1
|
Tat VY, Drelich AK, Huang P, Khanipov K, Hsu JC, Widen SG, Tseng CTK, Golovko G. Characterizing temporal and global host innate immune responses against SARS-CoV-1 and -2 infection in pathologically relevant human lung epithelial cells. PLoS One 2025; 20:e0317921. [PMID: 39874350 PMCID: PMC11774383 DOI: 10.1371/journal.pone.0317921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells). Total RNA extracted at 12, 24, and 48 hours after β-CoVs or mock infection of Calu-3/2B4 cells were subjected to RNA sequencing and functional enrichment analysis to select genes whose expressions were significantly modulated post-infection. The results demonstrate that SARS-CoV-1 and -2 stimulate similar yet distinct innate antiviral signaling pathways in pathologically relevant human lung epithelial cells. Furthermore, we found that many genes related to the viral life cycle, interferons, and interferon-stimulated genes (ISGs) were upregulated at multiple time points. Based on their profound modulation upon infection by SARS-CoV-1, SARS-CoV-2, and Omicron BA.1, four ISGs, i.e., bone marrow stromal cell antigen 2 (BST2), Z-DNA Binding Protein 1 (ZBP1), C-X-C Motif Chemokine Ligand 11 (CXCL11), and Interferon Induced Transmembrane Protein 1 (IFITM1), were identified as potential drug targets against β-CoVs. Our findings suggest that these genes affect both pathogens directly and indirectly through the innate immune response, making them potential targets for host-directed antivirals. Altogether, our results demonstrate that SARS-CoV-1 and SARS-CoV-2 infection induce differential effects on host innate immune responses.
Collapse
Affiliation(s)
- Vivian Y Tat
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra K Drelich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pinghan Huang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason C Hsu
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Steven G Widen
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chien-Te Kent Tseng
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - George Golovko
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Wu Y, He L, Li R, Li J, Zhao Q, Shao B. A20 as a Potential Therapeutic Target for COVID-19. Immun Inflamm Dis 2025; 13:e70127. [PMID: 39853876 PMCID: PMC11760982 DOI: 10.1002/iid3.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors. A20, which is widely accepted as a pivotal regulator of inflammation, has been shown to be implicated in the processes of antiviral responses and immunosuppression. Thus, A20 may participate in regulating the pathological processes of COVID-19. METHODS This narrative literature review summarizes recent evidence on the mechanisms of A20 in regulating the pathological processes of COVID-19. We also downloaded single-cell RNA-seq data sets from healthy individuals and patients with varying severities of COVID-19 from the NCBI GEO database to further dissect A20's regulatory mechanisms of these intricate cytokine pathways that are closely associated with SARS-CoV-2 infection. RESULTS A20 might be one of the most critical anti-infectious and anti-inflammatory factors involved in the pathogenesis of COVID-19. It effectively suppresses the immune damage and inflammatory storm caused by viral infection. CONCLUSIONS Understanding the relationship between A20-regulated signaling pathways and pathological processes of COVID-19 can provide insight into potential targets for intervention. Precise regulation of A20 to induce antiviral activity and an anti-inflammatory response could mediate the pathogenesis of COVID-19 and could become an effective treatment.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Lilan He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Rong Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiuxuan Li
- Laboratory of Radiation Biology, Laboratory Medicine Centre, Department of Blood TransfusionThe Second Affiliated HospitalArmy Military Medical UniversityChongqingChina
| | - Qing Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
4
|
Yip JQ, Oo A, Ng YL, Chin KL, Tan KK, Chu JJH, AbuBakar S, Zainal N. The role of inflammatory gene polymorphisms in severe COVID-19: a review. Virol J 2024; 21:327. [PMID: 39707400 DOI: 10.1186/s12985-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global healthcare systems and spurred extensive research efforts over the past three years. One critical aspect of the disease is the intricate interplay between the virus and the host immune response, particularly the role of inflammatory gene expression in severe COVID-19. While numerous previous studies have explored the role of genetic polymorphisms in COVID-19, research specifically focusing on inflammatory genes and their associations with disease severity remains limited. This review explores the relationship between severe COVID-19 outcomes and genetic polymorphisms within key inflammatory genes. By investigating the impact of genetic variations on immune responses, which include cytokine production and downstream signalling pathways, we aim to provide a comprehensive overview of how genetic polymorphisms contribute to the variability in disease presentation. Through an in-depth analysis of existing literature, we shed light on potential therapeutic targets and personalized approaches that may enhance our understanding of disease pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jia Qi Yip
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adrian Oo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yan Ling Ng
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kim Ling Chin
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Yaghmouri M, Izadi P. Role of the Neanderthal Genome in Genetic Susceptibility to COVID-19: 3p21.31 Locus in the Spotlight. Biochem Genet 2024; 62:4239-4263. [PMID: 38345759 DOI: 10.1007/s10528-024-10669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Since the outbreak of COVID-19, genome-wide association studies have tried to discover the role of genetic predisposition in the clinical variability of this viral infection. The findings of various investigations have led to several loci for COVID-19 genetic susceptibility. Among candidate regions, the 3p21.31 locus has been in the spotlight among scientists, as it can increase the risk of severe COVID-19 by almost two fold. In addition to its substantial association with COVID-19 severity, this locus is related to some common diseases, such as diabetes, malignancies, and coronary artery disease. This locus also harbors evolutionary traces of Neanderthal genomes, which is believed to be the underlying reason for its association with COVID-19 severity. Additionally, the inheritance of this locus from Neanderthals seems to be under positive selection. This review aims to summarize a collection of evidence on the 3p21.31 locus and its impact on COVID-19 outcomes by focusing on the risk variants originated from the Neanderthal genome. Moreover, we discuss candidate genes at this locus and the possible mechanisms by which they influence the progression of COVID-19 symptoms. Better insights into human genetic susceptibility to newly emerging diseases such as COVID-19 and its evolutionary origin can provide fundamentals for risk assessment of different populations as well as the development of personalized prevention and treatments based on genomic medicine.
Collapse
Affiliation(s)
- Mohammad Yaghmouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Xue W, Chu H, Wang J, Sun Y, Qiu X, Song C, Tan L, Ding C, Liao Y. Coronavirus nucleocapsid protein enhances the binding of p-PKCα to RACK1: Implications for inhibition of nucleocytoplasmic trafficking and suppression of the innate immune response. PLoS Pathog 2024; 20:e1012097. [PMID: 39602452 PMCID: PMC11633972 DOI: 10.1371/journal.ppat.1012097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The hallmark of coronavirus infection lies in its ability to evade host immune defenses, a process intricately linked to the nuclear entry of transcription factors crucial for initiating the expression of antiviral genes. Central to this evasion strategy is the manipulation of the nucleocytoplasmic trafficking system, which serves as an effective target for the virus to modulate the expression of immune response-related genes. In this investigation, we discovered that infection with the infectious bronchitis virus (IBV) dynamically impedes the nuclear translocation of several transcription factors such as IRF3, STAT1, STAT2, NF-κB p65, and the p38 MAPK, leading to compromised transcriptional induction of key antiviral genes such as IFNβ, IFITM3, and IL-8. Further examination revealed that during the infection process, components of the nuclear pore complex (NPC), particularly FG-Nups (such as NUP62, NUP153, NUP42, and TPR), undergo cytosolic dispersion from the nuclear envelope; NUP62 undergoes phosphorylation, and NUP42 exhibits a mobility shift in size. These observations suggest a disruption in nucleocytoplasmic trafficking. Screening efforts identified the IBV nucleocapsid (N) protein as the agent responsible for the cytoplasmic distribution of FG-Nups, subsequently hindering the nuclear entry of transcription factors and suppressing the expression of antiviral genes. Interactome analysis further revealed that the IBV N protein interacts with the scaffold protein RACK1, facilitating the recruitment of activated protein kinase C alpha (p-PKCα) to RACK1 and relocating the p-PKCα-RACK1 complex to the cytoplasm. These observations are conserved across diverse coronaviruses N proteins. Concurrently, the presence of both RACK1 and PKCα/β proved essential for the phosphorylation and cytoplasmic dispersion of NUP62, the suppression of antiviral cytokine expression, and efficient virus replication. These findings unveil a novel, highly effective, and evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Hongyan Chu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Jiehuang Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, P. R. China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| |
Collapse
|
7
|
Sánchez-Menéndez C, de la Calle-Jiménez O, Mateos E, Vigón L, Fuertes D, Murciano Antón MA, San José E, García-Gutiérrez V, Cervero M, Torres M, Coiras M. Different polarization and functionality of CD4+ T helper subsets in people with post-COVID condition. Front Immunol 2024; 15:1431411. [PMID: 39257580 PMCID: PMC11385313 DOI: 10.3389/fimmu.2024.1431411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
Collapse
Affiliation(s)
- Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olivia de la Calle-Jiménez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- AIDS Immunopathology, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Aranzazu Murciano Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esther San José
- Immunomodulation Unit, Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Cervero
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Kryńska K, Kuliś K, Mazurek W, Gudowska-Sawczuk M, Zajkowska M, Mroczko B. The Influence of SARS-CoV-2 Infection on the Development of Selected Neurological Diseases. Int J Mol Sci 2024; 25:8715. [PMID: 39201402 PMCID: PMC11354773 DOI: 10.3390/ijms25168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In 2024, over 775 million cases of COVID-19 were recorded, including approximately 7 million deaths, indicating its widespread and dangerous nature. The disease is caused by the SARS-CoV-2 virus, which can manifest a wide spectrum of symptoms, from mild infection to respiratory failure and even death. Neurological symptoms, such as headaches, confusion, and impaired consciousness, have also been reported in some COVID-19 patients. These observations suggest the potential of SARS-CoV-2 to invade the central nervous system and induce neuroinflammation during infection. This review specifically explores the relationship between SARS-CoV-2 infection and selected neurological diseases such as multiple sclerosis (MS), ischemic stroke (IS), and Alzheimer's disease (AD). It has been observed that the SARS-CoV-2 virus increases the production of cytokines whose action can cause the destruction of the myelin sheaths of nerve cells. Subsequently, the body may synthesize autoantibodies that attack nerve cells, resulting in damage to the brain's anatomical elements, potentially contributing to the onset of multiple sclerosis. Additionally, SARS-CoV-2 exacerbates inflammation, worsening the clinical condition in individuals already suffering from MS. Moreover, the secretion of pro-inflammatory cytokines may lead to an escalation in blood clot formation, which can result in thrombosis, obstructing blood flow to the brain and precipitating an ischemic stroke. AD is characterized by intense inflammation and heightened oxidative stress, both of which are exacerbated during SARS-CoV-2 infection. It has been observed that the SARS-CoV-2 demonstrates enhanced cell entry in the presence of both the ACE2 receptor, which is already elevated in AD and the ApoE ε4 allele. Consequently, the condition worsens and progresses more rapidly, increasing the mortality rate among AD patients. The above information underscores the numerous connections between SARS-CoV-2 infection and neurological diseases.
Collapse
Affiliation(s)
- Klaudia Kryńska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Katarzyna Kuliś
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Wiktoria Mazurek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| |
Collapse
|
9
|
Qing L, Wu W. The mechanism of geniposide in patients with COVID-19 and atherosclerosis: A pharmacological and bioinformatics analysis. Medicine (Baltimore) 2024; 103:e39065. [PMID: 39093733 PMCID: PMC11296471 DOI: 10.1097/md.0000000000039065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
In patients with severe acute respiratory syndrome coronavirus 2 (which causes coronavirus disease 2019 [COVID-19]), oxidative stress (OS) is associated with disease severity and death. OS is also involved in the pathogenesis of atherosclerosis (AS). Previous studies have shown that geniposide has anti-inflammatory and anti-viral properties, and can protect cells against OS. However, the potential target(s) of geniposide in patients with COVID-19 and AS, as well as the mechanism it uses, are unclear. We combined pharmacology and bioinformatics analysis to obtain geniposide against COVID-19/AS targets, and build protein-protein interaction network to filter hub genes. The hub genes were performed an enrichment analysis by ClueGO, including Gene Ontology and KEGG. The Enrichr database and the target microRNAs (miRNAs) of hub genes were predicted through the MiRTarBase via Enrichr. The common miRNAs were used to construct the miRNAs-mRNAs regulated network, and the miRNAs' function was evaluated by mirPath v3.0 software. Two hundred forty-seven targets of geniposide were identified in patients with COVID-19/AS comorbidity by observing the overlap between the genes modulated by geniposide, COVID-19, and AS. A protein-protein interaction network of geniposide in patients with COVID-19/AS was constructed, and 27 hub genes were identified. The results of enrichment analysis suggested that geniposide may be involved in regulating the OS via the FoxO signaling pathway. MiRNA-mRNA network revealed that hsa-miR-34a-5p may play an important role in the therapeutic mechanism of geniposide in COVID-19/AS patients. Our study found that geniposide represents a promising therapy for patients with COVID-19 and AS comorbidity. Furthermore, the target genes and miRNAs that we identified may aid the development of new treatment strategies against COVID-19/AS.
Collapse
Affiliation(s)
- Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Wei Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| |
Collapse
|
10
|
Agamah FE, Ederveen THA, Skelton M, Martin DP, Chimusa ER, ’t Hoen PAC. Network-based integrative multi-omics approach reveals biosignatures specific to COVID-19 disease phases. Front Mol Biosci 2024; 11:1393240. [PMID: 39040605 PMCID: PMC11260748 DOI: 10.3389/fmolb.2024.1393240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024] Open
Abstract
Background COVID-19 disease is characterized by a spectrum of disease phases (mild, moderate, and severe). Each disease phase is marked by changes in omics profiles with corresponding changes in the expression of features (biosignatures). However, integrative analysis of multiple omics data from different experiments across studies to investigate biosignatures at various disease phases is limited. Exploring an integrative multi-omics profile analysis through a network approach could be used to determine biosignatures associated with specific disease phases and enable the examination of the relationships between the biosignatures. Aim To identify and characterize biosignatures underlying various COVID-19 disease phases in an integrative multi-omics data analysis. Method We leveraged a multi-omics network-based approach to integrate transcriptomics, metabolomics, proteomics, and lipidomics data. The World Health Organization Ordinal Scale WHO Ordinal Scale was used as a disease severity reference to harmonize COVID-19 patient metadata across two studies with independent data. A unified COVID-19 knowledge graph was constructed by assembling a disease-specific interactome from the literature and databases. Disease-state specific omics-graphs were constructed by integrating multi-omics data with the unified COVID-19 knowledge graph. We expanded on the network layers of multiXrank, a random walk with restart on multilayer network algorithm, to explore disease state omics-specific graphs and perform enrichment analysis. Results Network analysis revealed the biosignatures involved in inducing chemokines and inflammatory responses as hubs in the severe and moderate disease phases. We observed distinct biosignatures between severe and moderate disease phases as compared to mild-moderate and mild-severe disease phases. Mild COVID-19 cases were characterized by a unique biosignature comprising C-C Motif Chemokine Ligand 4 (CCL4), and Interferon Regulatory Factor 1 (IRF1). Hepatocyte Growth Factor (HGF), Matrix Metallopeptidase 12 (MMP12), Interleukin 10 (IL10), Nuclear Factor Kappa B Subunit 1 (NFKB1), and suberoylcarnitine form hubs in the omics network that characterizes the moderate disease state. The severe cases were marked by biosignatures such as Signal Transducer and Activator of Transcription 1 (STAT1), Superoxide Dismutase 2 (SOD2), HGF, taurine, lysophosphatidylcholine, diacylglycerol, triglycerides, and sphingomyelin that characterize the disease state. Conclusion This study identified both biosignatures of different omics types enriched in disease-related pathways and their associated interactions (such as protein-protein, protein-transcript, protein-metabolite, transcript-metabolite, and lipid-lipid interactions) that are unique to mild, moderate, and severe COVID-19 disease states. These biosignatures include molecular features that underlie the observed clinical heterogeneity of COVID-19 and emphasize the need for disease-phase-specific treatment strategies. The approach implemented here can be used to find associations between transcripts, proteins, lipids, and metabolites in other diseases.
Collapse
Affiliation(s)
- Francis E. Agamah
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas H. A. Ederveen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Michelle Skelton
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Science, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| | - Peter A. C. ’t Hoen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
11
|
Hamdorf M, Imhof T, Bailey-Elkin B, Betz J, Theobald SJ, Simonis A, Di Cristanziano V, Gieselmann L, Dewald F, Lehmann C, Augustin M, Klein F, Alejandre Alcazar MA, Rongisch R, Fabri M, Rybniker J, Goebel H, Stetefeld J, Brachvogel B, Cursiefen C, Koch M, Bock F. The unique ORF8 protein from SARS-CoV-2 binds to human dendritic cells and induces a hyper-inflammatory cytokine storm. J Mol Cell Biol 2024; 15:mjad062. [PMID: 37891014 PMCID: PMC11181941 DOI: 10.1093/jmcb/mjad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/01/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023] Open
Abstract
The novel coronavirus pandemic, first reported in December 2019, was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection leads to a strong immune response and activation of antigen-presenting cells, which can elicit acute respiratory distress syndrome (ARDS) characterized by the rapid onset of widespread inflammation, the so-called cytokine storm. In response to viral infections, monocytes are recruited into the lung and subsequently differentiate into dendritic cells (DCs). DCs are critical players in the development of acute lung inflammation that causes ARDS. Here, we focus on the interaction of a specific SARS-CoV-2 open reading frame protein, ORF8, with DCs. We show that ORF8 binds to DCs, causes pre-maturation of differentiating DCs, and induces the secretion of multiple proinflammatory cytokines by these cells. In addition, we identified DC-SIGN as a possible interaction partner of ORF8 on DCs. Blockade of ORF8 leads to reduced production of IL-1β, IL-6, IL-12p70, TNF-α, MCP-1 (also named CCL2), and IL-10 by DCs. Therefore, a neutralizing antibody blocking the ORF8-mediated cytokine and chemokine response could be an improved therapeutic strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthias Hamdorf
- Cornea Lab Experimental Ophthalmology, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Thomas Imhof
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Institute for Experimental Dentistry and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Ben Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg MB R3B 2E9 Manitoba, Canada
| | - Janina Betz
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Institute for Experimental Dentistry and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Alexander Simonis
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
| | - Felix Dewald
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
| | - Clara Lehmann
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Max Augustin
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, 50935 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Department of Children and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster Stress Responses in Aging-associated Diseases, 50931 Cologne, Germany
- Institute for Lung Health (ILH), Universities of Gießen and Marburg Lung Centre, Member of the German Center for Lung Research, 35392 Gießen, Germany
| | - Robert Rongisch
- Dermatology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Mario Fabri
- Dermatology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Heike Goebel
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Jörg Stetefeld
- Department of Microbiology, University of Manitoba, Winnipeg MB R3B 2E9 Manitoba, Canada
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Claus Cursiefen
- Cornea Lab Experimental Ophthalmology, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Institute for Experimental Dentistry and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Felix Bock
- Cornea Lab Experimental Ophthalmology, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
12
|
Leonard J, Kepplinger D, Espina V, Gillevet P, Ke Y, Birukov KG, Doctor A, Hoemann CD. Whole blood coagulation in an ex vivo thrombus is sufficient to induce clot neutrophils to adopt a myeloid-derived suppressor cell signature and shed soluble Lox-1. J Thromb Haemost 2024; 22:1031-1045. [PMID: 38135253 PMCID: PMC11584067 DOI: 10.1016/j.jtha.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine. OBJECTIVES To identify a common transcriptional shift in cultured blood clot leukocytes. METHODS Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays. RESULTS All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity. CONCLUSION This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA
| | - David Kepplinger
- Department of Statistics, George Mason University, Fairfax, Virginia, USA
| | - Virginia Espina
- Department of Systems Biology, George Mason University, Fairfax, Virginia, USA
| | - Pat Gillevet
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Allan Doctor
- Departments of Pediatrics & Bioengineering and Center for Blood Oxygen Transport and Hemostasis, School of Medicine, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Caroline D Hoemann
- Department of Bioengineering, Institute of Biomedical Engineering, George Mason University, Manassas, Virginia, USA.
| |
Collapse
|
13
|
Su S, Hu W, Chen X, Ren Y, Lu Y, Shi J, Zhang T, Zhang H, Wang M, Wang Y, Zhao F, Jin R, Liu Y, Zhang H, Liu G. Cardiac injury progression in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection: a review. Front Pediatr 2024; 12:1348016. [PMID: 38510081 PMCID: PMC10950994 DOI: 10.3389/fped.2024.1348016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
The symptoms and signs of infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are milder in children than in adults. However, in April 2020, British pediatricians first reported that coronavirus disease 2019 (COVID-19) may present as multisystem inflammatory syndrome in children and adolescents (MIS-C), similar to that observed in Kawasaki disease. MIS-C can be associated with multiple systemic injuries and even death in children. In addition to digestive system involvement, cardiac injury is prominent. This article reviews the pathogenesis, clinical manifestations, and treatment of cardiac injury caused by MIS-C, which may help clinicians in early diagnosis and timely commencement of treatment.
Collapse
Affiliation(s)
- Song Su
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Wandong Hu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Xiao Chen
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ying Ren
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yi Lu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Jianguo Shi
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Tong Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Huan Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Meng Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yaping Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Fen Zhao
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ruifeng Jin
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yong Liu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hongwei Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Guohua Liu
- Department of Ophthalmology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Ophthalmology, Jinan Children's Hospital, Jinan, Shandong, China
| |
Collapse
|
14
|
Mahmoodi M, Mohammadi Henjeroei F, Hassanshahi G, Nosratabadi R. Do chemokine/chemokine receptor axes play paramount parts in trafficking and oriented locomotion of monocytes/macrophages toward the lungs of COVID-19 infected patients? A systematic review. Cytokine 2024; 175:156497. [PMID: 38190792 DOI: 10.1016/j.cyto.2023.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
The COVID-19 (coronavirus disease 2019) is a well-defined viral infection, resulting from SARS-CoV-2 (severe acute respiratory syndrome- coronavirus-2). The innate immune system serves as the first line of defense to limit viral spreading and subsequently stimulate adaptive immune responses by the prominent aids of its cellular and molecular arms. Monocytes are defined as the most prominent innate immune cells (IICs) that are reactive against invading pathogens. These cells support host protection against the virus that is mediated by several non-specific mechanisms such as phagocytosis, producing antiviral enzymes, and recruitment of immune cells toward and into the infected tissues. They have the ability to egress from blood and migrate to the SARS-CoV-2 infected regions by the aid of some defense-related functions like chemotaxis, which is mediated by chemical compounds, e.g., chemokines. Chemokines, in addition to their related ligands are categorized within the most important and deserved agents involved in oriented trafficking of monocytes/macrophages towards and within the lung parenchyma in both steady state and pathological circumstances, including COVID-19-raised infection. However, the overexpression of chemokines could have deleterious effects on various organs through the induction of cytokine storm and may be the most important leading mechanisms in the pathogenesis of COVID-19. Authors have aimed the current review article to describe present knowledge about the interplay between monocytes/macrophages and SARS-CoV-2 with a focus on the ability of IICs to migrate and home into the lung of COVID-19 patients through various chemokine-chemokine receptor axes to promote our understanding regarding this disease.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadi Henjeroei
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, RafsanjanUniversity of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Demian WL, Cormier O, Mossman K. Immunological features of bats: resistance and tolerance to emerging viruses. Trends Immunol 2024; 45:198-210. [PMID: 38453576 DOI: 10.1016/j.it.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Bats are among the most diverse mammalian species, representing over 20% of mammalian diversity. The past two decades have witnessed a disproportionate spillover of viruses from bats to humans compared with other mammalian hosts, attributed to the viral richness within bats, their phylogenetic likeness to humans, and increased human contact with wildlife. Unique evolutionary adaptations in bat genomes, particularly in antiviral protection and immune tolerance genes, enable bats to serve as reservoirs for pandemic-inducing viruses. Here, we discuss current limitations and advances made in understanding the role of bats as drivers of pandemic zoonoses. We also discuss novel technologies that have revealed spatial, dynamic, and physiological factors driving virus and host coevolution.
Collapse
Affiliation(s)
- Wael L Demian
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Olga Cormier
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Harashchenko TA, Umanets TR, Kaminska TM, Gorodna OV, Krasnienkov DS, Antypkin YG, Livshits LA. Distribution of Genotypes for the rs12979860 Polymorphism of the IFNL Gene among Children with COVID-19 in Ukraine. CYTOL GENET+ 2023; 57:579-586. [DOI: 10.3103/s0095452723060038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 01/02/2025]
|
17
|
Li T, Wang D, Wei H, Xu X. Cytokine storm and translating IL-6 biology into effective treatments for COVID-19. Front Med 2023; 17:1080-1095. [PMID: 38157195 DOI: 10.1007/s11684-023-1044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
As of May 3, 2023, the Coronavirus disease 2019 (COVID-19) pandemic has resulted in more than 760 million confirmed cases and over 6.9 million deaths. Several patients have developed pneumonia, which can deteriorate into acute respiratory distress syndrome. The primary etiology may be attributed to cytokine storm, which is triggered by the excessive release of proinflammatory cytokines and subsequently leads to immune dysregulation. Considering that high levels of interleukin-6 (IL-6) have been detected in several highly pathogenic coronavirus-infected diseases, such as severe acute respiratory syndrome in 2002, the Middle East respiratory syndrome in 2012, and COVID-19, the IL-6 pathway has emerged as a key in the pathogenesis of this hyperinflammatory state. Thus, we review the history of cytokine storm and the process of targeting IL-6 signaling to elucidate the pivotal role played by tocilizumab in combating COVID-19.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Geriatric Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Dongsheng Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaoling Xu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
18
|
Lin P, Gao R, Fang Z, Yang W, Tang Z, Wang Q, Wu Y, Fang J, Yu W. Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. Int J Pharm 2023; 644:123321. [PMID: 37591476 DOI: 10.1016/j.ijpharm.2023.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and critical diseases in clinics and have no effective treatment to date. With the concept of "precision medicine", research into the precise drug delivery of therapeutic and diagnostic drugs has become a frontier in nanomedicine research and has entered the era of design of precise nanodrug delivery systems (NDDSs) with cell-specific targeting. Owing to the distinctive characteristics of ALI/ARDS, designing NDDSs for specific focal sites is an important strategy for changing drug distribution in the body and specifically increasing drug concentration at target sites while decreasing drug concentration at non-target sites. This strategy enhances drug efficacy, reduces adverse reactions, and ensures accurate nano-targeted treatment. On the basis of the characteristics of pathological ALI/ARDS microenvironments, this paper reviews NDDSs targeting vascular endothelial cells, neutrophils, alveolar macrophages, and alveolar epithelial cells to provide reference for designing accurate NDDSs for ALI/ARDS and novel insights into targeted treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Yueguo Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China.
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
19
|
Zhuang W, Zhou J, Zhong L, Lv J, Zhong X, Liu G, Xie L, Wang C, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Xie X, Du C. CXCR1 drives the pathogenesis of EAE and ARDS via boosting dendritic cells-dependent inflammation. Cell Death Dis 2023; 14:608. [PMID: 37709757 PMCID: PMC10502121 DOI: 10.1038/s41419-023-06126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Chemokines secreted by dendritic cells (DCs) play a key role in the regulation of inflammation and autoimmunity through chemokine receptors. However, the role of chemokine receptor CXCR1 in inflammation-inducing experimental autoimmune encephalomyelitis (EAE) and acute respiratory distress syndrome (ARDS) remains largely enigmatic. Here we reported that compared with healthy controls, the level of CXCR1 was aberrantly increased in multiple sclerosis (MS) patients. Knockout of CXCR1 not only ameliorated disease severity in EAE mice but also suppressed the secretion of inflammatory factors (IL-6/IL-12p70) production. We observed the same results in EAE mice with DCs-specific deletion of CXCR1 and antibody neutralization of the ligand CXCL5. Mechanically, we demonstrated a positive feedback loop composed of CXCL5/CXCR1/HIF-1α direct regulating of IL-6/IL-12p70 production in DCs. Meanwhile, we found CXCR1 deficiency in DCs limited IL-6/IL-12p70 production and lung injury in LPS-induced ARDS, a disease model caused by inflammation. Overall, our study reveals CXCR1 governs DCs-mediated inflammation and autoimmune disorders and its potential as a therapeutic target for related diseases.
Collapse
Affiliation(s)
- Wei Zhuang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jie Lv
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xuan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Guangyu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaidireya Saimaier
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Sanxing Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changjie Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuhong Hua
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ru Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Alhowaish TS, Alhamadh MS, Mathkour A, Alamoudi M, Alqahtani HA, Alrashid A. Clinical Course and Outcomes of COVID-19 Infection in Patients Treated with Rituximab: A Tertiary Care Center Experience. Open Access Rheumatol 2023; 15:145-159. [PMID: 37663367 PMCID: PMC10473421 DOI: 10.2147/oarrr.s424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Patients receiving rituximab (RTX) may be at increased risk for severe Coronavirus infections and worse outcomes compared with the general population. Because of the conflicting results concerning the effect of RTX on the clinical course and outcomes of COVID-19 infection, we aimed to share our experience with 35 patients infected with COVID-19 while treated with RTX for a variety of clinical indications. Methods This was a single-centre retrospective cohort study that included 35 patients. All patients aged ≥14 years who were treated with RTX for various conditions and were found to have COVID-19 infection were included. Patients with poor outcomes or patients with suspected COVID-19 infection were excluded. Results The patients' mean age was 42.8 ± 16.3 years with an average BMI of 29.9 ± 11.4 kg/m2. Over half (51.4%, n = 18) of the patients received RTX at a dose of 375 mg/m2 with a median frequency of 4 doses. More than a third (37.1%, n = 13) of the patients had hypogammaglobulinemia and 25.7% had low CD19. Over a third (42.9%, n= 15) of the patients required hospitalization and almost a third (25.7%, n = 9) required treatment in the intensive care unit. There was a statistically significant association between intensive care unit admission and age, steroid use, and low CD19. The mortality rate was 25.7%, and it was significantly higher in elderly, diabetics, corticosteroid users, patients who were hospitalized, treated in the intensive care unit, and had low immunoglobin or CD19. Conclusion Treatment with RTX seems to be a potential risk factor for unfavorable outcomes in COVID-19 patients. RTX should be used with caution or avoided unless the benefit clearly outweighs the risk.
Collapse
Affiliation(s)
- Thamer S Alhowaish
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard Health Affairs, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Moustafa S Alhamadh
- King Abdullah International Medical Research Center, Ministry of the National Guard Health Affairs, Riyadh, 11481, Kingdom of Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAUHS), Ministry of the National Guard-Health Affairs, Riyadh, 14611, Kingdom of Saudi Arabia
| | - Alaa Mathkour
- Ministry of Health, Riyadh, 12613, Kingdom of Saudi Arabia
| | - Marwan Alamoudi
- King Abdullah International Medical Research Center, Ministry of the National Guard Health Affairs, Riyadh, 11481, Kingdom of Saudi Arabia
- Department of Medicine, Division of Rheumatology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Hossam Ali Alqahtani
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard Health Affairs, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Abdulrahman Alrashid
- King Abdullah International Medical Research Center, Ministry of the National Guard Health Affairs, Riyadh, 11481, Kingdom of Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAUHS), Ministry of the National Guard-Health Affairs, Riyadh, 14611, Kingdom of Saudi Arabia
- Department of Medicine, Division of Rheumatology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Kwon KW, Kim JW, Moon S, Yoon JH, Youn SH, Hyun SH, Kim HG, Kweon DH, Cho JY. Korean Red Ginseng Relieves Inflammation and Modulates Immune Response Induced by Pseudo-Type SARS-CoV-2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1361-1384. [PMID: 37489113 DOI: 10.1142/s0192415x23500623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Few studies have reported the therapeutic effects of Korean red ginseng (KRG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the positive effects of KRG on other viruses have been reported and the effects of KRG on pulmonary inflammatory diseases have also been studied. Therefore, this study investigated the therapeutic effects of KRG-water extract (KRG-WE) in a pseudo-type SARS-CoV-2 (PSV)-induced lung injury model. Constructing the pseudovirus, human angiotensin-converting enzyme 2 (hACE2) transgenic mice were infected via intranasal injection that had been orally administered with KRG-WE for six weeks. After 7-days post infection (dpi), the antiviral effects of KRG-WE were confirmed, followed by real-time polymerase chain reaction (PCR), western blot analysis, flow cytometric analysis, and an enzyme-linked immunoassay (ELISA). KRG-WE significantly inhibited an increase in immunoglobulin caused by PSV. Furthermore, KRG-WE effectively suppressed alveolar macrophages (AMs) inside the lungs and helped normalize the population of other immune cells. In addition, virus-induced gene expression and inflammatory signals such as nuclear factor-kappa B and other upstream molecules were downregulated. Moreover, KRG-WE also normalized gene expression and protein activity in the spleen. In conclusion, KRG-WE reduced AMs, normalized the immune response, and decreased the expression of inflammatory genes and activation of signaling pathway phosphorylation, thereby exhibiting anti-inflammatory effects and attenuating lung damage.
Collapse
Affiliation(s)
- Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Soo-Hyun Youn
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
22
|
Singh R, Malik P, Kumar M, Kumar R, Alam MS, Mukherjee TK. Secondary fungal infections in SARS-CoV-2 patients: pathological whereabouts, cautionary measures, and steadfast treatments. Pharmacol Rep 2023:10.1007/s43440-023-00506-z. [PMID: 37354313 DOI: 10.1007/s43440-023-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The earliest documented COVID-19 case caused by the SARS-CoV-2 coronavirus occurred in Wuhan, China, in December 2019. Since then, several SARS-CoV-2 mutants have rapidly disseminated as exemplified by the community spread of the recent omicron variant. The disease already attained a pandemic status with ever-dwindling mortality even after two and half years of identification and considerable vaccination. Aspergillosis, candidiasis, cryptococcosis and mucormycosis are the prominent fungal infections experienced by the majority of SARS-CoV-2 high-risk patients. In its entirety, COVID-19's nexus with these fungal infections may worsen the intricacies in the already beleaguered high-risk patients, making this a topic of substantial clinical concern. Thus, thorough knowledge of the subject is necessary. This article focuses on the concomitant fungal infection(s) in COVID-19 patients, taking into account their underlying causes, the screening methods, manifested drug resistance, and long-term effects. The information and knowledge shared herein could be crucial for the management of critically ill, aged, and immunocompromised SARS-CoV-2 patients who have had secondary fungal infections (SFIs).
Collapse
Affiliation(s)
- Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, PO Box 620, 130, Bosher-Muscat, Sultanate of Oman
| | - Tapan Kumar Mukherjee
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, UP, India.
- Department of Biotechnology, Amity University, Major Arterial Road, Action Area II, Rajarhat, New Town, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
23
|
Wang J, Xie Q, Song H, Chen X, Zhang X, Zhao X, Hao Y, Zhang Y, Li H, Li N, Fan K, Wang X. Utilizing nanozymes for combating COVID-19: advancements in diagnostics, treatments, and preventative measures. J Nanobiotechnology 2023; 21:200. [PMID: 37344839 PMCID: PMC10283317 DOI: 10.1186/s12951-023-01945-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
The emergence of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses significant challenges to global public health. Despite the extensive efforts of researchers worldwide, there remains considerable opportunities for improvement in timely diagnosis, specific treatment, and effective vaccines for SARS-CoV-2. This is due, in part, to the large number of asymptomatic carriers, rapid virus mutations, inconsistent confinement policies, untimely diagnosis and limited clear treatment plans. The emerging of nanozymes offers a promising approach for combating SARS-CoV-2 due to their stable physicochemical properties and high surface areas, which enable easier and multiple nano-bio interactions in vivo. Nanozymes inspire the development of sensitive and economic nanosensors for rapid detection, facilitate the development of specific medicines with minimal side effects for targeted therapy, trigger defensive mechanisms in the form of vaccines, and eliminate SARS-CoV-2 in the environment for prevention. In this review, we briefly present the limitations of existing countermeasures against coronavirus disease 2019 (COVID-19). We then reviewed the applications of nanozyme-based platforms in the fields of diagnostics, therapeutics and the prevention in COVID-19. Finally, we propose opportunities and challenges for the further development of nanozyme-based platforms for COVID-19. We expect that our review will provide valuable insights into the new emerging and re-emerging infectious pandemic from the perspective of nanozymes.
Collapse
Affiliation(s)
- Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| |
Collapse
|
24
|
Oh S, Lee S. Recent advances in ZBP1-derived PANoptosis against viral infections. Front Immunol 2023; 14:1148727. [PMID: 37261341 PMCID: PMC10228733 DOI: 10.3389/fimmu.2023.1148727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Innate immunity is an important first line of defense against pathogens, including viruses. These pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively), resulting in the induction of inflammatory cell death, are detected by specific innate immune sensors. Recently, Z-DNA binding protein 1 (ZBP1), also called the DNA-dependent activator of IFN regulatory factor (DAI) or DLM1, is reported to regulate inflammatory cell death as a central mediator during viral infection. ZBP1 is an interferon (IFN)-inducible gene that contains two Z-form nucleic acid-binding domains (Zα1 and Zα2) in the N-terminus and two receptor-interacting protein homotypic interaction motifs (RHIM1 and RHIM2) in the middle, which interact with other proteins with the RHIM domain. By sensing the entry of viral RNA, ZBP1 induces PANoptosis, which protects host cells against viral infections, such as influenza A virus (IAV) and herpes simplex virus (HSV1). However, some viruses, particularly coronaviruses (CoVs), induce PANoptosis to hyperactivate the immune system, leading to cytokine storm, organ failure, tissue damage, and even death. In this review, we discuss the molecular mechanism of ZBP1-derived PANoptosis and pro-inflammatory cytokines that influence the double-edged sword of results in the host cell. Understanding the ZBP1-derived PANoptosis mechanism may be critical for improving therapeutic strategies.
Collapse
|
25
|
Mátyás BB, Benedek I, Blîndu E, Gerculy R, Roșca A, Rat N, Kovács I, Opincariu D, Parajkó Z, Szabó E, Benedek B, Benedek T. Elevated FAI Index of Pericoronary Inflammation on Coronary CT Identifies Increased Risk of Coronary Plaque Vulnerability after COVID-19 Infection. Int J Mol Sci 2023; 24:ijms24087398. [PMID: 37108558 PMCID: PMC10138327 DOI: 10.3390/ijms24087398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation is a key factor in the development of atherosclerosis, a disease characterized by the buildup of plaque in the arteries. COVID-19 infection is known to cause systemic inflammation, but its impact on local plaque vulnerability is unclear. Our study aimed to investigate the impact of COVID-19 infection on coronary artery disease (CAD) in patients who underwent computed tomography angiography (CCTA) for chest pain in the early stages after infection, using an AI-powered solution called CaRi-Heart®. The study included 158 patients (mean age was 61.63 ± 10.14 years) with angina and low to intermediate clinical likelihood of CAD, with 75 having a previous COVID-19 infection and 83 without infection. The results showed that patients who had a previous COVID-19 infection had higher levels of pericoronary inflammation than those who did not have a COVID-19 infection, suggesting that COVID-19 may increase the risk of coronary plaque destabilization. This study highlights the potential long-term impact of COVID-19 on cardiovascular health, and the importance of monitoring and managing cardiovascular risk factors in patients recovering from COVID-19 infection. The AI-powered CaRi-Heart® technology may offer a non-invasive way to detect coronary artery inflammation and plaque instability in patients with COVID-19.
Collapse
Affiliation(s)
- Botond Barna Mátyás
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu-Mures, Romania
| | - Imre Benedek
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Department of Cardiology, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu Mureș, Romania
| | - Emanuel Blîndu
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu-Mures, Romania
| | - Renáta Gerculy
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu-Mures, Romania
| | - Aurelian Roșca
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu-Mures, Romania
| | - Nóra Rat
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Department of Cardiology, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu Mureș, Romania
| | - István Kovács
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Department of Cardiology, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu Mureș, Romania
| | - Diana Opincariu
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Department of Cardiology, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu Mureș, Romania
| | - Zsolt Parajkó
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu-Mures, Romania
| | - Evelin Szabó
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Doctoral School of Medicine and Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu-Mures, Romania
| | - Bianka Benedek
- Faculty of Medicine and Pharmacy, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu Mureș, Romania
| | - Theodora Benedek
- Clinic of Cardiology, Mureș County Emergency Clinical Hospital, 540142 Târgu Mureș, Romania
- Center of Advanced Research in Multimodality Cardiac Imaging, CardioMed Medical Center, 540124 Târgu Mureș, Romania
- Department of Cardiology, University of Medicine, Pharmacy, Science and Technology "George Emil Palade" of Târgu-Mures, 540139 Târgu Mureș, Romania
| |
Collapse
|
26
|
Wang X, Guan F, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Lei J, Filatov A, Liu C. The role of dendritic cells in COVID-19 infection. Emerg Microbes Infect 2023; 12:2195019. [PMID: 36946172 PMCID: PMC10171120 DOI: 10.1080/22221751.2023.2195019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organ dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Maria G Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo - SP, Brazil
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| |
Collapse
|
27
|
Sun J, Ma X, Zhang M, Xie M, Zhang X, Han X, Li X, Zhou E, Wang J, Wang J. Comparisons of lymphocytes profiles and inflammatory cytokines levels in blood of patients with differed severity of infection by human adenovirus type 7. BMC Infect Dis 2023; 23:174. [PMID: 36949406 PMCID: PMC10031703 DOI: 10.1186/s12879-023-08132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Human adenovirus (HAdV) infection outbreak causes community-acquired pneumonia. Cellular immune dysfunction and hypercytokinemia play important roles in the pathogenesis of adenovirus respiratory infection. Some soluble factors in peripheral blood can assist in judging the virus-induced disease severity. The expression levels of inflammatory cytokines differ among patients with different disease severity. However, whether and how HAdV-7 infection influences the composition of blood immune cells and serum cytokine levels in patients at different disease stages, as well as the diagnosis values of these parameters, have rarely been intensively studied. We aimed to investigate lymphocytes profiles and cytokines levels in blood of patients at different disease stages upon human adenovirus type 7 (HAdV-7) infections, and explored the diagnosis values of the investigated parameters. METHODS Patients from two outbreaks of HAdV-7 in military of China were categorized into upper respiratory infection (URI) group, common pneumonia (CP) group and severe pneumonia (SP) group according to disease severity. Peripheral blood samples were subjected to routine laboratory tests, while flow cytometry and ELISA were used to measure the lymphocyte subsets and cytokines in blood, respectively. The receiver operating characteristic (ROC) curves were performed to examine the diagnostic of these blood parameters. RESULTS Signs of imbalanced lymphocytes composition and hypercytokinemia were observed in HAdV-7-infected patients. The percentages of CD3+ T cells and NK cells were significantly decreased along with the aggravation of the disease, particularly for NK cells and CD4+ T cells. The neutrophil to lymphocyte ratio (NLR) increased significantly in patients with more severe disease. In addition, the levels of serum CXCL10, IL-2 and TNF-α were positively correlated with disease severity, while reduced levels of IFN-γ and IL-10 were found in SP patients. Furthermore, analysis of ROC showed that multiple parameters including the percentage of blood CD3+ cells and serum CXCL10 level could predict the progression of HAdV-7 infection. CONCLUSION Imbalance of immune state with hypercytokinemia occurred during HAdV-7 infection. The percentages of blood immune cells such as CD3+ T cells and the levels of serum cytokines such as CXCL10 showed potential diagnosis values in HAdV-7 infection.
Collapse
Affiliation(s)
- Junping Sun
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xidong Ma
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Mingyue Zhang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Mei Xie
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xingang Zhang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xinjie Han
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xinfu Li
- Department of respiratory and critical care medicine, West Beijing Medical District of People's Liberation Army General Hospital, West Third Ring North Road, Haidian District, 100048, Beijing, China
| | - Enlu Zhou
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Junyu Wang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Jianxin Wang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China.
| |
Collapse
|
28
|
CuMV VLPs Containing the RBM from SARS-CoV-2 Spike Protein Drive Dendritic Cell Activation and Th1 Polarization. Pharmaceutics 2023; 15:pharmaceutics15030825. [PMID: 36986686 PMCID: PMC10055701 DOI: 10.3390/pharmaceutics15030825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Dendritic cells (DCs) are the most specialized and proficient antigen-presenting cells. They bridge innate and adaptive immunity and display a powerful capacity to prime antigen-specific T cells. The interaction of DCs with the receptor-binding domain of the spike (S) protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pivotal step to induce effective immunity against the S protein-based vaccination protocols, as well as the SARS-CoV-2 virus. Herein, we describe the cellular and molecular events triggered by virus-like particles (VLPs) containing the receptor-binding motif from the SARS-CoV-2 spike protein in human monocyte-derived dendritic cells, or, as controls, in the presence of the Toll-like receptors (TLR)3 and TLR7/8 agonists, comprehending the events of dendritic cell maturation and their crosstalk with T cells. The results demonstrated that VLPs boosted the expression of major histocompatibility complex molecules and co-stimulatory receptors of DCs, indicating their maturation. Furthermore, DCs’ interaction with VLPs promoted the activation of the NF-kB pathway, a very important intracellular signalling pathway responsible for triggering the expression and secretion of proinflammatory cytokines. Additionally, co-culture of DCs with T cells triggered CD4+ (mainly CD4+Tbet+) and CD8+ T cell proliferation. Our results suggested that VLPs increase cellular immunity, involving DC maturation and T cell polarization towards a type 1 T cells profile. By providing deeper insight into the mechanisms of activation and regulation of the immune system by DCs, these findings will enable the design of effective vaccines against SARS-CoV-2.
Collapse
|
29
|
Tao A, Shi L, Wang Y, Duo Z, Zhao X, Mao H, Guo J, Lei J, Bao Y, Chen G, Cao X, Zhang J. Olfactory impairment in COVID-19: Two methods for the assessment of olfactory function. Heliyon 2023; 9:e14104. [PMID: 36890807 PMCID: PMC9979703 DOI: 10.1016/j.heliyon.2023.e14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Background Olfactory impairment is a major symptom of COVID-19. Is it necessary for COVID-19 patients to perform the detection of olfactory function, even how to select the olfactory psychophysical assessment tool. Methods Patients infected with SARS-CoV-2 Delta variant were firstly taken into three categories (mild, moderate, and severe) according to the clinical classification. The Odor Stick Identification Test for the Japanese (OSIT-J) and the Simple Olfactory Test were used to assess olfactory function. Moreover, these patients were divided into three groups based on the results of the olfactory degree (euosmia, hyposmia, and dysosmia), too. The statistical analysis of the correlations between olfaction and clinical characteristics of patients were performed. Results Our study demonstrated that the elderly men of Han were more susceptible to infected SARS-CoV-2, the clinical symptoms of the COVID-19 patients showed a clear correspondence with the disease type and the degree of olfactory disturbance. Whether or not to vaccinate and whether to complete the whole course of vaccination was closely related to the patient's condition. OSIT-J Test and Simple Test were consistent in our work, indicating that olfactory grading would worsen with the aggravation of symptoms. Furthermore, the OSIT-J method maybe better than Simple Olfactory Test. Conclusion The vaccination has an important protective effect on the general population, and vaccination should be vigorously promoted. Moreover, it is necessary for COVID-19 patients to perform the detection of olfactory function, and the easier, faster and less expensive method for determination of olfactory function should be utilized to COVID-19 patients as the vital physical examination.
Collapse
Affiliation(s)
- Anzhou Tao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
- Corresponding author. Department of Otolaryngology Head and Neck Surgery, The affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China.
| | - Leyang Shi
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Yuan Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Zefen Duo
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Xianglian Zhao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Haiting Mao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Jingxin Guo
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Jia Lei
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Yingsheng Bao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Geng Chen
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Xianbao Cao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Corresponding author.
| | - Jinqian Zhang
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Corresponding author.
| |
Collapse
|
30
|
Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A. Current status in cellular-based therapies for prevention and treatment of COVID-19. Crit Rev Clin Lab Sci 2023:1-25. [PMID: 36825325 DOI: 10.1080/10408363.2023.2177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
Collapse
Affiliation(s)
- Dima Hattab
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
31
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
32
|
Rudnicka-Drożak E, Drożak P, Mizerski G, Zaborowski T, Ślusarska B, Nowicki G, Drożak M. Links between COVID-19 and Alzheimer's Disease-What Do We Already Know? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2146. [PMID: 36767513 PMCID: PMC9915236 DOI: 10.3390/ijerph20032146] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is a life-changing condition whose etiology is explained by several hypotheses. Recently, a new virus contributed to the evidence of viral involvement in AD: the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 coronavirus disease. AD was found to be one of the most common COVID-19 comorbidities, and it was found to increase mortality from this disease as well. Moreover, AD patients were observed to present with the distinct clinical features of COVID-19, with delirium being prevalent in this group. The SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is overexpressed in brains with AD, which thus increases the viral invasion. Furthermore, the inhibition of the ACE2 receptor by the SARS-CoV-2 virus may also decrease the brain-derived neurotrophic factor (BDNF), contributing to neurodegeneration. The ApoE ε4 allele, which increases the risk of AD, was found to facilitate the SARS-CoV-2 entry into cells. Furthermore, the neuroinflammation and oxidative stress existing in AD patients enhance the inflammatory response associated with COVID-19. Moreover, pandemic and associated social distancing measures negatively affected the mental health, cognitive function, and neuro-psychiatric symptoms of AD patients. This review comprehensively covers the links between COVID-19 and Alzheimer's disease, including clinical presentation, molecular mechanisms, and the effects of social distancing.
Collapse
Affiliation(s)
- Ewa Rudnicka-Drożak
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Paulina Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Grzegorz Mizerski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Tomasz Zaborowski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Grzegorz Nowicki
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Martyna Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| |
Collapse
|
33
|
|
34
|
Matveeva O, Nechipurenko Y, Lagutkin D, Yegorov YE, Kzhyshkowska J. SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry. Front Immunol 2022; 13:1050478. [PMID: 36532011 PMCID: PMC9751203 DOI: 10.3389/fimmu.2022.1050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.
Collapse
Affiliation(s)
- Olga Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Denis Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
35
|
Trivedi VS, Magnusen AF, Rani R, Marsili L, Slavotinek AM, Prows DR, Hopkin RJ, McKay MA, Pandey MK. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int J Mol Sci 2022; 23:14340. [PMID: 36430817 PMCID: PMC9695449 DOI: 10.3390/ijms232214340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.
Collapse
Affiliation(s)
- Vyoma Snehal Trivedi
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Albert Frank Magnusen
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Reena Rani
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, 3113 Bellevue Ave, Cincinnati, OH 45219, USA
| | - Anne Michele Slavotinek
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Daniel Ray Prows
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Robert James Hopkin
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Mary Ashley McKay
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
36
|
Wu Y, Shi Z, Chen J, Zhang H, Li M, Zhao Y, Shi H, Shi D, Guo L, Feng L. Porcine deltacoronavirus E protein induces interleukin-8 production via NF-κB and AP-1 activation. Vet Microbiol 2022; 274:109553. [PMID: 36181744 PMCID: PMC9428115 DOI: 10.1016/j.vetmic.2022.109553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022]
Abstract
Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and interleukin-6 (IL-6). Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present study, we found that interleukin-8 (IL-8) was upregulated by PDCoV infection. We then demonstrated that PDCoV E protein induced IL-8 production and that the TM domain and the C-terminal domain of the E protein were important for IL-8 production. Subsequently, we showed here that deleting the AP-1 and NF-κB binding motif in porcine IL-8 promoter abrogated its activation, suggesting that IL-8 expression was dependent on AP-1 and NF-κB. Furthermore, PDCoV E induced IL-8 production, which was also dependent on the NF-κB pathway through activating nuclear factor p65 phosphorylation and NF-κB inhibitor alpha (IκBα) protein phosphorylation, as well as inducing the nuclear translocation of p65, eventually resulting in the promotion of IL-8 production. PDCoV E also activated c-fos and c-jun, both of which are members of the AP-1 family. These findings provide new insights into the molecular mechanisms of PDCoV-induced IL-8 production and help us further understand the pathogenesis of PDCoV infection.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhaorong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hongling Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Mingwei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Ying Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
37
|
A Review of Routine Laboratory Biomarkers for the Detection of Severe COVID-19 Disease. Int J Anal Chem 2022; 2022:9006487. [PMID: 36267156 PMCID: PMC9578918 DOI: 10.1155/2022/9006487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023] Open
Abstract
As the COVID-19 pandemic continues, there is an urgent need to identify clinical and laboratory predictors of disease severity and prognosis. Once the coronavirus enters the cell, it triggers additional events via different signaling pathways. Cellular and molecular deregulation evoked by coronavirus infection can manifest as changes in laboratory findings. Understanding the relationship between laboratory biomarkers and COVID-19 outcomes would help in developing a risk-stratified approach to the treatment of patients with this disease. The purpose of this review is to investigate the role of hematological (white blood cell (WBC), lymphocyte, and neutrophil count, neutrophil-to-lymphocyte ratio (NLR), platelet, and red blood cell (RBC) count), inflammatory (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and lactate dehydrogenase (LDH)), and biochemical (Albumin, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine, D-dimer, total Cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL)) biomarkers in the pathogenesis of COVID-19 disease and how their levels vary according to disease severity.
Collapse
|
38
|
deAndrés-Galiana EJ, Fernández-Martínez JL, Álvarez-Machancoses Ó, Bea G, Galmarini CM, Kloczkowski A. Analysis of transcriptomic responses to SARS-CoV-2 reveals plausible defective pathways responsible for increased susceptibility to infection and complications and helps to develop fast-track repositioning of drugs against COVID-19. Comput Biol Med 2022; 149:106029. [PMID: 36067633 PMCID: PMC9423878 DOI: 10.1016/j.compbiomed.2022.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND To understand the transcriptomic response to SARS-CoV-2 infection, is of the utmost importance to design diagnostic tools predicting the severity of the infection. METHODS We have performed a deep sampling analysis of the viral transcriptomic data oriented towards drug repositioning. Using different samplers, the basic principle of this methodology the biological invariance, which means that the pathways altered by the disease, should be independent on the algorithm used to unravel them. RESULTS The transcriptomic analysis of the altered pathways, reveals a distinctive inflammatory response and potential side effects of infection. The virus replication causes, in some cases, acute respiratory distress syndrome in the lungs, and affects other organs such as heart, brain, and kidneys. Therefore, the repositioned drugs to fight COVID-19 should, not only target the interferon signalling pathway and the control of the inflammation, but also the altered genetic pathways related to the side effects of infection. We also show via Principal Component Analysis that the transcriptome signatures are different from influenza and RSV. The gene COL1A1, which controls collagen production, seems to play a key/vital role in the regulation of the immune system. Additionally, other small-scale signature genes appear to be involved in the development of other COVID-19 comorbidities. CONCLUSIONS Transcriptome-based drug repositioning offers possible fast-track antiviral therapy for COVID-19 patients. It calls for additional clinical studies using FDA approved drugs for patients with increased susceptibility to infection and with serious medical complications.
Collapse
Affiliation(s)
- Enrique J deAndrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain; Department of Computer Science, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain.
| | - Juan Luis Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain; DeepBioInsights, Spain.
| | - Óscar Álvarez-Machancoses
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain.
| | - Guillermina Bea
- Group of Inverse Problems, Optimization and Machine Learning. Department of Mathematics, University of Oviedo, C. Federico García Lorca, 18, 33007, Oviedo, Spain; DeepBioInsights, Spain.
| | - Carlos M Galmarini
- Topazium Artificial Intelligence, Paseo de la Castellana 40, 28046, Madrid, Spain.
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
39
|
Nogueira GM, Silva NLOR, Moura AF, Duarte Silveira MA, Moura-Neto JA. Acute kidney injury and electrolyte disorders in COVID-19. World J Virol 2022; 11:283-292. [PMID: 36188735 PMCID: PMC9523327 DOI: 10.5501/wjv.v11.i5.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) and electrolyte disorders are important complications of hospitalized coronavirus disease 2019 (COVID-19) patients. AKI is thought to occur due to multiple pathophysiological mechanisms, such as multiple organ dysfunction (mainly cardiac and respiratory), direct viral entry in the renal tubules, and cytokine release syndrome. AKI is present in approximately one in every ten hospitalized COVID-19 patients. The incidence rates of AKI increase in patients who are admitted to the intensive care unit (ICU), with levels higher than 50%. Additionally, renal replacement therapy (RRT) is used in 7% of all AKI cases, but in nearly 20% of patients admitted to an ICU. COVID-19 patients with AKI are considered moderate-to-severe cases and are managed with multiple interdisciplinary conducts. AKI acts as a risk factor for mortality in severe acute respiratory syndrome coronavirus 2 infection, especially when RRT is needed. Electrolyte disorders are also common manifestations in hospitalized COVID-19 patients, mainly hyponatremia, hypokalemia, and hypocalcemia. Hyponatremia occurs due to a combination of syndrome of inappropriate secretion of antidiuretic hormone and gastrointestinal fluid loss from vomiting and diarrhea. When it comes to hypokalemia, its mechanism is not fully understood but may derive from hyperaldosteronism due to renin angiotensin aldosterone system overstimulation and gastrointestinal fluid loss as well. The clinical features of hypokalemia in COVID-19 are similar to those in other conditions. Hypocalcemia is the most common electrolyte disorder in COVID-19 and seems to occur because of vitamin D deficiency and parathyroid imbalance. It is also highly associated with longer hospital and ICU stay.
Collapse
Affiliation(s)
- Gabriel Martins Nogueira
- Department of Medicine, Bahiana School of Medicine and Public Health, Salvador 40290-000, Bahia, Brazil
| | | | - Ana Flávia Moura
- Department of Medicine, Bahiana School of Medicine and Public Health, Salvador 40290-000, Bahia, Brazil
| | | | - José A Moura-Neto
- Department of Medicine, Bahiana School of Medicine and Public Health, Salvador 40290-000, Bahia, Brazil
| |
Collapse
|
40
|
Do T, Synan L, Ali G, Gappa-Fahlenkamp H. 3D tissue-engineered lung models to study immune responses following viral infections of the small airways. Stem Cell Res Ther 2022; 13:464. [PMID: 36071442 PMCID: PMC9449944 DOI: 10.1186/s13287-022-03134-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Small airway infections caused by respiratory viruses are some of the most prevalent causes of illness and death. With the recent worldwide pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is currently a push in developing models to better understand respiratory diseases. Recent advancements have made it possible to create three-dimensional (3D) tissue-engineered models of different organs. The 3D environment is crucial to study physiological, pathophysiological, and immunomodulatory responses against different respiratory conditions. A 3D human tissue-engineered lung model that exhibits a normal immunological response against infectious agents could elucidate viral and host determinants. To create 3D small airway lung models in vitro, resident epithelial cells at the air-liquid interface are co-cultured with fibroblasts, myeloid cells, and endothelial cells. The air-liquid interface is a key culture condition to develop and differentiate airway epithelial cells in vitro. Primary human epithelial and myeloid cells are considered the best 3D model for studying viral immune responses including migration, differentiation, and the release of cytokines. Future studies may focus on utilizing bioreactors to scale up the production of 3D human tissue-engineered lung models. This review outlines the use of various cell types, scaffolds, and culture conditions for creating 3D human tissue-engineered lung models. Further, several models used to study immune responses against respiratory viruses, such as the respiratory syncytial virus, are analyzed, showing how the microenvironment aids in understanding immune responses elicited after viral infections.
Collapse
Affiliation(s)
- Taylor Do
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Lilly Synan
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Gibran Ali
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Heather Gappa-Fahlenkamp
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|
41
|
Cérbulo-Vázquez A, García-Espinosa M, Briones-Garduño JC, Arriaga-Pizano L, Ferat-Osorio E, Zavala-Barrios B, Cabrera-Rivera GL, Miranda-Cruz P, García de la Rosa MT, Prieto-Chávez JL, Rivero-Arredondo V, Madera-Sandoval RL, Cruz-Cruz A, Salazar-Rios E, Salazar-Rios ME, Serrano-Molina D, De Lira-Barraza RC, Villanueva-Compean AH, Esquivel-Pineda A, Ramirez-Montes de Oca R, Caldiño-Soto F, Ramírez-García LA, Flores-Padilla G, Moreno-Álvarez O, Guerrero-Avendaño GML, López-Macías C. The percentage of CD39+ monocytes is higher in pregnant COVID-19+ patients than in nonpregnant COVID-19+ patients. PLoS One 2022; 17:e0264566. [PMID: 35901034 PMCID: PMC9333267 DOI: 10.1371/journal.pone.0264566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/13/2022] [Indexed: 12/02/2022] Open
Abstract
Current medical guidelines consider pregnant women with COVID-19 to be a high-risk group. Since physiological gestation downregulates the immunological response to maintain “maternal-fetal tolerance”, SARS-CoV-2 infection may constitute a potentially threatening condition to both the mother and the fetus. To establish the immune profile in pregnant COVID-19+ patients, a cross-sectional study was conducted. Pregnant women with COVID-19 (P-COVID-19+; n = 15) were analyzed and compared with nonpregnant women with COVID-19 (NP-COVID-19+; n = 15) or those with physiological pregnancy (P-COVID-19-; n = 13). Serological cytokine and chemokine concentrations, leucocyte immunophenotypes, and mononuclear leucocyte responses to polyclonal stimuli were analyzed in all groups. Higher concentrations of serological TNF-α, IL-6, MIP1b and IL-4 were observed within the P-COVID-19+ group, while cytokines and chemokines secreted by peripheral leucocytes in response to LPS, IL-6 or PMA-ionomicin were similar among the groups. Immunophenotype analysis showed a lower percentage of HLA-DR+ monocytes in P-COVID-19+ than in P-COVID-19- and a higher percentage of CD39+ monocytes in P-COVID-19+ than in NP-COVID-19+. After whole blood polyclonal stimulation, similar percentages of T cells and TNF+ monocytes between groups were observed. Our results suggest that P-COVID-19+ elicits a strong inflammatory response similar to NP-COVID19+ but also displays an anti-inflammatory response that controls the ATP/adenosine balance and prevents hyperinflammatory damage in COVID-19.
Collapse
Affiliation(s)
- A. Cérbulo-Vázquez
- Departamento de Medicina Genómica, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, México
- * E-mail: (ACV); , (CLM)
| | - M. García-Espinosa
- Servicio de Complicaciones de la Segunda Mitad del Embarazo, UMAE Hospital de Gineco-Obstetricia No. 4 “Dr. Luis Castelazo Ayala”. Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, México
| | - J. C. Briones-Garduño
- Dirección de Medicina Aguda, Diagnóstico y Tratamiento, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, México
| | - L. Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - E. Ferat-Osorio
- División de Investigación, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - B. Zavala-Barrios
- Dirección de Medicina Aguda, Diagnóstico y Tratamiento, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, México
| | - G. L. Cabrera-Rivera
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - P. Miranda-Cruz
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - M. T. García de la Rosa
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - J. L. Prieto-Chávez
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
- Centro de Instrumentos, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - V. Rivero-Arredondo
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - R. L. Madera-Sandoval
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - A. Cruz-Cruz
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - E. Salazar-Rios
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - M. E. Salazar-Rios
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - D. Serrano-Molina
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - R. C. De Lira-Barraza
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - A. H. Villanueva-Compean
- Medicina Interna, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - A. Esquivel-Pineda
- Medicina Interna, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - R. Ramirez-Montes de Oca
- Medicina Interna, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - F. Caldiño-Soto
- División Obstetricia, UMAE Hospital de Gineco-Obstetricia No. 4 “Dr. Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, México
| | - L. A. Ramírez-García
- Dirección Médica, UMAE Hospital de Gineco-Obstetricia No. 4 “Dr. Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, México
| | - G. Flores-Padilla
- Medicina Interna, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
| | - O. Moreno-Álvarez
- Dirección Médica, UMAE Hospital de Gineco-Obstetricia No. 4 “Dr. Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, México
| | | | - C. López-Macías
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, México
- Visiting Professor of Immunology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail: (ACV); , (CLM)
| |
Collapse
|
42
|
Dave TV, Nair AG, Joseph J, Freitag SK. Immunopathology of COVID-19 and its implications in the development of rhino-orbital-cerebral mucormycosis: a major review. Orbit 2022; 41:670-679. [PMID: 35856238 DOI: 10.1080/01676830.2022.2099428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To present a literature review on various immunopathologic dysfunctions following COVID-19 infection and their potential implications in development of rhino-orbital-cerebral mucormycosis (ROCM). METHODS A literature search was performed via Google Scholar and PubMed with subsequent review of the accompanying references. Analogies were drawn between the immune and physiologic deviations caused by COVID-19 and the tendency of the same to predispose to ROCM. RESULTS Sixty-two articles were reviewed. SARS-CoV-2 virus infection leads to disruption of epithelial integrity in the respiratory passages, which may be a potential entry point for the ubiquitous Mucorales to become invasive. COVID-19 related GRP78 protein upregulation may aid in spore germination and hyphal invasion by Mucorales. COVID-19 causes interference in macrophage functioning by direct infection, a tendency for hyperglycemia, and creation of neutrophil extracellular traps. This affects innate immunity against Mucorales. Thrombocytopenia and reduction in the number of natural killer (NK) cells and infected dendritic cells is seen in COVID-19. This reduces the host immune response to pathogenic invasion by Mucorales. Cytokines released in COVID-19 cause mitochondrial dysfunction and accumulation of reactive oxygen species, which cause oxidative damage to the leucocytes. Hyperferritinemia also occurs in COVID-19 resulting in suppression of the hematopoietic proliferation of B- and T-lymphocytes. CONCLUSIONS COVID-19 has a role in the occurrence of ROCM due to its effects at the entry point of the fungus in the respiratory mucosa, effects of the innate immune system, creation of an environment of iron overload, propagation of hyperglycemia, and effects on the adaptive immune system.
Collapse
Affiliation(s)
- Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Akshay Gopinathan Nair
- Aditya Jyot Eye Hospital, Mumbai, India.,Advanced Eye hospital and Institute, Navi Mumbai, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Suzanne K Freitag
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Toy L, Huber ME, Schmidt MF, Weikert D, Schiedel M. Fluorescent Ligands Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR2. ACS Chem Biol 2022; 17:2142-2152. [PMID: 35838163 DOI: 10.1021/acschembio.2c00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fluorescently labeled ligands are versatile molecular tools to study G protein-coupled receptors (GPCRs) and can be used for a range of different applications, including bioluminescence resonance energy transfer (BRET) assays. Here, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a drug target in oncology and inflammation. Starting from previously reported intracellular CCR2 antagonists, several tetramethylrhodamine (TAMRA)-labeled CCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CCR2. By means of these studies, we developed 14 as a fluorescent CCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a non-isotopic and high-throughput manner. Further, we show that 14 can be used as a tool for fragment-based screening approaches. Thus, our small-molecule-based fluorescent CCR2 ligand 14 represents a promising tool for future studies of CCR2 pharmacology.
Collapse
Affiliation(s)
- Lara Toy
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
44
|
Rudiansyah M, Jasim SA, Mohammad Pour ZG, Athar SS, Jeda AS, Doewes RI, Jalil AT, Bokov DO, Mustafa YF, Noroozbeygi M, Karampoor S, Mirzaei R. Coronavirus disease 2019 (COVID-19) update: From metabolic reprogramming to immunometabolism. J Med Virol 2022; 94:4611-4627. [PMID: 35689351 PMCID: PMC9350347 DOI: 10.1002/jmv.27929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
The field of immunometabolism investigates and describes the effects of metabolic rewiring in immune cells throughout activation and the fates of these cells. Recently, it has been appreciated that immunometabolism plays an essential role in the progression of viral infections, cancer, and autoimmune diseases. Regarding COVID‐19, the aberrant immune response underlying the progression of diseases establishes two major respiratory pathologies, including acute respiratory distress syndrome (ARDS) or pneumonia‐induced acute lung injury (ALI). Both innate and adaptive immunity (T cell‐based) were impaired in the course of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. Current findings have deciphered that macrophages (innate immune cells) are involved in the inflammatory response seen in COVID‐19. It has been demonstrated that immune system cells can change metabolic reprogramming in some conditions, including autoimmune diseases, cancer, and infectious disease, including COVID‐19. The growing findings on metabolic reprogramming in COVID‐19 allow an exploration of metabolites with immunomodulatory properties as future therapies to combat this hyperinflammatory response. The elucidation of the exact role and mechanism underlying this metabolic reprograming in immune cells could help apply more precise approaches to initial diagnosis, prognosis, and in‐hospital therapy. This report discusses the latest findings from COVID‐19 on host metabolic reprogramming and immunometabolic responses.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | | | - Sara Sohrabi Athar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.,Department of Human Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Kentingan, Surakarta, Indonesia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - D O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
Alhowaish TS, Alhamadh MS, Alhabeeb AY, Aldosari SF, Masuadi E, Alrashid A. Outcomes of COVID-19 in Inflammatory Rheumatic Diseases: A Retrospective Cohort Study. Cureus 2022; 14:e26343. [PMID: 35903564 PMCID: PMC9322141 DOI: 10.7759/cureus.26343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Similar to coronavirus disease 2019 (COVID-19), the pathogenesis of inflammatory rheumatic diseases includes cytokines dysregulation and increased expression of pro-inflammatory cytokines. Although current data from international studies suggest that rheumatic diseases are associated with a higher risk of COVID-19 infection and worse outcomes, there is limited literature in Saudi Arabia. This study aims to evaluate the outcomes and length of hospital stay of COVID-19 patients with inflammatory rheumatic diseases in Saudi Arabia. Method This was a single-center retrospective cohort study that included 122 patients with inflammatory rheumatic diseases and documented coronavirus disease 2019 (COVID-19) infection from 2019 to 2021. Patients with suspected COVID-19 infection, non-inflammatory diseases, such as osteoarthritis, or inflammatory diseases but without or with weak systemic involvement, such as gout, were excluded. Results The vast majority (81.1%) of the patients were females. Rheumatoid arthritis was the most common primary rheumatological diagnosis. The admission rate was 34.5% with an overall mortality rate of 11.5%. Number of episodes of COVID-19 infection, mechanical ventilation, cytokine storm syndrome, secondary bacterial infection, number of comorbidities, rituximab, diabetes mellitus, hypertension, chronic kidney disease, and heart failure were significantly associated with a longer hospital stay. Additionally, hypertension, heart failure, rituximab, mechanical ventilation, cytokine storm syndrome, and secondary bacterial infection were significantly associated with higher mortality. Predictors of longer hospitalization were obesity, number of episodes of COVID-19 infection, mechanical ventilation, number of comorbidities, and chronic kidney disease, whereas, hypertension was the only predictor of mortality. Conclusion Obesity, number of episodes of COVID-19 infection, mechanical ventilation, number of comorbidities, and chronic kidney disease were significantly associated with higher odds of longer hospitalization, whereas, hypertension was significantly associated with higher odds of mortality. We recommend that these patients should be prioritized for the COVID-19 vaccine booster doses, and rituximab should be avoided unless its benefit clearly outweighs its risk.
Collapse
Affiliation(s)
- Thamer Saad Alhowaish
- Neurology, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, SAU
| | - Moustafa S Alhamadh
- Internal Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, SAU
| | - Abdulrahman Yousef Alhabeeb
- Medicine, King Abdulaziz Medical City, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, SAU
| | - Shaya Fahad Aldosari
- Cardiothoracic Surgery, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, SAU
| | - Emad Masuadi
- Research/Biostatistics, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Abdulrahman Alrashid
- Rheumatology, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, SAU
| |
Collapse
|
46
|
Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022; 14:v14061188. [PMID: 35746659 PMCID: PMC9228950 DOI: 10.3390/v14061188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease, making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2 also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung immune response and inflammation through blood circulation. The gastrointestinal microbiome may be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates and maintaining intestinal microbiota homeostasis.
Collapse
|
47
|
Niedźwiedzka-Rystwej P, Majchrzak A, Kurkowska S, Małkowska P, Sierawska O, Hrynkiewicz R, Parczewski M. Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. Int J Mol Sci 2022; 23:4545. [PMID: 35562935 PMCID: PMC9105989 DOI: 10.3390/ijms23094545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
In the beginning of the third year of the fight against COVID-19, the virus remains at least still one step ahead in the pandemic "war". The key reasons are evolving lineages and mutations, resulting in an increase of transmissibility and ability to evade immune system. However, from the immunologic point of view, the cytokine storm (CS) remains a poorly understood and difficult to combat culprit of the extended number of in-hospital admissions and deaths. It is not fully clear whether the cytokine release is a harmful result of suppression of the immune system or a positive reaction necessary to clear the virus. To develop methods of appropriate treatment and therefore decrease the mortality of the so-called COVID-19-CS, we need to look deeply inside its pathogenesis, which is the purpose of this review.
Collapse
Affiliation(s)
| | - Adam Majchrzak
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Paulina Małkowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| |
Collapse
|
48
|
Abbasifard M, Kazemi Arababadi M, Bahrehmand F, Bazmandegan G, Shabani Shahrbabaki Z, Kamiab Z. Gender affects IL-23 serum levels in the hospitalized COVID-19 infected patients. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2022; 11:28-33. [PMID: 35601022 PMCID: PMC9123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Cytokine storm is a main complication in the hospitalized patients, who are infected with the novel coronavirus (COVID-19). The pro-inflammatory cytokines are the main causes of the cytokine storm, however, the roles played by IL-17A, IL-23 and CCL3 are yet to be clarified completely. This prospective study was aimed to explore serum levels of these cytokines in the hospitalized patients infected by COVID-19. Serum levels of IL-17A, IL-23 and CCL3 were measured in 30 COVID-19 infected patients in parallel with 30 healthy controls using ELISA technique. Although serum levels of IL-17A, IL-23 and CCL3 did not alter in the patients in comparison to healthy controls, male patients had higher serum levels of IL-23 than women. Hypertension, type 2 diabetes, lung involvement and age did not affect serum levels of IL-17A, IL-23 and CCL3 in the patients. It appears that IL-17A, IL-23 and CCL3 do not participate in the pro-inflammatory responses in Iranian hospitalized COVID-19 infected patients. However, the gender can be considered as a risk factor for production of more IL-23, which needs to be explored further.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical SciencesRafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical SciencesRafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical SciencesRafsanjan, Iran
- Department of Laboratory Sciences, School of Paramedicine, Rafsanjan University of Medical SciencesRafsanjan, Iran
| | - Fatemeh Bahrehmand
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical SciencesRafsanjan, Iran
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical SciencesRafsanjan, Iran
| | - Gholamreza Bazmandegan
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical SciencesRafsanjan, Iran
- Department of Family Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical SciencesRafsanjan, Iran
| | - Ziba Shabani Shahrbabaki
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical SciencesRafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical SciencesRafsanjan, Iran
| | - Zahra Kamiab
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical SciencesRafsanjan, Iran
- Department of Family Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical SciencesRafsanjan, Iran
| |
Collapse
|
49
|
Abstract
Interferons (IFNs) are a key component of the innate antiviral immunity and are generally implicated in protective host immune responses. Here, I discuss the central role of IFNs during different coronavirus (CoV) infections, the importance of timing of the IFN response, and how emerging human coronaviruses subvert antiviral IFN response to cause severe disease.
Collapse
Affiliation(s)
- Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
50
|
Chang T, Yang J, Deng H, Chen D, Yang X, Tang ZH. Depletion and Dysfunction of Dendritic Cells: Understanding SARS-CoV-2 Infection. Front Immunol 2022; 13:843342. [PMID: 35265087 PMCID: PMC8898834 DOI: 10.3389/fimmu.2022.843342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Uncontrolled severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 infection is closely related to disorders of the innate immune and delayed adaptive immune systems. Dendritic cells (DCs) “bridge” innate immunity and adaptive immunity. DCs have important roles in defending against SARS-CoV-2 infection. In this review, we summarize the latest research concerning the role of DCs in SARS-CoV-2 infection. We focus on the complex interplay between DCs and SARS-CoV-2: pyroptosis-induced activation; activation of the renin–angiotensin–aldosterone system; and activation of dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin. We also discuss the decline in DC number, the impaired antigen-presentation capability, and the reduced production of type-I interferon of DCs in severe SARS-CoV-2 infection. In addition, we discuss the potential mechanisms for pathological activation of DCs to understand the pattern of SARS-CoV-2 infection. Lastly, we provide a brief overview of novel vaccination and immunotherapy strategies based on DC targeting to overcome SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Teding Chang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Jingzhi Yang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - XiangPing Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| |
Collapse
|