1
|
Nguyen HTM, Das N, Ricks M, Zhong X, Takematsu E, Wang Y, Ruvalcaba C, Mehadji B, Roncali E, Chan CKF, Pratx G. Ultrasensitive and multiplexed tracking of single cells using whole-body PET/CT. SCIENCE ADVANCES 2024; 10:eadk5747. [PMID: 38875333 PMCID: PMC11177933 DOI: 10.1126/sciadv.adk5747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems; however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upward of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a statistical tracking algorithm (PEPT-EM) to achieve a sensitivity of 4 becquerel per cell and a streamlined workflow to reliably label single cells with over 50 becquerel per cell of 18F-fluorodeoxyglucose (FDG). To demonstrate the potential of the method, we tracked the fate of more than 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.
Collapse
Affiliation(s)
- Hieu T. M. Nguyen
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Neeladrisingha Das
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Matthew Ricks
- School of Medicine, Department of Radiological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Xiaoxu Zhong
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Eri Takematsu
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yuting Wang
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Carlos Ruvalcaba
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Brahim Mehadji
- Department of Radiology, University of California, Davis, Davis, CA 95616, USA
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Department of Radiology, University of California, Davis, Davis, CA 95616, USA
| | - Charles K. F. Chan
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Guillem Pratx
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells. Dev Cell 2024; 59:1110-1131.e22. [PMID: 38569552 PMCID: PMC11072092 DOI: 10.1016/j.devcel.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Collapse
Affiliation(s)
- Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Alana Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison M Banuelos
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kouta Niizuma
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kensuke Kayamori
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte Mason
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Leyla Yilmaz
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Nguyen HT, Das N, Wang Y, Ruvalcaba C, Mehadji B, Roncali E, Chan CK, Pratx G. Efficient and multiplexed tracking of single cells using whole-body PET/CT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554536. [PMID: 37662335 PMCID: PMC10473747 DOI: 10.1101/2023.08.23.554536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems, however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upwards of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a new tracking algorithm (PEPT-EM) to push the cellular detection threshold to below 4 Bq/cell, and a streamlined workflow to reliably label single cells with over 50 Bq/cell of 18F-fluorodeoxyglucose (FDG). To demonstrate the potential of method, we tracked the fate of over 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.
Collapse
Affiliation(s)
- Hieu T.M. Nguyen
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| | - Neeladrisingha Das
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| | - Yuting Wang
- Stanford University, School of Medicine, Department of Surgery
| | - Carlos Ruvalcaba
- University of California, Davis, Department of Biomedical Engineering
| | - Brahim Mehadji
- University of California, Davis, Department of Radiology
| | - Emilie Roncali
- University of California, Davis, Department of Biomedical Engineering
- University of California, Davis, Department of Radiology
| | | | - Guillem Pratx
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| |
Collapse
|
4
|
Garrigós MM, Oliveira FA, Nucci MP, Mamani JB, Dias OFM, Rego GNA, Junqueira MS, Costa CJS, Silva LRR, Alves AH, Valle NME, Marti L, Gamarra LF. Bioluminescence Imaging and ICP-MS Associated with SPION as a Tool for Hematopoietic Stem and Progenitor Cells Homing and Engraftment Evaluation. Pharmaceutics 2023; 15:pharmaceutics15030828. [PMID: 36986690 PMCID: PMC10057125 DOI: 10.3390/pharmaceutics15030828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.
Collapse
Affiliation(s)
| | | | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | | | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil
| | | | | | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | - Luciana Marti
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
5
|
Garrigós MM, de Oliveira FA, Nucci MP, Nucci LP, Alves ADH, Dias OFM, Gamarra LF. How mesenchymal stem cell cotransplantation with hematopoietic stem cells can improve engraftment in animal models. World J Stem Cells 2022; 14:658-679. [PMID: 36157912 PMCID: PMC9453272 DOI: 10.4252/wjsc.v14.i8.658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bone marrow transplantation (BMT) can be applied to both hematopoietic and nonhematopoietic diseases; nonetheless, it still comes with a number of challenges and limitations that contribute to treatment failure. Bearing this in mind, a possible way to increase the success rate of BMT would be cotransplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) to improve the bone marrow niche and secrete molecules that enhance the hematopoietic engraftment.
AIM To analyze HSC and MSC characteristics and their interactions through cotransplantation in murine models.
METHODS We searched for original articles indexed in PubMed and Scopus during the last decade that used HSC and MSC cotransplantation and in vivo BMT in animal models while evaluating cell engraftment. We excluded in vitro studies or studies that involved graft versus host disease or other hematological diseases and publications in languages other than English. In PubMed, we initially identified 555 articles and after selection, only 12 were chosen. In Scopus, 2010 were identified, and six were left after the screening and eligibility process.
RESULTS Of the 2565 articles found in the databases, only 18 original studies met the eligibility criteria. HSC distribution by source showed similar ratios, with human umbilical cord blood or animal bone marrow being administered mainly with a dose of 1 × 107 cells by intravenous or intrabone routes. However, MSCs had a high prevalence of human donors with a variety of sources (umbilical cord blood, bone marrow, tonsil, adipose tissue or fetal lung), using a lower dose, mainly 106 cells and ranging 104 to 1.5 × 107 cells, utilizing the same routes. MSCs were characterized prior to administration in almost every experiment. The recipient used was mostly immunodeficient mice submitted to low-dose irradiation or chemotherapy. The main technique of engraftment for HSC and MSC cotransplantation evaluation was chimerism, followed by hematopoietic reconstitution and survival analysis. Besides the engraftment, homing and cellularity were also evaluated in some studies.
CONCLUSION The preclinical findings validate the potential of MSCs to enable HSC engraftment in vivo in both xenogeneic and allogeneic hematopoietic cell transplantation animal models, in the absence of toxicity.
Collapse
Affiliation(s)
- Murilo Montenegro Garrigós
- Hospital Israelita Albert Einstein, São Paulo 05652-900, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | | | - Mariana Penteado Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-900, São Paulo, Brazil
- LIM44-Hospital das Clínicas, Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Leopoldo Penteado Nucci
- Centro Universitário do Planalto Central, Área Especial para Industria nº 02 Setor Leste - Gama-DF, Brasília 72445-020, Distrito Federal, Brazil
| | | | | | | |
Collapse
|
6
|
Ahn S, Koh BI, Lee J, Hong S, Kim I, Kim P. In vivo observation of multi-phase spatiotemporal cellular dynamics of transplanted HSPCs during early engraftment. FASEB Bioadv 2022; 4:547-559. [PMID: 35949509 PMCID: PMC9353502 DOI: 10.1096/fba.2021-00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is commonly used to treat patients with various blood disorders, genetic and immunological diseases, and solid tumors. Several systemic complications following HSCT are critical limiting factors for achieving a successful outcome. These systemic complications are mainly due to the lack of initial engraftment after transplantation. However, the detailed underlying cellular dynamics of early engraftment have not been fully characterized yet. We performed in vivo longitudinal visualization of early engraftment characteristics of transplanted hematopoietic stem and progenitor cells (HSPCs) in the mouse calvarial bone marrow (BM). To achieve this, we utilized an in vivo laser-scanning confocal microscopy imaging system with a cranial BM imaging window and stereotaxic device. We observed two distinct cellular behaviors of HSPCs in vivo, cluster formation and cluster dissociation, early after transplantation. Furthermore, we successfully identified three cellular phases of engraftment with distinct cellular distances which are coordinated with cell proliferation and cell migration dynamics during initial engraftment.
Collapse
Affiliation(s)
- Soyeon Ahn
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- KI for Health Science and Technology (KIHST)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- IVIM TechnologyDaejeonRepublic of Korea
| | - Bong Ihn Koh
- KI for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- Max Planck Institute for Molecular BiomedicineDepartment of Tissue MorphogenesisUniversity of MünsterFaculty of MedicineMünsterGermany
| | - Jingu Lee
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- KI for Health Science and Technology (KIHST)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sujung Hong
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- KI for Health Science and Technology (KIHST)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Injune Kim
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- KI for Health Science and Technology (KIHST)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
- IVIM TechnologyDaejeonRepublic of Korea
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| |
Collapse
|
7
|
Application of Nanooptics in Photographic Imagery and Medical Imaging. J CHEM-NY 2021. [DOI: 10.1155/2021/2384322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. At present, with the continuous development of nanotechnology, great changes have taken place in people’s lives in medical treatment, production, daily leisure, and so on. Nanooptical technology is entirely based on nanotechnology that laser and visible light are limited to submicron structures (nanopores, nanoslits, and nanoneedles). Due to the great development potential of nanooptical technology in nanoscale sensors, TOF camera applications, THz imaging technology, and other imaging equipment materials and applications, people have been interested in it, recently. Scope and Approach. In this review, the importance of good practices for nanooptical technology used in equipment as both nanometer scale sensors and optical auxiliary equipment is described. Based on recent reports, this work discussed the development of nanooptical technology in daily photography and medical imaging from both the positive and the negative sides and compared the engineering techniques. Key Findings and Conclusions. As a kind of new optical technology, nanooptical technology can produce the plasmonic effect under the intense collision of atoms and electrons in nanostructures. It has significant effects in superresolution nanolithography, high-density data storage, near-field optics, and other fields. Although the current nanooptic technology is not extremely mature, the results obtained from current works are pointing out that nanooptical technology is the future of daily imaging and medical imaging, and it also will play a positive role in the improvement of people’s health and ecological environment quality. As a trend, nanooptical technology is developing in the direction of energy-saving, portability, high efficiency, and low pollution, and in the upsurge of environmental protection in the world, nanooptical technology will surely achieve amazing development in the field of daily photography and medical imaging. Under the huge market demand and innovation power, nanophotonics technology will cover all emerging technologies that share the same research field with it and take advantage of each technology (terahertz, cell and molecular microscopy, and nanoscale probes) to develop an unprecedented new century in nanoscience. The future trends of research contain finding new imaging equipment with nanostructure, designing nanooptical products, and improving engineering techniques.
Collapse
|
8
|
Oliveira FA, Nucci MP, Mamani JB, Alves AH, Rego GNA, Kondo AT, Hamerschlak N, Junqueira MS, de Souza LEB, Gamarra LF. Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic-Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model. Biomedicines 2021; 9:biomedicines9070752. [PMID: 34209598 PMCID: PMC8301491 DOI: 10.3390/biomedicines9070752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical-chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the order of 104 SPIONNIRF-Rh/BM-MNC. In the in vivo study, the acute NIRF evaluation showed higher signal intensity in the spinal cord and abdominal region, and the BLI evaluation allowed follow-up (11-120 days), achieving a peak of intensity at 30 days, which remained stable around 108 photons/s until the end. The hematologic evaluation showed similar behavior until 30 days and the histological results confirm that iron is present in almost all tissue evaluated. Our results on BM-MNC homing and tracking in the BMT model did not show a difference in migration or grafting of cells from young or old mice, with the hemogram analysis trending to differentiation towards the myeloid lineage in mice that received cells from old animals. The cell homing by NIRF and long term cell follow-up by BLI highlighted the relevance of the multimodal nanoparticles and combined techniques for evaluation.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil;
| | - Lucas E. B. de Souza
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14051-060, SP, Brazil;
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
9
|
Madsen SD, Giler MK, Bunnell BA, O'Connor KC. Illuminating the Regenerative Properties of Stem Cells In Vivo with Bioluminescence Imaging. Biotechnol J 2020; 16:e2000248. [PMID: 33089922 DOI: 10.1002/biot.202000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Preclinical animal studies are essential to the development of safe and effective stem cell therapies. Bioluminescence imaging (BLI) is a powerful tool in animal studies that enables the real-time longitudinal monitoring of stem cells in vivo to elucidate their regenerative properties. This review describes the application of BLI in preclinical stem cell research to address critical challenges in producing successful stem cell therapeutics. These challenges include stem cell survival, proliferation, homing, stress response, and differentiation. The applications presented here utilize bioluminescence to investigate a variety of stem and progenitor cells in several different in vivo models of disease and implantation. An overview of luciferase reporters is provided, along with the advantages and disadvantages of BLI. Additionally, BLI is compared to other preclinical imaging modalities and potential future applications of this technology are discussed in emerging areas of stem cell research.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
10
|
Miwa S, Watabe AM, Shimada Y, Higuchi T, Kobayashi H, Fukuda T, Kato F, Ida H, Ohashi T. Efficient engraftment of genetically modified cells is necessary to ameliorate central nervous system involvement of murine model of mucopolysaccharidosis type II by hematopoietic stem cell targeted gene therapy. Mol Genet Metab 2020; 130:262-273. [PMID: 32631737 DOI: 10.1016/j.ymgme.2020.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease (LSD) caused by a deficiency of the iduronate-2-sulfatase (IDS) that catabolizes glycosaminoglycans (GAGs). Abnormal accumulations of GAGs in somatic cells lead to various manifestations including central nervous system (CNS) disease. Enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are the currently available therapy for MPS II, but both therapies fail to improve CNS manifestations. We previously showed that hematopoietic stem cell targeted gene therapy (HSC-GT) with lethal irradiation improved CNS involvement in a murine model of MPS II which lacks the gene coding for IDS. However, the strong preconditioning, with lethal irradiation, would cause a high rate of morbidity and mortality. Therefore, we tested milder preconditioning procedures with either low dose irradiation or low dose irradiation plus an anti c-kit monoclonal antibody (ACK2) to assess CNS effects in mice with MPS II after HSC-GT. Mice from all the HSC-GT groups displayed super-physiological levels of IDS enzyme activity and robust reduction of abnormally accumulated GAGs to the wild type mice levels in peripheral organs. However, only the mice treated with lethal irradiation showed significant cognitive function improvement as well as IDS elevation and GAG reduction in the brain. These results suggest that an efficient engraftment of genetically modified cells for HSC-GT requires strong preconditioning to ameliorate CNS involvement in cases with MPS II.
Collapse
Affiliation(s)
- Saori Miwa
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Higuchi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Division of Neuroscience, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ida
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Oliveira FA, Nucci MP, Filgueiras IS, Ferreira JM, Nucci LP, Mamani JB, Alvieri F, Souza LEB, Rego GNA, Kondo AT, Hamerschlak N, Gamarra LF. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020; 9:cells9040939. [PMID: 32290257 PMCID: PMC7226958 DOI: 10.3390/cells9040939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, 38% xenogeneic, and 5% autologous, being the HSC receptor: 57% mice, 9% rat, 19% fish, 5% for dog, porcine and salamander. The imaging technique used in the HSC tracking had the following distribution between studies: Positron emission tomography/single-photon emission computed tomography 29%, bioluminescence 33%, fluorescence 19%, magnetic resonance imaging 14%, and near-infrared fluorescence imaging 5%. The efficiency of the graft was evaluated in 61% of the selected studies, and before one month of implantation, the cell renewal was very low (less than 20%), but after three months, the efficiency was more than 50%, mainly in the allogeneic graft. In conclusion, our review showed an increase in using noninvasive imaging techniques in HSC tracking using the bone marrow transplant model. However, successful transplantation depends on the formation of engraftment, and the functionality of cells after the graft, aspects that are poorly explored and that have high relevance for clinical analysis.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Igor S. Filgueiras
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília DF 72445-020, Brazil;
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Fernando Alvieri
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lucas E. B. Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14049-900, Brazil;
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
12
|
Crowley C, Butler CR, Camilli C, Hynds RE, Kolluri KK, Janes SM, De Coppi P, Urbani L. Non-Invasive Longitudinal Bioluminescence Imaging of Human Mesoangioblasts in Bioengineered Esophagi. Tissue Eng Part C Methods 2020; 25:103-113. [PMID: 30648471 PMCID: PMC6389770 DOI: 10.1089/ten.tec.2018.0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Esophageal engineering aims to create replacement solutions by generating hollow organs using a combination of cells, scaffolds, and regeneration-stimulating factors. Currently, the fate of cells on tissue-engineered grafts is generally determined retrospectively by histological analyses. Unfortunately, quality-controlled cell seeding protocols for application in human patients are not standard practice. As such, the field requires simple, fast, and reliable techniques for non-invasive, highly specific cell tracking. Here, we show that bioluminescence imaging (BLI) is a suitable method to track human mesoangioblast seeding of an esophageal tubular construct at every stage of the preclinical bioengineering pipeline. In particular, validation of BLI as longitudinal quantitative assessment of cell density, proliferation, seeding efficiency, bioreactor culture, and cell survival upon implantation in vivo was performed against standard methods in 2D cultures and in 3D decellularized esophageal scaffolds. The technique is simple, non-invasive, and provides information on mesoangioblast distribution over entire scaffolds. Bioluminescence is an invaluable tool in the development of complex bioartificial organs and can assist in the development of standardized cell seeding protocols, with the ability to track cells from bioreactor through to implantation.
Collapse
Affiliation(s)
- Claire Crowley
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Colin R Butler
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Carlotta Camilli
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Robert E Hynds
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Krishna K Kolluri
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Sam M Janes
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Paolo De Coppi
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Luca Urbani
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,3 Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom
| |
Collapse
|
13
|
Hingorani DV, Chapelin F, Stares E, Adams SR, Okada H, Ahrens ET. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn Reson Med 2019; 83:974-987. [PMID: 31631402 DOI: 10.1002/mrm.27988] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE A bottleneck in developing cell therapies for cancer is assaying cell biodistribution, persistence, and survival in vivo. Ex vivo cell labeling using perfluorocarbon (PFC) nanoemulsions, paired with 19 F MRI detection, is a non-invasive approach for cell product detection in vivo. Lymphocytes are small and weakly phagocytic limiting PFC labeling levels and MRI sensitivity. To boost labeling, we designed PFC nanoemulsion imaging probes displaying a cell-penetrating peptide, namely the transactivating transcription sequence (TAT) of the human immunodeficiency virus. We report optimized synthesis schemes for preparing TAT co-surfactant to complement the common surfactants used in PFC nanoemulsion preparations. METHODS We performed ex vivo labeling of primary human chimeric antigen receptor (CAR) T cells with nanoemulsion. Intracellular labeling was validated using electron microscopy and confocal imaging. To detect signal enhancement in vivo, labeled CAR T cells were intra-tumorally injected into mice bearing flank glioma tumors. RESULTS By incorporating TAT into the nanoemulsion, a labeling efficiency of ~1012 fluorine atoms per CAR T cell was achieved that is a >8-fold increase compared to nanoemulsion without TAT while retaining high cell viability (~84%). Flow cytometry phenotypic assays show that CAR T cells are unaltered after labeling with TAT nanoemulsion, and in vitro tumor cell killing assays display intact cytotoxic function. The 19 F MRI signal detected from TAT-labeled CAR T cells was 8 times higher than cells labeled with PFC without TAT. CONCLUSION The peptide-PFC nanoemulsion synthesis scheme presented can significantly enhance cell labeling and imaging sensitivity and is generalizable for other targeted imaging probes.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiology, University of California San Diego, California
| | - Fanny Chapelin
- Department of Bioengineering, University of California San Diego, California
| | - Emma Stares
- Department of Radiology, University of California San Diego, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, California
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, California
| |
Collapse
|
14
|
Lu L, Liu Y, Zhang X, Lin J. The therapeutic role of bone marrow stem cell local injection in rat experimental periodontitis. J Oral Rehabil 2019; 47 Suppl 1:73-82. [PMID: 31220354 DOI: 10.1111/joor.12843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cell therapy brings hope for regenerating damaged periodontal tissues. The present study aimed to investigate the therapeutic role of local bone marrow stem cell (BMSC) injection in ligation-induced periodontitis and the underlying mechanisms. Alveolar bone lesion was induced by placing ligatures subgingivally around the bilateral maxillary second molars for 28 days. The alveolar bone lesion was confirmed by micro-CT analysis and bone histomorphometry. Allogeneic BMSC transplantation was carried out at 28 day after ligation. The survival state of the transplanted BMSC was observed by bioluminescent imaging. The implantation of the BMSC into the gingival tissues and periodontal ligament was confirmed by green fluorescent protein (GFP) immunohistochemical staining. The expression level of pro-inflammatory, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin (OPG) in periodontal tissues were evaluated by immunohistochemical staining and real-time PCR. Significant reverse of alveolar bone lesion was observed after BMSC transplantation. The expression of TNF-α and IL-1β was down-regulated by BMSC transplantation. The number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the periodontal ligament was reduced, and the increased RANKL expression and decreased OPG expression were also reversed after BMSC transplantation. It is concluded that allogeneic BMSC local injection could inhibit the inflammation of the periodontitis tissue and promote periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Stomatology, Technology Innovation Park, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xu Zhang
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Stomatology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jiang Lin
- Department of Periodontology, the Fourth Hospital of Harbin Medical University, Harbin, China.,Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Labeling Stem Cells with a New Hybrid Bismuth/Carbon Nanotube Contrast Agent for X-Ray Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:2183051. [PMID: 31281232 PMCID: PMC6594287 DOI: 10.1155/2019/2183051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023]
Abstract
The poor retention and survival of cells after transplantation to solid tissue represent a major obstacle for the effectiveness of stem cell-based therapies. The ability to track stem cells in vivo can lead to a better understanding of the biodistribution of transplanted cells, in addition to improving the analysis of stem cell therapies' outcomes. Here, we described the use of a carbon nanotube-based contrast agent (CA) for X-ray computed tomography (CT) imaging as an intracellular CA to label bone marrow-derived mesenchymal stem cells (MSCs). Porcine MSCs were labeled without observed cytotoxicity. The CA consists of a hybrid material containing ultra-short single-walled carbon nanotubes (20-80 nm in length, US-tubes) and Bi(III) oxo-salicylate clusters which contain four Bi3+ ions per cluster (Bi4C). The CA is thus abbreviated as Bi4C@US-tubes.
Collapse
|
16
|
Xia Y, Pang H. Glucuronidation of d-Luciferin In Vitro: Isoform Selectivity and Kinetics Characterization. Eur J Drug Metab Pharmacokinet 2019; 44:549-556. [DOI: 10.1007/s13318-019-00549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Yoo J, Yun C, Bui N, Oh J, Nam S. Photoacoustic Monitoring of the Viability of Mesenchymal Stem Cells Labeled with Indocyanine Green. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Dai Y, Wang G, Chen D, Yin J, Zhan Y, Nie Y, Wu K, Liang J, Chen X. Intravenous Administration-Oriented Pharmacokinetic Model for Dynamic Bioluminescence Imaging. IEEE Trans Biomed Eng 2018; 66:843-847. [PMID: 30047868 DOI: 10.1109/tbme.2018.2858774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In vivo bioluminescence imaging (BLI) is a promising tool for monitoring the growth and metastasis of tumors. However, quantitative BLI research based on intravenous (IV) injection is limited, which greatly restricts its further application. To address this problem, we designed a pharmacokinetic (PK) model which is suitable for applying on IV administration of small amounts of D-Luciferin. METHODS After three weeks of postimplantation, mkn28-luc xenografted mice were subjected to 40-min dynamic BLI immediately following D-Luciferin intravenous injection on days 1, 3, 5, 7, and 9. Furthermore, the PK model was applied on dynamic BLI data to obtain the sum of kinetic rate constants (SKRC). RESULTS Results showed that the SKRC values decreased rapidly with the growth of the tumor. There was a statistical difference between the SKRC values measured at different time points, while the time point of luminous intensity peak was unaffected by the growth of the tumor. CONCLUSION In short, our results imply that dynamic BLI combined with our PK model can predict tumor growth earlier and with higher sensitivity compared to the conventional method, which is crucial for improving drug evaluation efficacy. In addition, the dynamic BLI may provide a valuable reference for the noninvasive acquiring arterial input function, which may also provide a new application prospect for hybrid PET-optical imaging.
Collapse
|
19
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
21
|
Wu C, Espinoza DA, Koelle SJ, Potter EL, Lu R, Li B, Yang D, Fan X, Donahue RE, Roederer M, Dunbar CE. Geographic clonal tracking in macaques provides insights into HSPC migration and differentiation. J Exp Med 2017; 215:217-232. [PMID: 29141868 PMCID: PMC5748860 DOI: 10.1084/jem.20171341] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 01/13/2023] Open
Abstract
Wu et al. use barcode tracking to uncover prolonged geographic bone marrow segregation of regenerating hematopoietic stem and progenitor cell clones after transplantation and provide evidence for local bone marrow production of T cells. The geographic distribution of hematopoiesis at a clonal level is of interest in understanding how hematopoietic stem and progenitor cells (HSPCs) and their progeny interact with bone marrow (BM) niches during regeneration. We tagged rhesus macaque autologous HSPCs with genetic barcodes, allowing clonal tracking over time and space after transplantation. We found marked geographic segregation of CD34+ HSPCs for at least 6 mo posttransplantation, followed by very gradual clonal mixing at different BM sites over subsequent months to years. Clonal mapping was used to document local production of granulocytes, monocytes, B cells, and CD56+ natural killer (NK) cells. In contrast, CD16+CD56− NK cells were not produced in the BM, and in fact were clonally distinct from multipotent progenitors producing all other lineages. Most surprisingly, we documented local BM production of CD3+ T cells early after transplantation, using both clonal mapping and intravascular versus tissue-resident T cell staining, suggesting a thymus-independent T cell developmental pathway operating during BM regeneration, perhaps before thymic recovery.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Diego A Espinoza
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Samson J Koelle
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brian Li
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Di Yang
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,Institute of hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Fan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert E Donahue
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
23
|
Jiang B, Wu Y, Haney CR, Duan C, Ameer GA. Assessment of an engineered endothelium via single-photon emission computed tomography. Biotechnol Bioeng 2017; 114:2371-2378. [PMID: 28542804 DOI: 10.1002/bit.26342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
The clinical translation of cell-based therapeutics often requires highly sensitive, non-invasive imaging tools to assess cell function and distribution in vivo. The objective of this research was to determine whether human Sodium-Iodide Symporter (hNIS) ectopic expression in endothelial cells (ECs) in combination with single-photon emission computed tomography (SPECT) is a feasible approach to non-invasively monitor the presence and viability of an engineered endothelium on expanded polytetrafluoroethylene (ePTFE). Human umbilical vein endothelial cells (HUVECs) were transduced with pLL3.7-hNIS via lentivirus with multiplicity of infection (MOI) of 0, 2, 5, and 10 (n = 4). Ectopic expression of hNIS in HUVECs via optimized lentiviral transduction (MOI 5) enabled cell uptake of a radioisotope that can be detected by SPECT without affecting endothelial cell viability, oxidative stress, or antithrombogenic functions. The viability and distribution of an engineered endothelium grown on ePTFE coated with the biodegradable elastomer poly(1, 8 octamethylene citrate) (POC) and exposed to fluid flow was successfully monitored non-invasively by SPECT. We report the feasibility of a non-invasive, highly sensitive and functional assessment of an engineered endothelium on ePTFE using a combination of SPECT and X-ray computed tomography (SPECT/CT) imaging and hNIS ectopic expression in ECs. This technology potentially allows for the non-invasive assessment of transplanted living cells in vascular conduits. Biotechnol. Bioeng. 2017;114: 2371-2377. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bin Jiang
- Biomedical Engineering Department, Northwestern University, Sc.D 2145 Sheridan Road, Tech B382, Evanston, Illinois, 60208.,Department of Surgery, Northwestern University, Chicago, Illinois
| | - Yidi Wu
- Biomedical Engineering Department, Northwestern University, Sc.D 2145 Sheridan Road, Tech B382, Evanston, Illinois, 60208.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois
| | - Chad R Haney
- Biomedical Engineering Department, Northwestern University, Sc.D 2145 Sheridan Road, Tech B382, Evanston, Illinois, 60208.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.,Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Sc.D 2145 Sheridan Road, Tech B382, Evanston, Illinois, 60208
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Sc.D 2145 Sheridan Road, Tech B382, Evanston, Illinois, 60208.,Department of Surgery, Northwestern University, Chicago, Illinois.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois.,Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois
| |
Collapse
|
24
|
Keshavarzi M, Sorayayi S, Jafar Rezaei M, Mohammadi M, Ghaderi A, Rostamzadeh A, Masoudifar A, Mirzaei H. MicroRNAs‐Based Imaging Techniques in Cancer Diagnosis and Therapy. J Cell Biochem 2017; 118:4121-4128. [DOI: 10.1002/jcb.26012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Maryam Keshavarzi
- Department of Oral and Maxillofacial RadiologySchool of DentistryLorestan University of Medical SciencesKhorramabadIran
| | - Saba Sorayayi
- Faculty of MedicineDepartment of Clinical BiochemistryArdabil University of Medical SciencesArdabilIran
| | - Mohammad Jafar Rezaei
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Mohsen Mohammadi
- Faculty of PharmacyDepartment of Pharmaceutical BiotechnologyLorestan University of Medical SciencesKhorramabadIran
| | - Amir Ghaderi
- Faculty of PharmacyDepartment of Pharmaceutical BiotechnologyTehran University of Medical ScienceTehranIran
| | - Ayoob Rostamzadeh
- Faculty of MedicineDepartment of Anatomy and NeuroscienceShahrekord University of Medical SciencesShahrekordIran
| | - Aria Masoudifar
- Department of Molecular BiotechnologyRoyan Institute for BiotechnologyCell Science Research CenterACECRIsfahanIran
| | - Hamed Mirzaei
- Department of Medical BiotechnologySchool of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
25
|
Astuti Y, Kramer AC, Blake AL, Blazar BR, Tolar J, Taisto ME, Lund TC. A Functional Bioluminescent Zebrafish Screen for Enhancing Hematopoietic Cell Homing. Stem Cell Reports 2016; 8:177-190. [PMID: 28041876 PMCID: PMC5233450 DOI: 10.1016/j.stemcr.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/01/2022] Open
Abstract
To discover small molecules that modulate hematopoietic cell homing after adoptive transfer, we created a transgenic zebrafish expressing firefly luciferase downstream of the ubiquitin promoter (ubi:luc) to serve as a hematopoietic donor. Bioluminescence imaging (BLI) was used to detect and follow ubi:luc hematopoietic cells that homed to the marrow as early as 1 day post-transplant. BLI was able to detect the biological effect of prostaglandin E2 on early homing/engraftment of donor hematopoietic cells. This system was utilized in a functional screen of small molecules to enhance homing/engraftment. We discovered a phytosterol, ergosterol, that could increase hematopoietic cell homing in zebrafish and mice. In addition, ergosterol increased CXCR4 expression and promoted expansion of Lin−SCA-1+KIT+ cells in vitro. We have demonstrated the utility of in vivo BLI to non-invasively monitor donor hematopoietic cell activity in adult zebrafish as a functional screen for mediators of cellular homing. Bioluminescent imaging (BLI) can track engrafting hematopoietic cells BLI can be used for screening of enhancers of hematopoietic cell homing Using BLI, ergosterol was found to increase hematopoietic cell homing Ergosterol affects hematopoietic progenitor migration, growth, and viability in vitro
Collapse
Affiliation(s)
- Yuliana Astuti
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Ashley C Kramer
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Amanda L Blake
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Bruce R Blazar
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Mandy E Taisto
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Troy C Lund
- Department of Pediatrics, Blood and Marrow Transplant Program, University of Minnesota Medical School, MMC 366, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Lee S, Kivimäe S, Dolor A, Szoka FC. Macrophage-based cell therapies: The long and winding road. J Control Release 2016; 240:527-540. [PMID: 27422609 PMCID: PMC5064880 DOI: 10.1016/j.jconrel.2016.07.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
In the quest for better medicines, attention is increasingly turning to cell-based therapies. The rationale is that infused cells can provide a targeted therapy to precisely correct a complex disease phenotype. Between 1987 and 2010, autologous macrophages (MΦs) were used in clinical trials to treat a variety of human tumors; this approach provided a modest therapeutic benefit in some patients but no lasting remissions. These trials were initiated prior to an understanding of: the complexity of MΦ phenotypes, their ability to alter their phenotype in response to various cytokines and/or the environment, and the extent of survival of the re-infused MΦs. It is now known that while inflammatory MΦs can kill tumor cells, the tumor environment is able to reprogram MΦs into a tumorigenic phenotype; inducing blood vessel formation and contributing to a cancer cell growth-promoting milieu. We review how new information enables the development of large numbers of ex vivo generated MΦs, and how conditioning and gene engineering strategies are used to restrict the MΦ to an appropriate phenotype or to enable production of therapeutic proteins. We survey applications in which the MΦ is loaded with nanomedicines, such as liposomes ex vivo, so when the drug-loaded MΦs are infused into an animal, the drug is released at the disease site. Finally, we also review the current status of MΦ biodistribution and survival after transplantation into an animal. The combination of these recent advances opens the way for improved MΦ cell therapies.
Collapse
Affiliation(s)
- Simon Lee
- The UC-Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley 94720, USA
| | - Saul Kivimäe
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA
| | - Aaron Dolor
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA
| | - Francis C Szoka
- The UC-Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley 94720, USA; Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco 94143, USA.
| |
Collapse
|
27
|
Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform. Sci Rep 2016; 6:31951. [PMID: 27535453 PMCID: PMC4989144 DOI: 10.1038/srep31951] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.
Collapse
|
28
|
Goodfellow F, Simchick GA, Mortensen LJ, Stice SL, Zhao Q. Tracking and Quantification of Magnetically Labeled Stem Cells using Magnetic Resonance Imaging. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3899-3915. [PMID: 28751853 PMCID: PMC5526633 DOI: 10.1002/adfm.201504444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stem cell based therapies have critical impacts on treatments and cures of diseases such as neurodegenerative or cardiovascular disease. In vivo tracking of stem cells labeled with magnetic contrast agents is of particular interest and importance as it allows for monitoring of the cells' bio-distribution, viability, and physiological responses. Herein, recent advances are introduced in tracking and quantification of super-paramagnetic iron oxide (SPIO) nanoparticles-labeled cells with magnetic resonance imaging, a noninvasive approach that can longitudinally monitor transplanted cells. This is followed by recent translational research on human stem cells that are dual-labeled with green fluorescence protein (GFP) and SPIO nanoparticles, then transplanted and tracked in a chicken embryo model. Cell labeling efficiency, viability, and cell differentiation are also presented.
Collapse
Affiliation(s)
| | - Gregory A Simchick
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| | | | | | - Qun Zhao
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| |
Collapse
|
29
|
Jiang B, Perrin L, Kats D, Meade T, Ameer G. Enabling non-invasive assessment of an engineered endothelium on ePTFE vascular grafts without increasing oxidative stress. Biomaterials 2015; 69:110-20. [PMID: 26283158 DOI: 10.1016/j.biomaterials.2015.07.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) in combination with contrast enhancement is a potentially powerful tool to non-invasively monitor cell distribution in tissue engineering and regenerative medicine. The most commonly used contrast agent for cell labeling is super paramagnetic iron oxide nanoparticles (SPIONs). However, uptake of SPIONs triggers the production of reactive oxygen species (ROS) in cells often leading to a pro-inflammatory phenotype. The objective of this study was to develop a labeling system to non-invasively visualize an engineered endothelium in vascular grafts without creating excessive oxidative stress. Specifically, we investigated: (1) chitosan-coated SPIONs (CSPIONs) as an antioxidant contrast agent for contrast enhancement, and (2) poly(1,8-octamethylene citrate) (POC) as an antioxidant interface to support cell adhesion and function of labeled cells on the vascular graft. While SPION-labeled endothelial cells (ECs) experienced elevated ROS formation and altered cell morphology, CSPION-labeled ECs cultured on POC-coated surfaces mitigated SPION-induced ROS formation and maintained EC morphology, phenotype, viability and functions. A monolayer of labeled ECs exhibited sufficient contrast with T2-weighed MR imaging. CSPION labeling of endothelial cells in combination with coating the graft wall with POC allows non-invasive monitoring of an engineered endothelium on ePTFE grafts without increasing oxidative stress.
Collapse
Affiliation(s)
- Bin Jiang
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60201, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Louisiane Perrin
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60201, USA
| | - Dina Kats
- Interdisciplinary Biological Sciences (IBiS) Program, Northwestern University, Evanston, IL 60201, USA
| | - Thomas Meade
- Department of Chemistry, Northwestern University, Evanston, IL 60201, USA
| | - Guillermo Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60201, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Sato N, Wu H, Asiedu KO, Szajek LP, Griffiths GL, Choyke PL. (89)Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies. Radiology 2015; 275:490-500. [PMID: 25706654 PMCID: PMC4456181 DOI: 10.1148/radiol.15142849] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a clinically translatable method of cell labeling with zirconium 89 ((89)Zr) and oxine to track cells with positron emission tomography (PET) in mouse models of cell-based therapy. MATERIALS AND METHODS This study was approved by the institutional animal care committee. (89)Zr-oxine complex was synthesized in an aqueous solution. Cell labeling conditions were optimized by using EL4 mouse lymphoma cells, and labeling efficiency was examined by using dendritic cells (DCs) (n = 4), naïve (n = 3) and activated (n = 3) cytotoxic T cells (CTLs), and natural killer (NK) (n = 4), bone marrow (n = 4), and EL4 (n = 4) cells. The effect of (89)Zr labeling on cell survival, proliferation, and function were evaluated by using DCs (n = 3) and CTLs (n = 3). Labeled DCs (444-555 kBq/[5 × 10(6)] cells, n = 5) and CTLs (185 kBq/[5 × 10(6)] cells, n = 3) transferred to mice were tracked with microPET/CT. In a melanoma immunotherapy model, tumor targeting and cytotoxic function of labeled CTLs were evaluated with imaging (248.5 kBq/[7.7 × 10(6)] cells, n = 4) and by measuring the tumor size (n = 6). Two-way analysis of variance was used to compare labeling conditions, the Wilcoxon test was used to assess cell survival and proliferation, and Holm-Sidak multiple tests were used to assess tumor growth and perform biodistribution analyses. RESULTS (89)Zr-oxine complex was synthesized at a mean yield of 97.3% ± 2.8 (standard deviation). It readily labeled cells at room temperature or 4°C in phosphate-buffered saline (labeling efficiency range, 13.0%-43.9%) and was stably retained (83.5% ± 1.8 retention on day 5 in DCs). Labeling did not affect the viability of DCs and CTLs when compared with nonlabeled control mice (P > .05), nor did it affect functionality. (89)Zr-oxine complex enabled extended cell tracking for 7 days. Labeled tumor-specific CTLs accumulated in the tumor (4.6% on day 7) and induced tumor regression (P < .05 on day 7). CONCLUSION We have developed a (89)Zr-oxine complex cell tracking technique for use with PET that is applicable to a broad range of cell types and could be a valuable tool with which to evaluate various cell-based therapies.
Collapse
Affiliation(s)
- Noriko Sato
- From the Molecular Imaging Program, National Cancer Institute (N.S., K.O.A., P.L.C.), Imaging Probe Development Center, National Heart, Lung, and Blood Institute (H.W.), and Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center (L.P.S.), U.S. National Institutes of Health, 10 Center Dr, Bethesda, MD 20892; and Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md (G.L.G.)
| | - Haitao Wu
- From the Molecular Imaging Program, National Cancer Institute (N.S., K.O.A., P.L.C.), Imaging Probe Development Center, National Heart, Lung, and Blood Institute (H.W.), and Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center (L.P.S.), U.S. National Institutes of Health, 10 Center Dr, Bethesda, MD 20892; and Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md (G.L.G.)
| | - Kingsley O. Asiedu
- From the Molecular Imaging Program, National Cancer Institute (N.S., K.O.A., P.L.C.), Imaging Probe Development Center, National Heart, Lung, and Blood Institute (H.W.), and Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center (L.P.S.), U.S. National Institutes of Health, 10 Center Dr, Bethesda, MD 20892; and Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md (G.L.G.)
| | - Lawrence P. Szajek
- From the Molecular Imaging Program, National Cancer Institute (N.S., K.O.A., P.L.C.), Imaging Probe Development Center, National Heart, Lung, and Blood Institute (H.W.), and Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center (L.P.S.), U.S. National Institutes of Health, 10 Center Dr, Bethesda, MD 20892; and Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md (G.L.G.)
| | - Gary L. Griffiths
- From the Molecular Imaging Program, National Cancer Institute (N.S., K.O.A., P.L.C.), Imaging Probe Development Center, National Heart, Lung, and Blood Institute (H.W.), and Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center (L.P.S.), U.S. National Institutes of Health, 10 Center Dr, Bethesda, MD 20892; and Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md (G.L.G.)
| | - Peter L. Choyke
- From the Molecular Imaging Program, National Cancer Institute (N.S., K.O.A., P.L.C.), Imaging Probe Development Center, National Heart, Lung, and Blood Institute (H.W.), and Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center (L.P.S.), U.S. National Institutes of Health, 10 Center Dr, Bethesda, MD 20892; and Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md (G.L.G.)
| |
Collapse
|
31
|
Müller E, Grinenko T, Pompe T, Waskow C, Werner C. Space constraints govern fate of hematopoietic stem and progenitor cells in vitro. Biomaterials 2015; 53:709-15. [PMID: 25890766 DOI: 10.1016/j.biomaterials.2015.02.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 01/07/2023]
Abstract
Deciphering exogenous cues that determine stem cell fate decisions is a persisting challenge of cell biology and bioengineering. In an effort to unravel the role of spatial constraints in the cell-instructive characteristics of bone marrow microenvironments, murine hematopoietic stem and progenitor cells (HSPC) were exposed to fibronectin-coated microcavities in vitro. Microcavity sizes were chosen to allow for the inclusion of either individual or multiple cells. Repopulation experiments using lethally irradiated mice showed that the maintenance of functional HSPC in culture critically depends on cavity dimensions. Short-term repopulating hematopoietic stem cells (ST-HSC) were found to be best supported within single-cell sized compartments while long-term repopulating HSC (LT-HSC) were maintained within both cavity sizes. In sum, the reported data reveal spatial restriction to be a simple but powerful means for directing HSPC fate ex vivo.
Collapse
Affiliation(s)
- Eike Müller
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Tatyana Grinenko
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Technische Universität Dresden, Fetschertrasse 74, 01307 Dresden, Germany
| | - Tilo Pompe
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany; Institute of Biochemistry, Universität Leipzig, Johannisallee 21, 04103 Leipzig, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Technische Universität Dresden, Fetschertrasse 74, 01307 Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| |
Collapse
|
32
|
Vick B, Rothenberg M, Sandhöfer N, Carlet M, Finkenzeller C, Krupka C, Grunert M, Trumpp A, Corbacioglu S, Ebinger M, André MC, Hiddemann W, Schneider S, Subklewe M, Metzeler KH, Spiekermann K, Jeremias I. An advanced preclinical mouse model for acute myeloid leukemia using patients' cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS One 2015; 10:e0120925. [PMID: 25793878 PMCID: PMC4368518 DOI: 10.1371/journal.pone.0120925] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/27/2015] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups.
Collapse
Affiliation(s)
- Binje Vick
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maja Rothenberg
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Nadine Sandhöfer
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michela Carlet
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Cornelia Finkenzeller
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Immunotherapy, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michaela Grunert
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Andreas Trumpp
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg, Germany
| | - Selim Corbacioglu
- Department of Pediatrics, University of Regensburg, Regensburg, Germany
| | - Martin Ebinger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology/Oncology, University Children’s Hospital, Eberhard Karls Universität, Tuebingen, Germany
| | - Maya C. André
- Department of Pediatric Hematology/Oncology, University Children’s Hospital, Eberhard Karls Universität, Tuebingen, Germany
- Department of Pediatric Intensive Care Medicine, University Children's Hospital (UKBB), Basel, Switzerland
| | - Wolfgang Hiddemann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Stephanie Schneider
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Marion Subklewe
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Immunotherapy, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Klaus H. Metzeler
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Karsten Spiekermann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Irmela Jeremias
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Oncology, Dr von Haunersches Kinderspital, Ludwig Maximilians-Universität (LMU), Munich, Germany
- * E-mail:
| |
Collapse
|
33
|
Yoshioka K, Ishii K, Kuramoto T, Nagai S, Funao H, Ishihama H, Shiono Y, Sasaki A, Aizawa M, Okada Y, Koyasu S, Toyama Y, Matsumoto M. A novel mouse model of soft-tissue infection using bioluminescence imaging allows noninvasive, real-time monitoring of bacterial growth. PLoS One 2014; 9:e106367. [PMID: 25184249 PMCID: PMC4153648 DOI: 10.1371/journal.pone.0106367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal infections, including surgical-site and implant-associated infections, often cause progressive inflammation and destroy areas of the soft tissue. Treating infections, especially those caused by multi-antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge. Although there are a few animal models that enable the quantitative evaluation of infection in soft tissues, these models are not always reproducible or sustainable. Here, we successfully established a real-time, in vivo, quantitative mouse model of soft-tissue infection in the superficial gluteus muscle (SGM) using bioluminescence imaging. A bioluminescent strain of MRSA was inoculated into the SGM of BALB/c adult male mice, followed by sequential measurement of bacterial photon intensity and serological and histological analyses of the mice. The mean photon intensity in the mice peaked immediately after inoculation and remained stable until day 28. The serum levels of interleukin-6, interleukin-1 and C-reactive protein at 12 hours after inoculation were significantly higher than those prior to inoculation, and the C-reactive protein remained significantly elevated until day 21. Histological analyses showed marked neutrophil infiltration and abscesses containing necrotic and fibrous tissues in the SGM. With this SGM mouse model, we successfully visualized and quantified stable bacterial growth over an extended period of time with bioluminescence imaging, which allowed us to monitor the process of infection without euthanizing the experimental animals. This model is applicable to in vivo evaluations of the long-term efficacy of novel antibiotics or antibacterial implants.
Collapse
Affiliation(s)
- Kenji Yoshioka
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Ken Ishii
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Kanagawa Academy of Science and Technology (KAST), Kawasaki, Kanagawa, Japan
- * E-mail:
| | - Tetsuya Kuramoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Shigenori Nagai
- Department of Microbiology and Immunology, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruki Funao
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Hiroko Ishihama
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Yuta Shiono
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Aya Sasaki
- Department of Pathology, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
- Kanagawa Academy of Science and Technology (KAST), Kawasaki, Kanagawa, Japan
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Shigeo Koyasu
- Department of Microbiology and Immunology, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Laboratory for Immune Cell System, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| |
Collapse
|
34
|
Gschweng EH, McCracken MN, Kaufman ML, Ho M, Hollis RP, Wang X, Saini N, Koya RC, Chodon T, Ribas A, Witte ON, Kohn DB. HSV-sr39TK positron emission tomography and suicide gene elimination of human hematopoietic stem cells and their progeny in humanized mice. Cancer Res 2014; 74:5173-83. [PMID: 25038231 DOI: 10.1158/0008-5472.can-14-0376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Engineering immunity against cancer by the adoptive transfer of hematopoietic stem cells (HSC) modified to express antigen-specific T-cell receptors (TCR) or chimeric antigen receptors generates a continual supply of effector T cells, potentially providing superior anticancer efficacy compared with the infusion of terminally differentiated T cells. Here, we demonstrate the in vivo generation of functional effector T cells from CD34-enriched human peripheral blood stem cells modified with a lentiviral vector designed for clinical use encoding a TCR recognizing the cancer/testes antigen NY-ESO-1, coexpressing the PET/suicide gene sr39TK. Ex vivo analysis of T cells showed antigen- and HLA-restricted effector function against melanoma. Robust engraftment of gene-modified human cells was demonstrated with PET reporter imaging in hematopoietic niches such as femurs, humeri, vertebrae, and the thymus. Safety was demonstrated by the in vivo ablation of PET signal, NY-ESO-1-TCR-bearing cells, and integrated lentiviral vector genomes upon treatment with ganciclovir, but not with vehicle control. Our study provides support for the efficacy and safety of gene-modified HSCs as a therapeutic modality for engineered cancer immunotherapy. Cancer Res; 74(18); 5173-83. ©2014 AACR.
Collapse
Affiliation(s)
- Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Melissa N McCracken
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Michelle Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Xiaoyan Wang
- Department of Medicine Statistics Core, University of Los Angeles, Los Angeles, Los Angeles, California
| | - Navdeep Saini
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Richard C Koya
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Thinle Chodon
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Antoni Ribas
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California. Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California. The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California
| | - Owen N Witte
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California. Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California. The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, Los Angeles, California. The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California. Department of Pediatrics, Division of Hematology/Oncology, Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
35
|
Identification of hematopoietic-specific regulatory elements from the CD45 gene and use for lentiviral tracking of transplanted cells. Exp Hematol 2014; 42:761-72.e1-10. [PMID: 24852660 DOI: 10.1016/j.exphem.2014.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023]
Abstract
The development of a hematopoietic reporter is crucial for determining the fate of lineages derived from cell-based therapies. A marking system will enable safer embryonic stem and induced pluripotent stem cell-based derivation of blood lineages and facilitate the development of efficient cellular reprogramming strategies based on direct fibroblast conversion. Here we report that the protein tyrosine phosphatase CD45 is an ideal candidate gene on which to base a hematopoietic reporter. CD45 regulatory elements were discovered by analyzing transcription factor chromatin occupancy (ChIP-seq) and promoter nuclease sensitivity (DNase-seq) to identify minimally sufficient sequences required for expression. After cloning the CD45 regulatory elements into an attenuated lentiviral backbone, we found that two transcriptional initiation regions were essential for high-level expression. Expressing CD45 promoters containing these regions and tethered to green fluorescent protein (GFP) in a primary B-cell differentiation assay and a transplantation model resulted in high levels of GFP in lymphoid, myeloid, and nucleated erythroid cells in mouse and human blood cell lineages. Moreover, GFP levels remained high 5 months after secondary transplantation, indicating persistence of the reporter. No CD45-driven GFP expression is observed after fibroblast or embryonic stem cell transduction. The GFP reporter is seen only after embryonic stem cells differentiate into hematopoietic cell progenitors and lineages, suggesting that this hematopoietic reporter system could be useful in validating potential autologous blood cell therapies.
Collapse
|
36
|
De Oliveira SN, Ryan C, Giannoni F, Hardee CL, Tremcinska I, Katebian B, Wherley J, Sahaghian A, Tu A, Grogan T, Elashoff D, Cooper LJN, Hollis RP, Kohn DB. Modification of hematopoietic stem/progenitor cells with CD19-specific chimeric antigen receptors as a novel approach for cancer immunotherapy. Hum Gene Ther 2014; 24:824-39. [PMID: 23978226 DOI: 10.1089/hum.2012.202] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chimeric antigen receptors (CARs) against CD19 have been shown to direct T-cells to specifically target B-lineage malignant cells in animal models and clinical trials, with efficient tumor cell lysis. However, in some cases, there has been insufficient persistence of effector cells, limiting clinical efficacy. We propose gene transfer to hematopoietic stem/progenitor cells (HSPC) as a novel approach to deliver the CD19-specific CAR, with potential for ensuring persistent production of effector cells of multiple lineages targeting B-lineage malignant cells. Assessments were performed using in vitro myeloid or natural killer (NK) cell differentiation of human HSPCs transduced with lentiviral vectors carrying first and second generations of CD19-specific CAR. Gene transfer did not impair hematopoietic differentiation and cell proliferation when transduced at 1-2 copies/cell. CAR-bearing myeloid and NK cells specifically lysed CD19-positive cells, with second-generation CAR including CD28 domains being more efficient in NK cells. Our results provide evidence for the feasibility and efficacy of the modification of HSPC with CAR as a strategy for generating multiple lineages of effector cells for immunotherapy against B-lineage malignancies to augment graft-versus-leukemia activity.
Collapse
Affiliation(s)
- Satiro Nakamura De Oliveira
- 1 Division of Hematology/Oncology, Department of Pediatrics, University of California-Los Angeles , Los Angeles, CA 90095
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McNamara G, Yanai A, Khankaldyyan V, Laug WE, Boden J, Webster K, Li Y, Wen R. Low magnification confocal microscopy of tumor angiogenesis. Methods Mol Biol 2014; 1075:149-75. [PMID: 24052350 DOI: 10.1007/978-1-60761-847-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood vessels are critical to normal mammalian development, tissue repair, and growth and treatment of cancer. Mouse research models enable mechanistic studies of blood vessels. We detail how to perfuse mice with fluorescent tomato lectin or the lipophilic fluorophore DiI. We provide details on how to image fluorescently labeled blood vessels.
Collapse
Affiliation(s)
- George McNamara
- Analytical Imaging Core, Diabetes Research Institute, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Over the past 50 years, much insight has been gained into the biology of hematopoietic stem cells (HSCs). Much of this information has been gained though isolation of specific bone marrow populations, and transplantation into irradiated recipients followed by characterization of chimeras months later. These studies have yielded insights into the function of HSCs, but have shed little light on the interactions of individual stem cells with their environment. Characterization of the behavior of single HSCs awaited the use of relatively noninvasive intravital microscopy, which allows one to identify rare cells in real time and follow them in multiple imaging sessions. Here we describe techniques used to image transplanted HSCs in the mouse calvarium using hybrid confocal/multi-photon microscopy and second harmonic imaging. For detection, fluorescently tagged HSCs are transplanted into a recipient mouse. The architecture of the bone marrow can be delineated using a combination of fluorescent probes and vascular dyes, second harmonic generation to detect the collagen signal from bone, and transgenic recipient mice containing specific fluorescent support cell populations.
Collapse
|
39
|
Abstract
Advances in noninvasive imaging technologies that allow for in vivo dynamic monitoring of cells and cellular function in living research subjects have revealed new insights into cell biology in the context of intact organs and their native environment. In the field of hematopoiesis and stem cell research, studies of cell trafficking involved in injury repair and hematopoietic engraftment have made great progress using these new tools. Stem cells present unique challenges for imaging since after transplantation, they proliferate dramatically and differentiate. Therefore, the imaging modality used needs to have a large dynamic range, and the genetic regulatory elements used need to be stably expressed during differentiation. Multiple imaging technologies using different modalities are available, and each varies in sensitivity, ease of data acquisition, signal to noise ratios (SNR), substrate availability, and other parameters that affect utility for monitoring cell fates and function. For a given application, there may be several different approaches that can be used. For mouse models, clinically validated technologies such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been joined by optical imaging techniques such as in vivo bioluminescence imaging (BLI) and fluorescence imaging (FLI), and all have been used to monitor bone marrow and stem cells after transplantation into mice. Photoacoustic imaging that utilizes the sound created by the thermal expansion of absorbed light to generate an image best represents hybrid technologies. Each modality requires that the cells of interest be marked with a genetic reporter that acts as a label making them uniquely visible using that technology. For each modality, there are several labels to choose from. Multiple methods for applying these different labels are available. This chapter provides an overview of the imaging technologies and commonly used labels for each, as well as detailed protocols for gene delivery into hematopoietic cells for the purposes of applying these specific labels to cell trafficking. The goal of this chapter is to provide adequate background information to allow the design and implementation of an experimental system for in vivo imaging in mice.
Collapse
|
40
|
Kedziorek DA, Solaiyappan M, Walczak P, Ehtiati T, Fu Y, Bulte JWM, Shea SM, Brost A, Wacker FK, Kraitchman DL. Using C-arm x-ray imaging to guide local reporter probe delivery for tracking stem cell engraftment. Theranostics 2013; 3:916-26. [PMID: 24396502 PMCID: PMC3879108 DOI: 10.7150/thno.6943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/28/2013] [Indexed: 11/05/2022] Open
Abstract
Poor cell survival and difficulties with visualization of cell delivery are major problems with current cell transplantation methods. To protect cells from early destruction, microencapsulation methods have been developed. The addition of a contrast agent to the microcapsule also could enable tracking by MR, ultrasound, and X-ray imaging. However, determining the cell viability within the microcapsule still remains an issue. Reporter gene imaging provides a way to determine cell viability, but delivery of the reporter probe by systemic injection may be hindered in ischemic diseases. In the present study, mesenchymal stem cells (MSCs) were transfected with triple fusion reporter gene containing red fluorescent protein, truncated thymidine kinase (SPECT/PET reporter) and firefly luciferase (bioluminescence reporter). Transfected cells were microencapsulated in either unlabeled or perfluorooctylbromide (PFOB) impregnated alginate. The addition of PFOB provided radiopacity to enable visualization of the microcapsules by X-ray imaging. Before intramuscular transplantation in rabbit thigh muscle, the microcapsules were incubated with D-luciferin, and bioluminescence imaging (BLI) was performed immediately. Twenty-four and forty-eight hours post transplantation, c-arm CT was used to target the luciferin to the X-ray-visible microcapsules for BLI cell viability assessment, rather than systemic reporter probe injections. Not only was the bioluminescent signal emission from the PFOB-encapsulated MSCs confirmed as compared to non-encapsulated, naked MSCs, but over 90% of injection sites of PFOB-encapsulated MSCs were visible on c-arm CT. The latter aided in successful targeting of the reporter probe to injection sites using conventional X-ray imaging to determine cell viability at 1-2 days post transplantation. Blind luciferin injections to the approximate location of unlabeled microcapsules resulted in successful BLI signal detection in only 18% of injections. In conclusion, reporter gene probes can be more precisely targeted using c-arm CT for in vivo transplant viability assessment, thereby avoiding large and costly systemic injections of a reporter probe.
Collapse
Affiliation(s)
- Dorota A Kedziorek
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Meiyappan Solaiyappan
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Piotr Walczak
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 2. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tina Ehtiati
- 3. Center for Applied Medical Imaging, Corporate Technology, Siemens Corporation, Baltimore, Maryland, United States
| | - Yingli Fu
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeff W M Bulte
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 2. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Steven M Shea
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 3. Center for Applied Medical Imaging, Corporate Technology, Siemens Corporation, Baltimore, Maryland, United States
| | - Alexander Brost
- 4. Pattern Recognition Lab, University of Erlangen, Erlangen, Germany
| | - Frank K Wacker
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 5. Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Dara L Kraitchman
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
41
|
Guggenheim JA, Basevi HRA, Styles IB, Frampton J, Dehghani H. Quantitative surface radiance mapping using multiview images of light-emitting turbid media. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2013; 30:2572-84. [PMID: 24323019 DOI: 10.1364/josaa.30.002572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A novel method is presented for accurately reconstructing a spatially resolved map of diffuse light flux on a surface using images of the surface and a model of the imaging system. This is achieved by applying a model-based reconstruction algorithm with an existing forward model of light propagation through free space that accounts for the effects of perspective, focus, and imaging geometry. It is shown that flux can be mapped reliably and quantitatively accurately with very low error, <3% with modest signal-to-noise ratio. Simulation shows that the method is generalizable to the case in which mirrors are used in the system and therefore multiple views can be combined in reconstruction. Validation experiments show that physical diffuse phantom surface fluxes can also be reconstructed accurately with variability <3% for a range of object positions, variable states of focus, and different orientations. The method provides a new way of making quantitatively accurate noncontact measurements of the amount of light leaving a diffusive medium, such as a small animal containing fluorescent or bioluminescent markers, that is independent of the imaging system configuration and surface position.
Collapse
|
42
|
Dong L, Zhang X, Yu C, Yu T, Liu S, Hou L, Fu L, Yi S, Chen W. Monitoring luciferase-labeled human prostate stem cell antigen-expressing tumor growth in a mouse model. Exp Ther Med 2013; 6:1208-1212. [PMID: 24223645 PMCID: PMC3820663 DOI: 10.3892/etm.2013.1293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/03/2013] [Indexed: 11/11/2022] Open
Abstract
The aim of this study was to establish a tumor model in mice with the expression of luciferase (Luc) and human prostate stem cell antigen (PSCA), in order to evaluate the activities of anticancer drugs or vaccines for prostate cancer. RM-1 cells were stably transfected with pcDNA-Luc and pcDNA-PSCA plasmids. The Luc-expressing cells were examined using a luminometer and the PSCA-expressing cells were examined using a reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis. Male C57BL/6 mice were inoculated subcutaneously with the RM-PSCA/Luc cells, prior to the tumor growth and survival time of the mice being measured, respectively. In vivo bioluminescence imaging was used to detect Luc expression and immunohistochemical analysis was used to detect PSCA expression. Inoculation of the tumor cells into the C57BL/6 mice closely mimicked the tumor growth of prostate cancer. All of the inoculated mice exhibited a detectable tumor within two weeks. Tumor progression was able to be quantitatively monitored following the inoculation of 1×106 RM-PSCA/Luc cells. There was an excellent correlation (R2=0.9849) between the photon counts and tumor volume. The expression of PSCA in tumor tissues was confirmed using immunohistochemical analysis. The Luc and PSCA co-expression tumor model was successfully established in mice, which is likely to accelerate the understanding of the pathogenesis of prostate cancer and facilitate the development of novel antitumor drugs or vaccines for the disease.
Collapse
Affiliation(s)
- Lei Dong
- Clinical Laboratory Center, PLA Air Force General Hospital, Haidian, Beijing 100142
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lassailly F, Foster K, Lopez-Onieva L, Currie E, Bonnet D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 2013; 122:1730-40. [PMID: 23814020 DOI: 10.1182/blood-2012-11-467498] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intravital microscopy of the calvarium is the only noninvasive method for high-resolution imaging of the bone marrow (BM) and hematopoietic stem cell (HSC) niches. However, it is unclear if the calvarium is representative of all BM compartments. Using the combination of whole body optical imaging, intravital microscopy, and "in vivo fluorescence trapping," a thorough comparison of HSCs and putative HSC niches in the calvaria, epiphyses, and diaphyses, at steady state or after HSC transplantation, can be made. We report substantial heterogeneity between different BM compartments in terms of bone-remodeling activity (BRA), blood volume fraction (BVF), and hypoxia. Although BVF is high in all BM compartments, including areas adjacent to the endosteum, we found that compartments displaying the highest BVF and BRA were preferentially seeded and engrafted upon HSC transplantation. Unexpectedly, the macroanatomical distribution of HSCs at steady state is homogeneous across these 3 areas and independent of these 2 parameters and suggests the existence of "reconstituting niches," which are distinct from "homeostatic niches." Both types of niches were observed in the calvarium, indicating that endochondral ossification, the process needed for the formation of HSC niches during embryogenesis, is dispensable for the formation of HSC niches during adulthood.
Collapse
Affiliation(s)
- Francois Lassailly
- Haematopoietic Stem Cell Laboratory, Londong Research Institute, Cancer Research UK, London, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Aljitawi OS, Xiao Y, Eskew JD, Parelkar NK, Swink M, Radel J, Lin TL, Kimler BF, Mahnken JD, McGuirk JP, Broxmeyer HE, Vielhauer G. Hyperbaric oxygen improves engraftment of ex-vivo expanded and gene transduced human CD34⁺ cells in a murine model of umbilical cord blood transplantation. Blood Cells Mol Dis 2013; 52:59-67. [PMID: 23953010 DOI: 10.1016/j.bcmd.2013.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Delayed engraftment and graft failure represent major obstacles to successful umbilical cord blood (UCB) transplantation. Herein, we evaluated the use of hyperbaric oxygen (HBO) therapy as an intervention to improve human UCB stem/progenitor cell engraftment in an immune deficient mouse model. Six- to eight-week old NSG mice were sublethally irradiated 24 hours prior to CD34⁺ UCB cell transplant. Irradiated mice were separated into a non-HBO group (where mice remained under normoxic conditions) and the HBO group (where mice received 2 hours of HBO therapy; 100% oxygen at 2.5 atmospheres absolute). Four hours after completing HBO therapy, both groups intravenously received CD34⁺ UCB cells that were transduced with a lentivirus carrying luciferase gene and expanded for in vivo imaging. Mice were imaged and then sacrificed at one of 10 times up to 4.5 months post-transplant. HBO treated mice demonstrated significantly improved bone marrow, peripheral blood, and spleen retention and subsequent engraftment. In addition, HBO significantly improved peripheral, spleen and bone marrow engraftment of human myeloid and B-cell subsets. In vivo imaging demonstrated that HBO mice had significantly higher ventral and dorsal bioluminescence values. These studies suggest that HBO treatment of NSG mice prior to UCB CD34⁺ cell infusion significantly improves engraftment.
Collapse
Affiliation(s)
- Omar S Aljitawi
- Division of Hematology/Oncology and Blood and Marrow Transplantation Program, 2330 Shawnee Mission Parkway, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: Function, Detection, and Bioanalysis. Chem Rev 2013; 113:6207-33. [PMID: 23697835 DOI: 10.1021/cr300362f] [Citation(s) in RCA: 854] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
46
|
Byrne WL, DeLille A, Kuo C, de Jong JS, van Dam GM, Francis KP, Tangney M. Use of optical imaging to progress novel therapeutics to the clinic. J Control Release 2013; 172:523-34. [PMID: 23680286 DOI: 10.1016/j.jconrel.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 01/02/2023]
Abstract
There is an undisputed need for employment and improvement of robust technology for real-time analyses of therapeutic delivery and responses in clinical translation of gene and cell therapies. Over the past decade, optical imaging has become the in vivo imaging modality of choice for many preclinical laboratories due to its efficiency, practicality and affordability, while more recently, the clinical potential for this technology is becoming apparent. This review provides an update on the current state of the art in in vivo optical imaging and discusses this rapidly improving technology in the context of it representing a translation enabler or indeed a future clinical imaging modality in its own right.
Collapse
Affiliation(s)
- William L Byrne
- Cork Cancer Research Centre, BioScience Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
47
|
Nallar SC, Kalakonda S, Lindner DJ, Lorenz RR, Lamarre E, Weihua X, Kalvakolanu DV. Tumor-derived mutations in the gene associated with retinoid interferon-induced mortality (GRIM-19) disrupt its anti-signal transducer and activator of transcription 3 (STAT3) activity and promote oncogenesis. J Biol Chem 2013; 288:7930-7941. [PMID: 23386605 DOI: 10.1074/jbc.m112.440610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) protein is critical for multiple cytokine and growth factor-induced biological responses in vivo. Its transcriptional activity is controlled by a transient phosphorylation of a critical tyrosine. Constitutive activation of STAT3 imparts resistance to apoptosis, promotes cell proliferation, and induces de novo micro-angiogenesis, three of the six cardinal hallmarks of a typical cancer cell. Earlier we reported the isolation of GRIM-19 as a growth suppressor using a genome-wide expression knockdown strategy. GRIM-19 binds to STAT3 and suppresses its transcriptional activity. To understand the pathological relevance of GRIM-19, we screened a set of primary head and neck tumors and identified three somatic mutations in GRIM-19. Wild-type GRIM-19 suppressed cellular transformation by a constitutively active form of STAT3, whereas tumor-derived mutants L71P, L91P and A95T significantly lost their ability to associate with STAT3, block gene expression, and suppress cellular transformation and tumor growth in vivo. Additionally, these mutants lost their capacity to prevent metastasis. These mutations define a mechanism by which STAT3 activity is deregulated in certain human head and neck tumors.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sudhakar Kalakonda
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Daniel J Lindner
- Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Robert R Lorenz
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Eric Lamarre
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiao Weihua
- University of Science Technology, 230027 Hefei, China
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
48
|
Liu Y, Wu HW, Sheard MA, Sposto R, Somanchi SS, Cooper LJN, Lee DA, Seeger RC. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res 2013; 19:2132-43. [PMID: 23378384 DOI: 10.1158/1078-0432.ccr-12-1243] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Adoptive transfer of natural killer (NK) cells combined with tumor-specific monoclonal antibodies (mAb) has therapeutic potential for malignancies. We determined if large numbers of activated NK (aNK) cells can be grown ex vivo from peripheral blood mononuclear cells (PBMC) of children with high-risk neuroblastoma using artificial antigen-presenting cells (aAPC). EXPERIMENTAL DESIGN Irradiated K562-derived Clone 9.mbIL21 aAPC were cocultured with PBMC, and propagated NK cells were characterized with flow cytometry, cytotoxicity assays, Luminex multicytokine assays, and a nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of disseminated neuroblastoma. RESULTS Coculturing patient PBMC with aAPC for 14 days induced 2,363- ± 443-fold expansion of CD56(+)CD3(-)CD14(-) NK cells with 83% ± 3% purity (n = 10). Results were similar to PBMC from normal donors (n = 5). Expression of DNAM-1, NKG2D, FcγRIII/CD16, and CD56 increased 6- ± 3-, 10- ± 2-, 21- ± 20-, and 18- ± 3-fold, respectively, on day 14 compared with day 0, showing activation of NK cells. In vitro, aNK cells were highly cytotoxic against neuroblastoma cell lines and killing was enhanced with GD2-specific mAb ch14.18. When mediating cytotoxicity with ch14.18, release of TNF-α, granulocyte macrophage colony-stimulating factor, IFN-γ, sCD40L, CCL2/MCP-1, CXCL9/MIG, and CXCL11/I-TAC by aNK cells increased 4-, 5-, 6-, 15-, 265-, 917-, and 363-fold (151-9,121 pg/mL), respectively, compared with aNK cells alone. Survival of NOD/SCID mice bearing disseminated neuroblastoma improved when treated with thawed and immediately intravenously infused cryopreserved aNK cells compared with untreated mice and was further improved when ch14.18 was added. CONCLUSION Propagation of large numbers of aNK cells that maintain potent antineuroblastoma activities when cryopreserved supports clinical testing of adoptive cell therapy with ch14.18.
Collapse
Affiliation(s)
- Yin Liu
- Division of Hematology/Oncology and Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
MacLean AL, Lo Celso C, Stumpf MPH. Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled. J R Soc Interface 2013; 10:20120968. [PMID: 23349436 PMCID: PMC3627104 DOI: 10.1098/rsif.2012.0968] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Haematopoietic stem cells (HSCs) are responsible for maintaining immune cells, red blood cells and platelets throughout life. HSCs must be located in their ecological niche (the bone marrow) to function correctly, that is, to regenerate themselves and their progeny; the latter eventually exit the bone marrow and enter circulation. We propose that cells with oncogenic potential-cancer/leukaemia stem cells (LSC)-and their progeny will also occupy this niche. Mathematical models, which describe the dynamics of HSCs, LSCs and their progeny allow investigation into the conditions necessary for defeating a malignant invasion of the niche. Two such models are developed and analysed here. To characterize their behaviour, we use an inferential framework that allows us to study regions in parameter space that give rise to desired behaviour together with an assessment of the robustness of the dynamics. Using this approach, we map out conditions under which HSCs can outcompete LSCs. In therapeutic applications, we clearly want to drive haematopoiesis into such regimes and the current analysis provide some guidance as to how we can identify new therapeutic targets. Our results suggest that maintaining a viable population of HSCs and their progenies in the niche may often already be nearly sufficient to eradicate LSCs from the system.
Collapse
Affiliation(s)
- Adam L MacLean
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
50
|
Christoph S, Schlegel J, Alvarez-Calderon F, Kim YM, Brandao LN, DeRyckere D, Graham DK. Bioluminescence imaging of leukemia cell lines in vitro and in mouse xenografts: effects of monoclonal and polyclonal cell populations on intensity and kinetics of photon emission. J Hematol Oncol 2013; 6:10. [PMID: 23343252 PMCID: PMC3561164 DOI: 10.1186/1756-8722-6-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/17/2013] [Indexed: 12/29/2022] Open
Abstract
Background We investigated the utility of bioluminescence imaging (BLI) using firefly luciferase in monoclonal and polyclonal populations of leukemia cells in vitro and in vivo. Methods Monoclonal and polyclonal human lymphoid and myeloid leukemia cell lines transduced with firefly luciferase were used for BLI. Results Kinetics and dynamics of bioluminescence signal were cell line dependent. Luciferase expression decreased significantly over time in polyclonal leukemia cells in vitro. Transplantation of polyclonal luciferase-tagged cells in mice resulted in inconsistent signal intensity. After selection of monoclonal cell populations, luciferase activity was stable, equal kinetic and dynamic of bioluminescence intensity and strong correlation between cell number and light emission in vitro were observed. We obtained an equal development of leukemia burden detected by luciferase activity in NOD-scid-gamma mice after transplantation of monoclonal populations. Conclusion The use of monoclonal leukemia cells selected for stable and equal luciferase activity is recommended for experiments in vitro and xenograft mouse models. The findings are highly significant for bioluminescence imaging focused on pre-clinical drug development.
Collapse
Affiliation(s)
- Sandra Christoph
- Department of Pediatrics, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|