1
|
Vianzon VV, Hanson RM, Garg I, Joseph GJ, Rogers LM. Rank aggregation of independent genetic screen results highlights new strategies for adoptive cellular transfer therapy of cancer. Front Immunol 2023; 14:1235131. [PMID: 38143765 PMCID: PMC10748423 DOI: 10.3389/fimmu.2023.1235131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Efficient intratumoral infiltration of adoptively transferred cells is a significant barrier to effectively treating solid tumors with adoptive cellular transfer (ACT) therapies. Our recent forward genetic, whole-genome screen identified T cell-intrinsic gene candidates that may improve tumor infiltration of T cells. Here, results are combined with five independent genetic screens using rank aggregation to improve rigor. This resulted in a combined total of 1,523 candidate genes - including 1,464 genes not currently being evaluated as therapeutic targets - that may improve tumor infiltration of T cells. Gene set enrichment analysis of a published human dataset shows that these gene candidates are differentially expressed in tumor infiltrating compared to circulating T cells, supporting translational potential. Importantly, adoptive transfer of T cells overexpressing gain-of-function candidates (AAK1ΔN125, SPRR1B, and EHHADH) into tumor-bearing mice resulted in increased T cell infiltration into tumors. These novel gene candidates may be considered as potential therapeutic candidates that can aid adoptive cellular therapy in improving T cell infiltration into solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - Laura M. Rogers
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Lv Y, Liao Z, Bi Q, Xie C, Wei X, Yun Y, He Y, Tang Q. Irreversible repolarization of tumour-associated macrophages by low-Pi stress inhibits the progression of hepatocellular carcinoma. J Cell Mol Med 2023; 27:2906-2921. [PMID: 37471521 PMCID: PMC10538272 DOI: 10.1111/jcmm.17861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Numerous studies have shown the positive correlation between high levels of Pi and tumour progression. A critical goal of macrophage-based cancer therapeutics is to reduce anti-inflammatory macrophages (M2) and increase proinflammatory antitumour macrophages (M1). This study aimed to investigate the relationship between macrophage polarization and low-Pi stress. First, the spatial populations of M2 and M1 macrophages in 22 HCC patient specimens were quantified and correlated with the local Pi concentration. The levels of M2 and M1 macrophage markers expressed in the peritumour area were higher than the intratumour levels, and the expression of M2 markers was positively correlated with Pi concentration. Next, monocytes differentiated from THP-1 cells were polarized against different Pi concentrations to investigate the activation or silencing of the expression of p65, IκB-α and STAT3 as well as their phosphorylation. Results showed that low-Pi stress irreversibly repolarizes tumour-associated macrophages (TAMs) towards the M1 phenotype by silencing stat6 and activating p65. Moreover, HepG-2 and SMCC-7721 cells were cultured in conditioned medium to investigate the innate anticancer immune effects on tumour progression. Both cancer cell lines showed reduced proliferation, migration and invasion, as epithelial-mesenchymal transition (EMT) was inactivated. In vivo therapeutic effect on the innate and adaptive immune processes was validated in a subcutaneous liver cancer model by the intratumoural injection of sevelamer. Tumour growth was significantly inhibited by the partial deprivation of intratumoural Pi as the tumour microenvironment under low-Pi stress is more immunostimulatory. The anticancer immune response, activated by low-Pi stress, suggests a new macrophage-based immunotherapeutic modality.
Collapse
Affiliation(s)
- Yang‐feng Lv
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public HealthNanchang UniversityNanchangChina
- Institute for Advanced Study, Nanchang UniversityNanchangChina
| | - Zi‐qiang Liao
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public HealthNanchang UniversityNanchangChina
- Institute for Advanced Study, Nanchang UniversityNanchangChina
| | - Qiu‐chen Bi
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public HealthNanchang UniversityNanchangChina
- Institute for Advanced Study, Nanchang UniversityNanchangChina
| | - Chuan‐sheng Xie
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public HealthNanchang UniversityNanchangChina
| | - Xiao‐yong Wei
- Department of Hepatobiliary SurgeryJiangxi Provincial Cancer HospitalNanchangChina
| | - Yi Yun
- Biobank CenterThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yuan‐qiao He
- Center of Laboratory Animal Science, Jiangxi Province Key Laboratory of Laboratory AnimalNanchang UniversityNanchangChina
| | - Qun Tang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public HealthNanchang UniversityNanchangChina
- Institute for Advanced Study, Nanchang UniversityNanchangChina
| |
Collapse
|
3
|
Ahmed H, Mahmud AR, Siddiquee MFR, Shahriar A, Biswas P, Shimul MEK, Ahmed SZ, Ema TI, Rahman N, Khan MA, Mizan MFR, Emran TB. Role of T cells in cancer immunotherapy: Opportunities and challenges. CANCER PATHOGENESIS AND THERAPY 2023; 1:116-126. [PMID: 38328405 PMCID: PMC10846312 DOI: 10.1016/j.cpt.2022.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 09/01/2023]
Abstract
Immunotherapies boosting the immune system's ability to target cancer cells are promising for the treatment of various tumor types, yet clinical responses differ among patients and cancers. Recently, there has been increasing interest in novel cancer immunotherapy practices aimed at triggering T cell-mediated anti-tumor responses. Antigen-directed cytotoxicity mediated by T lymphocytes has become a central focal point in the battle against cancer utilizing the immune system. The molecular and cellular mechanisms involved in the actions of T lymphocytes have directed new therapeutic approaches in cancer immunotherapy, including checkpoint blockade, adoptive and chimeric antigen receptor (CAR) T cell therapy, and cancer vaccinology. This review addresses all the strategies targeting tumor pathogenesis, including metabolic pathways, to evaluate the clinical significance of current and future immunotherapies for patients with cancer, which are further engaged in T cell activation, differentiation, and response against tumors.
Collapse
Affiliation(s)
- Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | | | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Md. Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md. Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
4
|
Generation of colon cancer-derived tumor-infiltrating T cells (TILs) for adoptive cell therapy. Cytotherapy 2023; 25:537-547. [PMID: 36775787 DOI: 10.1016/j.jcyt.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023]
Abstract
Adoptive cell therapy (ACT) using specific immune cells and stem cells has emerged as a promising treatment option that could complement traditional cancer therapies in the future. In particular, tumor-infiltrating lymphocytes (TILs) have been shown to be effective against solid tumors in various clinical trials. Despite the enormous disease burden and large number of premature deaths caused by colorectal cancer (CRC), studies on TILs isolated from tumor tissue of patients with CRC are still rare. To date, studies on ACT often lack controlled and comparable expansion processes as well as selected ACT-relevant T-cell populations. We describe a procedure for generating patient-specific TILs, which are prerequisites for clinical trials of ACT in CRC. The manufacturing and characteristics of these TILs differ in important modalities from TILs commonly used for this therapeutic approach. Tumor tissue samples were obtained from 12 patients undergoing surgery for primary CRC, predominantly with low microsatellite instability (pMMR-MSI-L). Tumors in the resected specimens were examined pathologically, and an approved volume of tumor tissue was transferred to a disposable perfusion bioreactor. Tissue samples were subjected to an automatically controlled and highly reproducible cultivation process in a GMP-conform, closed perfusion bioreactor system using starting medium containing interleukin-2 and interleukin-12. Outgrowth of TIL from tissue samples was initiated by short-term supplementation with a specific activation cocktail. During subsequent expansion, TILs were grown in interleukin-2-enriched medium. Expansion of TILs in a low-scaled, two-phase process in the Zellwerk ZRP bioreactor under hyperoxic conditions resulted in a number of approximately 2 × 109 cells. The expanded TILs consisted mainly (73%) of the ACT-relevant CD3+/CD8+ effector memory phenotype (CD45RO+/CCR7-). TILs harvested under these conditions exhibited high functional potential, which was confirmed upon nonspecific stimulation (interferon-γ, tumor necrosis factor-α cytokine assay).
Collapse
|
5
|
Feng H, Zhuo Y, Zhang X, Li Y, Li Y, Duan X, Shi J, Xu C, Gao Y, Yu Z. Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. J Hepatocell Carcinoma 2022; 9:1109-1125. [PMID: 36320666 PMCID: PMC9618253 DOI: 10.2147/jhc.s381764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a serious medical therapeutic challenge as conventional curative avenues such as surgery and chemotherapy only benefit for few patients with limited tumor burden. Immunotherapy achieves clinical progress in the treatment of this prevalent malignant disease by virtue of the development of tumor immunology; however, most patients have experienced minimal or no clinical benefit in terms of overall survival. The complexity and diversity of tumor microenvironment (TME) built by immune and stromal cell subsets has been considered to be responsible for the insufficiency of immunotherapy. The advance of bioanalytical technology boosts the exploration of the composition and differentiation of these infiltrated cells, which reflect the immune state of the TME and impact the efficacy of the antitumor immune response. Targeting these cells to remodel the TME is one of the important immunotherapeutic approaches to improve HCC treatment. In this review, we focused on the role of these non-cancerous cells in the tumor progression, and elaborated their function on cancer immunotherapy when manipulating them as potential targets.
Collapse
Affiliation(s)
- Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yunhui Zhuo
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuyao Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yue Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangjuan Duan
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia Shi
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chengbin Xu
- Department of Informatics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yueqiu Gao
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Yueqiu Gao, Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Zhuo Yu, Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| |
Collapse
|
6
|
Jiang J, Xia M, Zhang L, Chen X, Zhao Y, Zeng C, Yang H, Liang P, Li G, Li N, Qi H, Wei T, Ren L. Rapid generation of genetically engineered T cells for the treatment of virus-related cancers. Cancer Sci 2022; 113:3686-3697. [PMID: 35950597 DOI: 10.1111/cas.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Adoptive transfer of T cell receptor (TCR) engineered T cells targeting viral epitopes represents a promising approach for treating virus-related cancers. However, efficient identification of epitopes for T cells and corresponding TCR remains challenging. Here, we report a workflow permitting rapid generation of human papillomavirus (HPV)-specific TCR-T cells. Six epitopes of viral proteins belonged to HPV16 or HPV18 were predicted of high affinity to A11:01 according to bioinformatic analysis. Subsequently, cytotoxic T cells (CTLs) induction were performed with these six antigen peptides separately, and antigen-specific T cells were sorted by FACS. TCR clonotypes of these virus-specific T cells were determined by next-generation sequencing. To improve the efficiency of TCRαβ pairs validation, a lentiviral vector library containing 116 TCR constructs was generated, which was consisted of predominant TCRs according to TCR repoertire analysis. Later, TCR library transduced T cells were simulated with peptide pool-pulsed antigen presenting cells, then CD137-positive cells were sorted and subjected to TCR repoertire analysis. The top-hit TCRs and corresponding antigen peptides were deduced and validated. Through this workflow, a TCR targeting the E692-101 of HPV16 was identified. This HPV16-specific TCR-T cells showed high activities to HPV16-positive human cervical cancer cells in vitro and efficiently repressed tumor growth in murine model. This study provides a HPV16-specific TCR fitted to HLA-A11:01 population, and exemplifies an efficient approach which can be applied in large-scale screen of virus-specific TCRs, further encouraging researchers to exploit the therapeutic potential of TCR-T cell technique in treating virus-related cancers.
Collapse
Affiliation(s)
- Jinxing Jiang
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Ming Xia
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Lijie Zhang
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Xi Chen
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Yue Zhao
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Chenquan Zeng
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Haiyan Yang
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Peng Liang
- RootPath, Inc. 65 Grove Street, Suite 203, 02472, Watertown, MA, USA
| | - Guanghe Li
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Ning Li
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Hui Qi
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Teng Wei
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Lili Ren
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| |
Collapse
|
7
|
Harnessing Antitumor CD4 + T Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14010260. [PMID: 35008422 PMCID: PMC8750687 DOI: 10.3390/cancers14010260] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Diverse evidence revealed that CD4+ T cells play an important role in antitumor immunity by promoting or suppressing cytotoxic T cell responses. This review outlines the role of CD4+ T subsets within the tumor microenvironment and summarizes the latest progress regarding their potentials in cancer immunotherapy and methods for improving outcomes in cancer strategies by modulating CD4+ T responses. Abstract Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.
Collapse
|
8
|
Richardson JR, Schöllhorn A, Gouttefangeas C, Schuhmacher J. CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy. Cancers (Basel) 2021; 13:596. [PMID: 33546283 PMCID: PMC7913359 DOI: 10.3390/cancers13040596] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy activates the immune system to specifically target malignant cells. Research has often focused on CD8+ cytotoxic T cells, as those have the capacity to eliminate tumor cells after specific recognition upon TCR-MHC class I interaction. However, CD4+ T cells have gained attention in the field, as they are not only essential to promote help to CD8+ T cells, but are also able to kill tumor cells directly (via MHC-class II dependent recognition) or indirectly (e.g., via the activation of other immune cells like macrophages). Therefore, immunotherapy approaches have shifted from only stimulating CD8+ T cells to targeting and assessing both, CD4+ and CD8+ T cell subsets. Here, we discuss the various subsets of CD4+ T cells, their plasticity and functionality, their relevance in the antitumor immune response in patients affected by cancer, and their ever-growing role in therapeutic approaches for human cancer.
Collapse
Affiliation(s)
- Jennifer R. Richardson
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
| | - Anna Schöllhorn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (J.R.R.); (A.S.); (J.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Peng P, Hu H, Liu P, Xu LX. Neoantigen-specific CD4 + T-cell response is critical for the therapeutic efficacy of cryo-thermal therapy. J Immunother Cancer 2020; 8:jitc-2019-000421. [PMID: 32938627 PMCID: PMC7497524 DOI: 10.1136/jitc-2019-000421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Traditional tumor thermal ablations, such as radiofrequency ablation (RFA) and cryoablation, can result in good local control of tumor, but traditional tumor thermal ablations are limited by poor long-term survival due to the failure of control of distal metastasis. Our previous studies developed a novel cryo-thermal therapy to treat the B16F10 melanoma mouse model. Long-term survival and T-cell-mediated durable antitumor immunity were achieved after cryo-thermal therapy, but whether tumor antigen-specific T-cells were augmented by cryo-thermal therapy was not determined. Methods The long-term antitumor therapeutic efficacy of cryo-thermal therapy was performed in B16F10 murine melanoma models. Splenocytes derived from mice treated with RFA or cryo-thermal therapy were coincubated with tumor antigen peptides to detect the frequency of antigen specific CD4+ and CD8+ T-cells by flow cytometry. Splenocytes were then stimulated and expanded by αCD3 or peptides and adoptive T-cell therapy experiments were performed to identify the antitumor efficacy of T-cells induced by RFA and cryo-thermal therapy. Naïve mice and tumor-bearing mice were used as control groups. Results Local cryo-thermal therapy generated a stronger systematic antitumor immune response than RFA and a long-lasting antitumor immunity that protected against tumor rechallenge. In vitro studies showed that the antigen-specific CD8+ T-cell response was induced by both cryo-thermal therapy and RFA, but the strong neoantigen-specific CD4+ T-cell response was only induced by cryo-thermal therapy. Cryo-thermal therapy-induced strong antitumor immune response was mainly mediated by CD4+ T-cells, particularly neoantigen-specific CD4+ T-cells. Conclusion Cryo-thermal therapy induced a stronger and broader antigen-specific memory T-cells. Specifically, cryo-thermal therapy, but not RFA, led to a strong neoantigen-specific CD4+ T-cell response that mediated the resistance to tumor challenge.
Collapse
Affiliation(s)
- Peng Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Hu
- Providence Portland Medical Center, Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Mucciolo G, Roux C, Scagliotti A, Brugiapaglia S, Novelli F, Cappello P. The dark side of immunotherapy: pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:491-520. [PMID: 35582441 PMCID: PMC8992483 DOI: 10.20517/cdr.2020.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Since the journal Science deemed cancer immunotherapy as the "breakthrough of the year" in 2014, there has been an explosion of clinical trials involving immunotherapeutic approaches that, in the last decade - thanks also to the renaissance of the immunosurveillance theory (renamed the three Es theory) - have been continuously and successfully developed. In the latest update of the development of the immuno-oncology drug pipeline, published last November by Nature Review Drug Discovery, it was clearly reported that the immunoactive drugs under study almost doubled in just two years. Of the different classes of passive and active immunotherapies, "cell therapy" is the fastest growing. The aim of this review is to discuss the preclinical and clinical studies that have focused on different immuno-oncology approaches applied to pancreatic cancer, which we assign to the "dark side" of immunotherapy, in the sense that it represents one of the solid tumors showing less response to this type of therapeutic strategy.
Collapse
Affiliation(s)
- Gianluca Mucciolo
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Cecilia Roux
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Alessandro Scagliotti
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Silvia Brugiapaglia
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| |
Collapse
|
11
|
Chruściel E, Urban-Wójciuk Z, Arcimowicz Ł, Kurkowiak M, Kowalski J, Gliwiński M, Marjański T, Rzyman W, Biernat W, Dziadziuszko R, Montesano C, Bernardini R, Marek-Trzonkowska N. Adoptive Cell Therapy-Harnessing Antigen-Specific T Cells to Target Solid Tumours. Cancers (Basel) 2020; 12:E683. [PMID: 32183246 PMCID: PMC7140076 DOI: 10.3390/cancers12030683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, much research has been focused on the field of adoptive cell therapies (ACT) that use native or genetically modified T cells as therapeutic tools. Immunotherapy with T cells expressing chimeric antigen receptors (CARs) demonstrated great success in the treatment of haematologic malignancies, whereas adoptive transfer of autologous tumour infiltrating lymphocytes (TILs) proved to be highly effective in metastatic melanoma. These encouraging results initiated many studies where ACT was tested as a treatment for various solid tumours. In this review, we provide an overview of the challenges of T cell-based immunotherapies of solid tumours. We describe alternative approaches for choosing the most efficient T cells for cancer treatment in terms of their tumour-specificity and phenotype. Finally, we present strategies for improvement of anti-tumour potential of T cells, including combination therapies.
Collapse
Affiliation(s)
- Elżbieta Chruściel
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Łukasz Arcimowicz
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (T.M.); (W.R.)
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Rafał Dziadziuszko
- Department of Oncology and Radiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Roberta Bernardini
- Department of Biology and Interdepartmental Center CIMETA, University of Rome "Tor Vergata", 00133 Rome, Italy;
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-309 Gdańsk, Poland; (E.C.); (Z.U.-W.); (M.K.); (J.K.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
12
|
Rataj F, Kraus FBT, Chaloupka M, Grassmann S, Heise C, Cadilha BL, Duewell P, Endres S, Kobold S. PD1-CD28 Fusion Protein Enables CD4+ T Cell Help for Adoptive T Cell Therapy in Models of Pancreatic Cancer and Non-hodgkin Lymphoma. Front Immunol 2018; 9:1955. [PMID: 30214445 PMCID: PMC6125378 DOI: 10.3389/fimmu.2018.01955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/08/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Interaction of the programmed death receptor 1 (PD-1) and its ligand, PD-L1, suppresses T cell activity and permits tumors to evade T cell-mediated immune surveillance. We have recently demonstrated that antigen-specific CD8+ T cells transduced with a PD1-CD28 fusion protein are protected from PD-1-mediated inhibition. We have now investigated the potential of PD1-CD28 fusion protein-transduced CD4+ T cells alone or in combination with CD8+ T cells for immunotherapy of pancreatic cancer and non-Hodgkin lymphoma. Methods: OVA-specific CD4+ and CD8+ were retrovirally transduced with the PD1-CD28 fusion protein. Cytokine release, proliferation, cytotoxic activity, and phenotype of transduced T cells were assessed in the context of Panc02-OVA (murine pancreatic cancer model) and E.G7-PD-L1 (murine T cell lymphoma model) cells. Results: Stimulation of PD1-CD28 fusion protein-transduced CD4+ T cells with anti-CD3 and recombinant PD-L1 induced specific T cell activation, as measured by IFN-y release and T cell proliferation. Coculture with Panc02-OVA or E.G7-PD-L1 tumor cells also led to specific activation of CD4+ T cells. Cytokine release and T cell proliferation was most effective when tumor cells simultaneously encountered genetically engineered CD4+ and CD8+ T cells. Synergy between both cell populations was also observed for specific tumor cell lysis. T cell cytotoxicity was mediated via granzyme B release and mediated enhanced tumor control in vivo. Transduced CD4+ and CD8+ T cells in co-culture with tumor cells developed a predominant central memory phenotype over time. Different ratios of CD4+ and CD8+ transduced T cells led to a significant increase of IFN-y and IL-2 secretion positively correlating with CD4+ T cell numbers used. Mechanistically, IL-2 and MHC-I were central to the synergistic activity of CD4+ and CD8+ T cells, since neutralization of IL-2 prevented the crosstalk between these cell populations. Conclusion: PD1-CD28 fusion protein-transduced CD4+ T cells significantly improved anti-tumoral effect of fusion protein-transduced CD8+ T cells. Thus, our results indicate that PD1-CD28 fusion protein-transduced CD4+ T cells have the potential to overcome the PD-1-PD-L1 immunosuppressive axis in pancreatic cancer and non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Fabian B T Kraus
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Chaloupka
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany.,German Cancer Research Center (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany.,German Cancer Research Center (DKTK), Partner Site Munich, Heidelberg, Germany
| |
Collapse
|
13
|
Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A 2A Adenosine Receptor Gene Deletion or Synthetic A 2A Antagonist Liberate Tumor-Reactive CD8 + T Cells from Tumor-Induced Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2018; 201:782-791. [PMID: 29802128 DOI: 10.4049/jimmunol.1700850] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Tumor hypoxia-driven accumulation of extracellular adenosine was shown to facilitate tumor evasion by engaging the immunosuppressive, intracellular cAMP-elevating A2 adenosine receptors (A2R) on tumor-reactive effector T cells, but there remains a need for careful evaluation of the limiting factors and properties of A2R blockade-enabled antitumor immunity. In studies of A2AR and/or A2BR gene-deficient mice, we found that A2AR deletion-but not A2BR deletion-liberates endogenous CD8+ T cell antitumor immunity against weakly immunogenic MCA205 sarcomas. Studies of adoptively transferred A2AR-/-, A2BR-/-, or A2AR-/-/A2BR-/- tumor-reactive T cells confirmed that immunosuppression in the tumor microenvironment was mediated by A2AR on CD8+ T cells. Treatment with A2AR antagonist mimicked A2AR gene deletion in adoptive T cell immunotherapy. This therapeutic benefit of targeting A2AR was independent of the anatomical location of tumor growth. The enhanced antitumor reactivity also led to the eradication of established intracranial tumors, which was associated with mouse survival and the maintenance of long-lasting, tumor-specific immunological memory. The blockade of the A2AR on adoptively transferred T cells by synthetic A2AR antagonist led to higher levels of IFN-γ secretion by tumor-infiltrating CD8+ T cells. These data clarify the mechanism of hypoxia-driven immunosuppression in the tumor microenvironment by A2AR on tumor-reactive CD8+ T cells and show that selective A2AR antagonists can be effective in improving the outcomes of T cell-based immunotherapies. Demonstration of the T cell dose dependency of tumor rejection points to a major limitation of current cancer immunotherapies, in which the presence of sufficient numbers of tumor-reactive T cells in a patient is not known.
Collapse
Affiliation(s)
- Jorgen Kjaergaard
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| | - Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| | - Graham Jones
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115
| | - Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115; and
| |
Collapse
|
14
|
Tanaka T, Watanabe S, Takahashi M, Sato K, Saida Y, Baba J, Arita M, Sato M, Ohtsubo A, Shoji S, Nozaki K, Ichikawa K, Kondo R, Aoki N, Ohshima Y, Sakagami T, Abe T, Moro H, Koya T, Tanaka J, Kagamu H, Yoshizawa H, Kikuchi T. Transfer of in vitro-expanded naïve T cells after lymphodepletion enhances antitumor immunity through the induction of polyclonal antitumor effector T cells. PLoS One 2017; 12:e0183976. [PMID: 28854279 PMCID: PMC5576657 DOI: 10.1371/journal.pone.0183976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
The adoptive transfer of effector T cells combined with lymphodepletion has demonstrated promising antitumor effects in mice and humans, although the availability of tumor-specific T cells is limited. We and others have also demonstrated that the transfer of polyclonal naïve T cells induces tumor-specific effector T cells and enhances antitumor immunity after lymphodepletion. Because tumors have been demonstrated to induce immunosuppressive networks and regulate the function of T cells, obtaining a sufficient number of fully functional naïve T cells that are able to differentiate into tumor-specific effector T cells remains difficult. To establish culture methods to obtain a large number of polyclonal T cells that are capable of differentiating into tumor-specific effector T cells, naïve T cells were activated with anti-CD3 mAbs in vitro. These cells were stimulated with IL-2 and IL-7 for the CD8 subset or with IL-7 and IL-23 for the CD4 subset. Transfer of these hyperexpanded T cells after lymphodepletion showed significant antitumor efficacy, and tumor-specific effector T cells were primed from these expanded T cells in tumor-bearing hosts. Moreover, these ex vivo-expanded T cells maintained T cell receptor diversity and showed long-term persistence of memory against specific tumors. Further analyses revealed that combination therapy consisting of vaccination with dendritic cells that were co-cultured with irradiated whole tumor cells and the transfer of ex vivo-expanded T cells significantly enhanced antitumor immunity. These results indicate that the transfer of ex vivo-expanded polyclonal T cells can be combined with other immunotherapies and augment antitumor effects.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
- * E-mail:
| | - Miho Takahashi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Ko Sato
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Yu Saida
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Junko Baba
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masashi Arita
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Miyuki Sato
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Aya Ohtsubo
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Satoshi Shoji
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Koichiro Nozaki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Kosuke Ichikawa
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Rie Kondo
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Nobumasa Aoki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Tetsuya Abe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hiroshi Moro
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Junta Tanaka
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hiroshi Kagamu
- Respiratory Medicine, Saitama International Medical Center, Saitama, Japan
| | - Hirohisa Yoshizawa
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata City, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| |
Collapse
|
15
|
Pathangey LB, McCurry DB, Gendler SJ, Dominguez AL, Gorman JE, Pathangey G, Mihalik LA, Dang Y, Disis ML, Cohen PA. Surrogate in vitro activation of innate immunity synergizes with interleukin-7 to unleash rapid antigen-driven outgrowth of CD4+ and CD8+ human peripheral blood T-cells naturally recognizing MUC1, HER2/neu and other tumor-associated antigens. Oncotarget 2017; 8:10785-10808. [PMID: 27974697 PMCID: PMC5355224 DOI: 10.18632/oncotarget.13911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023] Open
Abstract
Effective adoptive immunotherapy has proved elusive for many types of human cancer, often due to difficulties achieving robust expansion of natural tumor-specific T-cells from peripheral blood. We hypothesized that antigen-driven T-cell expansion might best be triggered in vitro by acute activation of innate immunity to mimic a life-threatening infection. Unfractionated peripheral blood mononuclear cells (PBMC) were subjected to a two-step culture, first synchronizing their exposure to exogenous antigens with aggressive surrogate activation of innate immunity, followed by γ-chain cytokine-modulated T-cell hyperexpansion. Step 1 exposure to GM-CSF plus paired Toll-like receptor agonists (resiquimod and LPS), stimulated abundant IL-12 and IL-23 secretion, as well as upregulated co-stimulatory molecules and CD11c expression within the myeloid (CD33+) subpopulation. Added synthetic long peptides (>20aa) derived from widely expressed oncoproteins (MUC1, HER2/neu and CMVpp65), were reliably presented to CD4+ T-cells and cross-presented to CD8+ T-cells. Both presentation and cross-presentation demonstrated proteasomal and Sec61 dependence that could bypass the endoplasmic reticulum. Step 2 exposure to exogenous IL-7 or IL-7+IL-2 produced selective and sustained expansion of both CD4+ and CD8+ peptide-specific T-cells with a predominant interferon-γ-producing T1-type, as well as the antigen-specific ability to lyse tumor targets. Other γ-chain cytokines and/or combinations were initially proliferogenic, but followed by a contractile phase not observed with IL-7 or IL-7+IL-2. Regulatory T-cells were minimally propagated under these culture conditions. This mechanistically rational culture sequence, effective even for unvaccinated donors, enables rapid preparation of T-cells recognizing tumor-associated antigens expressed by the majority of human cancers, including pancreatic cancers, breast cancers and glioblastomas.
Collapse
Affiliation(s)
- Latha B Pathangey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Dustin B McCurry
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Sandra J Gendler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Ana L Dominguez
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jessica E Gorman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Girish Pathangey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, USA
| | - Laurie A Mihalik
- Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Yushe Dang
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Peter A Cohen
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
16
|
Zhang Y, Wang Y, Zhang M, Liu L, Mbawuike IN. Restoration of Retarded Influenza Virus-specific Immunoglobulin Class Switch in Aged Mice. ACTA ACUST UNITED AC 2016; 7. [PMID: 27274907 PMCID: PMC4892186 DOI: 10.4172/2155-9899.1000403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective The declined immune response to infection causes significant higher morbidity and mortality in aging in spite of the coexisted hyperimmunoglobulinemia (HIG). This study is to reveal the cellular basis of HIG and mechanism of weakened HA-specific IgG response in aged mice and to test cell therapy in the treatment of age-related IgG antibody production deficiency with immunocyte adoptive transfer. Methods BALB/c mice was immunized with Influenza A/Taiwan vaccine and challenged with the same strain of virus. ELISA was used to assess the levels of total immunoglobulins and antigen specific antibody response. The flow cytometry and ELISPOT were used to evaluate the frequencies of total immunoglobulin- and specific antibody-producing and secreting B lymphocytes. In vitro expanded mononuclear cells, CD4+ T lymphocytes and CD20+ B lymphocytes from old and young mice were adoptively transferred into influenza virus-challenged aged mice, and HA-specific IgG responses were observed. Results It is found that old mice exhibited higher levels of total serum IgG, IgM and IgA, higher frequencies of IgG+, IgM+ and IgA+ cells, and greater antigen-specific IgM and IgA responses to influenza infection, in comparison to young mice. However, influenza antigen- specific IgG and its subclass responses in old mice were significantly lower. Conclusion The retarded specific IgG response could be attributed to an insufficiency of immunoglobulin class switch in aging. Correlation analysis indicated that HIG and deficient specific IgG production in aged mice could be independent to each other in their pathogenesis. Correction of deficient specific IgG production by adoptive transfer of in vitro expanded and unexpanded CD4+ cells from immunized young mice suggests the CD4+ cell dysfunction contributes to the insufficiency of immunoglobulin class switch in aged mice. The transfusion of in vitro expanded lymphocytes could be a potential effective therapy for the age-related immunodeficiency and could play a role in the infection prevention in aging.
Collapse
Affiliation(s)
- Yongxin Zhang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA; Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Wang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA; Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica Zhang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA
| | - Lin Liu
- Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Innocent N Mbawuike
- Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
|
18
|
Li HW, Andreola G, Carlson AL, Shao S, Lin CP, Zhao G, Sykes M. Rapid Functional Decline of Activated and Memory Graft-versus-Host-Reactive T Cells Encountering Host Antigens in the Absence of Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1282-92. [PMID: 26085679 DOI: 10.4049/jimmunol.1401511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
Abstract
Inflammation in the priming host environment has critical effects on the graft-versus-host (GVH) responses mediated by naive donor T cells. However, it is unclear how a quiescent or inflammatory environment impacts the activity of GVH-reactive primed T and memory cells. We show in this article that GVH-reactive primed donor T cells generated in irradiated recipients had diminished ability compared with naive T cells to increase donor chimerism when transferred to quiescent mixed allogeneic chimeras. GVH-reactive primed T cells showed marked loss of cytotoxic function and activation, and delayed but not decreased proliferation or accumulation in lymphoid tissues when transferred to quiescent mixed chimeras compared with freshly irradiated secondary recipients. Primed CD4 and CD8 T cells provided mutual help to sustain these functions in both subsets. CD8 help for CD4 cells was largely IFN-γ dependent. TLR stimulation after transfer of GVH-reactive primed T cells to mixed chimeras restored their cytotoxic effector function and permitted the generation of more effective T cell memory in association with reduced PD-1 expression on CD4 memory cells. Our data indicate that an inflammatory host environment is required for the maintenance of GVH-reactive primed T cell functions and the generation of memory T cells that can rapidly acquire effector functions. These findings have important implications for graft-versus-host disease and T cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Giovanna Andreola
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Alicia L Carlson
- Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Steven Shao
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Charles P Lin
- Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Guiling Zhao
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129;
| |
Collapse
|
19
|
Saida Y, Watanabe S, Tanaka T, Baba J, Sato K, Shoji S, Igarashi N, Kondo R, Okajima M, Koshio J, Ichikawa K, Nozaki K, Ishikawa D, Koya T, Miura S, Tanaka J, Kagamu H, Yoshizawa H, Nakata K, Narita I. Critical Roles of Chemoresistant Effector and Regulatory T Cells in Antitumor Immunity after Lymphodepleting Chemotherapy. THE JOURNAL OF IMMUNOLOGY 2015; 195:726-35. [DOI: 10.4049/jimmunol.1401468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 05/05/2015] [Indexed: 11/19/2022]
|
20
|
Lu X, Ding ZC, Cao Y, Liu C, Habtetsion T, Yu M, Lemos H, Salman H, Xu H, Mellor AL, Zhou G. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2011-21. [PMID: 25560408 DOI: 10.4049/jimmunol.1401894] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the present study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4(+) T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelodepletion and leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum-resident calreticulin and extracellular release of high-mobility group box 1. Additionally, there was enhanced tumor Ag uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8(+) T cells and, more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4(+) T cells. Notably, the combination of melphalan and CD4(+) T cell adoptive cell therapy was more efficacious than either treatment alone in prolonging the survival of mice with advanced B cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan's immunostimulatory effects and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4(+) T cells.
Collapse
Affiliation(s)
- Xiaoyun Lu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Division of Digestive Endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Zhi-Chun Ding
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Yang Cao
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tsadik Habtetsion
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Miao Yu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Henrique Lemos
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Huda Salman
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Gang Zhou
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| |
Collapse
|
21
|
Cieniewicz B, Carpino N, Krug LT. Enhanced response of T cells from murine gammaherpesvirus 68-infected mice lacking the suppressor of T cell receptor signaling molecules Sts-1 and Sts-2. PLoS One 2014; 9:e90196. [PMID: 24587276 PMCID: PMC3938662 DOI: 10.1371/journal.pone.0090196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
The human gammaherpesviruses establish life-long infections that are associated with the development of lymphomas and neoplasms, especially in immunocompromised individuals. T cells play a crucial role in the control of gammaherpesvirus infection through multiple functions, including the direct killing of infected cells, production of cytokines such as interferon-γ (IFN-γ), and costimulation of B cells. Impaired T cell function in mice infected with murine gammaherpesvirus 68 (MHV68) leads to increased reactivation and pathologies, including a higher incidence of lymphoid hyperplasia. Here we report that the absence of Suppressor of TCR signaling −1 and −2 (Sts-1-/-/2-/-) during MHV68 infection leads to the generation of T cells with significantly heightened responses. Transient differences in the T and B cell response of infected Sts-1-/-/2-/- (Sts dKO) mice were also observed when compared to WT mice. However, these alterations in the immune response and the overall absence of Sts-1 and Sts-2 did not impact viral pathogenesis or lead to pathology. Acute lytic replication in the lungs, establishment of latency in the spleen and reactivation from latency in the spleen in the Sts dKO mice were comparable to WT mice. Our studies indicate that Sts-1 and Sts-2 are not required for the immune control of MHV68 in a normal course of gammaherpesvirus infection, but suggest that interference with negative regulators of T cell responses might be further explored as a safe and efficacious strategy to improve adoptive T cell therapy.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas Carpino
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Molecular and Cellular Biology Program and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study. PLoS Comput Biol 2014; 10:e1003409. [PMID: 24426833 PMCID: PMC3890420 DOI: 10.1371/journal.pcbi.1003409] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023] Open
Abstract
Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre-clinical models of breast cancer. Effective anti-tumor immunity is proportional to the number and to the cytotoxic activity of immune cells that enter the tumor microenvironment. Recent advances in cancer immunotherapy stem from increasing the number of tumor-infiltrating immune cells by inhibiting immune checkpoints or adoptive T cell therapy. Here, we used computational methods to identify potential mechanisms present within the tumor microenvironment that limit the efficacy of anti-tumor immunity. Specifically, we found that oncogenic transformation is associated with the induction of tumor-derived biochemical cues, namely Wnt-inducible signaling protein-1, that locally suppress anti-tumor immunity. Moreover, we used model-based inference to demonstrate that a gene signature consistent with effective type 1 cell-mediated cytotoxic immunity is a predictor of overall survival independent of molecular pathology. Interestingly, patients with triple negative breast cancer were more enriched in the cohort associated with type 1 cell-mediated immunity. As this immune gene signature is not present in current genetically engineered mouse models of breast cancer, the results help identify design constraints for engineering better pre-clinical models of breast cancer. Demonstrating efficacy in pre-clinical animal models is a pre-requisite for bringing improved cancer immunotherapies into the clinic.
Collapse
|
23
|
Scurr M, Bloom A, Pembroke T, Srinivasan R, Brown C, Smart K, Bridgeman H, Davies M, Hargest R, Phillips S, Christian A, Hockey T, Gallimore A, Godkin A. Escalating regulation of 5T4-specific IFN-γ + CD4 + T cells distinguishes colorectal cancer patients from healthy controls and provides a target for in vivo therapy. Cancer Immunol Res 2013; 1. [PMID: 24409450 DOI: 10.1158/2326-6066.cir-13-0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationship between the adaptive CD4+ T cell response and human cancer is unclear. The oncofetal antigen 5T4 is expressed on many human carcinomas, including colorectal cancer (CRC) cells, but has limited expression on normal tissues. We previously identified anti-5T4 CD4+ T cells in a proportion of CRC patients, and we extended this study to examine whether the quality or quantity of the T cell response reflects tumor stage. An overlapping peptide library spanning 5T4 was used as a target to enumerate cognate IFN-γ+CD4+ T-cells (measured as spot forming cells [SFC]/105 cultured T cells) in peripheral blood-derived lymphocytes following a 12-day in vitro culture period comparing patients pre-operatively (n = 27) to healthy controls (n = 17). Robust 5T4-specific T cell responses were present in 100% of healthy donors. There was a steady loss of T cell responses with advancing tumors with a significant negative correlation from stage I to III (P = 0.008). The predictability of the decline meant < 200 SFC/105 was only found in subjects with stage III CRC. The mechanism of loss of T cell response is independent of HLA-DR type or patient age, but does correspond to increases in Foxp3+ regulatory T cells (Tregs). Using low-dose cyclophosphamide to reduce the proportion of Tregs in vivo resulted in increased anti-5T4 T cell responses in CRC patients. The selective loss of 5T4-specific IFN-γ+CD4+ T cell responses implies a link between tumor stage and antitumor Th1 effector function; depleting Tregs can enhance such responses.
Collapse
Affiliation(s)
- Martin Scurr
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anja Bloom
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Tom Pembroke
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Rohit Srinivasan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Clare Brown
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kathryn Smart
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Hayley Bridgeman
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Mike Davies
- Department of Surgery, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Rachel Hargest
- Department of Surgery, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Simon Phillips
- Department of Surgery, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Adam Christian
- Department of Histopathology, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Tom Hockey
- Department of Histopathology, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Awen Gallimore
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Andrew Godkin
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
24
|
Stone JD, Kranz DM. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 2013; 4:244. [PMID: 23970885 PMCID: PMC3748443 DOI: 10.3389/fimmu.2013.00244] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023] Open
Abstract
Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional αβ T cell receptor (TCR) against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR) consisting of a single-chain antibody as an Fv fragment linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the αβ TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher-affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher-affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois , Urbana, IL , USA
| | | |
Collapse
|
25
|
Hoepner S, Walker PR. Getting by with a little help from the right CD4 + T cells. Oncoimmunology 2013; 2:e25772. [PMID: 24244904 PMCID: PMC3825730 DOI: 10.4161/onci.25772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/08/2023] Open
Abstract
Tumor infiltration by effector cells is essential for the efficacy of T cell-based immunotherapeutic approaches against brain malignancies. We found that tumor-associated antigen (TAA)-specific CD8+ T cells are optimally recruited to neoplastic lesions when co-administered with TH1 polarized CD4+ T cells that are also TAA-specific. However, in vitro TH1 polarization is not required for the long-term therapeutic efficacy of the combined transfer of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Sabine Hoepner
- Centre of Oncology, Geneva University Hospitals and University of Geneva; Geneva, Switzerland
| | | |
Collapse
|
26
|
Umeshappa CS, Xie Y, Xu S, Nanjundappa RH, Freywald A, Deng Y, Ma H, Xiang J. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways. PLoS One 2013; 8:e64787. [PMID: 23785406 PMCID: PMC3681805 DOI: 10.1371/journal.pone.0064787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
Involvement of CD4+ helper T (Th) cells is crucial for CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4+ Th’s signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2Kb/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.
Collapse
Affiliation(s)
| | - Yufeng Xie
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | - Shulin Xu
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | | | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jim Xiang
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
27
|
Simon T, Fonteneau JF, Grégoire M. Requirement of tumor-associated antigen-specific CD4+ T cells for an efficient dendritic cell vaccine in antitumor immunotherapy. Immunotherapy 2013; 5:565-7. [DOI: 10.2217/imt.13.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Aarntzen EH, De Vries IJ, Lesterhuis WJ et al. Targeting CD4+ T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res. 73(1), 19–29 (2012). The induction of antitumor immune responses in patients is one of the most sought-after goals in cancer treatment. The proposed clinical approach is to use autologous mature dendritic cells (DCs) loaded with class I peptides from tumor-associated antigens (TAAs), as DCs are the most efficient immune cells to generate strong and specific cytotoxic CD8+ T-lymphocyte (CTL) responses. To optimize DC-based cancer vaccines, Aarntzen et al. evaluated the necessity to stimulate TAA-specific CD4+ T-helper cells to reinforce antitumor CTL responses. They demonstrated that intranodal injection of DCs pulsed with class I- and II-restricted TAA epitopes increases TAA-specific CTL responses and induces better clinical responses in stage III/IV melanoma patients than the use of DCs pulsed with class I-restricted TAA epitopes alone. This study highlights the interest of concomitant stimulation of TAA-specific CD4+ and CD8+ T cells for DC-based antitumor immunotherapy.
Collapse
Affiliation(s)
- Thomas Simon
- INSERM, UMR1064, F-44000, France
- Université Nantes, Nantes, F-44000, France
| | - Jean-François Fonteneau
- INSERM, UMR892, Institut de Recherche Thérapeutique de l’Université de Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France
- CNRS, UMR6299, Nantes, F-4400, France
- Université Nantes, Nantes, F-44000, France
| | - Marc Grégoire
- Université Nantes, Nantes, F-44000, France
- INSERM, UMR892, Institut de Recherche Thérapeutique de l’Université de Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France
- CNRS, UMR6299, Nantes, F-4400, France
| |
Collapse
|
28
|
Hoepner S, Loh JMS, Riccadonna C, Derouazi M, Maroun CY, Dietrich PY, Walker PR. Synergy between CD8 T cells and Th1 or Th2 polarised CD4 T cells for adoptive immunotherapy of brain tumours. PLoS One 2013; 8:e63933. [PMID: 23717511 PMCID: PMC3662716 DOI: 10.1371/journal.pone.0063933] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/10/2013] [Indexed: 01/05/2023] Open
Abstract
The feasibility of cancer immunotherapy mediated by T lymphocytes is now a clinical reality. Indeed, many tumour associated antigens have been identified for cytotoxic CD8 T cells, which are believed to be key mediators of tumour rejection. However, for aggressive malignancies in specialised anatomic sites such as the brain, a limiting factor is suboptimal tumour infiltration by CD8 T cells. Here we take advantage of recent advances in T cell biology to differentially polarise CD4 T cells in order to explore their capacity to enhance immunotherapy. We used an adoptive cell therapy approach to work with clonal T cell populations of defined specificity. Th1 CD4 T cells preferentially homed to and accumulated within intracranial tumours compared with Th2 CD4 T cells. Moreover, tumour-antigen specific Th1 CD4 T cells enhanced CD8 T cell recruitment and function within the brain tumour bed. Survival of mice bearing intracranial tumours was significantly prolonged when CD4 and CD8 T cells were co-transferred. These results should encourage further definition of tumour antigens recognised by CD4 T cells, and exploitation of both CD4 and CD8 T cell subsets to optimise T cell therapy of cancer.
Collapse
Affiliation(s)
- Sabine Hoepner
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacelyn M. S. Loh
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Cristina Riccadonna
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Céline Yacoub Maroun
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R. Walker
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Abstract
The challenges associated with demonstrating a durable response using molecular-targeted therapies in cancer has sparked a renewed interest in viewing cancer from an evolutionary perspective. Evolutionary processes have three common traits: heterogeneity, dynamics, and a selective fitness landscape. Mutagens randomly alter the genome of host cells creating a population of cells that contain different somatic mutations. This genomic rearrangement perturbs cellular homeostasis through changing how cells interact with their tissue microenvironment. To counterbalance the ability of mutated cells to outcompete for limited resources, control structures are encoded within the cell and within the organ system, such as innate and adaptive immunity, to restore cellular homeostasis. These control structures shape the selective fitness landscape and determine whether a cell that harbors particular somatic mutations is retained or eliminated from a cell population. While next-generation sequencing has revealed the complexity and heterogeneity of oncogenic transformation, understanding the dynamics of oncogenesis and how cancer cells alter the selective fitness landscape remain unclear. In this technology review, we will summarize how recent advances in technology have impacted our understanding of these three attributes of cancer as an evolutionary process. In particular, we will focus on how advances in genome sequencing have enabled quantifying cellular heterogeneity, advances in computational power have enabled explicit testing of postulated intra- and intercellular control structures against the available data using simulation, and advances in proteomics have enabled identifying novel mechanisms of cellular cross-talk that cancer cells use to alter the fitness landscape.
Collapse
Affiliation(s)
- David J. Klinke
- Department of Chemical Engineering, West Virginia
UniversityMorgantown, WV, USA
- Mary Babb Randolph Cancer Center, West Virginia
UniversityMorgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia
UniversityMorgantown, WV, USA
| |
Collapse
|
30
|
Aarntzen EH, De Vries IJM, Lesterhuis WJ, Schuurhuis D, Jacobs JF, Bol K, Schreibelt G, Mus R, De Wilt JH, Haanen JB, Schadendorf D, Croockewit A, Blokx WA, Van Rossum MM, Kwok WW, Adema GJ, Punt CJ, Figdor CG. Targeting CD4+ T-Helper Cells Improves the Induction of Antitumor Responses in Dendritic Cell–Based Vaccination. Cancer Res 2012; 73:19-29. [DOI: 10.1158/0008-5472.can-12-1127] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Soto CM, Stone JD, Chervin AS, Engels B, Schreiber H, Roy EJ, Kranz DM. MHC-class I-restricted CD4 T cells: a nanomolar affinity TCR has improved anti-tumor efficacy in vivo compared to the micromolar wild-type TCR. Cancer Immunol Immunother 2012; 62:359-69. [PMID: 22926060 DOI: 10.1007/s00262-012-1336-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/03/2012] [Indexed: 12/29/2022]
Abstract
Clinical studies with immunotherapies for cancer, including adoptive cell transfers of T cells, have shown promising results. It is now widely believed that recruitment of CD4(+) helper T cells to the tumor would be favorable, as CD4(+) cells play a pivotal role in cytokine secretion as well as promoting the survival, proliferation, and effector functions of tumor-specific CD8(+) cytotoxic T lymphocytes. Genetically engineered high-affinity T-cell receptors (TCRs) can be introduced into CD4(+) helper T cells to redirect them to recognize MHC-class I-restricted antigens, but it is not clear what affinity of the TCR will be optimal in this approach. Here, we show that CD4(+) T cells expressing a high-affinity TCR (nanomolar K (d) value) against a class I tumor antigen mediated more effective tumor treatment than the wild-type affinity TCR (micromolar K (d) value). High-affinity TCRs in CD4(+) cells resulted in enhanced survival and long-term persistence of effector memory T cells in a melanoma tumor model. The results suggest that TCRs with nanomolar affinity could be advantageous for tumor targeting when expressed in CD4(+) T cells.
Collapse
Affiliation(s)
- Carolina M Soto
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Cytotoxic chemotherapy and CD4+ effector T cells: an emerging alliance for durable antitumor effects. Clin Dev Immunol 2012; 2012:890178. [PMID: 22400040 PMCID: PMC3286900 DOI: 10.1155/2012/890178] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/01/2011] [Accepted: 11/05/2011] [Indexed: 12/18/2022]
Abstract
Standard cytotoxic chemotherapy can initially achieve high response rates, but relapses often occur in patients and represent a severe clinical problem. As increasing numbers of chemotherapeutic agents are found to have immunostimulatory effects, there is a growing interest to combine chemotherapy and immunotherapy for synergistic antitumor effects and improved clinical benefits. Findings from recent studies suggest that highly activated, polyfunctional CD4+ effector T cells have tremendous potential in strengthening and sustaining the overall host antitumor immunity in the postchemotherapy window. This review focuses on the latest progresses regarding the impact of chemotherapy on CD4+ T-cell phenotype and function and discusses the prospect of exploiting CD4+ T cells to control tumor progression and prevent relapse after chemotherapy.
Collapse
|
33
|
Wang LX, Plautz GE. T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors. Breast Cancer Res Treat 2011; 134:61-70. [PMID: 22173696 DOI: 10.1007/s10549-011-1912-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/03/2011] [Indexed: 12/29/2022]
Abstract
Cancer progenitor cells are critical for tumor initiation and recurrence so they are an important therapeutic target. We tested whether T cells could recognize tumor antigens expressed by breast cancer progenitor cells and acquire therapeutic activity against established metastases or delay onset of spontaneous tumors. Breast tumors were derived from HER2/neu transgenic mice and propagated in vitro under conditions that selected progenitor cells which were then used as an irradiated whole cell vaccine. A minor subset of recently sensitized T cells was isolated from vaccine-draining lymph nodes then activated in vitro to achieve numerical expansion. We show that the tumor progenitor cell vaccines reversed tolerance to a known HER2/neu epitope, otherwise inhibited by Treg cells. Additional shared tumor antigens were recognized because a Neuneg subclone also induced a Th1 type immune response against breast tumors. Adoptive transfer of in vitro activated lymph node T cells-mediated regression of established metastases from multiple independently derived breast tumor lines. Moreover, adoptive transfer of effector T cells into Neu-tolerant mice, months before the onset of spontaneous tumors, significantly postponed tumor development. Interestingly, T-cell-mediated lysis of metastases stimulated an IgG response to HER2/neu as well as other shared antigens. In summary, tumor progenitor cells contain shared antigens which can lead to a cross-protective T-cell response. Moreover, antigens acquired during immune-mediated tumor destruction are presented in a manner conducive to reversal of tolerance and Ig class switching. These complementary effector mechanisms might augment therapy by eliminating refractory breast cancer stem cells.
Collapse
Affiliation(s)
- Li-Xin Wang
- Department of Immunology, Cleveland Clinic, NE62, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | | |
Collapse
|
34
|
A CpG-loaded tumor cell vaccine induces antitumor CD4+ T cells that are effective in adoptive therapy for large and established tumors. Blood 2010; 117:118-27. [PMID: 20876455 DOI: 10.1182/blood-2010-06-288456] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We designed a whole tumor cell vaccine by "loading" lymphoma tumor cells with CG-enriched oligodeoxynucleotide (CpG), a ligand for the Toll-like receptor 9 (TLR9). CpG-loaded tumor cells were phagocytosed, delivering both tumor antigen(s) and the immunostimulatory CpG molecule to antigen-presenting cells (APCs). These APCs then expressed increased levels of costimulatory molecules and induced T-cell immunity. TLR9 was required in the APCs but not in the CpG-loaded tumor cell. We demonstrate that T cells induced by this vaccine are effective in adoptive cellular therapy for lymphoma. T cells from vaccinated mice transferred into irradiated, syngeneic recipients protected against subsequent lymphoma challenge and, remarkably, led to regression of large and established tumors. This therapeutic effect could be transferred by CD4(+) but not by CD8(+) T cells. A CpG-loaded whole-cell vaccination is practical and has strong potential for translation to the clinical setting. It is currently being tested in a clinical trial of adoptive immunotherapy for mantle-cell lymphoma.
Collapse
|
35
|
Westwood JA, Berry LJ, Wang LX, Duong CP, Pegram HJ, Darcy PK, Kershaw MH. Enhancing adoptive immunotherapy of cancer. Expert Opin Biol Ther 2010; 10:531-45. [PMID: 20132063 DOI: 10.1517/14712591003610622] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Conventional therapies, including surgery, chemotherapy and radiotherapy have contributed much to cancer treatment. However, these treatment modalities fail in a large proportion of patients, and there is a great need for effective alternate therapies. Adoptive immunotherapy can be effective against some cancers that have failed all other treatment options, even when disease burdens are massive. AREAS COVERED IN THIS REVIEW This review gives a brief introduction of the historical origins of adoptive immunotherapy and then provides details of strategies for increasing the potency of cell transfer. Approaches for enhancing adoptive immunotherapy include: selecting the right type of cell; providing cytokine support; preconditioning patients and tuning the tumor microenvironment. The review also provides insights into the safety, feasibility and costs of this form of therapy. WHAT THE READER WILL GAIN This article will give the reader an appreciation of the potential of adoptive immunotherapy, as well as an understanding of some limitations and current approaches for optimizing the effectiveness of this approach. TAKE HOME MESSAGE With recent developments in knowledge of the interactions between the immune system and tumors, the field of adoptive immunotherapy is now poised to make dramatic contributions to cancer therapy.
Collapse
Affiliation(s)
- Jennifer A Westwood
- Peter MacCallum Cancer Centre, Cancer Immunology Research Program, St. Andrews Place, Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
IL-4 suppresses very late antigen-4 expression which is required for therapeutic Th1 T-cell trafficking into tumors. J Immunother 2010; 32:793-802. [PMID: 19752754 DOI: 10.1097/cji.0b013e3181acec1e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Murine CD4 T cells cultured under type 1 polarizing conditions selectively express significantly higher levels of the very late antigen (VLA)-4 and VLA-6 integrins when compared with T cells cultured under type 2 or nonpolarizing (type 0) conditions. This difference appears due to the action of interleukin (IL)-4, as loss of VLA-4/-6 expression on Th cells was prevented by inclusion of neutralizing anti-IL-4 mAb during the initial culture period. We also observed that CD4 T cells deficient in Stat6, a critical component of the IL-4R signaling cascade, retained high levels of VLA-4 and VLA-6 expression, regardless of IL-4 status in the culture conditions. When applied to committed Th1 cells, rIL-4 readily inhibited VLA-4 and VLA-6 expression to levels observed for Th2 cells, without altering the type 1 functional status of these cells. Conversely, low levels of VLA-4/VLA-6 expressed by committed Th2 cells could not be resurrected by culture in the presence of the Th1-kines IL-12p70 and interferon-gamma. Predictably, among the Th populations evaluated, Th1 cells alone adhered efficiently to, and were costimulated by, plate-bound VCAM-1 and laminin in a VLA-4-dependent or VLA-6-dependent manner, respectively. Finally, adoptive-transferred Th1 (but not Th2) cells developed from OT-II mice were uniquely competent to traffick into OVA M05 melanoma lesions in vivo, thereby enhancing the therapeutic benefits associated with cotransferred OVA-specific type 1 CD8 (OT-I) cells. These data suggest that treatment strategies capable of sustaining/enhancing VLA-4/VLA-6 expression on Th1 effector cells may yield improved clinical efficacy in the cancer setting.
Collapse
|
37
|
Wang LX, Plautz GE. Tumor-primed, in vitro-activated CD4+ effector T cells establish long-term memory without exogenous cytokine support or ongoing antigen exposure. THE JOURNAL OF IMMUNOLOGY 2010; 184:5612-8. [PMID: 20382887 DOI: 10.4049/jimmunol.0903549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tumor-reactive T cells can be primed in vivo, then activated in vitro to provide numerical expansion and uniform acquisiton of effector phenotype and function. Adoptive transfer of effector T cells mediates complete regression of established tumors in animal models. Some experimental models indicate that extensive in vitro proliferation of T cells inhibits efficacy and that central memory T cells (T(CM)) provide greater activity than effector memory T cells (T(EM)). Clinical studies also demonstrate that persistence of adoptively transferred T cells is associated with therapeutic response, thus identifying that conditions to maximize effector cell numbers yet retain memory function are important. In this article, we demonstrate that adoptive transfer of in vitro activated effector CD4(+) T cells into tumor-free congenic mice mediates rejection of tumor challenge 9 mo later, at which time T cells re-express activation markers and undergo rapid proliferation at tumor sites. Analysis of the phenotype of memory cells in lymphoid tissues following adoptive transfer shows high CD44 expression with heterogeneous expression of CD62L, indicating a mixture of T(EM) and T(CM) phenotypes. Memory cells were sorted into two subsets based on CD62L expression levels and then activated in vitro. Although T(EM) cells proliferated more rapidly, T(EM) and T(CM) cells acquired effector phenotype and function. These data indicate that controlled in vitro expansion of tumor-reactive T cells for adoptive immunotherapy also provides a competent memory response.
Collapse
Affiliation(s)
- Li-Xin Wang
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
38
|
Karlsson M, Marits P, Dahl K, Dagöö T, Enerbäck S, Thörn M, Winqvist O. Pilot study of sentinel-node-based adoptive immunotherapy in advanced colorectal cancer. Ann Surg Oncol 2010; 17:1747-57. [PMID: 20119674 PMCID: PMC2889279 DOI: 10.1245/s10434-010-0920-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Indexed: 12/17/2022]
Abstract
Background Despite optimal surgical treatment and modern adjuvant therapies, 50% of patients diagnosed with colorectal cancer die within 5 years. Immunotherapy offers an appealing complement to traditional chemotherapy, with possible long-term protection against tumor recurrences through immunological memory. We have conducted a pilot study of a novel adoptive immunotherapy, using autologous, in vitro expanded lymphocytes isolated from the tumor-draining sentinel lymph node. Study Design Sentinel nodes were recovered from 16 patients with disseminated or locally advanced, high-risk colorectal cancer. Single-cell suspensions of sentinel-node-acquired lymphocytes were clonally expanded in vitro in the presence of autologous tumor extract and returned as a transfusion. Patients were followed with clinical and radiological evaluations. Long-term survival was compared with traditionally treated controls. Results Sentinel-node-acquired CD4+ Th1-lymphocytes could be clonally expanded in vitro and safely administered to all 16 patients without side-effects. In four out of nine stage IV patients, complete tumor regression occurred. Median survival time in the stage IV patients (n = 9) was 2.6 years, as compared with 0.8 years in conventionally treated controls. A dose-dependent effect with regards to reduced tumor burden and long-term survival was observed. Conclusion Sentinel-node-based adoptive immunotherapy is feasible; the method has shown no apparent side-effects and appears to convey therapeutic antitumor effects. Further studies are justified to determine its efficacy and precise role in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Mona Karlsson
- Karolinska Institute, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Huarte E, Fisher J, Turk MJ, Mellinger D, Foster C, Wolf B, Meehan KR, Fadul CE, Ernstoff MS. Ex vivo expansion of tumor specific lymphocytes with IL-15 and IL-21 for adoptive immunotherapy in melanoma. Cancer Lett 2009; 285:80-8. [PMID: 19501956 DOI: 10.1016/j.canlet.2009.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/23/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
Abstract
Although T central memory cells have been described as the most effective T-cell subtype against tumor growth, little is known about the requirements needed for their optimal ex vivo generation. Hence, our goal is to establish a protocol that will lead to consistent ex vivo generation of lymphocytes skewed toward a central memory phenotype. Antigen-specific T-cell lines were generated by ex vivo stimulation with Class-I and Class-II melanoma peptide pulsed dendritic cells in the presence of either IL-2 or IL-15 plus IL-21. Tumor specific lymphocytes of both central memory and effector characteristics were consistently generated from healthy donors and melanoma patients. IL15/IL21 cultures result in a cell population with a lower proportion of CD4(+)CD25(high)FoxP3(+) regulatory cells and higher number of CD8(+) and CD56(+) cells, and consequently render a higher yield of cells with a greater cytolytic activity and IFN-gamma production against melanoma cell lines.
Collapse
|
40
|
Liu Z, Tian S, Falo LD, Sakaguchi S, You Z. Therapeutic immunity by adoptive tumor-primed CD4(+) T-cell transfer in combination with in vivo GITR ligation. Mol Ther 2009; 17:1274-81. [PMID: 19417739 DOI: 10.1038/mt.2009.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tumor-primed CD4(+) T cells from splenocytes of tumor-rejection mice in combination with in vivo glucocorticoid-induced tumor necrosis factor receptor (GITR) ligation (the combination therapy) elicited effective host CD8(+) T cell-dependent therapeutic immunity against a murine breast tumor. GITR ligation in vitro enhanced tumor-primed CD4(+) T-cell activity and partially abrogated regulatory T cells (Treg) suppressor function. Dendritic cells (DCs) from tumor-draining lymph nodes (TDLNs) of tumor-bearing mice treated by the combination therapy stimulated Ag-specific T cells and produced interleukin (IL)-12 ex vivo. Whereas tumor-primed CD4(+) T cells or in vivo GITR ligation alone induced a tumor-specific interferon (IFN)-gamma-producing cellular response, the combination therapy enhanced and sustained it. Furthermore, the combination therapy in vivo attenuated Treg's ability to suppress IL-12 production by DCs and IFN-gamma production by effectors ex vivo. Importantly, tumor-primed CD4(+) CD25(-) T cells from splenocytes of untreated tumor-bearing mice in combination with in vivo GITR ligation also elicited an effective therapeutic effect in this model. These data suggest that the combination therapy may improve DC function, accentuate tumor-specific T-cell responses, and attenuate Treg suppressor function, thereby eliciting effective therapeutic immunity.
Collapse
Affiliation(s)
- Zuqiang Liu
- Department of Dermatology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
41
|
Depletion of CD4 T cells enhances immunotherapy for neuroblastoma after syngeneic HSCT but compromises development of antitumor immune memory. Blood 2009; 113:4449-57. [PMID: 19182203 DOI: 10.1182/blood-2008-11-190827] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk neuroblastoma remains a clinically challenging disease. Here, we report that a multifaceted immunotherapeutic approach including syngeneic hematopoietic stem cell transplantation (HSCT), adoptive transfer of sensitized T cells (from syngeneic donors vaccinated to tumor antigens), and early posttransplantation tumor vaccination can effectively treat mice with established neuroblastoma. Vaccination was an important component of this immunotherapy, as it resulted in enhanced and prolonged tumor-specific CD8 T-cell activity and improved antitumor efficacy. Surprisingly, CD4 cell depletion of mice given sensitized T cells resulted in better tumor-free survival, which was associated with an early increased expansion of CD8 T cells with an effector phenotype, increased numbers of tumor-reactive CD8 T cells, and increased tumor infiltration by CD8 T cells. However, in the absence of CD4 T cells, development of long-term tumor immunity (memory) was severely compromised as reflected by diminished CD8 T-cell recall responses and an inability to resist tumor rechallenge in vivo. Based on these results, a major challenge with this immunotherapeutic approach is how to obtain the ideal initial antitumor response but still preserve antitumor immune memory. These data suggest that identification and selective depletion of immune inhibitory CD4 T cells may be a strategy to enhance early antitumor immunity and induce a long-lasting tumor response after HSCT.
Collapse
|
42
|
Marits P, Karlsson M, Thörn M, Winqvist O. Sentinel Node-Based Immunotherapy of Colon Cancer. COLORECTAL CANCER 2009. [DOI: 10.1007/978-1-4020-9545-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Abstract
T-cell mediated immunotherapy is a conceptually attractive treatment option to envisage for glioma, since T lymphocytes can actively seek out neoplastic cells in the brain, and they have the potential to safely and specifically eliminate tumor. Some antigenic targets on glioma cells are already defined, and we can be optimistic that more will be discovered from progress in T-cell epitope identification and gene expression profiling of brain tumors. In parallel, advances in immunology (regional immunology, neuroimmunology, tumor immunology) now equip us to build upon the results from current immunotherapy trials in which the safety and feasibility of brain tumor immunotherapy have already been confirmed. We can now look to the next phase of immunotherapy, in which we must harness the most promising basic science advances and existing clinical expertise, and apply these to randomized clinical trials to determine the real clinical impact and applicability of these approaches for treating patients with currently incurable malignant brain tumors.
Collapse
Affiliation(s)
- Erwin G. Meir
- School of Medicine, Emory University, Clifton Road 1365C, Atlanta, 30322 U.S.A
| |
Collapse
|
44
|
Driessens G, Gordower L, Nuttin L, Stordeur P, Blocklet D, Egrise D, Velu T, Bruyns C. Therapeutic efficacy of antitumor dendritic cell vaccinations correlates with persistent Th1 responses, high intratumor CD8+ T cell recruitment and low relative regulatory T cell infiltration. Cancer Immunol Immunother 2008; 57:1745-56. [PMID: 18369621 PMCID: PMC11030040 DOI: 10.1007/s00262-008-0500-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 02/28/2008] [Indexed: 01/20/2023]
Abstract
Despite the increasing number of immunotherapeutic strategies for the treatment of cancer, most approaches have failed to correlate the induction of an anti-tumor immune response with therapeutic efficacy. We therefore took advantage of a successful vaccination strategy-combining dendritic cells and irradiated GM-CSF secreting tumor cells-to compare the immune response induced against 9L gliosarcoma tumors in cured rats versus those with progressively growing tumors. At the systemic level, the tumor specific cytotoxic responses were quite heterogeneous in uncured vaccinated rats, and were surprisingly often high in animals with rapidly-growing tumors. IFN-gamma secretion by activated splenic T cells was more discriminative as the CD4+ T cell-mediated production was weak in uncured rats whereas high in cured ones. At the tumor level, regressing tumors were strongly infiltrated by CD8+ T cells, which demonstrated lytic capacities as high as their splenic counterparts. In contrast, progressing tumors were weakly infiltrated by T cells showing impaired cytotoxic activities. Proportionately to the T cell infiltrate, the expression of Foxp3 was increased in progressive tumors suggesting inhibition by regulatory T cells. In conclusion, the main difference between cured and uncured vaccinated animals does not depend directly upon the induction of systemic cytotoxic responses. Rather the persistence of higher CD4+ Th1 responses, a high intratumoral recruitment of functional CD8+ T cells, and a low proportion of regulatory T cells correlate with tumor rejection.
Collapse
Affiliation(s)
- Gregory Driessens
- LCCE-IRIBHM, Faculty of Medicine, Université Libre de Bruxelles (ULB), route de Lennik 808, 1070, Bruxelles, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu Z, Noh HS, Chen J, Kim JH, Falo LD, You Z. Potent tumor-specific protection ignited by adoptively transferred CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:4363-70. [PMID: 18768895 DOI: 10.4049/jimmunol.181.6.4363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.
Collapse
Affiliation(s)
- Zuqiang Liu
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hegazy AN, Klein C. Ex vivo priming of CD4 T cells converts immunological tolerance into effective antitumor immunity in a murine model of acute lymphoblastic leukemia. Leukemia 2008; 22:2070-9. [PMID: 18633431 DOI: 10.1038/leu.2008.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumor escape mechanisms in leukemia are not well defined. To dissect immunological mechanisms responsible for immune tolerance toward leukemia, we established a murine model system allowing clonotypic analysis of leukemia-specific CD4 T cells recognizing ovalbumin (OVA). Upon i.v. injection of genetically engineered leukemia cells, dendritic cells (DCs) engulfed, processed and presented OVA to OVA-specific CD4 T cells. Consequently, leukemia-specific T cells were primed in vivo as shown by expression of activation markers and proliferative responses. However, in spite of detectable CD4 T cell responses in vitro and in vivo, no effective anti-leukemia immunity was established. In contrast, adoptively transferred DO11.10 T cells that were primed ex vivo mediated effective antitumor immunity. Furthermore, ex vivo primed DO11.10 T cells showed high expression of Th1 cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-2) whereas in vivo primed OVA-specific CD4 T cells showed incomplete differentiation (proliferation without cytokine production). We conclude that activated T cells lacking effector function develop through incomplete differentiation in leukemia-bearing mice. Thus, priming conditions of leukemia-specific CD4 T cells critically determines the balance between immunity or tolerance toward leukemia.
Collapse
Affiliation(s)
- A N Hegazy
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
47
|
Prins RM, Shu CJ, Radu CG, Vo DD, Khan-Farooqi H, Soto H, Yang MY, Lin MS, Shelly S, Witte ON, Ribas A, Liau LM. Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. Cancer Immunol Immunother 2008; 57:1279-89. [PMID: 18253732 DOI: 10.1007/s00262-008-0461-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/15/2008] [Indexed: 02/02/2023]
Abstract
It is commonly believed that T cells have difficulty reaching tumors located in the brain due to the presumed "immune privilege" of the central nervous system (CNS). Therefore, we studied the biodistribution and anti-tumor activity of adoptively transferred T cells specific for an endogenous tumor-associated antigen (TAA), gp100, expressed by tumors implanted in the brain. Mice with pre-established intracranial (i.c.) tumors underwent total body irradiation (TBI) to induce transient lymphopenia, followed by the adoptive transfer of gp100(25-33)-specific CD8+ T cells (Pmel-1). Pmel-1 cells were transduced to express the bioluminescent imaging (BLI) gene luciferase. Following adoptive transfer, recipient mice were vaccinated with hgp100(25-33) peptide-pulsed dendritic cells (hgp100(25-33)/DC) and systemic interleukin 2 (IL-2). This treatment regimen resulted in significant reduction in tumor size and extended survival. Imaging of T cell trafficking demonstrated early accumulation of transduced T cells in lymph nodes draining the hgp100(25-33)/DC vaccination sites, the spleen and the cervical lymph nodes draining the CNS tumor. Subsequently, transduced T cells accumulated in the bone marrow and brain tumor. BLI could also detect significant differences in the expansion of gp100-specific CD8+ T cells in the treatment group compared with mice that did not receive either DC vaccination or IL-2. These differences in BLI correlated with the differences seen both in survival and tumor infiltrating lymphocytes (TIL). These studies demonstrate that peripheral tolerance to endogenous TAA can be overcome to treat tumors in the brain and suggest a novel trafficking paradigm for the homing of tumor-specific T cells that target CNS tumors.
Collapse
Affiliation(s)
- Robert M Prins
- Department of Surgery, Division of Neurosurgery, David Geffen School of Medicine at UCLA, CHS 74-145, 10833 Le Conte Avenue, PO Box 956901, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|