonists, nitrendipine and ω-agatoxin IVA, respectively, all prevented inosine-induced inhibition. In the absence of endogenous adenosine, inosine decreased the hypertonic response. The effects of inosine on ACh release were prevented by the Gi/o protein inhibitor N-ethylmaleimide, PKC antagonist chelerytrine and calmodulin antagonist W-7, but not by PKA antagonists, H-89 and KT-5720, or the inhibitor of CaMKII KN-62. CONCLUSION AND IMPLICATIONS Our results suggest that, at motor nerve terminals, inosine induces presynaptic inhibition of spontaneous and evoked ACh release by activating A3 receptors through a mechanism that involves L-type and P/Q-type VGCCs and the secretory machinery downstream of calcium influx. A3 receptors appear to be coupled to Gi/o protein. PKC and calmodulin may be involved in these effects of inosine.
Collapse
Affiliation(s)
- A R Cinalli
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
45
|
Robin E, Sabourin J, Marcillac F, Raddatz E. Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart. J Mol Cell Cardiol 2013; 63:14-25. [DOI: 10.1016/j.yjmcc.2013.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
46
|
Sachdeva S, Gupta M. Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm J 2013; 21:245-53. [PMID: 23960840 PMCID: PMC3744929 DOI: 10.1016/j.jsps.2012.05.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/31/2012] [Indexed: 12/14/2022] Open
Abstract
The main goal of the authors is to present an overview of adenosine and its receptors, which are G-protein coupled receptors. The four known adenosine receptor subtypes are discussed along with the therapeutic potential indicating that these receptors can serve as targets for various dreadful diseases.
Collapse
Affiliation(s)
| | - Monika Gupta
- ASBASJSM College of Pharmacy, Bela, Ropar, India
| |
Collapse
|
47
|
Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol 2013; 228:1703-1712. [PMID: 23460239 PMCID: PMC3849123 DOI: 10.1002/jcp.24352] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/09/2013] [Accepted: 02/12/2013] [Indexed: 01/12/2023]
Abstract
Adenosine is an endogenous metabolite that is released from all tissues and cells including liver, pancreas, muscle and fat, particularly under stress, intense exercise, or during cell damage. The role of adenosine in glucose homeostasis has been attributed to its ability to regulate, through its membrane receptors, processes such as insulin secretion, glucose release and clearance, glycogenolysis, and glycogenesis. Additionally, adenosine and its multiple receptors have been connected to lipid metabolism by augmenting insulin-mediated inhibition of lipolysis, and the subsequent increase in free fatty acids and glycerol levels. Furthermore, adenosine was reported to control liver cholesterol synthesis, consequently affecting plasma levels of cholesterol and triglycerides, and the amount of fat tissue. Alterations in the balance of glucose and lipid homeostasis have implications in both cardiovascular disease and diabetes. The ability of different adenosine receptors to activate and inhibit the same signaling cascades has made it challenging to study the influence of adenosine, adenosine analogs and their receptors in health and disease. This review focuses on the role and significance of different adenosine receptors in mediating the effect of adenosine on glucose and lipid homeostasis. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Biochemistry, Boston University School of Medicine, Boston, MA; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | | |
Collapse
|
48
|
Anti-inflammatory effects of inosine in allergic lung inflammation in mice: evidence for the participation of adenosine A2A and A 3 receptors. Purinergic Signal 2013; 9:325-36. [PMID: 23355189 DOI: 10.1007/s11302-013-9351-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/10/2013] [Indexed: 01/17/2023] Open
Abstract
Inosine, a naturally occurring purine formed from the breakdown of adenosine, is associated with immunoregulatory effects. Evidence shows that inosine modulates lung inflammation and regulates cytokine generation. However, its role in controlling allergen-induced lung inflammation has yet to be identified. In this study, we aimed to investigate the role of inosine and adenosine receptors in a murine model of lung allergy induced by ovalbumin (OVA). Intraperitoneal administration of inosine (0.001-10 mg/kg, 30 min before OVA challenge) significantly reduced the number of leukocytes, macrophages, lymphocytes and eosinophils recovered in the bronchoalveolar lavage fluid of sensitized mice compared with controls. Interestingly, our results showed that pre-treatment with the selective A2A receptor antagonist (ZM241385), but not with the selective A2B receptor antagonist (alloxazine), reduced the inhibitory effects of inosine against macrophage count, suggesting that A2A receptors mediate monocyte recruitment into the lungs. In addition, the pre-treatment of mice with selective A3 antagonist (MRS3777) also prevented inosine effects against macrophages, lymphocytes and eosinophils. Histological analysis confirmed the effects of inosine and A2A adenosine receptors on cell recruitment and demonstrated that the treatment with ZM241385 and alloxazine reverted inosine effects against mast cell migration into the lungs. Accordingly, the treatment with inosine reduced lung elastance, an effect related to A2 receptors. Moreover, inosine reduced the levels of Th2-cytokines, interleukin-4 and interleukin-5, an effect that was not reversed by A2A or A2B selective antagonists. Our data show that inosine acting on A2A or A3 adenosine receptors can regulate OVA-induced allergic lung inflammation and also implicate inosine as an endogenous modulator of inflammatory processes observed in the lungs of asthmatic patients.
Collapse
|
49
|
Burdett TC, Desjardins CA, Logan R, McFarland NR, Chen X, Schwarzschild MA. Efficient determination of purine metabolites in brain tissue and serum by high-performance liquid chromatography with electrochemical and UV detection. Biomed Chromatogr 2013; 27:122-9. [PMID: 22674671 PMCID: PMC9979337 DOI: 10.1002/bmc.2760] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/26/2012] [Indexed: 12/27/2022]
Abstract
The purine metabolic pathway has been implicated in neurodegeneration and neuroprotection. High-performance liquid chromatography (HPLC) is widely used to determine purines and metabolites. However, methods for analysis of multiple purines in a single analysis have not been standardized, especially in brain tissue. We report the development and validation of a reversed-phase HPLC method combining electrochemical and UV detection after a short gradient run to measure seven purine metabolites (adenosine, guanosine, inosine, guanine, hypoxanthine, xanthine and urate) from the entire purine metabolic pathway. The limit of detection (LoD) for each analyte was determined. The LoD using UV absorption was 0.001 mg/dL for hypoxanthine (Hyp), inosine (Ino), guanosine (Guo) and adenosine (Ado), and those using coulometric electrodes were 0.001 mg/dL for guanine (Gua), 0.0001 mg/dL for urate (UA) and 0.0005 mg/dL for xanthine (Xan). The intra- and inter-day coefficient of variance was generally <8%. Using this method, we determined basal levels of these metabolites in mouse brain and serum, as well as in post-mortem human brain. Peak identities were confirmed by enzyme degradation. Spike recovery was performed to assess accuracy. All recoveries fell within 80-120%. Our HPLC method provides a sensitive, rapid, reproducible and low-cost method for determining multiple purine metabolites in a single analysis in serum and brain specimens.
Collapse
Affiliation(s)
- Thomas C. Burdett
- The MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th, Charlestown, MA 02129, USA
| | - Cody A. Desjardins
- The MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th, Charlestown, MA 02129, USA
| | - Robert Logan
- The MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th, Charlestown, MA 02129, USA
| | - Nikolaus R. McFarland
- University of Florida, Department of Neurology Center for Translational Research in Neurodegenerative Disease, PO Box 100159, Gainesville, FL 32610, USA
| | - Xiqun Chen
- The MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th, Charlestown, MA 02129, USA,Correspondence to: Xiqun Chen, The MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School 114 16th, Charlestown, MA 02129, USA.
| | - Michael A. Schwarzschild
- The MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th, Charlestown, MA 02129, USA
| |
Collapse
|
50
|
Módis K, Gerő D, Stangl R, Rosero O, Szijártó A, Lotz G, Mohácsik P, Szoleczky P, Coletta C, Szabó C. Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury. Int J Mol Med 2012; 31:437-46. [PMID: 23232950 PMCID: PMC3981016 DOI: 10.3892/ijmm.2012.1203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022] Open
Abstract
Liver ischemia represents a common clinical problem. In the present study, using an in vitro model of hepatic ischemia-reperfusion injury, we evaluated the potential cytoprotective effect of the purine metabolites, such as adenosine and inosine, and studied the mode of their pharmacological actions. The human hepatocellular carcinoma-derived cell line HepG2 was subjected to combined oxygen-glucose deprivation (COGD; 0-14-24 h), followed by re-oxygenation (0-4-24 h). Adenosine or inosine (300-1,000 µM) were applied in pretreatment. Cell viability and cytotoxicity were measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase methods, respectively. The results showed that both adenosine and inosine exerted cytoprotective effects, and these effects were not related to receptor-mediated actions, since they were not prevented by selective adenosine receptor antagonists. On the other hand, the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA, 10 µM) markedly and almost fully reversed the protective effect of adenosine during COGD, while it did not influence the cytoprotective effect of inosine in the same assay conditions. These results suggest that the cytoprotective effects are related to intracellular actions, and, in the case of adenosine also involve intracellular conversion to inosine. The likely interpretation of these findings is that inosine serves as an alternative source of energy to produce ATP during hypoxic conditions. The protective effects are also partially dependent on adenosine kinase, as the inhibitor 4-amino-5-(3-bromophenyl)-7-(6‑morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine, 2HCl (ABT 702, 30 µM) significantly reversed the protective effect of both adenosine and inosine during hypoxia and re-oxygenation. Collectively, the current results support the view that during hypoxia, adenosine and inosine exert cytoprotective effects via receptor-independent, intracellular modes of action, which, in part, depend on the restoration of cellular bioenergetics. The present study supports the view that testing of inosine for protection against various forms of warm and cold liver ischemia is relevant.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|