1
|
Santamaria JC, Chevallier J, Dutour L, Picart A, Kergaravat C, Cieslak A, Amrane M, Vincentelli R, Puthier D, Clave E, Sergé A, Cohen-Solal M, Toubert A, Irla M. RANKL treatment restores thymic function and improves T cell-mediated immune responses in aged mice. Sci Transl Med 2024; 16:eadp3171. [PMID: 39630886 DOI: 10.1126/scitranslmed.adp3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
Age-related thymic involution, leading to reduced T cell production, is one of the major causes of immunosenescence. This results in an increased susceptibility to cancers, infections, and autoimmunity and in reduced vaccine efficacy. Here, we identified that the receptor activator of nuclear factor κB (RANK)-RANK ligand (RANKL) axis in the thymus is altered during aging. Using a conditional transgenic mouse model, we demonstrated that endothelial cells depend on RANK signaling for their cellularity and functional maturation. Decreased RANKL availability during aging resulted in a decline in cellularity and function of both endothelial cells and thymic epithelial cells, contributing to thymic involution. We then found that, whereas RANKL neutralization in young mice mimicked thymic involution, exogenous RANKL treatment in aged mice restored thymic architecture as well as endothelial cell and epithelial cell abundance and functional properties. Consequently, RANKL improved T cell progenitor homing to the thymus and boosted T cell production. This cascade of events resulted in peripheral T cell renewal and effective antitumor and vaccine responses in aged mice. Furthermore, we conducted a proof-of-concept study that showed that RANKL stimulates endothelial cells and epithelial cells in human thymic organocultures. Overall, our findings suggest that targeting the RANK-RANKL axis through exogenous RANKL administration could represent a therapeutic strategy to rejuvenate thymic function and improve T cell immunity during aging.
Collapse
Affiliation(s)
- Jérémy C Santamaria
- Centre d'Immunologie de Marseille-Luminy, CIML, CNRS, INSERM, Aix-Marseille Université, Marseille, Turing Centre for Living Systems, 13288 Marseille Cedex 09, France
| | - Jessica Chevallier
- Centre d'Immunologie de Marseille-Luminy, CIML, CNRS, INSERM, Aix-Marseille Université, Marseille, Turing Centre for Living Systems, 13288 Marseille Cedex 09, France
| | - Léa Dutour
- Université de Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMRS 1160, 75010 Paris, France
| | - Amandine Picart
- Université de Paris Cité, INSERM, UMR-S 1132 BIOSCAR, 75010 Paris, France
- Departement de Rhumatologie, Hôpital Lariboisière, AP-HP, 75010 Paris, France
| | - Camille Kergaravat
- Université de Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMRS 1160, 75010 Paris, France
| | - Agata Cieslak
- Laboratoire d'Onco-Hematologie, Hôpital Necker Enfants Malades, AP-HP, 75015 Paris, France
- Université Paris Cité, CNRS, INSERM U1151, Institut Necker Enfants Malades (INEM), 75015 Paris, France
| | - Mourad Amrane
- Service de Chirurgie Cardiovasculaire, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS-Aix-Marseille Université, 13288 Marseille Cedex 09, France
| | - Denis Puthier
- Theories and Approaches of Genomic Complexity (TAGC), Inserm U1090, Aix-Marseille University, 13288 Marseille Cedex 09, France
| | - Emmanuel Clave
- Université de Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMRS 1160, 75010 Paris, France
| | - Arnauld Sergé
- Laboratoire Adhesion and Inflammation (LAI), CNRS, INSERM, Aix Marseille Université, Turing Centre for Living Systems, 13288 Marseille Cedex 09, France
| | - Martine Cohen-Solal
- Université de Paris Cité, INSERM, UMR-S 1132 BIOSCAR, 75010 Paris, France
- Departement de Rhumatologie, Hôpital Lariboisière, AP-HP, 75010 Paris, France
| | - Antoine Toubert
- Université de Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM UMRS 1160, 75010 Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, 75010 Paris France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, CIML, CNRS, INSERM, Aix-Marseille Université, Marseille, Turing Centre for Living Systems, 13288 Marseille Cedex 09, France
| |
Collapse
|
2
|
Al-Khreisat MJ, Hussain FA, Abdelfattah AM, Almotiri A, Al-Sanabra OM, Johan MF. The Role of NOTCH1, GATA3, and c-MYC in T Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:cancers14112799. [PMID: 35681778 PMCID: PMC9179380 DOI: 10.3390/cancers14112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous malignant tumours of white blood cells characterised by the aberrant proliferation of mature lymphoid cells or their precursors. Lymphomas are classified into main types depending on the histopathologic evidence of biopsy taken from an enlarged lymph node, progress stages, treatment strategies, and outcomes: Hodgkin and non-Hodgkin lymphoma (NHL). Moreover, lymphomas can be further divided into subtypes depending on the cell origin, and immunophenotypic and genetic aberrations. Many factors play vital roles in the progression, pathogenicity, incidence, and mortality rate of lymphomas. Among NHLs, peripheral T cell lymphomas (PTCLs) are rare lymphoid malignancies, that have various cellular morphology and genetic mutations. The clinical presentations are usually observed at the advanced stage of the disease. Many recent studies have reported that the expressions of NOTCH1, GATA3, and c-MYC are associated with poorer prognosis in PTCL and are involved in downstream activities. However, questions have been raised about the pathological relationship between these factors in PTCLs. Therefore, in this review, we investigate the role and relationship of the NOTCH1 pathway, transcriptional factor GATA3 and proto-oncogene c-MYC in normal T cell development and malignant PTCL subtypes.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ali Mahmoud Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences—Dawadmi, Shaqra University, Dawadmi 17464, Saudi Arabia;
| | - Ola Mohammed Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-97-67-62-00
| |
Collapse
|
3
|
Ito Y, Nakahara F, Kagoya Y, Kurokawa M. CD62L expression level determines the cell fate of myeloid progenitors. Stem Cell Reports 2021; 16:2871-2886. [PMID: 34798065 PMCID: PMC8693656 DOI: 10.1016/j.stemcr.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/01/2022] Open
Abstract
Hematopoietic cells differentiate through several progenitors in a hierarchical manner, and recent single-cell analyses have revealed substantial heterogeneity within each progenitor. Although common myeloid progenitors (CMPs) are defined as a multipotent cell population that can differentiate into granulocyte-monocyte progenitors (GMPs) and megakaryocyte-erythrocyte progenitors (MEPs), and GMPs generate neutrophils and monocytes, these myeloid progenitors must contain some lineage-committed progenitors. Through gene expression analysis at single-cell levels, we identified CD62L as a marker to reveal the heterogeneity. We confirmed that CD62L-negative CMPs represent "bona fide" CMPs, whereas CD62L-high CMPs are mostly restricted to GMP potentials both in mice and humans. In addition, we identified CD62L-negative GMPs as the most immature subsets in GMPs and Ly6C+CD62L-intermediate and Ly6C+CD62L-high GMPs are skewed to neutrophil and monocyte differentiation in mice, respectively. Our findings contribute to more profound understanding about the mechanism of myeloid differentiation.
Collapse
Affiliation(s)
- Yusuke Ito
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Fumio Nakahara
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Kagoya
- Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
4
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
6
|
Chen ELY, Thompson PK, Zúñiga-Pflücker JC. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat Immunol 2019; 20:1456-1468. [PMID: 31636466 PMCID: PMC6858571 DOI: 10.1038/s41590-019-0518-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
T cell specification and commitment require Notch signaling. Although the requirement for Notch signaling during intrathymic T cell development is known, it is still unclear whether the onset of T cell priming can occur in a prethymic niche and whether RBPJ-dependent Notch signaling has a role during this event. Here, we established an Rbpj-inducible system that allowed temporal and tissue-specific control of the responsiveness to Notch in all hematopoietic cells. Using this system, we found that Notch signaling was required before the early T cell progenitor stage in the thymus. Lymphoid-primed multipotent progenitors in the bone marrow underwent Notch signaling with Rbpj induction, which inhibited development towards the myeloid lineage in thymus-seeding progenitors. Thus, our results indicated that the onset of T cell differentiation occurred in a prethymic setting, and that Notch played an important role during this event.
Collapse
Affiliation(s)
- Edward L Y Chen
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Patrycja K Thompson
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
8
|
de Pooter RF, Dias S, Chowdhury M, Bartom ET, Okoreeh MK, Sigvardsson M, Kee BL. Cutting Edge: Lymphomyeloid-Primed Progenitor Cell Fates Are Controlled by the Transcription Factor Tal1. THE JOURNAL OF IMMUNOLOGY 2019; 202:2837-2842. [PMID: 30962294 DOI: 10.4049/jimmunol.1801220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/17/2019] [Indexed: 11/19/2022]
Abstract
Lymphoid specification is the process by which hematopoietic stem cells (HSCs) and their progeny become restricted to differentiation through the lymphoid lineages. The basic helix-loop-helix transcription factors E2A and Lyl1 form a complex that promotes lymphoid specification. In this study, we demonstrate that Tal1, a Lyl1-related basic helix-loop-helix transcription factor that promotes T acute lymphoblastic leukemia and is required for HSC specification, erythropoiesis, and megakaryopoiesis, is a negative regulator of murine lymphoid specification. We demonstrate that Tal1 limits the expression of multiple E2A target genes in HSCs and controls the balance of myeloid versus T lymphocyte differentiation potential in lymphomyeloid-primed progenitors. Our data provide insight into the mechanisms controlling lymphocyte specification and may reveal a basis for the unique functions of Tal1 and Lyl1 in T acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Renée F de Pooter
- Department of Pathology, The University of Chicago, Chicago, IL 60637.,Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Sheila Dias
- Department of Pathology, The University of Chicago, Chicago, IL 60637.,Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Munmun Chowdhury
- Department of Pathology, The University of Chicago, Chicago, IL 60637.,Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Elisabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611
| | - Michael K Okoreeh
- Committee on Immunology, The University of Chicago, Chicago, IL 60637.,Department of Medicine, The University of Chicago, Chicago, IL 60637; and
| | | | - Barbara L Kee
- Department of Pathology, The University of Chicago, Chicago, IL 60637; .,Committee on Immunology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
9
|
Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev 2016; 271:72-97. [PMID: 27088908 DOI: 10.1111/imr.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Yuan Kueh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jingli A Zhang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
10
|
Modeling the development of the post-natal mouse thymus in the absence of bone marrow progenitors. Sci Rep 2016; 6:36159. [PMID: 27824070 PMCID: PMC5099910 DOI: 10.1038/srep36159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Many mathematical models have been published with the purpose of explaining aspects of T-cell development in the thymus. In this manuscript we adapted a four-compartment model of the thymus and used a range of mathematical approaches with the aim of explaining the dynamics of the four main thymocyte populations in the mouse thymus, from the emergence of the first fetal thymocyte until the death of the animal. At various pre-natal and post-natal stages we investigated experimentally the number and composition of thymocytes populations, their apoptosis and proliferation, along with data from literature, to create and validate the model. In our model the proliferation processes are characterized by decreasing proliferation rates, which allows us to model the natural involution of the thymus. The best results were obtained when different sets of parameters were used for the fetal and post-natal periods, suggesting that birth may induce a discontinuity in the modeled processes. Our model is able to model the development of both pre-natal and post-natal thymocyte populations. Also, our findings showed that the post-natal thymus is able to develop in the absence of the daily input of bone marrow progenitors, providing more evidence to support the autonomous development of the post-natal thymus.
Collapse
|
11
|
Pioli PD, Chen X, Weis JJ, Weis JH. Fatal autoimmunity results from the conditional deletion of Snai2 and Snai3. Cell Immunol 2015; 295:1-18. [PMID: 25732600 DOI: 10.1016/j.cellimm.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/03/2023]
Abstract
Transcriptional regulation of gene expression is a key component of orchestrating proper immune cell development and function. One strategy for maintaining these transcriptional programs has been the evolution of transcription factor families with members possessing overlapping functions. Using the germ line deletion of Snai2 combined with the hematopoietic specific deletion of Snai3, we report that these factors function redundantly to preserve the development of B and T cells. Such animals display severe lymphopenia, alopecia and dermatitis as well as profound autoimmunity manifested by the production of high levels of autoantibodies as early as 3 weeks of age and die by 30 days after birth. Autoantibodies included both IgM and IgG isotypes and were reactive against cytoplasmic and membranous components. A regulatory T cell defect contributed to the autoimmune response in that adoptive transfer of wild type regulatory T cells alleviated symptoms of autoimmunity. Additionally, transplantation of Snai2/Snai3 double deficient bone marrow into Snai2 sufficient Rag2(-/-) recipients resulted in autoantibody generation. The results demonstrated that appropriate expression of Snai2 and Snai3 in cells of hematopoietic derivation plays an important role in development and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Xinjian Chen
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|
12
|
De Barros SC, Zimmermann VS, Taylor N. Concise review: hematopoietic stem cell transplantation: targeting the thymus. Stem Cells 2014; 31:1245-51. [PMID: 23554173 DOI: 10.1002/stem.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/15/2013] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic stem cell (HSC) transplantation can cure patients suffering from diverse genetic and acquired diseases as well as cancers. Nevertheless, under conditions where T-cell reconstitution is critical, the entry of donor progenitors into the thymus remains a major bottleneck. It is assumed that following the intravenous injection of HSC, they first home to the BM. More committed progenitors can then be exported to the thymus in response to a myriad of signals regulating thymus seeding. Notably although, the thymus is not continually receptive to the import of hematopoietic progenitors. Furthermore, as stem cells with self-renewing capacity do not take up residence in the thymus under physiological conditions, the periodic colonization of the thymus is essential for the sustained differentiation of T lymphocytes. As such, we and others have invested significant efforts into exploring avenues that might foster a long-term thymus-autonomous differentiation. Here, we review strategic approaches that have resulted in long-term T-cell differentiation in immunodeficient (SCID) mice, even across histocompatibility barriers. These include the forced thymic entry of BM precursors by their direct intrathymic injection as well as the transplantation of neonatal thymi. The capacity of the thymus to support hematopoietic progenitors with renewal potential will hopefully promote the development of new therapeutic strategies aimed at enhancing T-cell differentiation in patients undergoing HSC transplantation.
Collapse
Affiliation(s)
- Stéphanie C De Barros
- Institut de Génétique Moléculaire de Montpellier, Université Montpellier , Montpellier, France
| | | | | |
Collapse
|
13
|
Chua HL, Plett PA, Sampson CH, Joshi M, Tabbey R, Katz B, MacVittie TJ, Orschell CM. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome. HEALTH PHYSICS 2012; 103:356-66. [PMID: 22929468 PMCID: PMC3743220 DOI: 10.1097/hp.0b013e3182666d6f] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.
Collapse
Affiliation(s)
- Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - P. Artur Plett
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mandar Joshi
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebeka Tabbey
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Barry Katz
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
14
|
Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nat Immunol 2012; 13:963-71. [PMID: 22941246 PMCID: PMC3448017 DOI: 10.1038/ni.2405] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/24/2012] [Indexed: 01/07/2023]
Abstract
The expression of CD10 has long been used to define human lymphoid commitment. We report a unique lymphoid-primed population in human bone marrow that was generated from hematopoietic stem cells (HSCs) before the onset of CD10 expression and B cell commitment. This subset was identified by high expression of the homing molecule L-selectin (CD62L). CD10−CD62Lhi progenitors possessed full lymphoid and monocytic potential, but lacked erythroid potential. Gene expression profiling placed the CD10−CD62Lhi population at an intermediate stage of differentiation between HSCs and lineage-negative (Lin−) CD34+CD10+ progenitors. L-selectin was expressed on immature thymocytes and its ligands were expressed at the cortico-medullary junction, suggesting a possible role in thymic homing. These studies identify the earliest stage of lymphoid priming in human bone marrow.
Collapse
|
15
|
Belyaev NN, Biró J, Athanasakis D, Fernandez-Reyes D, Potocnik AJ. Global transcriptional analysis of primitive thymocytes reveals accelerated dynamics of T cell specification in fetal stages. Immunogenetics 2012; 64:591-604. [PMID: 22581009 PMCID: PMC3395349 DOI: 10.1007/s00251-012-0620-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
Abstract
T cell development constitutes a multistage process allowing the dissection of events resulting in cellular commitment and functional specification in a specialized microenvironment. This process is guided by the appropriate expression of regulatory genetic factors like transcriptional activators or repressors which are, in part, dependent on instructive signals of the microenvironment. To date, it remains unclear whether exactly the same genetic mechanism acts in adult compared to fetal T cell development. In order to directly compare T cell commitment during adult and fetal differentiation, we isolated subsequent stages of intrathymic subpopulations starting with early canonical T cell progenitors up to irreversibly committed T cell precursors. The genome-wide analysis revealed several distinct gene clusters with a specific pattern of gene regulation for each subset. The largest cluster contained genes upregulated after transition through the most primitive pool into the next transitory population with a consistently elevated expression of elements associated with ongoing T cell fate specification, like Gata3 and Tcf7, in fetal progenitors. Furthermore, adult and fetal T cell progenitors occupied distinct "transcriptional territories" revealing a precise land map of the progression to final T cell commitment operating in different developmental windows. The presence and/or elevated expression of elements associated with an ongoing establishment of a T cell signature in the most primitive fetal subset is highly suggestive for an extrathymic initiation of T cell specification and underlines the fundamental differences in fetal versus adult lymphopoiesis.
Collapse
Affiliation(s)
- Nikolai N Belyaev
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
16
|
Extra-thymic physiological T lineage progenitor activity is exclusively confined to cells expressing either CD127, CD90, or high levels of CD117. PLoS One 2012; 7:e30864. [PMID: 22355330 PMCID: PMC3280270 DOI: 10.1371/journal.pone.0030864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/28/2011] [Indexed: 11/19/2022] Open
Abstract
T cell development depends on continuous recruitment of progenitors from bone marrow (BM) to the thymus via peripheral blood. However, both phenotype and functional characteristics of physiological T cell precursors remain ill-defined. Here, we characterized a putative CD135+CD27+ T cell progenitor population, which lacked expression of CD127, CD90, and high levels of CD117 and was therefore termed triple negative precursor (TNP). TNPs were present in both BM and blood and displayed robust T lineage potential, but virtually no myeloid or B lineage potential, in vitro. However, TNPs did not efficiently generate T lineage progeny after intravenous or intrathymic transfer, suggesting that a physiological thymic microenvironment does not optimally support T cell differentiation from TNPs. Thus, we propose that physiological T cell precursors are confined to populations expressing either CD127, CD90, or high levels of CD117 in addition to CD135 and CD27 and that TNPs may have other physiological functions.
Collapse
|
17
|
Yang Q, Saenz SA, Zlotoff DA, Artis D, Bhandoola A. Cutting edge: Natural helper cells derive from lymphoid progenitors. THE JOURNAL OF IMMUNOLOGY 2011; 187:5505-9. [PMID: 22025549 DOI: 10.4049/jimmunol.1102039] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Natural helper (NH) cells are recently discovered innate immune cells that confer protective type 2 immunity during helminth infection and mediate influenza-induced airway hypersensitivity. Little is known about the ontogeny of NH cells. We report in this study that NH cells derive from bone marrow lymphoid progenitors. Using RAG-1Cre/ROSA26(YFP) mice, we show that most NH cells are marked with a history of RAG-1 expression, implying lymphoid developmental origin. The development of NH cells depends on the cytokine receptor Flt3, which is required for the efficient generation of bone marrow lymphoid progenitors. Finally, we demonstrate that lymphoid progenitors, but not myeloid-erythroid progenitors, give rise to NH cells in vivo. This work therefore expands the lymphocyte family, currently comprising T, B, and NK cells, to include NH cells as another type of innate lymphocyte that derives from bone marrow lymphoid progenitors.
Collapse
Affiliation(s)
- Qi Yang
- Department of Pathology, Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
18
|
Cho S, Spangrude GJ. Enrichment of functionally distinct mouse hematopoietic progenitor cell populations using CD62L. THE JOURNAL OF IMMUNOLOGY 2011; 187:5203-10. [PMID: 21998453 DOI: 10.4049/jimmunol.1102119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The details of the bifurcation of the lymphoid and myeloid lineages following commitment by multipotent progenitor cells (MPP) remain a topic of controversy. We report that the surface glycoprotein CD62L can be characterized as a novel marker of this and other stages of early hematopoietic differentiation. Cell isolation and transplant studies demonstrated CD62L(neg/low) long-term hematopoietic stem cells and CD62L(high) MPP within the traditionally defined c-kit(pos)Lin(neg/low)Sca-1(pos) stem/progenitor cell population. Within the MPP population, previously defined as c-kit(pos)Lin(neg/low)Sca-1(pos)-Thy-1.1(neg)Flt3(pos), Sca-1 and CD62L resolved four populations and segregated Sca-1(high)CD62L(neg/low) MPP from Sca-1(high)CD62L(high) leukocyte-biased progenitors. Using a novel transplantation method that allows tracking of erythroid and platelet engraftment as an alternative to the classical method of in vitro colony formation, we characterized Sca-1(high)CD62L(neg/low) cells as MPP, based on transient engraftment of these lineages. These data establish CD62L as a useful tool in the study of early hematopoiesis and emphasize the power of trilineage-engraftment studies in establishing the lineage potential of MPP subsets.
Collapse
Affiliation(s)
- Scott Cho
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132-2408, USA
| | | |
Collapse
|
19
|
Abstract
Lymphopoiesis generates mature B, T, and NK lymphocytes from hematopoietic stem cells via a series of increasingly restricted developmental intermediates. The transcriptional networks that regulate these fate choices are composed of both common and lineage-specific components, which combine to create a cellular context that informs the developmental response to external signals. E proteins are an important factor during lymphopoiesis, and E2A in particular is required for normal T- and B-cell development. Although the other E proteins, HEB and E2-2, are expressed during lymphopoiesis and can compensate for some of E2A's activity, E2A proteins have non-redundant functions during early T-cell development and at multiple checkpoints throughout B lymphopoiesis. More recently, a role for E2A has been demonstrated in the generation of lymphoid-primed multipotent progenitors and shown to favor their specification toward lymphoid over myeloid lineages. This review summarizes both our current understanding of the wide-ranging functions of E proteins during the development of adaptive lymphocytes and the novel functions of E2A in orchestrating a lymphoid-biased cellular context in early multipotent progenitors.
Collapse
Affiliation(s)
- Renée F de Pooter
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
20
|
Hosoya T, Maillard I, Engel JD. From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 2010; 238:110-25. [PMID: 20969588 PMCID: PMC2965564 DOI: 10.1111/j.1600-065x.2010.00954.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GATA family transcription factors play multiple vital roles in hematopoiesis in many cell lineages, and in particular, T cells require GATA-3 for execution of several developmental steps. Transcriptional activation of the Gata3 gene is observed throughout T-cell development and differentiation in a stage-specific fashion. GATA-3 has been described as a master regulator of T-helper 2 (Th2) cell differentiation in mature CD4(+) T cells. During T-cell development in the thymus, its roles in the CD4 versus CD8 lineage choice and at the β-selection checkpoint are the best characterized. In contrast, its importance prior to β-selection has been obscured both by the developmental heterogeneity of double negative (DN) 1 thymocytes and the paucity of early T-lineage progenitors (ETPs), a subpopulation of DN1 cells that contains the most immature thymic progenitors that retain potent T-lineage developmental potential. By examining multiple lines of in vivo evidence procured through the analysis of Gata3 mutant mice, we have recently demonstrated that GATA-3 is additionally required at the earliest stage of thymopoiesis for the development of the ETP population. Here, we review the characterized functions of GATA-3 at each stage of T-cell development and discuss hypothetical molecular pathways that mediate these functions.
Collapse
Affiliation(s)
- Tomonori Hosoya
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ivan Maillard
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Schlenner SM, Rodewald HR. Early T cell development and the pitfalls of potential. Trends Immunol 2010; 31:303-10. [PMID: 20634137 DOI: 10.1016/j.it.2010.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 02/08/2023]
Abstract
The long-standing model for hematopoiesis, which features a dichotomy into separate lymphoid and myeloid branches, predicts that progenitor T cells arise from a lymphocyte-restricted pathway. However, experiments that have detected myeloid potential in progenitor T cells have been reported as evidence to question this model. Mapping physiological differentiation pathways has now led to opposite conclusions, by showing that T cells and thymic myeloid cells have distinct origins and that, in vivo, T cell progenitors lack significant potential for myeloid lineages including dendritic cells. Here, we review the underlying experiments that have led to such fundamentally different conclusions. The current controversy might reflect a need to distinguish between cell fates that are possible experimentally from physiological fate choices, to build a map of immunological differentiation pathways.
Collapse
Affiliation(s)
- Susan M Schlenner
- Department for Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Vicente R, Swainson L, Marty-Grès S, De Barros SC, Kinet S, Zimmermann VS, Taylor N. Molecular and cellular basis of T cell lineage commitment. Semin Immunol 2010; 22:270-5. [PMID: 20630771 DOI: 10.1016/j.smim.2010.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/23/2010] [Indexed: 12/16/2022]
Abstract
The thymus forms as an alymphoid thymic primordium with T cell differentiation requiring the seeding of this anlage. This review will focus on the characteristics of the hematopoietic progenitors which colonize the thymus and their subsequent commitment/differentiation, both in mice and men. Within the thymus, the interplay between Notch1 and IL-7 signals is crucial for the orchestration of T cell development, but the precise requirements for these factors in murine and human thympoeisis are not synonymous. Recent advances in our understanding of the mechanisms regulating precursor entry and their maintenance in the thymus will also be presented.
Collapse
Affiliation(s)
- Rita Vicente
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535/IFR 122, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Intrathymic transplantation of bone marrow-derived progenitors provides long-term thymopoiesis. Blood 2009; 115:1913-20. [PMID: 20040762 DOI: 10.1182/blood-2009-06-229724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The sustained differentiation of T cells in the thymus cannot be maintained by resident intrathymic (IT) precursors and requires that progenitors be replenished from the bone marrow (BM). In patients with severe combined immunodeficiency (SCID) treated by hematopoietic stem cell transplantation, late T-cell differentiation defects are thought to be due to an insufficient entry of donor BM progenitors into the thymus. Indeed, we find that the intravenous injection of BM progenitors into nonconditioned zeta-chain-associated protein kinase 70 (ZAP-70)-deficient mice with SCID supports short- but not long-term thymopoiesis. Remarkably, we now show that the IT administration of these progenitors produces a significant level of donor-derived thymopoiesis for more than 6 months after transplantation. In contrast to physiologic thymopoiesis, long-term donor thymopoiesis was not due to the continued recruitment of progenitors from the BM. Rather, IT transplantation resulted in the unique generation of a large population of early c-Kit(high) donor precursors within the thymus. These ZAP-70-deficient mice that received an IT transplant had a significantly increased prothymocyte niche compared with their untreated counterparts; this phenotype was associated with the generation of a medulla. Thus, IT administration of BM progenitors results in the filling of an expanded precursor niche and may represent a strategy for enhancing T-cell differentiation in patients with SCID.
Collapse
|
24
|
CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood 2009; 115:1906-12. [PMID: 20040757 DOI: 10.1182/blood-2009-07-235721] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
T-cell development depends on recruitment of bone marrow-derived precursor cells to the thymus via a multistep adhesion cascade involving the chemokine receptor CCR9. However, CCR9 deficiency does not result in complete abrogation of progenitor entry into the adult thymus. Therefore, we tested the hypothesis that additional chemokine/chemokine receptor systems might play a role in this process. To this end, we generated mice deficient in both CCR9 and CCR7. Deficiency in both chemokine receptors resulted in severely reduced numbers of early T-cell progenitors and in near-complete abrogation of thymus reconstitution. Progenitors in bone marrow and peripheral blood remained largely unaffected in CCR7(-/-)CCR9(-/-) mice, and direct intrathymic transfer of precursors from CCR7(-/-)CCR9(-/-) mice as well as single-mutant mice showed that intrathymic differentiation of these precursors remained functional. Thus, our data reveal a previously unrecognized role of CCR7 in progenitor seeding of the adult thymus, which is largely masked by compensatory effects of CCR9 signals. In turn, CCR7 signals can partially compensate for CCR9 signals, thus explaining the rather mild phenotype of CCR9(-/-) mice with respect to progenitor seeding.
Collapse
|
25
|
Abstract
T-cell development in the thymus depends on continuous supply of T-cell progenitors from bone marrow (BM). Several extrathymic candidate progenitors have been described that range from multipotent cells to lymphoid cell committed progenitors and even largely T-lineage committed precursors. However, the nature of precursors seeding the thymus under physiologic conditions has remained largely elusive and it is not known whether there is only one physiologic T-cell precursor population or many. Here, we used a competitive in vivo assay based on depletion rather than enrichment of classes of BM-derived precursor populations, thereby only minimally altering physiologic precursor ratios to assess the contribution of various extrathymic precursors to T-lineage differentiation. We found that under these conditions multiple precursors, belonging to both multipotent progenitor (MPP) and common lymphoid progenitor (CLP) subsets have robust T-lineage potential. However, differentiation kinetics of different precursors varied considerably, which might ensure continuous thymic output despite gated importation of extrathymic precursors. In conclusion, our data suggest that the thymus functions to impose T-cell fate on any precursor capable of filling the limited number of progenitor niches.
Collapse
|
26
|
Na IK, Lu SX, Yim NL, Goldberg GL, Tsai J, Rao U, Smith OM, King CG, Suh D, Hirschhorn-Cymerman D, Palomba L, Penack O, Holland AM, Jenq RR, Ghosh A, Tran H, Merghoub T, Liu C, Sempowski GD, Ventevogel M, Beauchemin N, van den Brink MRM. The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease. J Clin Invest 2009; 120:343-56. [PMID: 19955659 DOI: 10.1172/jci39395] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/07/2009] [Indexed: 01/16/2023] Open
Abstract
Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.
Collapse
Affiliation(s)
- Il-Kang Na
- Department of Medicine and Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
T lymphopoiesis requires settling of the thymus by bone marrow-derived precursors throughout adult life. Progenitor entry into the thymus is selective, but the molecular basis of this selectivity is incompletely understood. The chemokine receptor CCR9 has been demonstrated to be important in this process. However, progenitors lacking CCR9 can still enter the thymus, suggesting a role for additional molecules. Here we report that the chemokine receptor CCR7 is also required for efficient thymic settling. CCR7 is selectively expressed on bone marrow progenitors previously shown to have the capacity to settle the thymus, and CCR7(-/-) progenitors are defective in settling the thymus. We further demonstrate that CCR7 sustains thymic settling in the absence of CCR9. Mice deficient for both CCR7 and CCR9 have severe reductions in the number of early thymic progenitors, and in competitive assays CCR7(-/-)CCR9(-/-) double knockout progenitors are almost completely restricted from thymic settling. However, these mice possess near-normal thymic cellularity. Compensatory expansion of intrathymic populations can account for at least a part of this recovery. Together our results illustrate the critical role of chemokine receptor signaling in thymic settling and help to clarify the cellular identity of the physiologic thymic settling progenitors.
Collapse
|
28
|
Weber C, Krueger A, Münk A, Bode C, Van Veldhoven PP, Gräler MH. Discontinued postnatal thymocyte development in sphingosine 1-phosphate-lyase-deficient mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:4292-301. [PMID: 19748984 DOI: 10.4049/jimmunol.0901724] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circulation of lymphocytes through peripheral lymphoid tissues as well as progenitor entry into the thymus and its output of mature T cells are critical for normal immune function. Egress of lymphocytes from both peripheral lymphoid organs and thymus is dependent on sphingosine 1-phosphate (S1P) gradients. S1P-lyase 1 (SGPL1) deficiency leads to accumulation of S1P in lymphoid tissues, which blocks lymphocyte egress and induces thymus atrophy. In this study, we investigated thymocyte development in SGPL1-deficient mice (SGPL1(-/-)), which exhibited postnatal discontinuation of early thymocytopoiesis starting at 2 wk after birth. SGPL(-/-) thymi showed a loss of developing thymocytes in the thymic cortex between 2 and 4 wk of age, whereas mature thymocytes accumulated in the medulla. Detailed analysis demonstrated a deficit in thymic early T cell progenitors (ETP) as the principal reason for discontinued thymocyte development. This developmental block was accompanied by accumulation of ceramides, resulting in enhanced apoptosis of developing T cells. Lack of immigration or settlement of ETP completely halted thymocyte development. We conclude that increased ceramide levels in the thymus of SGPL1(-/-) mice abrogate thymic development postnatally by enhanced thymocyte apoptosis and depletion of thymic ETP. Our findings indicate that potentially therapeutic immunosuppression by SGPL1 inhibition should benefit from monitoring ceramides to prevent their increase to apoptosis- inducing levels.
Collapse
Affiliation(s)
- Claudia Weber
- Institute for Immunology, Hannover Medical School, Hanover 30625, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Kawamoto H, Katsura Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol 2009; 30:193-200. [PMID: 19356980 DOI: 10.1016/j.it.2009.03.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 12/11/2022]
Abstract
The concept that blood cells arising from hematopoietic stem cells (HSC) can be subdivided into two major lineages, a myelo-erythroid and a lymphoid lineage, has long persisted. Indeed, it has become almost axiomatic that the first branch point from the HSC produces two progenitors, one for myelo-erythroid cells and the other for lymphoid cells. However, recent studies have provided a battery of findings that cannot be explained by this classical model. We will outline how this classical model arose before describing how we came to propose an alternative 'myeloid-based model', in which myeloid potential is retained in erythroid, T, and B cell branches even after these lineages have segregated from each other.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | | |
Collapse
|
30
|
Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood 2008; 113:807-15. [PMID: 18927436 DOI: 10.1182/blood-2008-08-173682] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ongoing thymopoiesis requires continual seeding from progenitors that reside within the bone marrow (BM), but the identity of the most proximate prethymocytes has remained controversial. Here we take a comprehensive approach to prospectively identify the major source of thymocyte progenitors that reside within the BM and blood, and find that all thymocyte progenitor activity resides within a rare Flk2(+)CD27(+) population. The BM Flk2(+)CD27(+) subset is predominantly composed of common lymphoid progenitors (CLPs) and multipotent progenitors. Of these 2 populations, only CLPs reconstitute thymopoiesis rapidly after intravenous injection. In contrast, multipotent progenitor-derived cells reconstitute the thymus with delayed kinetics only after they have reseeded the BM, self-renewed, and generated CLPs. These results identify CLPs as the major source of thymocyte progenitors within the BM.
Collapse
|
31
|
Sambandam A, Bell JJ, Schwarz BA, Zediak VP, Chi AW, Zlotoff DA, Krishnamoorthy SL, Burg JM, Bhandoola A. Progenitor migration to the thymus and T cell lineage commitment. Immunol Res 2008; 42:65-74. [DOI: 10.1007/s12026-008-8035-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Maintenance of a normal thymic microenvironment and T-cell homeostasis require Smad4-mediated signaling in thymic epithelial cells. Blood 2008; 112:3688-95. [PMID: 18695001 DOI: 10.1182/blood-2008-04-150532] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Signals mediated by the transforming growth factor-beta superfamily of growth factors have been implicated in thymic epithelial cell (TEC) differentiation, homeostasis, and function, but a direct reliance on these signals has not been established. Here we demonstrate that a block in canonical transforming growth factor-beta signaling by the loss of Smad4 expression in TECs leads to qualitative changes in TEC function and a progressively disorganized thymic microenvironment. Moreover, the number of thymus resident early T-lineage progenitors is severely reduced in the absence of Smad4 expression in TECs and directly correlates with extensive thymic and peripheral lymphopenia. Our observations hence place Smad4 within the signaling events in TECs that determine total thymus cellularity by controlling the number of early T-lineage progenitors.
Collapse
|
33
|
Lai AY, Kondo M. T and B lymphocyte differentiation from hematopoietic stem cell. Semin Immunol 2008; 20:207-12. [PMID: 18583148 DOI: 10.1016/j.smim.2008.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 05/15/2008] [Indexed: 12/31/2022]
Abstract
Until the past few years, it has been thought that lymphoid and myeloid lineage segregation represents the first step of lineage restriction during hematopoiesis from hematopoietic stem cell. Recent investigation of the cell populations within multipotent progenitors in the bone marrow has led to new understanding of how hematopoietic stem cells diversify into different hematopoietic cell types. This review focuses on the recent advances in understanding the developmental events that occur during hematopoietic stem cell specification into the T and B lymphocyte lineages in adult mice.
Collapse
Affiliation(s)
- Anne Y Lai
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710, United States
| | | |
Collapse
|
34
|
Abstract
Many fundamental concepts about immune system development have changed substantially in the past few years, and rapid advances with animal models are presenting prospects for further discovery. However, continued progress requires a clearer understanding of the relationships between haematopoietic stem cells and the progenitors that replenish each type of lymphocyte pool. Blood-cell formation has traditionally been described in terms of discrete developmental branch points, and a single route is given for each major cell type. As we discuss in this Review, recent findings suggest that the process of B-cell formation is much more dynamic.
Collapse
|
35
|
Wang H, Pierce LJ, Spangrude GJ. Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T-cell differentiation culture system. Exp Hematol 2007; 34:1730-40. [PMID: 17157170 PMCID: PMC1762031 DOI: 10.1016/j.exphem.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/08/2006] [Accepted: 08/02/2006] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The OP9-DL1 culture system is an in vitro model for T-cell development in which activation of the Notch pathway by Delta-like 1 promotes differentiation of mature T cells from progenitors. The roles of specific cytokines in this culture system have not been well defined, and controversy regarding the role of IL-7 has recently emerged. We examined the roles played by IL-7, Flt3 ligand, and stem cell factor (SCF) in differentiation of adult bone marrow cells in the OP9-DL1 culture system. METHODS Hematopoietic progenitor cells isolated from mouse bone marrow were cultured with OP9 or OP9-DL1 stromal cells and evaluated for T and B lymphocyte differentiation using immunofluorescent staining. RESULTS IL-7 provided both survival/proliferation and differentiation signals in a dose-dependent manner. T-cell development from the CD4/CD8 double-negative (DN) stage to the CD4/CD8 double-positive (DP) stage required IL-7 provided by the stromal cells, while differentiation from the DP to the CD8 single-positive (SP) stage required addition of exogenous IL-7. SCF favored the proliferation of DN lymphoid progenitors and inhibited differentiation to the DP stage in a dose-dependent manner. Conversely, blocking the function of SCF expressed endogenously by OP9-DL1 cells inhibited proliferation of lymphoid progenitors and accelerated T-lineage differentiation. Flt3 ligand promoted proliferation without affecting differentiation. CONCLUSION These results validate the OP9-DL1 model for the analysis of T-cell development from bone marrow-derived progenitor cells, and demonstrate specific roles of SCF, IL-7, and Flt3L in promoting efficient T-lineage differentiation.
Collapse
Affiliation(s)
| | - L. Jeanne Pierce
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
| | - Gerald J. Spangrude
- Department of Pathology
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
- Corresponding author: Gerald J. Spangrude, Ph.D., University of Utah, Division of Hematology Rm 4C416, 30 N 1900 East, Salt Lake City, UT 84132-2022, voice: (801)-585-5544
| |
Collapse
|
36
|
Gautreau L, Arcangeli ML, Pasqualetto V, Joret AM, Garcia-Cordier C, Mégret J, Schneider E, Ezine S. Identification of an IL-7-dependent pre-T committed population in the spleen. THE JOURNAL OF IMMUNOLOGY 2007; 179:2925-35. [PMID: 17709507 DOI: 10.4049/jimmunol.179.5.2925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several extrathymic T cell progenitors have been described but their various contributions to the T cell lineage puzzle are unclear. In this study, we provide evidence for a splenic Lin(-)Thy1.2(+) T cell-committed population, rare in B6 mice, abundant in TCRalpha(-/-), CD3epsilon(-/-), and nude mice, and absent in IL-7- and Rag-2-deficient mice. Neither B nor myeloid cells are generated in vivo and in vitro. The incidence of these pre-T cells is under the control of thymus and/or mature T cells, as revealed by graft experiments. Indeed, IL-7 consumption by mature T cells inhibits the growth of these pre-T cells. Moreover, the nude spleen contains an additional Lin(-)Thy1.2(+)CD25(+) subset which is detected in B6 mice only after thymectomy. We establish that the full pre-T cell potential and proliferation capacity are only present in the c-kit(low) fraction of progenitors. We also show that most CCR9(+) progenitors are retained in the spleen of nude mice, but present in the blood of B6 mice. Thus, our data describe a new T cell lineage restricted subset that accumulates in the spleen before migration to the thymus.
Collapse
Affiliation(s)
- Laetitia Gautreau
- INSERM U591, Institut Necker, Université Paris V, 156 rue de Vaugirard, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zöller M, Rajasagi M, Vitacolonna M, Luft T. Thymus repopulation after allogeneic reconstitution in hematological malignancies. Exp Hematol 2007; 35:1891-905. [PMID: 17920753 DOI: 10.1016/j.exphem.2007.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 06/05/2007] [Accepted: 08/02/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Active vaccination in the allogeneically reconstituted tumor-bearing host essentially requires donor T-cell tolerance. To create a basis for vaccination in the allogeneically reconstituted, lymphoma-bearing host, we elaborate a reconstitution protocol that supports thymus repopulation and tolerance induction. METHODS Myeloreductively conditioned, lymphoma-bearing mice were vaccinated after reconstitution with hematopoietic progenitor cells. Readout systems included recovery of donor-derived T cells, graft vs host disease (GVHD), anti-host and anti-lymphoma cytotoxicity, as well as tumor growth rate and tumor rejection. RESULTS In tumor-free mice, myeloreductive conditioning, together with natural killer cell depletion of the host and transfer of T cell-depleted bone marrow cells, allows reconstitution without severe GVHD. However, in hematological malignancies, donor-derived T-progenitor cells hardly immigrated into the thymus. As a consequence, the frequency of severe GVHD was significantly increased, which prohibited active vaccination. Thymus repopulation became improved by strengthening myeloreductive conditioning; by supporting thymocyte expansion via interleukin-7; and, most strongly, by a small dose of donor-derived CD4(+)CD8(+) thymocytes, which preferentially homed into the thymus. Active vaccination, in combination with this reconstitution protocol, did not strengthen GVHD, but significantly improved survival time and survival rate of lymphoma-bearing mice. CONCLUSION The negative impact of hematological malignancies on thymus repopulation and central tolerance induction can, at least in part, be corrected by application of a small number of donor-derived T-progenitor cells.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
38
|
Perry SS, Zhao Y, Nie L, Cochrane SW, Huang Z, Sun XH. Id1, but not Id3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood 2007; 110:2351-60. [PMID: 17622570 PMCID: PMC1988946 DOI: 10.1182/blood-2007-01-069914] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
E-proteins are widely expressed basic helix-loop-helix (HLH) transcription factors that regulate differentiation in many cell lineages, including lymphoid, muscle, and neuronal cells. E-protein function is controlled by HLH inhibitors such as Id and SCL/TAL1 proteins, which recently have been suggested to play a role in hematopoietic stem cell (HSC) differentiation. However, the precise stages when these proteins are expressed and their specific functions are not entirely clear. Using a knock-in mouse model where the sequence for the enhanced green fluorescent protein (GFP) was inserted downstream of the Id1 promoter, we were able to track Id1 expression on an individual cell basis and detected Id1 expression in long-term repopulating HSCs (LT-HSCs). Functional assays showed that the Id1/GFP(+)Lin(-)Sca1(+)c-kit(Hi) population was highly enriched for LT-HSCs. Consistent with this expression pattern, Id1 deficiency led to a 2-fold reduction in the number of LT-HSCs defined as Lin(-)Sca1(+)c-kit(Hi)CD48(-)CD150(+). Primary bone marrow transplantation studies revealed that Id1 is dispensable for short-term engraftment. In contrast, both Id1(-/-) whole bone marrow and Lin(-)Sca1(+)c-kit(Hi)Thy1.1(Lo)-enriched HSCs, but not Id3(-/-) marrow, displayed impaired engraftment relative to wild-type controls in secondary transplantation assays. These findings suggest a unique role for Id1 in LT-HSC maintenance and hematopoietic development.
Collapse
Affiliation(s)
- S Scott Perry
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Petrie HT, Zúñiga-Pflücker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 2007; 25:649-79. [PMID: 17291187 DOI: 10.1146/annurev.immunol.23.021704.115715] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All hematopoietic cells, including T lymphocytes, originate from stem cells that reside in the bone marrow. Most hematopoietic lineages also mature in the bone marrow, but in this respect, T lymphocytes differ. Under normal circumstances, most T lymphocytes are produced in the thymus from marrow-derived progenitors that circulate in the blood. Cells that home to the thymus from the marrow possess the potential to generate multiple T and non-T lineages. However, there is little evidence to suggest that, once inside the thymus, they give rise to anything other than T cells. Thus, signals unique to the thymic microenvironment compel multipotent progenitors to commit to the T lineage, at the expense of other potential lineages. Summarizing what is known about the signals the thymus delivers to uncommitted progenitors, or to immature T-committed progenitors, to produce functional T cells is the focus of this review.
Collapse
Affiliation(s)
- Howard T Petrie
- Scripps Florida Research Institute, Jupiter, Florida 33458, USA.
| | | |
Collapse
|
40
|
Lai AY, Kondo M. Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. Proc Natl Acad Sci U S A 2007; 104:6311-6. [PMID: 17404232 PMCID: PMC1851047 DOI: 10.1073/pnas.0609608104] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The thymus requires continuous replenishment of progenitors from the bone marrow (BM) to sustain T cell development. However, it remains unclear which hematopoietic progenitors downstream from hematopoietic stem cells in the BM home to the thymus in adult mice. In this work, we demonstrate that although multiple BM populations have intrinsic T lineage differentiation potential, a small subset of multipotent progenitors (MPPs) expressing CCR9 preferentially homes to the thymus. These CCR9(+) MPPs are phenotypically similar to the most immature early T lineage progenitors (ETPs) in the thymus and are present in the peripheral blood. Similar to ETPs, CCR9(+) MPPs undergo Notch signaling, as indicated by higher expression of Notch1 and downstream target Hes1 genes compared with other MPP subsets. Furthermore, CCR9(+) MPPs possess differentiation potential similar to that of ETPs, with very limited granulocyte/macrophage differentiation potential, but they can differentiate into T, B, and dendritic cells. These characteristics implicate CCR9(+) MPPs as the BM precursors of the earliest thymic progenitors. In addition, our data suggest that before transition from BM to thymus, MPPs are lymphoid-specified and primed for T lineage differentiation.
Collapse
Affiliation(s)
- Anne Y. Lai
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710
| | - Motonari Kondo
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Umland O, Mwangi WN, Anderson BM, Walker JC, Petrie HT. The Blood Contains Multiple Distinct Progenitor Populations with Clonogenic B and T Lineage Potential. THE JOURNAL OF IMMUNOLOGY 2007; 178:4147-52. [PMID: 17371970 DOI: 10.4049/jimmunol.178.7.4147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thymus is seeded by bone marrow-derived progenitors that circulate in the blood. Multiple cell types can be found in the thymus early after i.v. administration or in steady state, but most fail to satisfy the known characteristics of true T progenitors. Cells that do conform to classical definitions retain multilineage potential, but surprisingly, cannot make B cells. Because acquisition of the T lineage fate among noncommitted progenitors is a lengthy process, the absence of B cell potential in early thymocytes suggests that B and T lineages diverge prethymically. To test this suggestion, we screened numerous presumptive progenitor populations for T cell growth and differentiation potential, as well as for clonogenic T or B cell development. We find that blood and marrow each contain multiple distinct subsets that display growth and differentiation potential consistent with being canonical T progenitors. Assessment of clonogenic potential further shows that although all blood and marrow populations have high T cell cloning potential, no T/non-B cells are apparent. These data suggest that either true thymic reconstitution potential derives from a small T/non-B cell subset of one of these populations, or that most of the cells defined as canonical progenitors within the thymus do not, in fact, reside in the mainstream of T progenitor differentiation.
Collapse
Affiliation(s)
- Oliver Umland
- The Scripps-Florida Research Institute, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
42
|
Welner RS, Pelayo R, Garrett KP, Chen X, Perry SS, Sun XH, Kee BL, Kincade PW. Interferon-producing killer dendritic cells (IKDCs) arise via a unique differentiation pathway from primitive c-kitHiCD62L+ lymphoid progenitors. Blood 2007; 109:4825-931. [PMID: 17317852 PMCID: PMC1885519 DOI: 10.1182/blood-2006-08-043810] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon-producing killer dendritic cells (IKDCs) have only recently been described and they share some properties with plasmacytoid dendritic cells (pDCs). We now show that they can arise from some of the same progenitors. However, IKDCs expressed little or no RAG-1, Spi-B, or TLR9, but responded to the TLR9 agonist CpG ODN by production of IFNgamma. The RAG-1(-)pDC2 subset was more similar to IKDCs than RAG-1(+) pDC1s with respect to IFNgamma production. The Id-2 transcriptional inhibitor was essential for production of IKDCs and natural killer (NK) cells, but not pDCs. IKDCs developed from lymphoid progenitors in culture but, unlike pDCs, were not affected by Notch receptor ligation. While IKDCs could be made from estrogen-sensitive progenitors, they may have a slow turnover because their numbers did not rapidly decline in hormone-treated mice. Four categories of progenitors were compared for IKDC-producing ability in transplantation assays. Of these, Lin(-)Sca-1(+)c-Kit(Hi)Thy1.1(-)L-selectin(+) lymphoid progenitors (LSPs) were the best source. While NK cells resemble IKDCs in several respects, they develop from different progenitors. These observations suggest that IKDCs may arise from a unique differentiation pathway, and one that diverges early from those responsible for NK cells, pDCs, and T and B cells.
Collapse
Affiliation(s)
- Robert S Welner
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Dakic A, Wu L, Nutt SL. Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? Trends Immunol 2007; 28:108-14. [PMID: 17267285 DOI: 10.1016/j.it.2007.01.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/04/2007] [Accepted: 01/19/2007] [Indexed: 11/20/2022]
Abstract
The transcription factor PU.1 is an essential regulator of haemopoiesis and a suppressor of myeloid leukaemia. PU.1 displays a complex expression pattern characterized by high expression in myeloid cells and low amounts in lymphoid cells. Based on this transcriptional profile, and the analysis of cell lines and mice expressing altered levels of PU.1, a model has been proposed where the concentration of PU.1 determines cell fate, whereas the graded reduction, but not absence, of PU.1 facilitates leukaemogenesis. The recent reports of mouse strains that enable the accurate determination of PU.1 expression and the conditional inactivation of PU.1 in adult haemopoiesis have led us to re-examine our understanding of the complex functions of PU.1. Here, we will discuss the data that, we believe, argue against the dosage-sensitive model of PU.1-mediated lineage commitment and leukaemogenesis.
Collapse
Affiliation(s)
- Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | |
Collapse
|
44
|
Krueger A, von Boehmer H. Identification of a T lineage-committed progenitor in adult blood. Immunity 2007; 26:105-16. [PMID: 17222572 PMCID: PMC1828638 DOI: 10.1016/j.immuni.2006.12.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/27/2006] [Accepted: 12/01/2006] [Indexed: 12/13/2022]
Abstract
With help of a hCD25 reporter controlled by pre-T cell receptor alpha (Ptcra) regulatory elements, T cell precursors were identified in peripheral blood. Sca-1(+)IL-7Ralpha(+)Flt3(-) precursors that were c-kit(lo)Thy-1(hi) generated T lineage cells when cultured on OP9-DL1 stromal cells and upon transfer into Rag2(-/-)Il2rg(-/-) mice. No B cells were generated in vivo and only few in vitro. These cells, which we call circulating T cell progenitors (CTP), were found at the same frequency in Foxn1(nu/nu) thymus-deficient mice and wild-type mice, indicating that they were pre- rather than postthymic. Inhibition of Notch-dependent transcription in vivo reduced the frequency of intrathymic early T cell progenitors (ETP), but not CTP, indicating that the latter are less Notch dependent. Thus, CTP represent T lineage-committed T cell precursors linking extrathymic with intrathymic lymphopoiesis in adult mice.
Collapse
Affiliation(s)
- Andreas Krueger
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Dallas MH, Varnum-Finney B, Martin PJ, Bernstein ID. Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1. Blood 2007; 109:3579-87. [PMID: 17213287 PMCID: PMC1852253 DOI: 10.1182/blood-2006-08-039842] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A physiologic role for Notch signaling in hematopoiesis has been clearly defined in lymphoid differentiation, with evidence suggesting a critical role in T-cell versus B-cell fate decisions. Previously, we demonstrated that activation of endogenous Notch receptors by culture of murine lin(-)Sca-1(+)c-kit(+) (LSK) hematopoietic progenitors with exogenously presented Notch ligand, Delta1(ext-IgG), consisting of the extracellular domain of Delta1 fused to the Fc domain of human IgG(1), promoted early T-cell differentiation and increased the number of progenitors capable of short-term lymphoid and myeloid reconstitution. Here we show that culture of LSK precursors with Delta1(ext-IgG) increases the number of progenitors that are able to rapidly repopulate the thymus and accelerate early T-cell reconstitution with a diversified T-cell receptor repertoire. Most of the early T-cell reconstitution originated from cells that expressed lymphoid-associated antigens: B220, Thy1, CD25, and/or IL7Ralpha, whereas the most efficient thymic repopulation on a per cell basis originated from the smaller number of cultured cells that did not express lymphoid-associated antigens. These findings demonstrate the potential of Delta1(ext-IgG)-cultured cells for accelerating early immune reconstitution after hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Mari H Dallas
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
46
|
Abstract
In adult mammals, bone marrow pluripotent hematopoietic stem cells generate B lymphoid-specified progeny that progress through a series of well-characterized stages before generating B-cell receptor expressing B lymphocytes. These functionally immature B lymphocytes then migrate to the spleen wherein they differentiate through transitional stages into follicular or marginal zone B lymphocytes capable of responding to T-dependent and -independent antigens, respectively. During the terminal stages of B lymphocyte development in the bone marrow, as well as immediately following egress into the peripheral compartments, B lymphocytes are counterselected to eliminate B lymphocytes with potentially dangerous self-reactivity. These developmental and selection events in the bone marrow and periphery are dependent on the integration of intrinsic genetic programs with extrinsic microenvironmental signals that drive progenitors toward increasing B lineage commitment and maturation. This chapter provides a comprehensive overview of the various stages of primary and secondary B lymphocyte development with an emphasis on the selection processes that affect decisions at critical checkpoints. Our intent is to stress the concept that at many steps in the developmental process leading to a mature immunocompetent B lymphocyte, B lineage cells are integrating multiple and different signaling inputs that are translated into specific and appropriate cell fate decisions.
Collapse
MESH Headings
- Aging
- Animals
- Antigens, Differentiation, B-Lymphocyte/analysis
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/physiology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/physiology
- Cell Lineage
- Humans
- Lymphopoiesis/genetics
- Models, Immunological
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Recombination, Genetic
- Signal Transduction
Collapse
Affiliation(s)
- John G Monroe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
47
|
Wang H, Pierce LJ, Spangrude GJ. Lymphoid potential of primitive bone marrow progenitors evaluated in vitro. Ann N Y Acad Sci 2006; 1044:210-9. [PMID: 15958714 DOI: 10.1196/annals.1349.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bone marrow contains a heterogeneous mixture of mature and maturing precursors of blood cells, progenitor cells for myeloid and lymphoid lineages, and hematopoietic and mesenchymal stem cells. The differentiation potential of these different stem, progenitor, and precursor populations can be evaluated by using transplantation and cell culture assays. In this study, we used a stromal cell co-culture system to evaluate the B and T lineage potential of different subsets of mouse bone marrow. We enriched hematopoietic stem (Lin(-)Sca-1(+)c-kit(+)Thy1.1(low) [Thy1.1(low)]) cells and lymphoid progenitor (Lin(-)Sca-1(+)c-kit(+)Thy1.1(-) [Thy1.1(-)]) cells from mouse bone marrow and co-cultured these populations with OP9 or OP9-DL1 stromal cell lines. Development of the B and T lineages was evaluated over time. Both populations gave rise to B and T cells but with different kinetics. Thy1.1(-) lymphoid progenitors gave rise to B and T lineage cells earlier than did Thy1.1(low) stem cells; and at any given time, percentages of differentiating B and T cells were higher in Thy1.1(-) cultures than in Thy1.1(low) cultures. We also compared the lineage potential of Thy-1.1(-) lymphoid progenitors with that of the recently described common lymphoid progenitor 2 (isolated as Lin(-)Sca-1(+)c-kit(-)Thy1.1(-)B220(+) cells [B220(+)]). B220(+) cells produced B lineage progeny in OP9 cultures more rapidly than did Thy1.1(-) cells and produced higher percentages of differentiating T cells in OP9-DL1 cultures. These studies demonstrate the utility of the OP9 and OP9-DL1 co-culture systems for evaluation of lymphoid lineage potential and for determining the relative position of specific bone marrow populations within the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Hongfang Wang
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Room 4C416, Salt Lake City, UT 84132-2408, USA
| | | | | |
Collapse
|
48
|
Perry SS, Welner RS, Kouro T, Kincade PW, Sun XH. Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential. THE JOURNAL OF IMMUNOLOGY 2006; 177:2880-7. [PMID: 16920923 PMCID: PMC1850233 DOI: 10.4049/jimmunol.177.5.2880] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple subsets of the bone marrow contain T cell precursors, but it remains unclear which is most likely to replenish the adult thymus. Therefore, RAG-1+ early lymphoid progenitors (RAG-1+ ELP), and CD62L/L-selectin+ progenitors (LSP), as well as common lymphoid progenitors from C57BL6-Thy1.1-RAG-1/GFP mouse bone marrow were directly compared in transplantation assays. The two c-Kit(high) populations vigorously regenerated the thymus and were superior to common lymphoid progenitors in magnitude and frequency of thymic reconstitution. Regeneration was much faster than the 22 days described for transplanted stem cells, and RAG-1+ ELP produced small numbers of lymphocytes within 13 days. As previously reported, LSP were biased to a T cell fate, but this was not the case for RAG-1+ ELP. Although RAG-1+ ELP and LSP had reduced myeloid potential, they were both effective progenitors for T lymphocytes and NK cells. The LSP subset overlapped with and included most RAG-1+ ELP and many RAG-1- TdT+ ELP. LSP and RAG-1+ ELP were both present in the peripheral circulation, but RAG-1+ ELP had no exact counterpart among immature thymocytes. The most primitive of thymocytes were similar to Lin- c-Kit(high) L-selectin+ TdT+ RAG-1- progenitors present in the marrow, suggesting that this population is normally important for sustaining the adult thymus.
Collapse
Affiliation(s)
- S. Scott Perry
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104
| | - Robert S. Welner
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Taku Kouro
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104
| | - Paul W. Kincade
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104
- Correspondence should be addressed to Paul W. Kincade, Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA, Tel: (405) 271-7905, Fax: (405) 271-8568,
| | - Xiao-Hong Sun
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104
| |
Collapse
|
49
|
Boehm T, Bleul CC. Thymus-homing precursors and the thymic microenvironment. Trends Immunol 2006; 27:477-84. [PMID: 16920024 DOI: 10.1016/j.it.2006.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/18/2006] [Accepted: 08/09/2006] [Indexed: 01/13/2023]
Abstract
T cells develop in the thymus from precursors that are generated in the bone marrow and continuously seed the thymus through the blood. During evolution, 'outsourcing' the development of one blood lineage, namely the T-cell lineage, to an anatomically distinct hematopoietic organ required the generation of migratory precursors in the bone marrow, their homing to specialized, precursor-retaining thymic niches and their subsequent differentiation. Niche building and precursor homing are therefore intricately linked and should be viewed in context. In this review, we discuss recent findings on the developmental and genetic events that prepare the thymic epithelial microenvironment for its complex tasks, and highlight recent progress in the definition of the thymus-settling cells and the homing process that leads them into the thymus.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck-Institute of Immunobiology, Stuebeweg, 51 D-79108, Freiburg, Germany.
| | | |
Collapse
|
50
|
Visan I, Yuan JS, Tan JB, Cretegny K, Guidos CJ. Regulation of intrathymic T-cell development by Lunatic Fringe- Notch1 interactions. Immunol Rev 2006; 209:76-94. [PMID: 16448535 DOI: 10.1111/j.0105-2896.2006.00360.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrathymic Notch1 signaling critically regulates T-lineage specification and commitment as well as T-cell progenitor survival and differentiation. Notch1 activation is continuously required during progression of early CD4/CD8-double-negative thymocytes to the CD4/CD8-double-positive stage. This developmental transition occurs as thymocytes migrate from the corticomedullary junction (CMJ) to the outer subcapsular zone (SCZ) of the thymus. Members of two families of structurally distinct Notch ligands, Delta-like 1 and Jagged-1, are expressed by cortical thymic epithelial cells, but it is not known which ligands are functionally required within the CMJ and SCZ microenvironmental niches. Our laboratory has investigated this question by genetically manipulating thymocyte expression of Lunatic Fringe (L-Fng), a glycosyltransferase that enhances sensitivity of Notch receptors to Delta-like ligands. This approach has revealed that low-threshold intrathymic Notch1 signals instruct multipotent thymus-seeding progenitors to suppress their B-cell potential and choose the T-cell fate. This strategy has also revealed that Delta-like Notch ligands are functionally limiting in both the CMJ and SCZ microenvironmental niches. Finally, we discuss our recent demonstration that L-Fng-mediated competition for Delta-like ligands is an important mechanism for regulating thymus size.
Collapse
Affiliation(s)
- Ioana Visan
- Program in Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|