1
|
Kalim M, Jing R, Guo W, Xing H, Lu Y. Functional diversity and regulation of IL-9-producing T cells in cancer immunotherapy. Cancer Lett 2024:217306. [PMID: 39426662 DOI: 10.1016/j.canlet.2024.217306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Wei Guo
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Hui Xing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030.
| |
Collapse
|
2
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2024:S1933-0219(24)00106-5. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
3
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
4
|
Ye J, Chen L, Waltermire J, Zhao J, Ren J, Guo Z, Bartlett DL, Liu Z. Intratumoral Delivery of Interleukin 9 via Oncolytic Vaccinia Virus Elicits Potent Antitumor Effects in Tumor Models. Cancers (Basel) 2024; 16:1021. [PMID: 38473379 DOI: 10.3390/cancers16051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The success of cancer immunotherapy is largely associated with immunologically hot tumors. Approaches that promote the infiltration of immune cells into tumor beds are urgently needed to transform cold tumors into hot tumors. Oncolytic viruses can transform the tumor microenvironment (TME), resulting in immunologically hot tumors. Cytokines are good candidates for arming oncolytic viruses to enhance their function in this transformation. Here, we used the oncolytic vaccinia virus (oVV) to deliver interleukin-9 (IL-9) into the tumor bed and explored its antitumor effects in colon and lung tumor models. Our data show that IL-9 prolongs viral persistence, which is probably mediated by the up-regulation of IL-10. The vvDD-IL-9 treatment elevated the expression of Th1 chemokines and antitumor factors such as IFN-γ, granzyme B, and perforin. IL-9 expression increased the percentages of CD4+ and CD8+ T cells in the TME and decreased the percentage of oVV-induced immune suppressive myeloid-derived suppressor cells (MDSC), leading to potent antitumor effects compared with parental virus treatment. The vvDD-IL-9 treatment also increased the percentage of regulatory T cells (Tregs) in the TME and elevated the expression of immune checkpoint molecules such as PD-1, PD-L1, and CTLA-4, but not GITR. The combination therapy of vvDD-IL-9 and the anti-CTLA-4 antibody, but not the anti-GITR antibody, induced systemic tumor-specific antitumor immunity and significantly extended the overall survival of mice, indicating a potential translation of the IL-9-expressing oncolytic virus into a clinical trial to enhance the antitumor effects elicited by an immune checkpoint blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Junjie Ye
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingjuan Chen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Julia Waltermire
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinshun Zhao
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongsheng Guo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David L Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Zuqiang Liu
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Lin Z, Zou S, Wen K. The crosstalk of CD8+ T cells and ferroptosis in cancer. Front Immunol 2024; 14:1255443. [PMID: 38288118 PMCID: PMC10822999 DOI: 10.3389/fimmu.2023.1255443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Ferroptosis is an iron-dependent, novel form of programmed cell death characterized by lipid peroxidation and glutathione depletion and is widespread in a variety of diseases. CD8+ T cells are the most important effector cells of cytotoxic T cells, capable of specifically recognizing and killing cancer cells. Traditionally, CD8+ T cells are thought to induce cancer cell death mainly through perforin and granzyme, and Fas-L/Fas binding. In recent years, CD8+ T cell-derived IFN-γ was found to promote cancer cell ferroptosis by multiple mechanisms, including upregulation of IRF1 and IRF8, and downregulation of the system XC-, while cancer cells ferroptosis was shown to enhance the anti-tumor effects of CD8+ T cell by heating the tumor immune microenvironment through the exposure and release of tumor-associated specific antigens, which results in a positive feedback pathway. Unfortunately, the intra-tumoral CD8+ T cells are more sensitive to ferroptosis than cancer cells, which limits the application of ferroptosis inducers in cancer. In addition, CD8+ T cells are susceptible to being regulated by other immune cell ferroptosis in the TME, such as tumor-associated macrophages, dendritic cells, Treg, and bone marrow-derived immunosuppressive cells. Together, these factors build a complex network of CD8+ T cells and ferroptosis in cancer. Therefore, we aim to integrate relevant studies to reveal the potential mechanisms of crosstalk between CD8+ T cells and ferroptosis, and to summarize preclinical models in cancer therapy to find new therapeutic strategies in this review.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Songzhu Zou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Kadhum Kharmeet B, Khalaj-Kondori M, Hoseinpour Feizi MA, Hajavi J. 5-Fluorouracil-Loaded PLGA Declined Expression of Pro-Inflammatory Genes IL-9, IL-17A, IL-23 and IFN- y; in the HT-29 Colon Cancer Cell Line. Rep Biochem Mol Biol 2024; 12:664-673. [PMID: 39086581 PMCID: PMC11288235 DOI: 10.61186/rbmb.12.4.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/02/2024] [Indexed: 08/02/2024]
Abstract
Background Pro-inflammatory cytokines play critical roles in cancer pathobiology and have been considered potential targets for cancer management and therapy. Understanding the impact of cancer therapeutics such as 5-fluorouracil (5-FU) on their expression might shed light on development of novel combinational therapies. This study aimed to encapsulate 5-FU into PLGA and evaluate their effects on the expression of pro-inflammatory genes IL-9, IL-17-A, IL-23, and IFN-y; in the HT-29 cells. Methods PLGA-5-FU NPs were constructed and characterized by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The cytotoxicity was evaluated by MTT test and, the IC50 was identified. HT-29 cells were treated with different concentrations of the PLGA-5-FU NPs for 48 hours and, gene expression levels were analyzed by qRT-PCR. Results DLS and AFM analysis revealed that the prepared PLGA-5-FU NPs were negatively charged spherical-shaped particles with a mean size of 215.9 ± 43.3 nm. PLGA-5-FU NPs impacted the viability of HT-29 cells in a dose- and time-dependent manner. The qRT-PCR results revealed a dose-dependent decrease in the expression of IL-9, IL-17A, IL-23 and IFN-y; genes, and their expressions were significantly different in both 10 and 20 µg/mL treated groups compared to the control. However, although the treatment of HT-29 cells with 20 µg/mL free 5-FU resulted in decreased expression of the studied genes, the differences were not statistically significant compared to the control group. Conclusion PLGA-5-FU NPs significantly suppressed expression of the IL-9, IL-17A, IL-23 and IFN-y; genes, and the encapsulation of 5-FU into PLGA improved considerably impact of the 5-FU on the HT-29 cells.
Collapse
Affiliation(s)
- Basheer Kadhum Kharmeet
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Jafar Hajavi
- Department of Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
7
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
10
|
Li Y, Li L, Zhang W, Gao Y. Amphiregulin/epidermal growth factor receptor/hypoxia-inducible factor-1α pathway regulates T helper 9 and T cytotoxic 9 cell response in adult patients with infectious mononucleosis. BIOMOLECULES AND BIOMEDICINE 2023; 23:63-72. [PMID: 36154925 PMCID: PMC9901907 DOI: 10.17305/bjbms.2022.8013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Abstract
Amphiregulin (AREG)/epidermal growth factor receptor (EGFR) signaling induces hypoxia-inducible factor-1α (HIF-1α), leading to promotion of T helper 9 (Th9) differentiation and anti-tumor functions. However, the role of the AREG/EGFR/HIF-1α pathway in regulating interleukin-9 (IL-9) production by T cells in adult patients with infectious mononucleosis (IM) has not been fully elucidated. Fifty IM patients and 20 controls were enrolled. The percentages of Th9 and T cytotoxic 9 (Tc9) cells, the mRNA relative expressions of the transcription factors of IL-9-secreting T cells, purine-rich nucleic acid binding protein 1 (PU.1) and forkhead box protein O1 (FOXO1), and the levels of IL-9, AREG, EGFR, and HIF-1α were measured. Peripheral blood mononuclear cells from IM patients were stimulated with EGFR inhibitor or exogenous AREG in the presence or absence of anti-HIF-1α. Regulation of the AREG/EGFR/HIF-1α pathway to IL-9 production by T cells was assessed. The percentages of Th9 and Tc9 cells, plasma IL-9 levels, and PU.1 and FOXO1 mRNA expressions were elevated in IM patients. Plasma levels of AREG and HIF-1α were also increased in IM patients. AREG levels correlated positively with the percentages of Th9 and Tc9 cells in IM patients. Inhibition of EGFR suppressed IL-9-producing T cell differentiation and HIF-1α production. Exogenous AREG stimulation not only induced EGFR and HIF-1α expression but also promoted IL-9-secreting T cell differentiation. Neutralization of HIF-1α abrogated AREG/EGFR-induced Th9 and Tc9 differentiation in IM patients. The current data suggested that the AREG/EGFR/HIF-1α pathway contributed to the elevation of Th9 and Tc9 differentiation in IM patients.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People’s Hospital, The Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi Province, China
| | - Lan Li
- Department of Hematology, Shaanxi Provincial People’s Hospital, The Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi Province, China
| | - Weihua Zhang
- Department of Hematology, Shaanxi Provincial People’s Hospital, The Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi Province, China
| | - Ying Gao
- Department of Hematology, Shaanxi Provincial People’s Hospital, The Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi Province, China,Correspondence to Ying Gao:
| |
Collapse
|
11
|
Guo Y, Guo H, Zhang Y, Cui J. Anaplastic lymphoma kinase-special immunity and immunotherapy. Front Immunol 2022; 13:908894. [PMID: 35958559 PMCID: PMC9359062 DOI: 10.3389/fimmu.2022.908894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alterations in the anaplastic lymphoma kinase (ALK) gene play a key role in the development of various human tumors, and targeted therapy has transformed the treatment paradigm for these oncogene-driven tumors. However, primary or acquired resistance remains a challenge. ALK gene variants (such as gene rearrangements and mutations) also play a key role in the tumor immune microenvironment. Immunotherapy targeting the ALK gene has potential clinical applications. Here, we review the results of recent studies on the immunological relevance of ALK-altered tumors, which provides important insights into the development of tumor immunotherapies targeting this large class of tumors.
Collapse
Affiliation(s)
| | | | | | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
13
|
Cai M, Chen N. The Roles of IRF-8 in Regulating IL-9-Mediated Immunologic Mechanisms in the Development of DLBCL: A State-of-the-Art Literature Review. Front Oncol 2022; 12:817069. [PMID: 35211408 PMCID: PMC8860898 DOI: 10.3389/fonc.2022.817069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Interferon regulatory factor 8 (IRF-8) is a transcription suppressor that functions through associations with other transcription factors, contributing to the growth and differentiation of bone marrow cells and the activation of macrophages. IRF-8 expression profoundly affects pathogenic processes ranging from infections to blood diseases. Interleukin-9 (IL-9) is a multipotent cytokine that acts on a variety of immune cells by binding to the IL-9 receptor (IL-9R) and is involved in a variety of diseases such as cancer, autoimmune diseases, and other pathogen-mediated immune regulatory diseases. Studies have shown that IL-9 levels are significantly increased in the serum of patients with diffuse large B-cell lymphoma (DLBCL), and IL-9 levels are correlated with the DLBCL prognostic index. The activator protein-1 (AP-1) complex is a dimeric transcription factor that plays a critical role in cellular proliferation, apoptosis, angiogenesis, oncogene-induced transformation, and invasion by controlling basic and induced transcription of several genes containing the AP-1 locus. The AP-1 complex is involved in many cancers, including hematological tumors. In this report, we systematically review the precise roles of IL-9, IRF-8, and AP-1 in tumor development, particularly with regard to DLBCL. Finally, the recent progress in IRF-8 and IL-9 research is presented; the possible relationship among IRF-8, IL-9, and AP-1 family members is analyzed; and future research prospects are discussed.
Collapse
Affiliation(s)
- Mingyue Cai
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China
| | - Na Chen
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Interleukin (IL)-9 Supports the Tumor-Promoting Environment of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13246301. [PMID: 34944921 PMCID: PMC8699356 DOI: 10.3390/cancers13246301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Interleukin 9 (IL-9), a soluble factor secreted by immune cells, has been found in several tumor niches where, depending on the specific tumor type, it either promotes or counteracts tumor development. Recently, IL-9 has been implicated in the development of chronic lymphocytic leukemia, although the underlying molecular mechanism remains unknown. Here, we summarize the current knowledge concerning the roles of IL-9 in disease, with a focus on its implication in the pathogenesis of chronic lymphocytic leukemia. Abstract Interleukin (IL)-9 is a soluble factor secreted by immune cells into the microenvironment. Originally identified as a mediator of allergic responses, IL-9 has been detected in recent years in several tumor niches. In solid tumors, it mainly promotes anti-tumor immune responses, while in hematologic malignancies, it sustains the growth and survival of neoplastic cells. IL-9 has been recently implicated in the pathogenesis of chronic lymphocytic leukemia; however, the molecular mechanisms underlying its contribution to this complex neoplasia are still unclear. Here, we summarize the current knowledge of IL-9 in the tumor microenvironment, with a focus on its role in the pathogenesis of chronic lymphocytic leukemia.
Collapse
|
15
|
Merlio JP, Kadin ME. Cytokines, Genetic Lesions and Signaling Pathways in Anaplastic Large Cell Lymphomas. Cancers (Basel) 2021; 13:4256. [PMID: 34503066 PMCID: PMC8428234 DOI: 10.3390/cancers13174256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
ALCL is a tumor of activated T cells and possibly innate lymphoid cells with several subtypes according to clinical presentation and genetic lesions. On one hand, the expression of transcription factors and cytokine receptors triggers signaling pathways. On the other hand, ALCL tumor cells also produce many proteins including chemokines, cytokines and growth factors that affect patient symptoms. Examples are accumulation of granulocytes stimulated by IL-8, IL-17, IL-9 and IL-13; epidermal hyperplasia and psoriasis-like skin lesions due to IL-22; and fever and weight loss in response to IL-6 and IFN-γ. In this review, we focus on the biology of the main ALCL subtypes as the identification of signaling pathways and ALCL-derived cytokines offers opportunities for targeted therapies.
Collapse
Affiliation(s)
- Jean-Philippe Merlio
- Tumor Biology and Tumor Bank Laboratory, Centre Hospitalier et Universitaire de Bordeaux, 33600 Pessac, France
- INSERM U1053, University Bordeaux, 33000 Bordeaux, France
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
- Department of Dermatology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
16
|
Di Napoli A, Greco D, Scafetta G, Ascenzi F, Gulino A, Aurisicchio L, Santanelli Di Pompeo F, Bonifacino A, Giarnieri E, Morgan J, Mancini R, Kadin ME. IL-10, IL-13, Eotaxin and IL-10/IL-6 ratio distinguish breast implant-associated anaplastic large-cell lymphoma from all types of benign late seromas. Cancer Immunol Immunother 2021; 70:1379-1392. [PMID: 33146828 PMCID: PMC8053183 DOI: 10.1007/s00262-020-02778-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Breast implant-associated anaplastic large-cell lymphoma (BI-ALCL) is an uncommon peripheral T cell lymphoma usually presenting as a delayed peri-implant effusion. Chronic inflammation elicited by the implant has been implicated in its pathogenesis. Infection or implant rupture may also be responsible for late seromas. Cytomorphological examination coupled with CD30 immunostaining and eventual T-cell clonality assessment are essential for BI-ALCL diagnosis. However, some benign effusions may also contain an oligo/monoclonal expansion of CD30 + cells that can make the diagnosis challenging. Since cytokines are key mediators of inflammation, we applied a multiplexed immuno-based assay to BI-ALCL seromas and to different types of reactive seromas to look for a potential diagnostic BI-ALCL-associated cytokine profile. We found that BI-ALCL is characterized by a Th2-type cytokine milieu associated with significant high levels of IL-10, IL-13 and Eotaxin which discriminate BI-ALCL from all types of reactive seroma. Moreover, we found a cutoff of IL10/IL-6 ratio of 0.104 is associated with specificity of 100% and sensitivity of 83% in recognizing BI-ALCL effusions. This study identifies promising biomarkers for initial screening of late seromas that can facilitate early diagnosis of BI-ALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035, 00189, Roma, Italy.
| | - Daniele Greco
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, Palermo, Italy
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035, 00189, Roma, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, Palermo, Italy
| | | | | | | | - Enrico Giarnieri
- Department of Clinical and Molecular Medicine, Sapienza University, Cytology Unit, Sant'Andrea Hospital, Roma, Italy
| | - John Morgan
- Department of Pathology and Laboratory Medicine, Albert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Risk Management Q and A, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy
| | - Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Albert School of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol 2020; 21:37-48. [PMID: 32788707 DOI: 10.1038/s41577-020-0396-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.
Collapse
|
18
|
Chen T, Guo J, Cai Z, Li B, Sun L, Shen Y, Wang S, Wang Z, Wang Z, Wang Y, Zhou H, Cai Z, Ye Z. Th9 Cell Differentiation and Its Dual Effects in Tumor Development. Front Immunol 2020; 11:1026. [PMID: 32508847 PMCID: PMC7251969 DOI: 10.3389/fimmu.2020.01026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
With the improved understanding of the molecular pathogenesis and characteristics of cancers, the critical role of the immune system in preventing tumor development has been widely accepted. The understanding of the relationship between the immune system and cancer progression is constantly evolving, from the cancer immunosurveillance hypothesis to immunoediting theory and the delicate balance in the tumor microenvironment. Currently, immunotherapy is regarded as a promising strategy against cancers. Although adoptive cell therapy (ACT) has shown some exciting results regarding the rejection of tumors, the effect is not always satisfactory. Cellular therapy with CD4+ T cells remains to be further explored since the current ACT is mainly focused on CD8+ cytotoxic T lymphocytes (CTLs). Recently, Th9 cells, a subgroup of CD4+ T helper cells characterized by the secretion of IL-9 and IL-10, have been reported to be effective in the elimination of solid tumors and to exhibit superior antitumor properties to Th1 and Th17 cells. In this review, we summarize the most recent advances in the understanding of Th9 cell differentiation and the dual role, both anti-tumor and pro-tumor effects, of Th9 cells in tumor progression.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhai Cai
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Kadin ME, Morgan J, Kouttab N, Xu H, Adams WP, Glicksman C, McGuire P, Sieber D, Epstein AL, Miranda RN, Clemens MW. Comparative Analysis of Cytokines of Tumor Cell Lines, Malignant and Benign Effusions Around Breast Implants. Aesthet Surg J 2020; 40:630-637. [PMID: 31589747 DOI: 10.1093/asj/sjz243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND More than 700 women have developed an anaplastic large T cell lymphoma (ALCL) surrounding textured surface breast implants, termed breast implant-associated ALCL (BIA-ALCL). Most patients with BIA-ALCL present with an accumulation of fluid (delayed seroma) around the implant. However, benign seromas without malignant cells complicating scar contracture, implant rupture, trauma, infection, and other causes are more common. For proper patient management and to avoid unnecessary surgery, a simple diagnostic test to identify malignant seromas is desirable. OBJECTIVES The aim of this study was to develop an ancillary test for the diagnosis of malignant seromas and to gain insight into the nature of the malignant cells and their microenvironment. METHODS We employed an immunologic assay on only 50 µL of aspirated seroma fluid. The assay measures 13 cytokines simultaneously by flow cytometry. To establish a baseline for clinical studies we measured cytokines secreted by BIA-ALCL and cutaneous ALCL lines. RESULTS Our study of cell line culture supernatants, and 8 malignant compared with 9 benign seromas indicates that interleukin 9 (IL-9), IL-10, IL-13, IL-22, and/or interferon γ concentrations >1000 pg/mL distinguish malignant seromas from benign seromas. IL-6, known to be a driver of malignant cells, is also elevated in benign seromas and does not distinguish them from malignant seromas. CONCLUSIONS The cytokine assay introduced in this study can be used together with levels of soluble CD30 to identify malignant seromas. Validation of these findings in a larger prospective patient cohort is warranted. The unique pattern of cytokine expression in malignant effusions surrounding breast implants gives further insight into the pathogenesis and cells of origin of BIA-ALCL. Level of Evidence: 5.
Collapse
Affiliation(s)
- Marshall E Kadin
- Dr Kadin is a Professor of Dermatology, Boston University and Roger Williams Medical Center, Providence RI
| | | | | | - Haiying Xu
- Ms Xu is a Research Assistant, Roger Williams Medical Center, Providence, RI
| | - William P Adams
- Dr Adams is an Associate Professor, Department of Plastic Surgery, University of Texas Southwestern Medical School, Dallas TX
| | - Caroline Glicksman
- Dr Glicksman is a Clinical Assistant Professor, Hackensack Meridian School of Medicine at Seton Hall, Nutley, NJ
| | | | | | - Alan L Epstein
- Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Roberto N Miranda
- Dr Miranda is a Professor of Pathology, Department of Hematopathology, MD Anderson Cancer Center, Houston TX
| | - Mark W Clemens
- Dr Clemens is an Associate Professor, Department of Plastic Surgery, MD Anderson Cancer Center, Houston TX; and is Breast Surgery Section Co-editor for Aesthetic Surgery Journal
| |
Collapse
|
20
|
Wan J, Wu Y, Ji X, Huang L, Cai W, Su Z, Wang S, Xu H. IL-9 and IL-9-producing cells in tumor immunity. Cell Commun Signal 2020; 18:50. [PMID: 32228589 PMCID: PMC7104514 DOI: 10.1186/s12964-020-00538-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract Interleukin (IL)-9 belongs to the IL-2Rγc chain family and is a multifunctional cytokine that can regulate the function of many kinds of cells. It was originally identified as a growth factor of T cells and mast cells. In previous studies, IL-9 was mainly involved in the development of allergic diseases, autoimmune diseases and parasite infections. Recently, IL-9, as a double-edged sword in the development of cancers, has attracted extensive attention. Since T-helper 9 (Th9) cell-derived IL-9 was verified to play a powerful antitumor role in solid tumors, an increasing number of researchers have started to pay attention to the role of IL-9-skewed CD8+ T (Tc9) cells, mast cells and Vδ2 T cell-derived IL-9 in tumor immunity. Here, we review recent studies on IL-9 and several kinds of IL-9-producing cells in tumor immunity to provide useful insight into tumorigenesis and treatment. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,China International Genomics Research Center (IGRC), Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
21
|
Allegra A, Musolino C, Tonacci A, Pioggia G, Casciaro M, Gangemi S. Clinico-Biological Implications of Modified Levels of Cytokines in Chronic Lymphocytic Leukemia: A Possible Therapeutic Role. Cancers (Basel) 2020; 12:cancers12020524. [PMID: 32102441 PMCID: PMC7072434 DOI: 10.3390/cancers12020524] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the main cause of mortality among hematologic diseases in Western nations. B-CLL is correlated with an intense alteration of the immune system. The altered functions of innate immune elements and adaptive immune factors are interconnected in B-CLL and are decisive for its onset, evolution, and therapeutic response. Modifications in the cytokine balance could support the growth of the leukemic clone via a modulation of cellular proliferation and apoptosis, as some cytokines have been reported to be able to affect the life of B-CLL cells in vivo. In this review, we will examine the role played by cytokines in the cellular dynamics of B-CLL patients, interpret the contradictions sometimes present in the literature regarding their action, and evaluate the possibility of manipulating their production in order to intervene in the natural history of the disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Correspondence:
| |
Collapse
|
22
|
Abstract
Interleukin (IL)-9 is a pleiotropic cytokine, which can function as a positive or negative regulator of immune responses on multiple types of cells. The role of IL-9 was originally known in allergic disease and parasite infections. Interestingly, recent studies demonstrate its presence in the tumor tissues of mice and humans, and the association between IL-9 and tumor progression has been revisited following the discovery of T helper (Th) 9 cells. Tumor-specific Th9 cells are considered to be the main subset of CD4+ T cells that produce high level of IL-9 and exhibit an IL-9-dependent robust anti-cancer function in solid tumors. IL-9 exerts an unprecedented anti-tumor immunity not only by inducing innate and adaptive immune responses but also directly promoting apoptosis of tumor cells. The objective of this review is to summarize the latest advances regarding the anti-tumor mechanisms of IL-9 and Th9 cells.
Collapse
Affiliation(s)
- Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| |
Collapse
|
23
|
IL-9 and Th9 Cells in Tumor Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:35-46. [DOI: 10.1007/978-3-030-38315-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
He J, Wang L, Zhang C, Shen W, Zhang Y, Liu T, Hu H, Xie X, Luo F. Interleukin-9 promotes tumorigenesis through augmenting angiogenesis in non-small cell lung cancer. Int Immunopharmacol 2019; 75:105766. [PMID: 31352324 DOI: 10.1016/j.intimp.2019.105766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 02/05/2023]
Abstract
IL-9 is a proinflammatory cytokine that plays a critical role in autoimmunity and inflammatory diseases. However, its role in tumorigenesis has not been well studied. In this study, we found that IL-9 expression was significantly increased and associated with poor progression in human non-small cell lung cancer (NSCLC). Ectopic expression of IL-9 in NSCLC cells did not affect cell proliferation and apoptosis in vitro, but markedly promoted tumor growth in vivo. Immune-profile analysis showed no significant changes in the frequencies of infiltrated immune cells in the tumor site, neither in nude mice nor in immune-competent mice. However, we found that VEGF and microvessel density (MVD) were significantly increased in xenografts. IL-9 could promote cell growth and tube formation of HUVEC cells in vitro. In addition, correlation analysis implied a significant positive relationship between the density of IL-9 and VEGF, as well as MVD in human NSCLC tissues. Finally, we found that IL-9 stimulated tumor angiogenesis via STAT3 signaling. Together, our findings demonstrate a promoting role of IL-9 in lung cancer development, probably through promoting tumor angiogenesis. IL-9 thus may represent a new prognostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jun He
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, China
| | - Li Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Chengda Zhang
- Department of Gastroenterology, The Third Hospital of MianYang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, China
| | - Wenbin Shen
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yong Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Tao Liu
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, China
| | - Haoyue Hu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Xiaoxiao Xie
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Feng Luo
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
25
|
Lee JE, Zhu Z, Bai Q, Brady TJ, Xiao H, Wakefield MR, Fang Y. The Role of Interleukin-9 in Cancer. Pathol Oncol Res 2019; 26:2017-2022. [PMID: 31016637 DOI: 10.1007/s12253-019-00665-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Interluekin-9 (IL-9) is produced predominantly by helper T cells such as Th2 and Th9 cells. It normally functions through the activation of a JAK/STAT pathway and plays a critical role in immunity and the pathogenesis of cancer. In cancer, it yields different responses depending on the cancer cell line involved. This review is a summary of what is known about the involvement of IL-9 in various cancer cell lines as well as its role in immunity with a focus on allergic responses.
Collapse
Affiliation(s)
- Jacob E Lee
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Tucker J Brady
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA.,The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA. .,Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
26
|
Kadin ME. What Cytokines Can Tell Us About the Pathogenesis of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL). Aesthet Surg J 2019; 39:S28-S35. [PMID: 30715174 DOI: 10.1093/asj/sjy250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cytokines, their receptors, and downstream signaling partners, especially JAK1/2 and STAT3, are key biomarkers in lymphoproliferative disorders including systemic anaplastic large cell lymphoma (ALCL). Here we review their role in breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). Early results suggest that, in addition to CD30, IL-9, IL-10, and IL-13 can distinguish malignant from benign seromas. IL-6 is increased in both benign and malignant seromas. IFNγ may identify a subset of BIA-ALCL with a different clinical course. Immunohistochemical detection of nuclear transcription factors-which regulate cytokine signaling-and phosphorylated janus kinases/signal transducers and activators of transcription can inform the identification and malignant potential of CD30+ cells. The innate immune response is the first line of defense against microbes suspected to initiate BIA-ALCL. Innate lymphoid cells are grouped according to the cytokines they produce and could potentially be identified as precursors to BIA-ALCL. Cytokines modulate the tumor microenvironment and hence the pathology of BIA-ALCL such as the influx of eosinophils and capsular fibrosis mediated by IL-13. The plasticity of T cells and innate immune cells theoretically can enable therapeutic manipulations toward a less aggressive phenotype. Cytokine receptors targeted in clinical trials of inflammatory and autoimmune disorders could afford opportunities for immunotherapy of BIA-ALCL.
Collapse
Affiliation(s)
- Marshall E Kadin
- Professor of Dermatology, Boston University School of Medicine and Roger Williams Medical Center, Providence, RI
| |
Collapse
|
27
|
Chraa D, Naim A, Olive D, Badou A. T lymphocyte subsets in cancer immunity: Friends or foes. J Leukoc Biol 2018; 105:243-255. [DOI: 10.1002/jlb.mr0318-097r] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dounia Chraa
- Cellular and Molecular Pathology LaboratoryFaculty of Medicine and Pharmacy of CasablancaHassan II University Casablanca Morocco
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258Institut Paoli‐CalmettesAix‐Marseille University, UM 105 Marseille France
| | - Asmaa Naim
- Cellular and Molecular Pathology LaboratoryFaculty of Medicine and Pharmacy of CasablancaHassan II University Casablanca Morocco
- University Mohammed VI for Health ScienceCheick Khalifa Hospital Casablanca Morocco
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258Institut Paoli‐CalmettesAix‐Marseille University, UM 105 Marseille France
| | - Abdallah Badou
- Cellular and Molecular Pathology LaboratoryFaculty of Medicine and Pharmacy of CasablancaHassan II University Casablanca Morocco
| |
Collapse
|
28
|
Novel insights into the pathogenesis of T-cell lymphomas. Blood 2018; 131:2320-2330. [DOI: 10.1182/blood-2017-11-764357] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Abstract
T-cell lymphomas are a heterogeneous group of rare malignancies with overlapping clinical, immunologic, and histologic features. Recent advances in our understanding of T-cell differentiation based on gene expression profiling, next-generation sequencing, and transgenic mouse modeling studies have better elucidated the pathogenetic mechanisms underlying the diverse biology of T-cell lymphomas. These studies show that although genetic alterations in epigenetic modifiers are implicated in all subtypes of T-cell lymphomas, specific subtypes demonstrate enrichment for particular recurrent alterations targeting specific genes. In this regard, RHOA and TET2 alterations are prevalent in nodal T-cell lymphomas, particularly angioimmunoblastic T-cell lymphomas, peripheral T-cell lymphomas (PTCLs) not otherwise specified, and nodal PTCLs with T-follicular helper phenotype. JAK-STAT signaling pathways are mutationally activated in many extranodal T-cell lymphomas, such as natural killer/T-cell and hepatosplenic T-cell lymphomas. The functional significance of many of these genetic alterations is becoming better understood. Altogether these advances will continue to refine diagnostic criteria, improve prognostication, and identify novel therapeutic targets, resulting in improved outcomes for patient with T-cell lymphomas.
Collapse
|
29
|
Knörr F, Damm-Welk C, Ruf S, Singh VK, Zimmermann M, Reiter A, Woessmann W. Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica 2017; 103:477-485. [PMID: 29242300 PMCID: PMC5830391 DOI: 10.3324/haematol.2017.177972] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/07/2017] [Indexed: 01/16/2023] Open
Abstract
Patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma often present with B-symptoms or hemophagocytosis and generate an anti-tumor immune response. Specific serum cytokine levels or profiles may reflect the tumor burden, non-specific immune stimulation by the tumor or differences in the strength of the patients’ anti-lymphoma immunity. We systematically correlated pretreatment concentrations of 25 cytokines with clinical and biological characteristics in a well-characterized cohort of 119 uniformly treated pediatric patients with anaplastic large cell lymphoma. Fifteen patients with anaplastic large cell lymphoma in remission and 11 patients with low-stage B-cell lymphoma served as controls. Concentrations of interleukin-9, interleukin-10, interleukin-17a, hepatocyte growth factor, soluble interleukin-2 receptor, and soluble CD30 were significantly higher in initial sera of patients than in the sera of subjects from both control groups, indicating an anaplastic large cell lymphoma-type cytokine signature. The levels of interleukin-6, interferon-γ, interferon γ-induced protein, and soluble interleukin-2 receptor correlated with the stage, initial general condition, minimal disseminated disease, anaplastic lymphoma kinase-antibody titers, and the risk of relapse among patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Only interleukin-6 showed an independent prognostic value in multivariate analyses. Pretreatment cytokine profiles in patients with anaplastic large cell lymphoma reflect a tumor signature as well as tumor burden and also differences in the strength of the patients’ immune response.
Collapse
Affiliation(s)
- Fabian Knörr
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Christine Damm-Welk
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Stephanie Ruf
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Vijay Kumar Singh
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Children's Hospital, Hannover Medical School, Germany
| | - Alfred Reiter
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Wilhelm Woessmann
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| |
Collapse
|
30
|
Xiang Z, Tu W. Dual Face of Vγ9Vδ2-T Cells in Tumor Immunology: Anti- versus Pro-Tumoral Activities. Front Immunol 2017; 8:1041. [PMID: 28894450 PMCID: PMC5581348 DOI: 10.3389/fimmu.2017.01041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022] Open
Abstract
Vγ9Vδ2-T cells are considered as potent effector cells for tumor immunotherapy through directly killing tumor cells and indirectly regulating other innate and adaptive immune cells to establish antitumoral immunity. The antitumoral activity of Vγ9Vδ2-T cells is governed by a complicated set of activating and inhibitory cell receptors. In addition, cytokine milieu in tumor microenvironment can also induce the pro-tumoral activities and functional plasticity of Vγ9Vδ2-T cells. Here, we review the anti- versus pro-tumoral activities of Vγ9Vδ2-T cells and discuss the mechanisms underlying the recognition, activation, differentiation and regulation of Vγ9Vδ2-T cells in tumor immunosurveillance. The comprehensive understanding of the dual face of Vγ9Vδ2-T cells in tumor immunology may improve the therapeutic efficacy and clinical outcomes of Vγ9Vδ2-T cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zheng Xiang
- Li Ka Shing Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Laboratory for Translational Immunology, University of Hong Kong, Hong Kong, Hong Kong
| | - Wenwei Tu
- Li Ka Shing Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Laboratory for Translational Immunology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
31
|
Ansari MA, Attia SM, Nadeem A, Bakheet SA, Raish M, Khan TH, Al-Shabanah OA, Ahmad SF. Activation of adenosine A2A receptor signaling regulates the expression of cytokines associated with immunologic dysfunction in BTBR T + Itpr3 tf /J mice. Mol Cell Neurosci 2017; 82:76-87. [DOI: 10.1016/j.mcn.2017.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/16/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023] Open
|
32
|
Abbassy HA, Aboelwafa RA, Ghallab OM. Evaluation of Interleukin-9 Expression as a Potential Therapeutic Target in Chronic Lymphocytic Leukemia in a Cohort of Egyptian Patients. Indian J Hematol Blood Transfus 2017; 33:477-482. [PMID: 29075057 DOI: 10.1007/s12288-017-0804-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy that has a highly variable clinical course. Genomic features as zeta-chain-associated protein kinase 70 (ZAP70) expression and CD38 expression provide further differentiation of disease prognosis. Extensive studies have confirmed the oncogenic activities of IL-9 in lymphoma. The aim of the current study was to investigate the contribution of IL-9 expression to the pathogenesis of CLL and its correlation to other prognostic parameters. This study was conducted on 80 patients at diagnosis with CLL and 80 healthy controls. Using real time polymerase chain reaction and enzyme linked immunosorbant assay, IL-9 mRNA expression and its serum level were compared between patients and controls. They were both correlated with other prognostic factors. RESULTS There was an overexpression of IL-9 in CLL patients that correlated with modified Rai staging, ZAP70, CD38 and all hallmarks of an active and aggressive disease. The correlation between IL-9 upregulation and patient characteristics provided direct clinical evidence for its contribution to the pathogenesis of CLL. In conclusion, significantly higher expression of IL-9 measured at both the mRNA and the protein levels in patients with CLL that correlates with more complex course of the disease and worse prognosis may allow one to speculate its importance in the pathogenesis of the disease and its possible impact on prognosis.
Collapse
Affiliation(s)
- Hadeer A Abbassy
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reham A Aboelwafa
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omar M Ghallab
- Internal Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Buetti-Dinh A, O’Hare T, Friedman R. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy. PLoS One 2016; 11:e0163011. [PMID: 27669408 PMCID: PMC5036789 DOI: 10.1371/journal.pone.0163011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (ABD); (RF)
| | - Thomas O’Hare
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, United States of America
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, United States of America
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- * E-mail: (ABD); (RF)
| |
Collapse
|
34
|
Vishwamitra D, Curry CV, Shi P, Alkan S, Amin HM. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein. Neoplasia 2016; 17:742-754. [PMID: 26476082 PMCID: PMC4611074 DOI: 10.1016/j.neo.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX.
| |
Collapse
|
35
|
Lv X, Feng L, Ge X, Lu K, Wang X. Interleukin-9 promotes cell survival and drug resistance in diffuse large B-cell lymphoma. J Exp Clin Cancer Res 2016; 35:106. [PMID: 27364124 PMCID: PMC4929715 DOI: 10.1186/s13046-016-0374-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background Interleukin-9 (IL-9) was discovered as a helper T cell growth factor. It has long been recognized as an important regulator in allergic inflammation. Recent years it was discovered to induce cell growth and differentiation of multiple transformed cells. However, its oncogenic activities in B-cell lymphomas have not been reported in detail. Methods Serum levels of IL-9 in DLBCL patients were quantified by ELISA, and its clinical significance was analysed. The expression of IL-9 receptor (IL-9R) was investigated in lymphoma cell lines by RT-PCR and western blot, respectively. In DLBCL cell lines LY1 and LY8, IL-9R genes were knocked down by RNA interference and stable transfected cells were selected with puromycin. Normal and final siIL-9R (and siControl) LY1 and LY8 cells were treated with IL-9 alone and in synergy with chemotherapeutic drugs. Cell proliferation and apoptosis were assessed by Brdu incorporation and flow cytometric analysis. The mRNA of apoptosis regulation genes were measured with real-time PCR. Results Elevated serum levels of IL-9 were detected in DLBCL patients (24/30) compared to healthy controls (0/15). Positive expression of IL-9 (defined as a serum level ≥1 pg/ml) was correlated with lower serum albumin levels and high international prognostic index (IPI) scores. IL-9R was expressed in both mRNA and protein levels in the five lymphoma cell lines, including LY1, LY8, MINO, SP53 and Jurkat. In vitro studies showed that IL-9 directly induced proliferation and inhibited apoptosis in LY1 and LY8 cells. It protects LY1 and LY8 cells from prednisolone induced apoptosis, and promotes their proliferation that were inhibited by rituximab, vincristine and prednisolone. Its molecular mechanism may be concerned with upregulating expression of p21CIP1 gene. Knock-down of IL-9R gene could reverse the effects of IL-9 on LY1 and LY8 cells. Conclusions IL-9 is associated with clinical features of DLBCL patients. It promotes survival of DLBCL cells and reduces the sensitivities of tumor cells to chemotherapeutic drugs via upregulation of p21CIP1 genes. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0374-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Lili Feng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
36
|
Goh TS, Hong C. New insights of common gamma chain in hematological malignancies. Cytokine 2015; 89:179-184. [PMID: 26748725 DOI: 10.1016/j.cyto.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023]
Abstract
The common gamma chain (γc) receptor family of cytokines including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 has the common feature of sharing γc signaling subunit of their receptors. The γc cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages and control proliferation of malignant cell by influencing tumor environment. It has been also described that different types of lymphoid leukemia and lymphoma exhibit expression of divergent γc cytokines and their receptors, as they may promote malignant transformation of lymphoid cells or on the contrary lead to tumor regression by inducing cell-cycle arrest. Therefore, cytokine-based or cytokine-directed blockade in cancer immunotherapy has currently revolutionized the development of cancer treatment. In this review, we will discuss about the role of γc cytokines and their signaling pathways in hematological malignancies and also propose a novel alternative approach that regulates γc cytokine responsiveness by γc in hematological malignancies.
Collapse
Affiliation(s)
- Tae Sik Goh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Orthopaedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
37
|
Huang Y, Cao Y, Zhang S, Gao F. Association between low expression levels of interleukin-9 and colon cancer progression. Exp Ther Med 2015; 10:942-946. [PMID: 26622419 DOI: 10.3892/etm.2015.2588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/30/2015] [Indexed: 12/13/2022] Open
Abstract
Although interleukin (IL)-9 has been extensively studied in inflammation and autoimmune diseases, the expression level of IL-9 in colon cancer and its clinical significance are less well established. In total, 15 healthy donors (HDs) and 60 patients who had been diagnosed with colon cancer that had undergone a surgical resection were enrolled in the study. The plasma levels of IL-9 in the HDs and cancer patients were detected by the liquid chip technique, while the expression levels of IL-9 in the colon cancer tissues and normal tissues were analyzed using immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Finally, the difference in the expression levels of IL-9 between the patients classified as tumor-node-metastasis stage I-II and stage III-IV was compared. The results demonstrated that the plasma levels of IL-9 in the patients with colon cancer were significantly lower when compared with the HDs (1.29 vs. 2.53 pg/ml, P<0.05). Furthermore, according to the IHC and RT-qPCR results, low expression levels of IL-9 were observed in the colon cancer tissues when compared with the normal tissues (P<0.05). With regard to the plasma and tumor tissue samples, patients diagnosed with stage III-IV colon cancer expressed lower levels of IL-9 compared with the stage I-II patients (P<0.05). In conclusion, low expression levels of IL-9 were observed in the tissue and plasma samples collected from the colon cancer patients, and the decreased expression of IL-9 was shown to correlate with colon cancer progression.
Collapse
Affiliation(s)
- Yonghong Huang
- Department of Gastroenterological Surgery, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yunfei Cao
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
38
|
Yao X, Kong Q, Xie X, Wang J, Li N, Liu Y, Sun B, Li Y, Wang G, Li W, Qu S, Zhao H, Wang D, Liu X, Zhang Y, Mu L, Li H. Neutralization of interleukin-9 ameliorates symptoms of experimental autoimmune myasthenia gravis in rats by decreasing effector T cells and altering humoral responses. Immunology 2014; 143:396-405. [PMID: 24850614 DOI: 10.1111/imm.12322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022] Open
Abstract
Interleukin-9 (IL-9) was initially thought to be a type 2 T helper (Th2)-associated cytokine involved in the regulation of autoimmune responses by affecting multiple cell types. However, it was recently shown that IL-9-producing CD4+ T cells represent a discrete subset of Th cells, designated Th9 cells. Although Th9 cells have been shown to be important in many diseases, their roles in myasthenia gravis (MG) are unclear. The aim of this study was to determine whether IL-9 and Th9 cells promote the progression of experimental autoimmune myasthenia gravis (EAMG). The results showed that the percentage of Th9 cells changed during the progression of EAMG, accompanied by an up-regulation of IL-9. Blocking IL-9 activity with antibodies against IL-9 inhibited EAMG-associated pathology in rats and reduced serum anti-acetylcholine receptor IgG levels. Neutralization of IL-9 altered the Th subset distribution in EAMG, reducing the number of Th1 cells and increasing the number of regulatory T cells. Administration of an anti-IL-9 antibody may represent an effective therapeutic strategy for MG-associated pathologies or other T-cell- or B-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Xiuhua Yao
- Department of Neurobiology, Provincial Key Laboratory of Neurobiology, Harbin Medical University, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gorczyński A, Prełowska M, Adam P, Czapiewski P, Biernat W. ALK-positive cancer: still a growing entity. Future Oncol 2014; 10:305-21. [PMID: 24490615 DOI: 10.2217/fon.13.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of ALK-positive anaplastic large-cell lymphoma in 1994 many other types of tumors showing ALK expression were disclosed. They form a heterogeneous group, including lung, renal and soft tissue tumors. The biological function of ALK, its role in carcinogenesis and impact exerted on the clinical outcome have been studied by many research groups. New drugs specifically dedicated for ALK inhibition, for example, crizotinib, have been synthesized and have become a viable treatment option for ALK-positive lung adenocarcinoma, and potentially for other ALK-positive cancers. This review summarizes the current state of knowledge concerning ALK-positive neoplasms, focusing on the clinical aspects of the subject.
Collapse
Affiliation(s)
- Adam Gorczyński
- Department of Pathomorphology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
40
|
Chen N, Lu K, Li P, Lv X, Wang X. Overexpression of IL-9 induced by STAT6 activation promotes the pathogenesis of chronic lymphocytic leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2319-2323. [PMID: 24966942 PMCID: PMC4069881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/26/2014] [Indexed: 06/03/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a common leukemia in adults, but its pathogenesis is still poorly understood. Recently, extensive evidence suggests that the malignant cells of CLL patients secrete a range of cytoprotective cytokines including interleukin-4 (IL-4). IL-4 induced the rapid phosphorylation(p) and activation of the signal transducer and activator of transcription (STAT)-6 transcription factor in CLL cells in vitro. Interleukin-9 (IL-9) is not expressed by Th2 and Th9 cells in the absence of STAT6 expression. To elucidate whether there was a function link between IL-9 and STAT6 in CLL, MEC-1 cells were analyzed using RT-PCR, and western blot. Interestingly, when added with recombinant human IL-4 (rIL-4) in culturing MEC-1 cells, expressions of p-STAT6 and IL-9 in MEC-1 cells increased at a time-dependent manner and their expressions could be inhibited by STAT6 inhibitor. Our data indicated that the upregulation of IL-9 induced by pSTAT6 may be involved in the pathogenesis of CLL.
Collapse
MESH Headings
- Apoptosis
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-4/pharmacology
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Phosphorylation
- RNA, Messenger/metabolism
- Recombinant Proteins/pharmacology
- STAT6 Transcription Factor/antagonists & inhibitors
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Up-Regulation
Collapse
Affiliation(s)
- Na Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Peipei Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, China
- Institute of Diagnostics, School of Medicine, Shandong UniversityJinan, Shandong, China
| |
Collapse
|
41
|
Zhang J, Wang WD, Geng QR, Wang L, Chen XQ, Liu CC, Lv Y. Serum levels of interleukin-9 correlate with negative prognostic factors in extranodal NK/T-cell lymphoma. PLoS One 2014; 9:e94637. [PMID: 24722378 PMCID: PMC3983224 DOI: 10.1371/journal.pone.0094637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/18/2014] [Indexed: 01/06/2023] Open
Abstract
Interleukin-9 (IL-9) is more functionally diverse than previously expected, especially with regards to lymphomagenesis. However, the relationship between IL-9 and the clinicopathological features of extranodal NK/T-cell lymphoma is less well established. Patients with this lymphoma in Sun Yat-Sen University Cancer Center between January 2003 and March 2013 were systematically reviewed in an intention-to-treat analysis. Baseline serum IL-9 levels were determined using sandwich enzyme-linked immunosorbent assays. A total of seventy-four patients were enrolled in this study. The mean concentration of serum IL-9 for all patients was 6.48 pg/mL (range: 1.38–51.87 pg/mL). Age, B symptoms and local lymph node involvement were found to be related to high serum IL-9 levels. Patients with low IL-9 levels tended to have higher rates of complete remission. Notably, the median progression-free survival (PFS) and overall survival (OS) were longer in the low IL-9 level group than in the high IL-9 level group (PFS: 68.7 months vs. 28.3 months, P<0.001; OS: 86 months vs. 42.8 months, P = 0.001). Multivariate analysis revealed independent prognostic factors for PFS. Similarly, high IL-9 levels (P = 0.003) and old age (P = 0.007) were independently predictive of shorter OS. Serum IL-9 is closely related to several clinical features, such as age, B symptoms and local lymph node involvement. It can also be a significant independent prognostic factor for extranodal NK/T-cell lymphoma, which suggests a role for IL-9 in the pathogenesis of this disease and offers new insight into potential therapeutic strategies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, Hubei, P. R. China
| | - Wei-da Wang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Qi-rong Geng
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Liang Wang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Xiao-qin Chen
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Cheng-cheng Liu
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yue Lv
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
- * E-mail:
| |
Collapse
|
42
|
Murga-Zamalloa C, Lim MS. ALK-driven tumors and targeted therapy: focus on crizotinib. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:87-94. [PMID: 24715763 PMCID: PMC3977456 DOI: 10.2147/pgpm.s37504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinases have emerged as promising therapeutic targets for a diverse set of tumors. Overactivation of the tyrosine kinase anaplastic lymphoma kinase (ALK) has been reported in several types of malignancies such as anaplastic large cell lymphoma, inflammatory myofibroblastic tumor, neuroblastoma, and non-small-cell lung carcinoma. Further characterization of the molecular role of ALK has revealed an oncogenic signaling signature that results in tumor dependence on ALK. ALK-positive tumors display a different behavior than their ALK-negative counterparts; however, the specific role of ALK in some of these tumors remains to be elucidated. Although more studies are required to establish selective targeting of ALK as a definitive therapeutic option, initial trials have shown extraordinary results in the majority of cases.
Collapse
Affiliation(s)
| | - Megan S Lim
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Chen N, Lv X, Li P, Lu K, Wang X. Role of high expression of IL-9 in prognosis of CLL. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:716-721. [PMID: 24551294 PMCID: PMC3925918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a common leukemia in adults, but its pathogenesis is still poorly understood. Interleukin-9 (IL-9) is initially described as a growth factor secreted by helper T cells. Recently, the oncogenic activities of IL-9 were reported in some leukemia but not chronic lymphocytic leukemia (CLL). The purpose of the present study is to investigate the expression of IL-9 from patients with CLL and to evaluate its correlation with clinical characteristics. Serum and peripheral blood mononuclear cells (PBMCs) from patients with CLL were analyzed using ELISA, RT-PCR, and western blot. ELISA analysis indicated IL-9 could be detected in 20 of 47 sera from CLL patients while none serum sample from healthy volunteers contained detectable levels of IL-9. There was a higher expression of IL-9 within PBMCs from patients with CLL compared with B cells of healthy blood donors using RT-PCR and western blot. The upregulated IL-9 was correlated to the clinical staging, ZAP-70 expression, β2 microglobulin expression and IgVH status of CLL patients (P<0.05). Our findings suggest that overexpression of IL-9 may contribute to the pathogenesis of CLL and is associated with some adverse prognostic parameters.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Case-Control Studies
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Immunoglobulin Heavy Chains
- Immunoglobulin Variable Region
- Interleukin-9/blood
- Interleukin-9/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukocytes, Mononuclear/immunology
- Male
- Middle Aged
- Neoplasm Staging
- RNA, Messenger/blood
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
- ZAP-70 Protein-Tyrosine Kinase/blood
Collapse
Affiliation(s)
- Na Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Peipei Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
- Institute of Diagnostics, Shandong University, School of MedicineJinan, Shandong, 250012, China
| |
Collapse
|
44
|
Uckun FM, Pitt J, Qazi S. JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia. Expert Rev Anticancer Ther 2014; 11:37-48. [DOI: 10.1586/era.10.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Inhibition of JAK3 with a novel, selective and orally active small molecule induces therapeutic response in T-cell malignancies. Leukemia 2013; 28:941-4. [PMID: 24153015 PMCID: PMC3981915 DOI: 10.1038/leu.2013.309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Lai R, Ingham RJ. The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update. Ther Adv Hematol 2013; 4:119-31. [PMID: 23610619 DOI: 10.1177/2040620712471553] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field. In this review, we provide readers with a brief update on specific areas of NPM-ALK pathobiology. In the first part, the NPM-ALK/signal transducer and activator of transcription 3 (STAT3) signaling axis is discussed, with an emphasis on the existence of multiple biochemical defects that have been shown to amplify the oncogenic effects of this signaling axis. Specifically, findings regarding JAK3, SHP1 and the stimulatory effects of several cytokines including interleukin (IL)-9, IL-21 and IL-22 are summarized. New concepts stemming from recent observations regarding the functional interactions among the NPM-ALK/STAT3 axis, β catenin and glycogen synthase kinase 3β will be postulated. Lastly, new mechanisms by which the NPM-ALK/STAT3 axis promotes tumorigenesis, such as its modulations of Twist1, hypoxia-induced factor 1α, CD274, will be described. In the second part, we summarize recent data generated by mass spectrometry studies of NPM-ALK, and use MSH2 and heat shock proteins as examples to illustrate the use of mass spectrometry data in stimulating new research in this field. In the third part, the evolving field of microRNA in the context of NPM-ALK biology is discussed.
Collapse
Affiliation(s)
- Raymond Lai
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, Rm 2338, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | | |
Collapse
|
47
|
Lv X, Feng L, Fang X, Jiang Y, Wang X. Overexpression of IL-9 receptor in diffuse large B-cell lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:911-916. [PMID: 23638223 PMCID: PMC3638102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Interleukin-9 (IL-9) is initially described as a growth factor secreted by helper T cells. It acts on a variety of immune cells via its receptor (IL-9R). Recently, the oncogenic activities of IL-9 and IL-9R were reported in some lymphomas but not diffuse large B-cell lymphoma (DLBCL). The purpose of the present study is to investigate the expression of IL-9R in pathological tissues from patients with DLBCL and to evaluate its correlation with clinical characteristics. Tissue samples from patients with DLBCL and reactive lymphoid hyperplasia were analyzed using RT-PCR, western blot and immunohistochemical staining. There was a higher expression of IL-9R within DLBCL tissues compared with hyperplasic lymph nodes. Immunohistochemical analysis indicated membrane localization of IL-9R in 22 of 36 (61.1%) DLBCL cases. The upregulated IL-9R was correlated to the serum levels of β2 microglobulin and albumin, International Prognostic Index (IPI) score as well as Ki-67 expression within tumor tissues. Our findings suggest that overexpression of IL-9R may contribute to the pathogenesis of DLBCL and is associated with some adverse prognostic parameters.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
48
|
Ouyang H, Shi Y, Liu Z, Feng S, Li L, Su N, Lu Y, Kong S. Increased interleukin‑9 and CD4+IL-9+ T cells in patients with systemic lupus erythematosus. Mol Med Rep 2013; 7:1031-7. [PMID: 23291628 DOI: 10.3892/mmr.2013.1258] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/21/2012] [Indexed: 11/05/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown origin affecting all the organ systems. Apart from genetic and environmental factors, autoantibody and immune complex deposition as well as cytokine imbalances contribute to immune dysfunction. Interleukin‑9 (IL-9) is a T cell-derived factor preferentially expressed by CD4+ T cells and it has been characterized in human and murine systems. IL-9 targets cells of the lymphoid, myeloid and mast cell lineages, and is likely to contribute to the development of allergic and autoimmune diseases such as asthma, arthritis, multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Nevertheless, until recently there have been no studies on its role in SLE in humans. In the present study, the mRNA and serum IL-9 levels in the peripheral blood of SLE patients and healthy controls were assessed using real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Flow cytometry was used to analyze the percentages of CD4+IL-9+ T cells in SLE patients. Moreover, differences between the groups and the effect of glucocorticoids were analyzed. The results showed that the plasma concentration and mRNA levels of IL-9 were significantly elevated in SLE patients compared with the healthy controls. The percentages of CD4+IL-9+ T cells were also increased in SLE patients. In addition, serum IL-9 levels and the percentages of CD4+IL-9+ T cells were correlated with the SLE disease activity index (SLEDAI). Additionally, the percentages of CD4+IL-9+ T cells and serum IL-9 levels in 8 untreated active SLE patients were decreased at 1, 2 and 3 weeks after treatment with methylprednisolone. In conclusion, we provide evidence that IL-9 is increased in SLE patients. Moreover, it is described for the first time that high expression of IL-9 levels and the percentages of CD4+IL-9+ T cells correlate with disease activity and severity. This suggests an important role of IL-9 in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Han Ouyang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Although much progress has been made in the treatment of lymphomas, the unclear molecular etiology limits its further development. Interleukin-9 (IL-9) was initially described as a growth factor secreted by activated helper T cells type 2 (Th2). Various observations have demonstrated its diverse actions in immune and inflammatory responses. In recent years, a resurgence of interest in IL-9 has been spurred by the expanded identification of its cellular sources and biological targets. Also, the determination of its growth-proliferative and anti-apoptotic activities on multiple transformed cells implies a potential role of this cytokine in tumorigenesis. In this article we review the biologic properties and signal transduction pathways of IL-9, and furthermore discuss its possible role in lymphomagenesis as well as its impact on non-malignant infiltrating cells which are characteristic of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | |
Collapse
|
50
|
Kobayashi H, Kumai T, Hayashi S, Matsuda Y, Aoki N, Sato K, Kimura S, Celis E. A naturally processed HLA-DR-bound peptide from the IL-9 receptor alpha of HTLV-1-transformed T cells serves as a T helper epitope. Cancer Immunol Immunother 2012; 61:2215-25. [PMID: 22638550 PMCID: PMC11029050 DOI: 10.1007/s00262-012-1284-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) induced adult T cell leukemia/lymphoma (ATLL) is usually a fatal lymphoproliferative malignant disease. Thus, the enhancement of T cell immunity to ATLL through the development of therapeutic vaccines using characterized T cell peptide epitopes could be of value. We isolated and characterized HLA-DR-bound peptides from HTLV-1-transformed T cells by fractionating on reverse-phase high performance liquid chromatography and Edman NH(2)-terminal sequencing and were able to identify five independent peptide sequences. One of the identified peptide sequences corresponded to a fragment of the human interleukin-9 receptor alpha (IL-9Rα), which is commonly expressed by HTLV-1-infected T cell lymphoma cells. Using a synthetic peptide corresponding to the identified IL-9Rα sequence, we generated antigen-specific CD4 helper T lymphocytes in vitro, which were restricted by HLA-DR15 or HLA-DR53 molecules and could recognize and kill HTLV-1+, IL-9Rα+ T cell lymphoma cells. These results indicate that IL-9Rα functions as T cell leukemia/lymphoma-associated antigen for CD4 T cells and that synthetic peptides such as the one described here could be used for T cell-based immunotherapy against IL-9Rα positive ATLL.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Transformation, Viral/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Fibroblasts/immunology
- Fibroblasts/metabolism
- HLA-DR Antigens/immunology
- HLA-DR Antigens/metabolism
- HLA-DR Serological Subtypes/immunology
- HLA-DR Serological Subtypes/metabolism
- HLA-DRB4 Chains/immunology
- HLA-DRB4 Chains/metabolism
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/metabolism
- Humans
- Jurkat Cells
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Lymphocyte Activation
- Male
- Mice
- Receptors, Interleukin-9/immunology
- Receptors, Interleukin-9/metabolism
- Sequence Analysis, Protein/methods
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Satoshi Hayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Yoshinari Matsuda
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Keisuke Sato
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Shoji Kimura
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Esteban Celis
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, SRB2, Tampa, FL 33612 USA
| |
Collapse
|