1
|
Chakraborty A, Staudinger C, King SL, Erickson FC, Lau LS, Bernasconi A, Luscinskas FW, Perlyn C, Dimitroff CJ. Galectin-9 bridges human B cells to vascular endothelium while programming regulatory pathways. J Autoimmun 2020; 117:102575. [PMID: 33285511 DOI: 10.1016/j.jaut.2020.102575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Humoral immunity is reliant on efficient recruitment of circulating naïve B cells from blood into peripheral lymph nodes (LN) and timely transition of naive B cells to high affinity antibody (Ab)-producing cells. Current understanding of factor(s) coordinating B cell adhesion, activation and differentiation within LN, however, is incomplete. Prior studies on naïve B cells reveal remarkably strong binding to putative immunoregulator, galectin (Gal)-9, that attenuates BCR activation and signaling, implicating Gal-9 as a negative regulator in B cell biology. Here, we investigated Gal-9 localization in human tonsils and LNs and unearthed conspicuously high expression of Gal-9 on high endothelial and post-capillary venules. Adhesion analyses showed that Gal-9 can bridge human circulating and naïve B cells to vascular endothelial cells (EC), while decelerating transendothelial migration. Moreover, Gal-9 interactions with naïve B cells induced global transcription of gene families related to regulation of cell signaling and membrane/cytoskeletal dynamics. Signaling lymphocytic activation molecule F7 (SLAMF7) was among key immunoregulators elevated by Gal-9-binding, while SLAMF7's cytosolic adapter EAT-2, which is required for cell activation, was eliminated. Gal-9 also activated phosphorylation of pro-survival factor, ERK. Together, these data suggest that Gal-9 promotes B cell - EC interactions while delivering anergic signals to control B cell reactivity.
Collapse
Affiliation(s)
- Asmi Chakraborty
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Caleb Staudinger
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Sandra L King
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Frances Clemente Erickson
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Lee Seng Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Angela Bernasconi
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Francis W Luscinskas
- Department of Pathology, Vascular Research Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chad Perlyn
- Department of Surgery, Nicholas Children's Hospital, Division of Plastic Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
2
|
Zeng J, Eljalby M, Aryal RP, Lehoux S, Stavenhagen K, Kudelka MR, Wang Y, Wang J, Ju T, von Andrian UH, Cummings RD. Cosmc controls B cell homing. Nat Commun 2020; 11:3990. [PMID: 32778659 PMCID: PMC7417590 DOI: 10.1038/s41467-020-17765-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms regulating lymphocyte homing into lymph nodes are only partly understood. Here, we report that B cell-specific deletion of the X-linked gene, Cosmc, and the consequent decrease of protein O-glycosylation, induces developmental blocks of mouse B cells. After transfer into wild-type recipient, Cosmc-null B cells fail to home to lymph nodes as well as non-lymphoid organs. Enzymatic desialylation of wild-type B cells blocks their migration into lymph nodes, indicating a requirement of sialylated O-glycans for proper trafficking. Mechanistically, Cosmc-deficient B cells have normal rolling and firm arrest on high endothelium venules (HEV), thereby attributing their inefficient trafficking to alterations in the subsequent transendothelial migration step. Finally, Cosmc-null B cells have defective chemokine signaling responses. Our results thus demonstrate that Cosmc and its effects on O-glycosylation are important for controlling B cell homing.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mahmoud Eljalby
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ulrich H von Andrian
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Demaria MC, Yeung L, Peeters R, Wee JL, Mihaljcic M, Jones EL, Nasa Z, Alderuccio F, Hall P, Smith BC, Binger KJ, Hammerling G, Kwok HF, Newman A, Ager A, van Spriel A, Hickey MJ, Wright MD. Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression. iScience 2020; 23:101104. [PMID: 32428859 PMCID: PMC7232089 DOI: 10.1016/j.isci.2020.101104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Tetraspanins regulate key processes in immune cells; however, the function of the leukocyte-restricted tetraspanin CD53 is unknown. Here we show that CD53 is essential for lymphocyte recirculation. Lymph nodes of Cd53-/- mice were smaller than those of wild-type mice due to a marked reduction in B cells and a 50% decrease in T cells. This reduced cellularity reflected an inability of Cd53-/- B and T cells to efficiently home to lymph nodes, due to the near absence of L-selectin from Cd53-/- B cells and reduced stability of L-selectin on Cd53-/- T cells. Further analyses, including on human lymphocytes, showed that CD53 stabilizes L-selectin surface expression and may restrain L-selectin shedding via both ADAM17-dependent and ADAM17-independent mechanisms. The disruption in lymphocyte recirculation in Cd53-/- mice led to impaired immune responses dependent on antigen delivery to lymph nodes. Together these findings demonstrate an essential role for CD53 in lymphocyte trafficking and immunity.
Collapse
Affiliation(s)
- Maria C Demaria
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Louisa Yeung
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Rens Peeters
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janet L Wee
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Masa Mihaljcic
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Eleanor L Jones
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Zeyad Nasa
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Frank Alderuccio
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Brodie C Smith
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Katrina J Binger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Gunther Hammerling
- Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Andrew Newman
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ann Ager
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Annemiek van Spriel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Mark D Wright
- Department of Immunology and Pathology, Monash University, Alfred Research Alliance, Melbourne, VIC 3004, Australia.
| |
Collapse
|
4
|
Veerman K, Tardiveau C, Martins F, Coudert J, Girard JP. Single-Cell Analysis Reveals Heterogeneity of High Endothelial Venules and Different Regulation of Genes Controlling Lymphocyte Entry to Lymph Nodes. Cell Rep 2019; 26:3116-3131.e5. [PMID: 30865898 DOI: 10.1016/j.celrep.2019.02.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
High-endothelial venules (HEVs) are specialized blood vessels allowing recirculation of naive lymphocytes through lymphoid organs. Here, using full-length, single-cell RNA sequencing, RNA fluorescence in situ hybridization (FISH), flow cytometry, and immunohistofluorescence, we reveal the heterogeneity of HEVs in adult mouse peripheral lymph nodes (PLNs) under conditions of homeostasis, antigenic stimulation, and after inhibition of lymphotoxin-β receptor (LTβR) signaling. We demonstrate that HEV endothelial cells are in an activated state during homeostasis, and we identify the genes characteristic of the differentiated HEV phenotype. We show that LTβR signaling regulates many HEV genes and pathways in resting PLNs and that immune stimulation induces a global and temporary inflammatory phenotype in HEVs without compromising their ability to recruit naive lymphocytes. Most importantly, we uncover differences in the regulation of genes controlling lymphocyte trafficking, Glycam1, Fut7, Gcnt1, Chst4, B3gnt3, and Ccl21a, that have implications for HEV function and regulation in health and disease.
Collapse
Affiliation(s)
- Krystle Veerman
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Tardiveau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, INSERM, UPS, Toulouse, France; Plateforme Genome et Transcriptome (GeT), Genopole Toulouse, Toulouse, France
| | - Juliette Coudert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Carlow DA, Tra MC, Ziltener HJ. A cell-extrinsic ligand acquired by activated T cells in lymph node can bridge L-selectin and P-selectin. PLoS One 2018; 13:e0205685. [PMID: 30379850 PMCID: PMC6209203 DOI: 10.1371/journal.pone.0205685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023] Open
Abstract
P-selectin expressed on activated endothelia and platelets supports recruitment of leukocytes expressing P-selectin ligand to sites of inflammation. While monitoring P-selectin ligand expression on activated CD8+ T cells in murine adoptive transfer models, we observed two distinct ligands on responding donor cells, the canonical cell-intrinsic P-selectin ligand PSGL-1 and a second undocumented P-selectin ligand we provisionally named PSL2. PSL2 is unusual among selectin ligands in that it is cell-extrinsic, loaded onto L-selectin expressed by activated T cells but not L-selectin on resting naïve CD8+ T cells. PSL2 display is highest on activated T cells responding in peripheral lymph nodes and low on T cells responding in spleen suggesting that the original source of PSL2 is high endothelial venules, cells known to produce L-selectin ligands. PSL2 is a ligand for both P-selectin and L-selectin and can physically bridge the two selectins. The L-selectin/PSL2 complex can mediate P-selectin-dependent adherence of activated T cells to immobilized P-selectin or to activated platelets, either independently or cooperatively with PSGL-1. PSL2's capacity to bridge between L-selectin on activated T cells and P-selectin reveals an undocumented and unanticipated activity of cell-extrinsic selectin ligands in mediating selectin-selectin connectivity. The timing and circumstances of PSL2 detection on T cells, together with its capacity to support adherence to P-selectin-bearing substrates, are consistent with P-selectin engagement of both PSGL1 and the L-selectin/PSL2 complex during T cell recruitment. Engagement of PSGL-1 and L-selectin/PSL2 would likely deliver distinct signals known to be relevant in this process.
Collapse
Affiliation(s)
- Douglas A. Carlow
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Michelle C. Tra
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hermann J. Ziltener
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Rot A, Massberg S, Khandoga AG, von Andrian UH. Chemokines and Hematopoietic Cell Trafficking. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Ku AW, Muhitch JB, Powers CA, Diehl M, Kim M, Fisher DT, Sharda AP, Clements VK, O'Loughlin K, Minderman H, Messmer MN, Ma J, Skitzki JJ, Steeber DA, Walcheck B, Ostrand-Rosenberg S, Abrams SI, Evans SS. Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes. eLife 2016; 5. [PMID: 27929373 PMCID: PMC5199197 DOI: 10.7554/elife.17375] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive network that drives cancer escape by disabling T cell adaptive immunity. The prevailing view is that MDSC-mediated immunosuppression is restricted to tissues where MDSC co-mingle with T cells. Here we show that splenic or, unexpectedly, blood-borne MDSC execute far-reaching immune suppression by reducing expression of the L-selectin lymph node (LN) homing receptor on naïve T and B cells. MDSC-induced L-selectin loss occurs through a contact-dependent, post-transcriptional mechanism that is independent of the major L-selectin sheddase, ADAM17, but results in significant elevation of circulating L-selectin in tumor-bearing mice. Even moderate deficits in L-selectin expression disrupt T cell trafficking to distant LN. Furthermore, T cells preconditioned by MDSC have diminished responses to subsequent antigen exposure, which in conjunction with reduced trafficking, severely restricts antigen-driven expansion in widely-dispersed LN. These results establish novel mechanisms for MDSC-mediated immunosuppression that have unanticipated implications for systemic cancer immunity. DOI:http://dx.doi.org/10.7554/eLife.17375.001
Collapse
Affiliation(s)
- Amy W Ku
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Jason B Muhitch
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States.,Department of Urology, Roswell Park Cancer Institute, Buffalo, United States
| | - Colin A Powers
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Michael Diehl
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States.,Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Anand P Sharda
- Department of Urology, Roswell Park Cancer Institute, Buffalo, United States
| | - Virginia K Clements
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, United States
| | - Kieran O'Loughlin
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, United States
| | - Hans Minderman
- Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, United States
| | - Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Jing Ma
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, United States
| | - Joseph J Skitzki
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, United States
| | - Douglas A Steeber
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, United States
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, United States
| |
Collapse
|
8
|
Bovine Herpesvirus 4 Modulates Its β-1,6-N-Acetylglucosaminyltransferase Activity through Alternative Splicing. J Virol 2015; 90:2039-51. [PMID: 26656682 DOI: 10.1128/jvi.01722-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Carbohydrates play major roles in host-virus interactions. It is therefore not surprising that, during coevolution with their hosts, viruses have developed sophisticated mechanisms to hijack for their profit different pathways of glycan synthesis. Thus, the Bo17 gene of Bovine herpesvirus 4 (BoHV-4) encodes a homologue of the cellular core 2 protein β-1,6-N-acetylglucosaminyltransferase-mucin type (C2GnT-M), which is a key player for the synthesis of complex O-glycans. Surprisingly, we show in this study that, as opposed to what is observed for the cellular enzyme, two different mRNAs are encoded by the Bo17 gene of all available BoHV-4 strains. While the first one corresponds to the entire coding sequence of the Bo17 gene, the second results from the splicing of a 138-bp intron encoding critical residues of the enzyme. Antibodies generated against the Bo17 C terminus showed that the two forms of Bo17 are expressed in BoHV-4 infected cells, but enzymatic assays revealed that the spliced form is not active. In order to reveal the function of these two forms, we then generated recombinant strains expressing only the long or the short form of Bo17. Although we did not highlight replication differences between these strains, glycomic analyses and lectin neutralization assays confirmed that the splicing of the Bo17 gene gives the potential to BoHV-4 to fine-tune the global level of core 2 branching activity in the infected cell. Altogether, these results suggest the existence of new mechanisms to regulate the activity of glycosyltransferases from the Golgi apparatus. IMPORTANCE Viruses are masters of adaptation that hijack cellular pathways to allow their growth. Glycans play a central role in many biological processes, and several studies have highlighted mechanisms by which viruses can affect glycosylation. Glycan synthesis is a nontemplate process regulated by the availability of key glycosyltransferases. Interestingly, bovine herpesvirus 4 encodes one such enzyme which is a key enzyme for the synthesis of complex O-glycans. In this study, we show that, in contrast to cellular homologues, this virus has evolved to alternatively express two proteins from this gene. While the first one is enzymatically active, the second results from the alternative splicing of the region encoding the catalytic site of the enzyme. We postulate that this regulatory mechanism could allow the virus to modulate the synthesis of some particular glycans for function at the location and/or the moment of infection.
Collapse
|
9
|
L-selectin controls trafficking of chronic lymphocytic leukemia cells in lymph node high endothelial venules in vivo. Blood 2015; 126:1336-45. [PMID: 26162407 DOI: 10.1182/blood-2015-02-626291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Lymph nodes (LNs) are sites of malignant proliferation and LN enlargement is associated with poor prognosis in the clinics. The LN microenvironment is believed to favor disease progression by promoting CLL cell growth and drug resistance. A better understanding of the mechanisms regulating trafficking of CLL cells to LNs is thus urgently needed. Here, we studied the first step of CLL cell migration to LNs, their interaction with high endothelial venules (HEVs), specialized blood vessels for lymphocyte extravasation in lymphoid organs. We observed that the density of HEV blood vessels was increased in CLL LNs and that CD20(+) CLL cells accumulated within HEV pockets, suggesting intense trafficking. We used intravital imaging to visualize the behavior of human CLL cells within the mouse LN microcirculation, and discovered that CLL cells bind to HEVs in vivo via a multistep adhesion cascade, which involves rolling, sticking, and crawling of the leukemic cells on the endothelium. Functional analyses revealed that the lymphocyte homing receptor L-selectin (CD62L) is the key factor controlling the binding of CLL cells to HEV walls in vivo. Interestingly, L-selectin expression was decreased on CLL cells from patients treated with idelalisib, a phosphoinositide-3-kinase δ inhibitor recently approved for CLL therapy. Interference with L-selectin-mediated trafficking in HEVs could represent a novel strategy to block dissemination of CLL cells to LNs and increase the efficacy of conventional therapy.
Collapse
|
10
|
Rausch P, Steck N, Suwandi A, Seidel JA, Künzel S, Bhullar K, Basic M, Bleich A, Johnsen JM, Vallance BA, Baines JF, Grassl GA. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection. PLoS Pathog 2015; 11:e1005008. [PMID: 26133982 PMCID: PMC4489644 DOI: 10.1371/journal.ppat.1005008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022] Open
Abstract
Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.
Collapse
Affiliation(s)
- Philipp Rausch
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Natalie Steck
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Models of Inflammation, Research Center Borstel, Borstel, Germany
| | - Abdulhadi Suwandi
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Janice A. Seidel
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kirandeep Bhullar
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Jill M. Johnsen
- Research Institute, Puget Sound Blood Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John F. Baines
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Guntram A. Grassl
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Models of Inflammation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
11
|
|
12
|
Ohmichi Y, Hirakawa J, Imai Y, Fukuda M, Kawashima H. Essential role of peripheral node addressin in lymphocyte homing to nasal-associated lymphoid tissues and allergic immune responses. J Exp Med 2011; 208:1015-25. [PMID: 21518796 PMCID: PMC3092357 DOI: 10.1084/jem.20101786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 03/22/2011] [Indexed: 12/17/2022] Open
Abstract
Nasal-associated lymphoid tissue (NALT) is a mucosal immune tissue that provides immune responses against inhaled antigens. Lymphocyte homing to NALT is mediated by specific interactions between lymphocytes and high endothelial venules (HEVs) in NALT. In contrast to HEVs in other mucosal lymphoid tissues, NALT HEVs strongly express peripheral node addressins (PNAds) that bear sulfated glycans recognized by the monoclonal antibody MECA-79. We investigated the role of PNAd in lymphocyte homing to NALT using sulfotransferase N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) 1 and GlcNAc6ST-2 double knockout (DKO) mice. The expression of PNAd in NALT HEVs was eliminated in DKO mice. Short-term homing assays indicated that lymphocyte homing to NALT was diminished by 90% in DKO mice. Production of antigen-specific IgE and the number of sneezes in response to nasally administered ovalbumin were also substantially diminished. Consistently, the NALT of DKO mice showed reduced production of IL-4 and increased production of IL-10 together with an increase in CD4(+)CD25(+) regulatory T cells (T(reg) cells). Compared with the homing of CD4(+)CD25(-) conventional T cells, the homing of CD4(+)CD25(+) T(reg) cells to NALT was less dependent on the L-selectin-PNAd interaction but was partially dependent on PSGL-1 (P-selectin glycoprotein ligand 1) and CD44. These results demonstrate that PNAd is essential for lymphocyte homing to NALT and nasal allergic responses.
Collapse
Affiliation(s)
- Yukari Ohmichi
- Laboratory of Microbiology and Immunology and the Global Center of Excellence Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Immunology and the Global Center of Excellence Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology and the Global Center of Excellence Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Minoru Fukuda
- Glycobiology Unit, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology and the Global Center of Excellence Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
13
|
Arata-Kawai H, Singer MS, Bistrup A, Zante AV, Wang YQ, Ito Y, Bao X, Hemmerich S, Fukuda M, Rosen SD. Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:423-33. [PMID: 21224079 DOI: 10.1016/j.ajpath.2010.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 12/23/2022]
Abstract
L-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs. Recent evidence has identified the contribution of 6-sulfo sLe(x) carried on N-glycans to lymphocyte homing in mice. Here, we characterize CL40, a novel IgG monoclonal antibody. CL40 equaled or surpassed MECA-79 as a histochemical staining reagent for HEVs and HEV-like vessels in mouse and human. Using synthetic carbohydrates, we found that CL40 bound to 6-sulfo sLe(x) structures, on both core 2 and extended core 1 structures, with an absolute dependency on 6-O-sulfation. Using transfected CHO cells and gene-targeted mice, we observed that CL40 bound its epitope on both N-glycans and O-glycans. Consistent with its broader glycan-binding, CL40 was superior to MECA-79 in blocking lymphocyte-HEV interactions in both wild-type mice and mice deficient in forming O-glycans. This superiority was more marked in human, as CL40 completely blocked lymphocyte binding to tonsillar HEVs, whereas MECA-79 inhibited only 60%. These findings extend the evidence for the importance of N-glycans in lymphocyte homing in mouse and indicate that this dependency also applies to human lymphoid organs.
Collapse
Affiliation(s)
- Hanayo Arata-Kawai
- Department of Anatomy, University of California, San Francisco, California 94143-0452, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ismail MN, Stone EL, Panico M, Lee SH, Luu Y, Ramirez K, Ho SB, Fukuda M, Marth JD, Haslam SM, Dell A. High-sensitivity O-glycomic analysis of mice deficient in core 2 {beta}1,6-N-acetylglucosaminyltransferases. Glycobiology 2010; 21:82-98. [PMID: 20855471 DOI: 10.1093/glycob/cwq134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1-3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids.
Collapse
Affiliation(s)
- Mohd Nazri Ismail
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Characterization of mice with targeted deletion of the gene encoding core 2 beta1,6-N-acetylglucosaminyltransferase-2. Methods Enzymol 2010; 479:155-72. [PMID: 20816165 DOI: 10.1016/s0076-6879(10)79009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The three glycosyltransferases of the Core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT) family, C2GnT1, C2GnT2, and C2GnT3, are able to initiate the Core 2 branch of O-glycans. However, C2GnT2, which is highly expressed in the digestive tract, has a broader acceptor substrate specificity that allows it to also generate Core 4 O-glycans and I branches. We discovered that C2GnT2 KO mice have decreased mucosal barrier function in the digestive tract, reduced levels of circulating IgGs and fecal IgA, and increased susceptibility to experimental colitis. Mass spectrometric analyses also revealed that C2GnT2 KO mice had a reduction in Core 2 O-glycans in the digestive tract with a corresponding increase in elongated Core 1 O-glycans. Unexpectedly, we saw that the loss of C2GnT2 and especially the loss of all three C2GnTs resulted in the expression of elongated O-mannose structures in the stomach, suggesting that the elongation of these structures is controlled by competition for UDP-GlcNAc [Stone, E. L., Ismail, M. N., Lee, S. H., Luu, Y., Ramirez, K., Haslam, S. M., Ho, S. B., Dell, A., Fukuda, M. and Marth, J. D. (2009). Glycosyltransferase function in Core 2-type protein O-glycosylation. Mol. Cell. Biol. 29, 3370-3782].
Collapse
|
16
|
Abstract
Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations. This complex sequence of events relies on adhesive interactions between surface structures on leukocytes and endothelial cells and also on signals generated during the cell-cell contacts. Cell surface glycans play a crucial role in leukocyte recruitment. Several glycosyltransferases such as alpha1,3 fucosyltransferases, alpha2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, beta1,4 galactosyltransferases, and polypeptide N-acetylgalactosaminyltransferases have been implicated in the generation of functional selectin ligands that mediate leukocyte rolling via binding to selectins. Recent evidence also suggests a role of alpha2,3 sialylated carbohydrate determinants in triggering chemokine-mediated leukocyte arrest and influencing beta1 integrin function. The recent discovery of galectin- and siglec-dependent processes further emphasizes the significant role of glycans for the successful recruitment of leukocytes into tissues. Advancing the knowledge on glycan function into appropriate pathology models is likely to suggest interesting new therapeutic strategies in the treatment of immune- and inflammation-mediated diseases.
Collapse
Affiliation(s)
- Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| | | | | |
Collapse
|
17
|
Morimoto S, Tokano Y, Nakano S, Watanabe T, Tamayama Y, Mitsuo A, Suzuki J, Kaneko H, Sekigawa I, Takasaki Y. Chemoattractant mechanism of Th1 cells in class III and IV lupus nephritis. Autoimmunity 2009; 42:143-9. [DOI: 10.1080/08916930802438790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Abstract
Three glycosyltransferases have been identified in mammals that can initiate core 2 protein O glycosylation. Core 2 O-glycans are abundant among glycoproteins but, to date, few functions for these structures have been identified. To investigate the biological roles of core 2 O-glycans, we produced and characterized mice deficient in one or more of the three known glycosyltransferases that generate core 2 O-glycans (C2GnT1, C2GnT2, and C2GnT3). A role for C2GnT1 in selectin ligand formation has been described. We now report that C2GnT2 deficiency impaired the mucosal barrier and increased susceptibility to colitis. C2GnT2 deficiency also reduced immunoglobulin abundance and resulted in the loss of all core 4 O-glycan biosynthetic activity. In contrast, the absence of C2GnT3 altered behavior linked to reduced thyroxine levels in circulation. Remarkably, elimination of all three C2GnTs was permissive of viability and fertility. Core 2 O-glycan structures were reduced among tissues from individual C2GnT deficiencies and completely absent from triply deficient mice. C2GnT deficiency also induced alterations in I-branching, core 1 O-glycan formation, and O mannosylation. Although the absence of C2GnT and C4GnT activities is tolerable in vivo, core 2 O glycosylation exerts a significant influence on O-glycan biosynthesis and is important in multiple physiological processes.
Collapse
|
19
|
Zhang L, Zhang Y, Hagen KGT. A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J Biol Chem 2008; 283:34076-86. [PMID: 18835818 PMCID: PMC2590710 DOI: 10.1074/jbc.m804267200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/01/2008] [Indexed: 12/14/2022] Open
Abstract
Cell-cell and cell-matrix adhesion are crucial during many stages of eukaryotic development. Here, we provide the first example that mucin-type O-linked glycosylation is involved in a developmentally regulated cell adhesion event in Drosophila melanogaster. Mutations in one member of the evolutionarily conserved family of enzymes that initiates O-linked glycosylation alter epithelial cell adhesion in the Drosophila wing blade. A transposon insertion mutation in pgant3 or RNA interference to pgant3 resulted in blistered wings, a phenotype characteristic of genes involved in integrin-mediated cell interactions. Expression of wild type pgant3 in the mutant background rescued the wing blistering phenotype, whereas expression of another family member (pgant35A) did not, revealing a unique requirement for pgant3. pgant3 mutants displayed reduced O-glycosylation along the basal surface of larval wing imaginal discs, which was restored with wild type pgant3 expression, suggesting that reduced glycosylation of basal proteins is responsible for disruption of adhesion in the adult wing blade. Glycosylation reactions demonstrated that PGANT3 glycosylates certain extracellular matrix (ECM) proteins. Immunoprecipitation experiments revealed that PGANT3 glycosylates tiggrin, an ECM protein known to bind integrin. We propose that this glycosyltransferase is uniquely responsible for glycosylating tiggrin in the wing disc, thus modulating proper cell adhesion through integrin-ECM interactions. This study provides the first evidence for the role of O-glycosylation in a developmentally regulated, integrin-mediated, cell adhesion event and reveals a novel player in wing blade formation during Drosophila development.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | | | |
Collapse
|
20
|
Abstract
Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.
Collapse
|
21
|
Tenno M, Ohtsubo K, Hagen FK, Ditto D, Zarbock A, Schaerli P, von Andrian UH, Ley K, Le D, Tabak LA, Marth JD. Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol Cell Biol 2007; 27:8783-96. [PMID: 17923703 PMCID: PMC2169402 DOI: 10.1128/mcb.01204-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 12/24/2022] Open
Abstract
Core-type protein O glycosylation is initiated by polypeptide N-acetylgalactosamine (GalNAc) transferase (ppGalNAcT) activity and produces the covalent linkage of serine and threonine residues of proteins. More than a dozen ppGalNAcTs operate within multicellular organisms, and they differ with respect to expression patterns and substrate selectivity. These distinctive features imply that each ppGalNAcT may differentially modulate regulatory processes in animal development, physiology, and perhaps disease. We found that ppGalNAcT-1 plays key roles in cell and glycoprotein selective functions that modulate the hematopoietic system. Loss of ppGalNAcT-1 activity in the mouse results in a bleeding disorder which tracks with reduced plasma levels of blood coagulation factors V, VII, VIII, IX, X, and XII. ppGalNAcT-1 further supports leukocyte trafficking and residency in normal homeostatic physiology as well as during inflammatory responses, in part by providing a scaffold for the synthesis of selectin ligands expressed by neutrophils and endothelial cells of peripheral lymph nodes. Animals lacking ppGalNAcT-1 are also markedly impaired in immunoglobulin G production, coincident with increased germinal center B-cell apoptosis and reduced levels of plasma B cells. These findings reveal that the initiation of protein O glycosylation by ppGalNAcT-1 provides a distinctive repertoire of advantageous functions that support vascular responses and humoral immunity.
Collapse
Affiliation(s)
- Mari Tenno
- Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Galkina E, Florey O, Zarbock A, Smith BRE, Preece G, Lawrence MB, Haskard DO, Ager A. T lymphocyte rolling and recruitment into peripheral lymph nodes is regulated by a saturable density of L-selectin (CD62L). Eur J Immunol 2007; 37:1243-53. [PMID: 17429841 DOI: 10.1002/eji.200636481] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
L-selectin mediates tethering and rolling of lymphocytes in high endothelial venules (HEV) of lymph nodes (LN) and of leukocytes at inflammatory sites. We used transgenic mice expressing varying levels of wild-type or a non-cleavable mutant form of L-selectin on T cells to determine the relationship between L-selectin density, tethering and rolling, and migration into LN. T cells expressing supraphysiological levels of either wild-type or non-cleavable L-selectin showed rolling parameters similar to C57BL/6 T cells in hydrodynamic flow assays and during rolling in Peyer's patch HEV. In contrast, PMA- or antigen-activated T cells and L-selectin(+/-) T cells expressing subphysiological levels of L-selectin showed reduced numbers of rolling cells with increased rolling velocity. Short-term homing studies showed that elevated expression of L-selectin above physiological levels had no effect on T cell migration to LN; however, low L-selectin expression resulted in reduced T cell homing to LN. Thus, T lymphocyte migration into LN is regulated by the density of cell surface L-selectin. In addition, there is a saturable density of L-selectin required for optimal homing to PLN in C57BL/6 mice, the L-selectin level on circulating naive T cells promotes optimal homing, and increased expression above saturating levels promotes no further increase in T cell recruitment.
Collapse
Affiliation(s)
- Elena Galkina
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Veerman KM, Williams MJ, Uchimura K, Singer MS, Merzaban JS, Naus S, Carlow DA, Owen P, Rivera-Nieves J, Rosen SD, Ziltener HJ. Interaction of the selectin ligand PSGL-1 with chemokines CCL21 and CCL19 facilitates efficient homing of T cells to secondary lymphoid organs. Nat Immunol 2007; 8:532-9. [PMID: 17401367 DOI: 10.1038/ni1456] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 03/08/2007] [Indexed: 11/09/2022]
Abstract
P-selectin glycoprotein ligand 1 (PSGL-1) is central to the trafficking of immune effector cells to areas of inflammation through direct interactions with P-selectin, E-selectin and L-selectin. Here we show that PSGL-1 was also required for efficient homing of resting T cells to secondary lymphoid organs but functioned independently of selectin binding. PSGL-1 mediated an enhanced chemotactic T cell response to the secondary lymphoid organ chemokines CCL21 and CCL19 but not to CXCL12 or to inflammatory chemokines. Our data show involvement of PSGL-1 in facilitating the entry of T cells into secondary lymphoid organs, thereby demonstrating the bifunctional nature of this molecule.
Collapse
Affiliation(s)
- Krystle M Veerman
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mitoma J, Bao X, Petryanik B, Schaerli P, Gauguet JM, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Khoo KH, von Andrian UH, Lowe JB, Fukuda M. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol 2007; 8:409-18. [PMID: 17334369 DOI: 10.1038/ni1442] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/23/2007] [Indexed: 01/24/2023]
Abstract
Lymphocyte homing is mediated by specific interaction between L-selectin on lymphocytes and the carbohydrate ligand 6-sulfo sialyl Lewis X on high endothelial venules. Here we generated mice lacking both core 1 extension and core 2 branching enzymes to assess the functions of O-glycan-borne L-selectin ligands in vivo. Mutant mice maintained robust lymphocyte homing, yet they lacked O-glycan L-selectin ligands. Biochemical analyses identified a class of N-glycans bearing the 6-sulfo sialyl Lewis X L-selectin ligand in high endothelial venules. These N-glycans supported the binding of L-selectin to high endothelial venules in vitro and contributed in vivo to O-glycan-independent lymphocyte homing in wild-type and mutant mice. Our results demonstrate the critical function of N-glycan-linked 6-sulfo sialyl Lewis X in L-selectin-dependent lymphocyte homing and recruitment.
Collapse
Affiliation(s)
- Junya Mitoma
- Glycobiology Program, Cancer Research Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cañete JD, Santiago B, Cantaert T, Sanmartí R, Palacin A, Celis R, Graell E, Gil-Torregrosa B, Baeten D, Pablos JL. Ectopic lymphoid neogenesis in psoriatic arthritis. Ann Rheum Dis 2007; 66:720-6. [PMID: 17223654 PMCID: PMC1954653 DOI: 10.1136/ard.2006.062042] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ectopic lymphoid neogenesis (LN) occurs in rheumatoid synovium, where it is thought to drive local antigen-dependent B cell development and autoantibody production. This process involves the expression of specific homing chemokines and the development of high endothelial venules (HEV). OBJECTIVE To investigate whether these mechanisms occur in psoriatic arthritis (PsA) synovium, where autoantibodies have not been described and the organisation and function of B cells is not clear, and to analyse their clinical correlates. METHODS Arthroscopic synovial biopsy specimens from patients with PsA before and after tumour necrosis factor alpha blockade were characterised by immunohistochemical analysis for T/B cell segregation, peripheral lymph node addressin (PNAd)-positive HEV, and the expression of CXCL13, CCL21 and CXCL12 chemokines in relation to the size of lymphoid aggregates. RESULTS Lymphoid aggregates of variable sizes were observed in 25 of 27 PsA synovial tissues. T/B cell segregation was often observed, and was correlated with the size of lymphoid aggregates. A close relationship between the presence of large and highly organised aggregates, the development of PNAd+ HEV, and the expression of CXCL13 and CCL21 was found. Large organised aggregates with all LN features were found in 13 of 27 tissues. LN in PsA synovitis was not related to the duration, pattern or severity of the disease. The synovial LN pattern remained stable over time in persistent synovitis, but a complete response to treatment was associated with a regression of the LN features. CONCLUSIONS LN occurs frequently in inflamed PsA synovial tissues. Highly organised follicles display the characteristic features of PNAd+ HEV and CXCL13 and CCL21 expression, demonstrating that the microanatomical bases for germinal centre formation are present in PsA. The regression of LN on effective treatment indicates that the pathogenic and clinical relevance of these structures in PsA merits further investigation.
Collapse
Affiliation(s)
- Juan D Cañete
- Servicio de Reumatología, Hospital 12 de Octubre, 28041 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yu LM, Chen DX, Zhou QX, Fang N, Liu ZL. Effects of histamine on immunophenotype and notch signaling in human HL-60 leukemia cells. Exp Biol Med (Maywood) 2006; 231:1633-7. [PMID: 17060684 DOI: 10.1177/153537020623101008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Surface molecules are important biomarkers for cell proliferation and differentiation and play important roles in cell function and cell interaction. Notch is a transmembrane receptor that regulates developmental processes and cell-fate decision. Histamine is used as an adjunct to immunotherapy in myelogenous leukemia, and regulates hematopoietic cell development. Thus, we investigated the effects of histamine on immunophenotype and Notch signaling in human HL-60 leukemia cells. Histamine (0.1-10 microM) inhibited the colony-forming efficiency of HL-60 cells in a dose-dependent fashion and shifted the growth curve to the right. HL-60 cells were treated with histamine 0.1-1.0 microM for 6 days, and surface molecules were analyzed by flow cytometry. Histamine decreased CD49d positive cells by 74% while increasing CD31 positive cells by 53% as compared to controls. Histamine did not affect the expression of CD11b, CD14, CD34, CD44, CD54, CD49e, and CD62L. To examine Notch signaling in histamine-induced immunophenotype alterations in HL-60 cells, total RNA was isolated, purified, and subjected to real-time RT-PCR analysis. The expressions of Notch1, Notch4, the ligands Jagged1, Delta4, and the downstream hairy enhancer of split 1 gene (HES1) were not significantly altered by histamine. In summary, this study demonstrated that histamine inhibited HL-60 cell growth and regulated immunophenotypes of CD49d and CD31. These effects are not mediated through the Notch signaling.
Collapse
Affiliation(s)
- Li Mei Yu
- The Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi Medical College, Zunyi, Guizhou Province, China.
| | | | | | | | | |
Collapse
|
27
|
Chen Q, Fisher DT, Clancy KA, Gauguet JMM, Wang WC, Unger E, Rose-John S, von Andrian UH, Baumann H, Evans SS. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 2006; 7:1299-308. [PMID: 17086187 DOI: 10.1038/ni1406] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 10/04/2006] [Indexed: 12/25/2022]
Abstract
Fever is an evolutionarily conserved response during acute inflammation, although its physiological benefit is poorly understood. Here we show thermal stress in the range of fever temperatures increased the intravascular display of two 'gatekeeper' homing molecules, intercellular adhesion molecule 1 (ICAM-1) and CCL21 chemokine, exclusively in high endothelial venules (HEVs) that are chief portals for the entry of blood-borne lymphocytes into lymphoid organs. Enhanced endothelial expression of ICAM-1 and CCL21 was linked to increased lymphocyte trafficking across HEVs. A bifurcation in the mechanisms controlling HEV adhesion was demonstrated by evidence that the thermal induction of ICAM-1 but not of CCL21 involved an interleukin 6 trans-signaling pathway. Our findings identify the 'HEV axis' as a thermally sensitive alert system that heightens immune surveillance during inflammation by amplifying lymphocyte trafficking to lymphoid organs.
Collapse
Affiliation(s)
- Qing Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Leukocyte rolling is an important step for the successful recruitment of leukocytes into tissue and occurs predominantly in inflamed microvessels and in high endothelial venules of secondary lymphoid organs. Leukocyte rolling is mediated by a group of C-type lectins, termed selectins. Three different selectins have been identified - P-, E- and L-selectin - which recognize and bind to crucial carbohydrate determinants on selectin ligands. Among selectin ligands, P-selectin glycoprotein ligand-1 is the main inflammatory selectin ligand, showing binding to all three selectins under in vivo conditions. Functional relevant selectin ligands expressed on high endothelial venules of lymphoid tissue are less clearly defined at the protein level. However, high endothelial venule-expressed selectin ligands were instrumental in uncovering the crucial role of post-translational modifications for selectin ligand activity. Several glycosyltransferases, such as core 2 beta1,6-N-acetylglucosaminyltransferase-I, beta1,4-galactosyltransferases, alpha1,3-fucosyltransferases and alpha2,3-sialyltransferases have been described to participate in the synthesis of core 2 decorated O-glycan structures carrying the tetrasaccharide sialyl Lewis X, a carbohydrate determinant on selectin ligands with binding activity to all three selectins. In addition, modifications, such as carbohydrate or tyrosine sulfation, were also found to contribute to the synthesis of functional selectin ligands.
Collapse
Affiliation(s)
- Markus Sperandio
- University Children's Hospital Heidelberg, Division of Neonatal Medicine, University of Heidelberg, Germany.
| |
Collapse
|
29
|
|
30
|
Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, Fava RA. Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 2005; 23:539-50. [PMID: 16286021 DOI: 10.1016/j.immuni.2005.10.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/25/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
The lymphotoxin axis is important for the maintenance of several specialized lymphoid microenvironments in secondary lymphoid tissue. Lymphoid-tissue architecture is highly plastic and requires continual homeostatic signaling to maintain its basal functional state. The cellularity of lymph nodes in adult mice was reduced by systemic blockade of lymphotoxin-beta receptor (LTbeta R) signaling with a soluble decoy receptor both in resting and reactive settings. This reduction in cellularity resulted from greatly impaired lymphocyte entry into lymph nodes due to decreased levels of peripheral lymph node addressing (PNAd) and MAdCAM on high endothelial venules (HEV). LTbeta R signaling was required to maintain normal levels of RNA expression of MAdCAM, and also of PNAd by regulating the expression of key enzymes and scaffold proteins required for its assembly. Thus, the homeostatic maintenance of functional HEV status in adult mice relies largely on LTbeta R signaling.
Collapse
Affiliation(s)
- Jeffrey L Browning
- Department of Immunobiology, Biogen Idec, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Uchimura K, Gauguet JM, Singer MS, Tsay D, Kannagi R, Muramatsu T, von Andrian UH, Rosen SD. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol 2005; 6:1105-13. [PMID: 16227986 DOI: 10.1038/ni1258] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/25/2005] [Indexed: 12/14/2022]
Abstract
The interaction of L-selectin on lymphocytes with sulfated ligands on high endothelial venules leads to rolling and is critical for recruitment of lymphocytes into peripheral lymph nodes. Peripheral node addressin represents a class of L-selectin ligands recognized by the function-blocking monoclonal antibody MECA-79. Its epitope overlaps with sialyl 6-sulfo Lewis X, an L-selectin recognition determinant. Here, mice lacking two N-acetylglucosamine-6-O-sulfotransferases (GlcNAc6ST-1 and GlcNAc6ST-2) demonstrated elimination of both peripheral node addressin and sialyl 6-sulfo Lewis X in high endothelial venules, considerably reduced lymphocyte homing to peripheral lymph nodes and reduced sticking of lymphocytes along high endothelial venules. Our results establish an essential function for the sulfotransferases in L-selectin ligand synthesis and may have relevance for therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Kenji Uchimura
- Department of Anatomy, Program in Immunology, Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Halin C, Scimone ML, Bonasio R, Gauguet JM, Mempel TR, Quackenbush E, Proia RL, Mandala S, von Andrian UH. The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood 2005; 106:1314-22. [PMID: 15870184 PMCID: PMC1895188 DOI: 10.1182/blood-2004-09-3687] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) and its receptor S1P1 control T-cell egress from thymus and secondary lymphoid organs (SLOs). To further define the role of S1P1 in lymphocyte trafficking, we performed adoptive transfer experiments and intravital microscopy (IVM) using both S1P1-/- lymphocytes and recipient wild-type (WT) mice treated with FTY720, an immunosuppressant that downmodulates S1P receptors. S1P1 deficiency and FTY720 caused rapid disappearance of T cells from blood, prolonged retention in SLOs, and accumulation in bone marrow, but did not alter interstitial T-cell motility in peripheral lymph nodes (PLNs) as assessed by multiphoton IVM. However, S1P1-/- lymphocytes displayed reduced short-term homing to PLNs due to attenuated integrin-mediated firm arrest in high endothelial venules (HEVs). By contrast, S1P1-/- T cells homed normally to Peyer patches (PPs), whereas S1P1-/- B cells had a marked defect in homing to PPs and arrested poorly in PP HEVs. Therefore, S1P1 not only controls lymphocyte egress from SLOs, but also facilitates in a tissue- and subset-specific fashion integrin activation during homing. Interestingly, FTY720 treatment enhanced accumulation of both S1P1 sufficient and S1P1-/- T cells in PPs by enhancing integrin-mediated arrest in HEVs. Thus, FTY720 exerts unique effects on T-cell traffic in PPs that are independent of T-cell-expressed S1P1.
Collapse
Affiliation(s)
- Cornelia Halin
- The CBR Institute for Biomedical Research, 200 Longwood Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH, Alon R. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 2005; 6:497-506. [PMID: 15834409 DOI: 10.1038/ni1194] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 03/18/2005] [Indexed: 12/16/2022]
Abstract
It is widely believed that rolling lymphocytes require successive chemokine-induced signaling for lymphocyte function-associated antigen 1 (LFA-1) to achieve a threshold avidity that will mediate lymphocyte arrest. Using an in vivo model of lymphocyte arrest, we show here that LFA-1-mediated arrest of lymphocytes rolling on high endothelial venules bearing LFA-1 ligands and chemokines was abrupt. In vitro flow chamber models showed that endothelium-presented but not soluble chemokines triggered instantaneous extension of bent LFA-1 in the absence of LFA-1 ligand engagement. To support lymphocyte adhesion, this extended LFA-1 conformation required immediate activation by its ligand, intercellular adhesion molecule 1. These data show that chemokine-triggered lymphocyte adhesiveness involves a previously unrecognized extension step that primes LFA-1 for ligand binding and firm adhesion.
Collapse
Affiliation(s)
- Revital Shamri
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W, Engelke K, Xia L, McEver RP, Koni PA, Silberstein LE, von Andrian UH. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 2005; 22:259-70. [PMID: 15723813 DOI: 10.1016/j.immuni.2005.01.008] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 01/11/2005] [Accepted: 01/12/2005] [Indexed: 01/22/2023]
Abstract
Normal bone marrow (BM) contains T cells whose function and origin are poorly understood. We observed that CD8+ T cells in BM consist chiefly of CCR7+ L-selectin+ central memory cells (TCMs). Adoptively transferred TCMs accumulated more efficiently in the BM than naive and effector T cells. Intravital microscopy (IVM) showed that TCMs roll efficiently in BM microvessels via L-, P-, and E-selectin, whereas firm arrest required the VCAM-1/alpha4beta1 pathway. alpha4beta1 integrin activation did not depend on pertussis toxin (PTX)-sensitive Galphai proteins but was reduced by anti-CXCL12. In contrast, TCM diapedesis did not require CXCL12 but was blocked by PTX. After extravasation, TCMs displayed agile movement within BM cavities, remained viable, and mounted potent antigen-specific recall responses for at least two months. Thus, the BM functions as a major reservoir for TCMs by providing specific recruitment signals that act in sequence to mediate the constitutive recruitment of TCMs from the blood.
Collapse
Affiliation(s)
- Irina B Mazo
- Department of Pathology, The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Drayton DL, Bonizzi G, Ying X, Liao S, Karin M, Ruddle NH. I kappa B kinase complex alpha kinase activity controls chemokine and high endothelial venule gene expression in lymph nodes and nasal-associated lymphoid tissue. THE JOURNAL OF IMMUNOLOGY 2004; 173:6161-8. [PMID: 15528353 DOI: 10.4049/jimmunol.173.10.6161] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lymphotoxin (LT) beta receptor plays a critical role in secondary lymphoid organogenesis and the classical and alternative NF-kappaB pathways have been implicated in this process. IKKalpha is a key molecule for the activation of the alternative NF-kappaB pathway. However, its precise role and target genes in secondary lymphoid organogenesis remain unknown, particularly with regard to high endothelial venules (HEV). In this study, we show that IKKalpha(AA) mutant mice, who lack inducible kinase activity, have hypocellular lymph nodes (LN) and nasal-associated lymphoid (NALT) tissue characterized by marked defects in microarchitecture and HEV. In addition, IKKalpha(AA) LNs showed reduced lymphoid chemokine CCL19, CCL21, and CXCL13 expression. IKKalpha(AA) LN- and NALT-HEV were abnormal in appearance with reduced expression of peripheral node addressin (PNAd) explained by a severe reduction in the HEV-associated proteins, glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), and high endothelial cell sulfotransferase, a PNAd-generating enzyme that is a target of LTalphabeta. In this study, analysis of LTbeta(-/-) mice identifies GlyCAM-1 as another LTbeta-dependent gene. In contrast, TNFRI(-/-) mice, which lose classical NF-kappaB pathway activity but retain alternative NF-kappaB pathway activity, showed relatively normal GlyCAM-1 and HEC-6ST expression in LN-HEV. In addition, in this communication, it is demonstrated that LTbetaR is prominently expressed on LN- and NALT-HEV. Thus, these data reveal a critical role for IKKalpha in LN and NALT development, identify GlyCAM-1 and high endothelial cell sulfotransferase as new IKKalpha-dependent target genes, and suggest that LTbetaR signaling on HEV can regulate HEV-specific gene expression.
Collapse
Affiliation(s)
- Danielle L Drayton
- Department of Epidemiology and Public Health, Section of Immunobiology, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|