1
|
Kim E, Chen SS, Sivina M, Hwang H, Huang X, Ferrajoli A, Jain N, Wierda WG, Wodarz D, Chiorazzi N, Burger JA. Deuterated water labeling in ibrutinib-treated patients with CLL: leukemia cell kinetics correlate with IGHV, ZAP-70, and MRD. Blood 2024; 144:2678-2681. [PMID: 39441901 DOI: 10.1182/blood.2024025683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Deuterated ("heavy") water labeling in patients with chronic lymphocytic leukemia (CLL) demonstrates that IGHV unmutated and ZAP-70+ patients have higher blood and tissue CLL death rates on ibrutinib therapy, resulting in lower measurable residual disease levels with long-term ibrutinib treatment. This trial was registered at www.clinicaltrials.gov as #NCT01752426.
Collapse
Affiliation(s)
- Ekaterina Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hyunsoo Hwang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dominik Wodarz
- Department of Mathematics and Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Vervoordeldonk MYL, Hengeveld PJ, Levin MD, Langerak AW. B cell receptor signaling proteins as biomarkers for progression of CLL requiring first-line therapy. Leuk Lymphoma 2024; 65:1031-1043. [PMID: 38619476 DOI: 10.1080/10428194.2024.2341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The molecular landscape of chronic lymphocytic leukemia (CLL) has been extensively characterized, and various potent prognostic biomarkers were discovered. The genetic composition of the B-cell receptor (BCR) immunoglobulin (IG) was shown to be especially powerful for discerning indolent from aggressive disease at diagnosis. Classification based on the IG heavy chain variable gene (IGHV) somatic hypermutation status is routinely applied. Additionally, BCR IGH stereotypy has been implicated to improve risk stratification, through characterization of subsets with consistent clinical profiles. Despite these advances, it remains challenging to predict when CLL progresses to requiring first-line therapy, thus emphasizing the need for further refinement of prognostic indicators. Signaling pathways downstream of the BCR are essential in CLL pathogenesis, and dysregulated components within these pathways impact disease progression. Considering not only genomics but the entirety of factors shaping BCR signaling activity, this review offers insights in the disease for better prognostic assessment of CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Disease Progression
- Biomarkers, Tumor/genetics
- Prognosis
Collapse
Affiliation(s)
- Mischa Y L Vervoordeldonk
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Paul J Hengeveld
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Zhu Y, Jin X, Liu J, Yang W. Identification and Functional Investigation of Hub Genes Associated with Follicular Lymphoma. Biochem Genet 2024:10.1007/s10528-024-10831-4. [PMID: 38802691 DOI: 10.1007/s10528-024-10831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Follicular lymphoma (FL), the most common type of indolent lymphoma, originates from germinal center B cells within the lymphoid follicle. However, the underlying mechanisms of this disease remain unclear. This study aimed to identify the potential hub genes for FL and evaluate their functional roles in clinical applications. Microarray data and clinical characteristics of patients with FL were obtained from the Gene Expression Omnibus database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to explore hub genes for FL. Functional enrichment analysis was performed to investigate the potential roles of these hub genes in FL. Mendelian randomization (MR) analysis was performed to verify the causal effect of the top genes on FL risk. In addition, gene set enrichment analysis (GSEA) and immune cell analysis were performed to elucidate the involved mechanisms of the crucial genes in FL. A total of 1363 differentially expressed genes and 157 central genes were identified by differential expression analysis and WGCNA, respectively, resulting in 117 overlapping genes considered as hub genes for FL. Functional enrichment analysis revealed significant correlations between immune-related pathways and FL. MR analysis revealed a significant association only between zeta chain of T-cell receptor-associated protein kinase 70 (ZAP70) and FL risk, with no significance observed for the other top genes. GSEA and immune cell analysis suggested that ZAP70 may be involved in the development and progression of FL through immune-related pathways. By integrating bioinformatics and MR analyses, ZAP70 was successfully identified and validated as a promising FL biomarker. Functional investigations indicated a significant correlation between immune-related pathways and FL. These findings have important implications for the identification of targets for the diagnosis and treatment of FL and provide valuable insights into the molecular mechanisms underlying FL.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoyi Jin
- Department of Traditional Chinese Medicine, Fengxian District Nanqiao Community Health Center, Shanghai, 201400, China
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenzhong Yang
- Department of Hematology, Shanghai Punan Hosptial of Pudong New District, Shanghai, 200125, China.
| |
Collapse
|
4
|
Chen J, Sathiaseelan V, Reddy Chilamakuri CS, Roamio Franklin VN, Jakwerth CA, D’Santos C, Ringshausen I. ZAP-70 augments tonic B-cell receptor and CCR7 signaling in IGHV-unmutated chronic lymphocytic leukemia. Blood Adv 2024; 8:1167-1178. [PMID: 38113463 PMCID: PMC10910066 DOI: 10.1182/bloodadvances.2022009557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Expression of ZAP-70 in a subset of patients with chronic lymphocytic leukemia (CLL) positively correlates with the absence of immunoglobulin heavy-chain gene (IGHV) mutations and is indicative of a more active disease and shorter treatment-free survival. We recently demonstrated that ZAP-70 regulates the constitutive expression of CCL3 and CCL4, activation of AKT, and expression of MYC in the absence of an overt B-cell receptor (BCR) signal, bona fide functions of BCR activation. We, here, provide evidence that these features relate to the presence of a constitutive tonic BCR signal, exclusively found in IGHV-unmutated CLL and dependent on the ZAP-70-mediated activation of AKT and its downstream target GSK-3β. These findings are associated with increased steady-state activation of CD19 and SRC. Notably this tonic BCR signal is not present in IGHV-mutated CLL cells, discordantly expressing ZAP-70. Results of quantitative mass spectrometry and phosphoprotein analyses indicate that this ZAP-70-dependent, tonic BCR signal regulates CLL cell migration through phosphorylation of LCP1 on serine-5. Indeed, we show that CCL19- and CCL21-induced chemotaxis is regulated by and dependent on the expression of ZAP-70 through its function to enhance CCR7 signaling to LCP1. Thus, our data demonstrate that ZAP-70 converges a tonic BCR signal, exclusively present in IGHV-unmutated CLL and CCR7-mediated chemotaxis.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People’s Republic of China
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Vijitha Sathiaseelan
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health & German Center for Lung Research (DZL), Munich, Germany
| | - Clive D’Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ingo Ringshausen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- University College London, Cancer Institute, London, United Kingdom
| |
Collapse
|
5
|
Fernández-Aguilar LM, Vico-Barranco I, Arbulo-Echevarria MM, Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. BIOLOGY 2023; 12:1163. [PMID: 37759563 PMCID: PMC10525366 DOI: 10.3390/biology12091163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.
Collapse
Grants
- PY20_01297 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
- PID2020-113943RB-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PR2022-037 University of Cádiz
- PAIDI2020/DOC_01433 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- Luis M. Fernández-Aguilar
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Inmaculada Vico-Barranco
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Mikel M. Arbulo-Echevarria
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Enrique Aguado
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
6
|
Wagner A, Rouleau M, Villeneuve L, Le T, Peltier C, Allain ÉP, Beaudoin C, Tremblay S, Courtier F, Nguyen Van Long F, Laverdière I, Lévesque É, Banerji V, Vanura K, Guillemette C. A Non-Canonical Role for the Glycosyltransferase Enzyme UGT2B17 as a Novel Constituent of the B Cell Receptor Signalosome. Cells 2023; 12:1295. [PMID: 37174695 PMCID: PMC10177405 DOI: 10.3390/cells12091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), an elevated glycosyltransferase UGT2B17 expression (UGT2B17HI) identifies a subgroup of patients with shorter survival and poor drug response. We uncovered a mechanism, possibly independent of its enzymatic function, characterized by an enhanced expression and signaling of the proximal effectors of the pro-survival B cell receptor (BCR) pathway and elevated Bruton tyrosine kinase (BTK) phosphorylation in B-CLL cells from UGT2B17HI patients. A prominent feature of B-CLL cells is the strong correlation of UGT2B17 expression with the adverse marker ZAP70 encoding a tyrosine kinase that promotes B-CLL cell survival. Their combined high expression levels in the treatment of naïve patients further defined a prognostic group with the highest risk of poor survival. In leukemic cells, UGT2B17 knockout and repression of ZAP70 reduced proliferation, suggesting that the function of UGT2B17 might involve ZAP70. Mechanistically, UGT2B17 interacted with several kinases of the BCR pathway, including ZAP70, SYK, and BTK, revealing a potential therapeutic vulnerability. The dual SYK and JAK/STAT6 inhibitor cerdulatinib most effectively compromised the proliferative advantage conferred by UGT2B17 compared to the selective BTK inhibitor ibrutinib. Findings point to an oncogenic role for UGT2B17 as a novel constituent of BCR signalosome also connected with microenvironmental signaling.
Collapse
Affiliation(s)
- Antoine Wagner
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Trang Le
- Department of Medicine I, Division of Haematology and Haemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Cheryl Peltier
- Department of Internal Medicine & Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- CancerCare Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Éric P. Allain
- Molecular Genetics Laboratory, Dr. Georges-L-Dumont University Hospital Center, Moncton, NB E1C 2Z3, Canada
| | - Caroline Beaudoin
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Sophie Tremblay
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Fréderic Courtier
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Flora Nguyen Van Long
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Isabelle Laverdière
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| | - Éric Lévesque
- CRCHUQc-UL, Faculty of Medicine, and CRC-UL, Université Laval, Québec, QC G1V 4G2, Canada
| | - Versha Banerji
- Department of Internal Medicine & Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- CancerCare Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Katrina Vanura
- Department of Medicine I, Division of Haematology and Haemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval (CRCHUQc-UL), Faculty of Pharmacy, and Centre de Recherche sur le Cancer de l’Université Laval (CRC-UL), Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
7
|
Najmi A, Thangavel N, Mohanan AT, Qadri M, Albratty M, Ashraf SE, Saleh SF, Nayeem M, Mohan S. Structural Complementarity of Bruton’s Tyrosine Kinase and Its Inhibitors for Implication in B-Cell Malignancies and Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:ph16030400. [PMID: 36986499 PMCID: PMC10051736 DOI: 10.3390/ph16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a critical component in B-cell receptor (BCR) signaling and is also expressed in haematogenic and innate immune cells. Inhibition of BTK hyperactivity is implicated in B-cell malignancies and autoimmune diseases. This review derives the structural complementarity of the BTK-kinase domain and its inhibitors from recent three-dimensional structures of inhibitor-bound BTK in the protein data bank (PDB). Additionally, this review analyzes BTK-mediated effector responses of B-cell development and antibody production. Covalent inhibitors contain an α, β-unsaturated carbonyl moiety that forms a covalent bond with Cys481, stabilizing αC-helix in inactive-out conformation which inhibits Tyr551 autophosphorylation. Asn484, located two carbons far from Cys481, influences the stability of the BTK-transition complex. Non-covalent inhibitors engage the BTK-kinase domain through an induced-fit mechanism independent of Cys481 interaction and bind to Tyr551 in the activation kink resulting in H3 cleft, determining BTK selectivity. Covalent and non-covalent binding to the kinase domain of BTK shall induce conformational changes in other domains; therefore, investigating the whole-length BTK conformation is necessary to comprehend BTK’s autophosphorylation inhibition. Knowledge about the structural complementarity of BTK and its inhibitors supports the optimization of existing drugs and the discovery of drugs for implication in B-cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Correspondence: (N.T.); (S.M.)
| | | | - Marwa Qadri
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medical Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safeena Eranhiyil Ashraf
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safaa Fathy Saleh
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Maryam Nayeem
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
- Substance Abuse and Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (N.T.); (S.M.)
| |
Collapse
|
8
|
Collins MA, Jung IY, Zhao Z, Apodaca K, Kong W, Lundh S, Fraietta JA, Kater AP, Sun C, Wiestner A, Melenhorst JJ. Enhanced Costimulatory Signaling Improves CAR T-cell Effector Responses in CLL. CANCER RESEARCH COMMUNICATIONS 2022; 2:1089-1103. [PMID: 36922932 PMCID: PMC10010331 DOI: 10.1158/2767-9764.crc-22-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
CD19-redirected chimeric antigen receptor (CAR) T cells have shown remarkable activity against B-cell cancers. While second-generation CARs induce complete remission in >80% of patients with acute lymphoblastic leukemia, similar monotherapy induces long-term remissions in only 26% of patients with chronic lymphocytic leukemia (CLL). This disparity is attributed to cell-intrinsic effector defects in autologous CLL-derived T cells. However, the mechanisms by which leukemic cells impact CAR T-cell potency are poorly understood. Herein we describe an in vitro assay that recapitulates endogenous CLL-mediated T-cell defects in healthy donor CAR T cells. Contact with CLL cells insufficiently activates, but does not irreversibly impair, CAR T-cell function. This state is rescuable by strong antigenic stimulation or IL2, and is not driven by immune suppression. Rather, this activation defect is attributable to low levels of costimulatory molecules on CLL cells, and exogenous costimulation enhanced CAR T-cell activation. We next assessed the stimulatory phenotype of CLL cells derived from different niches within the same patient. Lymph node (LN)-derived CLL cells had a strong costimulatory phenotype and promoted better CAR T-cell degranulation and cytokine production than matched peripheral blood CLL cells. Finally, in vitro CD40L-activated CLL cells acquired a costimulatory phenotype similar to the LN-derived tumor and stimulated improved CAR T-cell proliferation, cytokine production, and cytotoxicity. Together, these data identify insufficient activation as a driver of poor CAR T-cell responses in CLL. The costimulatory phenotype of CLL cells drives differential CAR T-cell responses, and can be augmented by improving costimulatory signaling. Significance CLL cells insufficiently activate CAR T cells, driven by low levels of costimulatory molecules on the tumor. LN-derived CLL cells are more costimulatory and mediate enhanced CAR T-cell killing. This costimulatory phenotype can be modeled via CD40 L activation, and the activated tumor promotes stronger CAR T-cell responses.
Collapse
Affiliation(s)
- McKensie A. Collins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - In-Young Jung
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ziran Zhao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly Apodaca
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Weimin Kong
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan Lundh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A. Fraietta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arnon P. Kater
- Amsterdam UMC, University of Amsterdam, Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, the Netherlabds
| | - Clare Sun
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Adrian Wiestner
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - J. Joseph Melenhorst
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cell Signal 2022; 94:110331. [PMID: 35398488 DOI: 10.1016/j.cellsig.2022.110331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
SYK and ZAP70 nonreceptor tyrosine kinases serve essential roles in initiating B-cell receptor (BCR) and T-cell receptor (TCR) signaling in B- and T-lymphocytes, respectively. Despite their structural and functional similarity, expression of SYK and ZAP70 is strictly separated during B- and T-lymphocyte development, the reason for which was not known. Aberrant co-expression of ZAP70 with SYK was first identified in B-cell chronic lymphocytic leukemia (CLL) and is considered a biomarker of aggressive disease and poor clinical outcomes. We recently found that aberrant ZAP70 co-expression not only functions as an oncogenic driver in CLL but also in various other B-cell malignancies, including acute lymphoblastic leukemia (B-ALL) and mantle cell lymphoma. Thereby, aberrantly expressed ZAP70 redirects SYK and BCR-downstream signaling from NFAT towards activation of the PI3K-pathway. In the sole presence of SYK, pathological BCR-signaling in autoreactive or premalignant cells induces NFAT-activation and NFAT-dependent anergy and negative selection. In contrast, negative selection of pathological B-cells is subverted when ZAP70 diverts SYK from activation of NFAT towards tonic PI3K-signaling, which promotes survival instead of cell death. We discuss here how both B-cell malignancies and autoimmune diseases frequently evolve to harness this mechanism, highlighting the importance of developmental separation of the two kinases as an essential safeguard.
Collapse
Affiliation(s)
- Etienne Leveille
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abu-Sayeef Mirza
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, CT 06520, USA.
| |
Collapse
|
10
|
De Novellis D, Cacace F, Caprioli V, Wierda WG, Mahadeo KM, Tambaro FP. The TKI Era in Chronic Leukemias. Pharmaceutics 2021; 13:2201. [PMID: 34959482 PMCID: PMC8709313 DOI: 10.3390/pharmaceutics13122201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases are proteins involved in physiological cell functions including proliferation, differentiation, and survival. However, the dysregulation of tyrosine kinase pathways occurs in malignancy, including hematological leukemias such as chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Particularly, the fusion oncoprotein BCR-ABL1 in CML and the B-cell receptor (BCR) signaling pathway in CLL are critical for leukemogenesis. Therapeutic management of these two hematological conditions was fundamentally changed in recent years, making the role of conventional chemotherapy nearly obsolete. The first, second, and third generation inhibitors (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) of BCR-ABL1 and the allosteric inhibitor asciminib showed deep genetic and molecular remission rates in CML, leading to the evaluation of treatment discontinuation in prospective trials. The irreversible BTK inhibitors (ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and spebrutinib) covalently bind to the C481 amino acid of BTK. The reversible BTK inhibitor pirtobrutinib has a different binding site, overcoming resistance associated with mutations at C481. The PI3K inhibitors (idelalisib and duvelisib) are also effective in CLL but are currently less used because of their toxicity profiles. These tyrosine kinase inhibitors are well-tolerated, do have some associated in-class side effects that are manageable, and have remarkably improved outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Danilo De Novellis
- Hematology and Transplant Center, University “Hospital San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Fabiana Cacace
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - Valeria Caprioli
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kris M. Mahadeo
- Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Francesco Paolo Tambaro
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| |
Collapse
|
11
|
Chen J, Sathiaseelan V, Moore A, Tan S, Chilamakuri CSR, Roamio Franklin VN, Shahsavari A, Jakwerth CA, Hake SB, Warren AJ, Mohorianu I, D'Santos C, Ringshausen I. ZAP-70 constitutively regulates gene expression and protein synthesis in chronic lymphocytic leukemia. Blood 2021; 137:3629-3640. [PMID: 33619528 DOI: 10.1182/blood.2020009960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
The expression of ZAP-70 in a subset of chronic lymphocytic leukemia (CLL) patients strongly correlates with a more aggressive clinical course, although the exact underlying mechanisms remain elusive. The ability of ZAP-70 to enhance B-cell receptor (BCR) signaling, independently of its kinase function, is considered to contribute. We used RNA-sequencing and proteomic analyses of primary cells differing only in their expression of ZAP-70 to further define how ZAP-70 increases the aggressiveness of CLL. We identified that ZAP-70 is directly required for cell survival in the absence of an overt BCR signal, which can compensate for ZAP-70 deficiency as an antiapoptotic signal. In addition, the expression of ZAP-70 regulates the transcription of factors regulating the recruitment and activation of T cells, such as CCL3, CCL4, and IL4I1. Quantitative mass spectrometry of double-cross-linked ZAP-70 complexes further demonstrated constitutive and direct protein-protein interactions between ZAP-70 and BCR-signaling components. Unexpectedly, ZAP-70 also binds to ribosomal proteins, which is not dependent on, but is further increased by, BCR stimulation. Importantly, decreased expression of ZAP-70 significantly reduced MYC expression and global protein synthesis, providing evidence that ZAP-70 contributes to translational dysregulation in CLL. In conclusion, ZAP-70 constitutively promotes cell survival, microenvironment interactions, and protein synthesis in CLL cells, likely to improve cellular fitness and to further drive disease progression.
Collapse
Affiliation(s)
- Jingyu Chen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
- Department of Haematology
| | - Vijitha Sathiaseelan
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
- Department of Haematology
| | - Andrew Moore
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
- Department of Haematology
| | - Shengjiang Tan
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
- Department of Haematology
- Cambridge Institute for Medical Research, and
| | | | | | - Arash Shahsavari
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
| | - Constanze A Jakwerth
- Center for Allergy and Environment, Member of the German Center of Lung Research, Technical University and Helmholtz Center Munich, Munich, Germany; and
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Alan J Warren
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
- Department of Haematology
- Cambridge Institute for Medical Research, and
| | - Irina Mohorianu
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ingo Ringshausen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre
- Department of Haematology
| |
Collapse
|
12
|
Kennedy E, Coulter E, Halliwell E, Profitos-Peleja N, Walsby E, Clark B, Phillips EH, Burley TA, Mitchell S, Devereux S, Fegan CD, Jones CI, Johnston R, Chevassut T, Schulz R, Seiffert M, Agathanggelou A, Oldreive C, Davies N, Stankovic T, Liloglou T, Pepper C, Pepper AGS. TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood 2021; 137:3064-3078. [PMID: 33512408 PMCID: PMC8176769 DOI: 10.1182/blood.2020005964] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) remains incurable despite B-cell receptor-targeted inhibitors revolutionizing treatment. This suggests that other signaling molecules are involved in disease escape mechanisms and resistance. Toll-like receptor 9 (TLR9) is a promising candidate that is activated by unmethylated cytosine guanine dinucleotide-DNA. Here, we show that plasma from patients with CLL contains significantly more unmethylated DNA than plasma from healthy control subjects (P < .0001) and that cell-free DNA levels correlate with the prognostic markers CD38, β2-microglobulin, and lymphocyte doubling time. Furthermore, elevated cell-free DNA was associated with shorter time to first treatment (hazard ratio, 4.0; P = .003). We also show that TLR9 expression was associated with in vitro CLL cell migration (P < .001), and intracellular endosomal TLR9 strongly correlated with aberrant surface expression (sTLR9; r = 0.9). In addition, lymph node-derived CLL cells exhibited increased sTLR9 (P = .016), and RNA-sequencing of paired sTLR9hi and sTLR9lo CLL cells revealed differential transcription of genes involved in TLR signaling, adhesion, motility, and inflammation in sTLR9hi cells. Mechanistically, a TLR9 agonist, ODN2006, promoted CLL cell migration (P < .001) that was mediated by p65 NF-κB and STAT3 transcription factor activation. Importantly, autologous plasma induced the same effects, which were reversed by a TLR9 antagonist. Furthermore, high TLR9 expression promoted engraftment and rapid disease progression in a NOD/Shi-scid/IL-2Rγnull mouse xenograft model. Finally, we showed that dual targeting of TLR9 and Bruton's tyrosine kinase (BTK) was strongly synergistic (median combination index, 0.2 at half maximal effective dose), which highlights the distinct role for TLR9 signaling in CLL and the potential for combined targeting of TLR9 and BTK as a more effective treatment strategy in this incurable disease.
Collapse
Affiliation(s)
- Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Eve Coulter
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Emma Halliwell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nuria Profitos-Peleja
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Elisabeth Walsby
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Barnaby Clark
- Molecular Pathology Laboratory, King's College Hospital, London, United Kingdom
| | - Elizabeth H Phillips
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thomas A Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Stephen Devereux
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christopher D Fegan
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Christopher I Jones
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Rosalynd Johnston
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Tim Chevassut
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Ralph Schulz
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | | | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Ceri Oldreive
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Triantafillos Liloglou
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Andrea G S Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| |
Collapse
|
13
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
14
|
|
15
|
Grywalska E, Zaborek M, Łyczba J, Hrynkiewicz R, Bębnowska D, Becht R, Sosnowska-Pasiarska B, Smok-Kalwat J, Pasiarski M, Góźdź S, Roliński J, Niedźwiedzka-Rystwej P. Chronic Lymphocytic Leukemia-Induced Humoral Immunosuppression: A Systematic Review. Cells 2020; 9:E2398. [PMID: 33147729 PMCID: PMC7693361 DOI: 10.3390/cells9112398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022] Open
Abstract
Secondary immunodeficiency is observed in all patients with chronic lymphocytic leukemia (CLL) in varying degrees. The aim of the study was to review the available literature data on patients with CLL, with particular regard to the pathogenesis of the disease and the impact of humoral immunity deficiency on the clinical and therapeutic approach. A systematic literature review was carried out by two independent authors who searched PubMed databases for studies published up to January 2020. Additionally, Google Scholar was used to evaluate search results and support manual research. The search resulted in 240 articles eligible for analysis. After all criteria and filters were applied, 22 studies were finally applied to the analysis. The data analysis showed that the clinical heterogeneity of CLL patients correlates with the diversity of molecular abnormalities determining the clinical picture of the disease, the analysis of which enables setting therapeutic targets. Additionally, in improving the therapeutic method, it is worth introducing supportive therapies with the use of vaccines, antibiotics and/or immunoglobins. Moreover, humoral immunodeficiency in CLL has a strong influence on the risk of infection in patients for whom infections are a major cause of morbidity and mortality.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.Z.); (J.Ł.); (J.R.)
| | - Monika Zaborek
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.Z.); (J.Ł.); (J.R.)
| | - Jakub Łyczba
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.Z.); (J.Ł.); (J.R.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | | | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland;
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Faculty of Medicine and Health Sciences, The Jan Kochanowski University, 25-516 Kielce, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (M.Z.); (J.Ł.); (J.R.)
| | | |
Collapse
|
16
|
Chen J, Moore A, Ringshausen I. ZAP-70 Shapes the Immune Microenvironment in B Cell Malignancies. Front Oncol 2020; 10:595832. [PMID: 33194762 PMCID: PMC7653097 DOI: 10.3389/fonc.2020.595832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Zeta-chain-associated protein kinase-70 (ZAP-70) is a tyrosine kinase mainly expressed in T cells, NK cells and a subset of B cells. Primarily it functions in T cell receptor (TCR) activation through its tyrosine kinase activity. Aberrant expression of ZAP-70 has been evidenced in different B cell malignancies, with high expression of ZAP-70 in a subset of patients with Chronic Lymphocytic Leukemia (CLL), associating with unfavorable disease outcomes. Previous studies to understand the mechanisms underlying this correlation have been focused on tumor intrinsic mechanisms, including the activation of B cell receptor (BCR) signaling. Recent evidence also suggests that ZAP-70, intrinsically expressed in tumor cells, can modulate the cross-talk between malignant B cells and the immune environment, implying a more complex role of ZAP-70 in the pathogenesis of B cell malignancies. Meanwhile, the indispensible roles of ZAP-70 in T cell and NK cell activation also demonstrate that the autologous expression of ZAP-70 in the immune environment can be a central target in modulation of tumor immunity. Here we review the evidences of the link between ZAP-70 and tumor immunology in the microenvironment in B cell malignancies. Considering an emerging role of immunotherapies in treating these conditions, understanding the distinct molecular functions of ZAP-70 in a broader cellular context could ultimately benefit patient care.
Collapse
Affiliation(s)
| | | | - Ingo Ringshausen
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
18
|
Alwithenani AI, Althubiti MA. Systematic Analysis of Spleen Tyrosine Kinase Expression and its Clinical Outcomes in Various Cancers. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2020; 8:95-104. [PMID: 32587490 PMCID: PMC7305679 DOI: 10.4103/sjmms.sjmms_300_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/28/2019] [Accepted: 02/06/2020] [Indexed: 12/04/2022]
Abstract
Background: Spleen tyrosine kinase (SYK) is an important enzyme in the proliferation and differentiation of all hematopoietic tissues. Its role as a cancer driver is well documented in liquid tumors; however, cumulative evidence has suggested an opposite role in other tumor types. Objectives: To systematically assess the expression of SYK, its prognostic value and epigenetic status in different cancers using bioinformatics tools. Methods: In this bioinformatics study, Oncomine database and cBioPortal were used to study the SYK gene expression, Kaplan–Meier plotter to study its prognostic value and MethHC to assess the SYK gene methylation in various cancers. Results: From 542 unique analyses of the SYK gene, it was found to be overexpressed in bladder, breast and colon cancers but downregulated in leukemia, lymphoma and myeloma. Compared with normal tissues, breast and brain tumors showed an overexpression of the SYK gene, whereas lymphoma and leukemia had lower expression. The Kaplan–Meier survival analysis revealed that SYK expression in pancreatic, gastric, liver and lung patients were correlated with better overall survival. Using cBioPortal, prostate cancer was found to have the highest SYK gene mutation frequency, and the mean expression was highest in diffuse large B-cell lymphoma, acute myeloid leukemia and thymoma. Using the MethHC database, SYK promoter hypermethylation was found to be significantly higher in breast, renal, liver, lung, pancreatic, prostatic, skin and stomach cancers compared with the normal tissue (P < 0.005). Conclusion: The results of this study indicate the potential use of SYK as a diagnostic and therapeutic target for different type of cancers. However, further experimental data are required to validate these results before use of SYK in clinical settings.
Collapse
Affiliation(s)
- Akram I Alwithenani
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Lamb DJ, Rust A, Rudisch A, Glüxam T, Harrer N, Machat H, Christ I, Colbatzky F, Wernitznig A, Osswald A, Sommergruber W. Inhibition of SYK kinase does not confer a pro-proliferative or pro-invasive phenotype in breast epithelium or breast cancer cells. Oncotarget 2020; 11:1257-1272. [PMID: 32292575 PMCID: PMC7147091 DOI: 10.18632/oncotarget.27545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/14/2020] [Indexed: 12/18/2022] Open
Abstract
SYK has been reported to possess both tumour promotor and repressor activities and deletion has been linked to a pro-proliferative / pro-invasive phenotype in breast tumours. It is unclear whether this is a consequence of protein deletion or loss of kinase activity. The SYK inhibitor, BI 1002494, caused no increase in proliferation in breast cancer cells or primary mammary epithelial cells in 2D or 3D cultures, nor changes in proliferation (CD1/2, CDK4, PCNA, Ki67) or invadopodia markers (MMP14, PARP, phospho-vimentin Ser56). BI 1002494 did not alter SYK protein expression. There was no change in phenotype observed in 3D cultures after addition of BI 1002494. Thirteen weeks of treatment with BI 1002494 resulted in no ductal branching or cellular proliferation in the mammary glands of mice. An in silico genetic analysis in breast tumour samples revealed no evidence that SYK has a typical tumour suppressor gene profile such as focal deletion, inactivating mutations or lower expression levels. Furthermore, SYK mutations were not associated with reduction in survival and disease-free period in breast cancer patients. In conclusion, small molecule inhibition of the kinase function of SYK does not contribute to a typical tumour suppressor profile.
Collapse
Affiliation(s)
- David J Lamb
- Immunology & Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Aleksander Rust
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Albin Rudisch
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Tobias Glüxam
- Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Wien, Austria
| | - Nathalie Harrer
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Herwig Machat
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Ingrid Christ
- Immunology & Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Florian Colbatzky
- Non-clinical drug safety, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Andreas Wernitznig
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Annika Osswald
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Wolfgang Sommergruber
- Cancer Cell Signalling, Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria.,Biotechnology, University of Applied Sciences, 1030 Vienna, Austria
| |
Collapse
|
20
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
21
|
Schleiss C, Ilias W, Tahar O, Güler Y, Miguet L, Mayeur-Rousse C, Mauvieux L, Fornecker LM, Toussaint E, Herbrecht R, Bertrand F, Maumy-Bertrand M, Martin T, Fournel S, Georgel P, Bahram S, Vallat L. BCR-associated factors driving chronic lymphocytic leukemia cells proliferation ex vivo. Sci Rep 2019; 9:701. [PMID: 30679590 PMCID: PMC6345919 DOI: 10.1038/s41598-018-36853-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
A chronic antigenic stimulation is believed to sustain the leukemogenic development of chronic lymphocytic leukemia (CLL) and most of lymphoproliferative malignancies developed from mature B cells. Reproducing a proliferative stimulation ex vivo is critical to decipher the mechanisms of leukemogenesis in these malignancies. However, functional studies of CLL cells remains limited since current ex vivo B cell receptor (BCR) stimulation protocols are not sufficient to induce the proliferation of these cells, pointing out the need of mandatory BCR co-factors in this process. Here, we investigated benefits of several BCR co-stimulatory molecules (IL-2, IL-4, IL-15, IL-21 and CD40 ligand) in multiple culture conditions. Our results demonstrated that BCR engagement (anti-IgM ligation) concomitant to CD40 ligand, IL-4 and IL-21 stimulation allowed CLL cells proliferation ex vivo. In addition, we established a proliferative advantage for ZAP70 positive CLL cells, associated to an increased phosphorylation of ZAP70/SYK and STAT6. Moreover, the use of a tri-dimensional matrix of methylcellulose and the addition of TLR9 agonists further increased this proliferative response. This ex vivo model of BCR stimulation with T-derived cytokines is a relevant and efficient model for functional studies of CLL as well as lymphoproliferative malignancies.
Collapse
Affiliation(s)
- Cédric Schleiss
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Wassila Ilias
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Ouria Tahar
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Yonca Güler
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
| | - Laurent Miguet
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Caroline Mayeur-Rousse
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Mauvieux
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Luc-Matthieu Fornecker
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Toussaint
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Raoul Herbrecht
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frédéric Bertrand
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée IRMA, CNRS UMR 7501, Strasbourg, France
| | - Myriam Maumy-Bertrand
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée IRMA, CNRS UMR 7501, Strasbourg, France
| | - Thierry Martin
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,CNRS UPR 9021 - Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et cellulaire (IBMC), Strasbourg, France
| | - Sylvie Fournel
- CNRS UMR7199, Université de Strasbourg, Illkirch, France
| | - Philippe Georgel
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
| | - Laurent Vallat
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France. .,Université de Strasbourg, INSERM, IRFAC UMR-S1113, and Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
22
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
23
|
Mutzbauer G, Maurus K, Buszello C, Pischimarov J, Roth S, Rosenwald A, Chott A, Geissinger E. SYK expression in monomorphic epitheliotropic intestinal T-cell lymphoma. Mod Pathol 2018; 31:505-516. [PMID: 29052597 DOI: 10.1038/modpathol.2017.145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/02/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), formerly known as type II enteropathy associated T-cell lymphoma (type II EATL), is a rare, aggressive primary intestinal T-cell lymphoma with a poor prognosis and an incompletely understood pathogenesis. We collected 40 cases of MEITL and 27 cases of EATL, formerly known as type I EATL, and comparatively investigated the T-cell receptor (TCR) itself and associated signaling molecules using immunohistochemistry, amplicon deep sequencing and bisulfite pyrosequencing. The TCR showed both an αβ-T-cell origin (30%) and a γδ-T-cell derivation (55%) resulting in a predominant positive TCR phenotype in MEITL compared with the mainly silent TCR phenotype in EATL (65%). The immunohistochemical expression of the spleen tyrosine kinase (SYK) turned out to be a distinctive feature of MEITL (95%) compared with EATL (0%). Aberrant SYK overexpression in MEITL is likely caused by hypomethylation of the SYK promoter, while no common mutations in the SYK gene or in its promoter could be detected. Using amplicon deep sequencing, mutations in DNMT3A, IDH2, and TET2 were infrequent events in MEITL and EATL. Immunohistochemical expression of linker for activation of T-cells (LAT) subdivided MEITL into a LAT expressing subset (33%) and a LAT silent subset (67%) with a potentially earlier disease onset in LAT-positive MEITL.
Collapse
Affiliation(s)
- Grit Mutzbauer
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Katja Maurus
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Clara Buszello
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sabine Roth
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University and University Hospital, Wuerzburg, Germany
| | - Andreas Chott
- Institute of Pathology and Microbiology, Wilhelminenspital, Vienna, Austria
| | - Eva Geissinger
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University and University Hospital, Wuerzburg, Germany
| |
Collapse
|
24
|
Till KJ, Allen JC, Talab F, Lin K, Allsup D, Cawkwell L, Bentley A, Ringshausen I, Duckworth AD, Pettitt AR, Kalakonda N, Slupsky JR. Lck is a relevant target in chronic lymphocytic leukaemia cells whose expression variance is unrelated to disease outcome. Sci Rep 2017; 7:16784. [PMID: 29196709 PMCID: PMC5711840 DOI: 10.1038/s41598-017-17021-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Pathogenesis of chronic lymphocytic leukaemia (CLL) is contingent upon antigen receptor (BCR) expressed by malignant cells of this disease. Studies on somatic hypermutation of the antigen binding region, receptor expression levels and signal capacity have all linked BCR on CLL cells to disease prognosis. Our previous work showed that the src-family kinase Lck is a targetable mediator of BCR signalling in CLL cells, and that variance in Lck expression associated with ability of BCR to induce signal upon engagement. This latter finding makes Lck similar to ZAP70, another T-cell kinase whose aberrant expression in CLL cells also associates with BCR signalling capacity, but also different because ZAP70 is not easily pharmacologically targetable. Here we describe a robust method of measuring Lck expression in CLL cells using flow cytometry. However, unlike ZAP70 whose expression in CLL cells predicts prognosis, we find Lck expression and disease outcome in CLL are unrelated despite observations that its inhibition produces effects that biologically resemble the egress phenotype taken on by CLL cells treated with idelalisib. Taken together, our findings provide insight into the pathobiology of CLL to suggest a more complex relationship between expression of molecules within the BCR signalling pathway and disease outcome.
Collapse
Affiliation(s)
- Kathleen J Till
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - John C Allen
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fatima Talab
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Ke Lin
- Department of Haematology, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - David Allsup
- Department of Haematology, Queens Centre for Oncology and Haematology, Hull and East Yorkshire Hospitals NHS Trust, Yorkshire, UK
| | - Lynn Cawkwell
- School of Life Sciences, University of Hull, Hull, UK
- Hull York Medical School, University of Hull, Hull, UK
| | | | - Ingo Ringshausen
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Andrew D Duckworth
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Gladkikh AA, Potashnikova DM, Tatarskiy V, Yastrebova M, Khamidullina A, Barteneva N, Vorobjev I. Comparison of the mRNA expression profile of B-cell receptor components in normal CD5-high B-lymphocytes and chronic lymphocytic leukemia: a key role of ZAP70. Cancer Med 2017; 6:2984-2997. [PMID: 29125235 PMCID: PMC5727315 DOI: 10.1002/cam4.1257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/22/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023] Open
Abstract
The B‐cell receptor (BCR) signaling pathway is of great importance for B‐cell survival and proliferation. The BCR expressed on malignant B‐CLL cells contributes to the disease pathogenesis, and its signaling pathway is currently the target of several therapeutic strategies. Although various BCR alterations have been described in B‐CLL at the protein level, the mRNA expression levels of tyrosine kinases in B‐CLL compared to that in normal CD5‐high and CD5‐low B‐lymphocytes remain unknown. In the current study, we measured the mRNA expression levels of CD79A, CD79B, LYN, SYK, SHP1, and ZAP70 in purified populations of CD5‐high B‐CLL cells, CD5‐low B‐cells from the peripheral blood of healthy donors, and CD5‐high B‐cells from human tonsils. Here, we report a clear separation in the B‐CLL dataset between the ZAP70‐high and ZAP70‐low subgroups. Each subgroup has a unique expression profile of BCR signaling components that might reflect the functional status of the BCR signaling pathway. Moreover, the ZAP70‐low subgroup does not resemble either CD5‐high B‐lymphocytes from the tonsils or CD5‐low lymphocytes from PBMC (P < 0.05). We also show that ZAP70 is the only gene that is differentially expressed in CD5‐high and CD5‐low normal B‐lymphocytes, confirming the key role of Zap‐70 tyrosine kinase in BCR signaling alterations in B‐CLL.
Collapse
Affiliation(s)
- Aleena A Gladkikh
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Margarita Yastrebova
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia.,N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alvina Khamidullina
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia.,N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Natasha Barteneva
- Department of Pediatrics Harvard Medical School, Boston, Massachusetts
| | - Ivan Vorobjev
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
Microenvironment regulates the expression of miR-21 and tumor suppressor genes PTEN, PIAS3 and PDCD4 through ZAP-70 in chronic lymphocytic leukemia. Sci Rep 2017; 7:12262. [PMID: 28947822 PMCID: PMC5612928 DOI: 10.1038/s41598-017-12135-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironment, being the BCR pathway one key player in this crosstalk. Among proteins participating, ZAP-70 enhances response to microenvironmental stimuli. MicroRNA-21 (miR-21) is overexpressed in diverse neoplasias including CLL, where it has been associated to refractoriness to fludarabine and to shorter time to progression and survival. To further elucidate the role of ZAP-70 in the biology of CLL, we studied its involvement in miR-21 regulation. MiR-21 expression was higher in CLL cells with high ZAP-70. Ectopic expression of ZAP-70 induced transcription of miR-21 via MAPK and STAT3, which subsequently induced downregulation of tumor suppressors targeted by miR-21. The co-culture of primary CLL cells mimicking the microenvironment induced ZAP-70 and miR-21 expression, as well as downregulation of miR-21 targets. Interestingly, the increase in miR-21 after co-culture was significantly impaired by ibrutinib, indicating that the BCR signaling pathway is involved in its regulation. Finally, survival of CLL cells induced by the co-culture correlated with miR-21 upregulation. In conclusion, stimuli from the microenvironment regulate miR-21 and its targeted tumor suppressor genes via a signaling pathway involving ZAP-70, thus contributing to the cytoprotection offered by the microenvironment particularly observed in CLL cells expressing ZAP-70.
Collapse
|
27
|
Shukla A, Shukla V, Joshi SS. Regulation of MAPK signaling and implications in chronic lymphocytic leukemia. Leuk Lymphoma 2017; 59:1565-1573. [PMID: 28882083 DOI: 10.1080/10428194.2017.1370548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous B cell malignancy that still remains incurable. Recent studies have highlighted cellular and non-cellular components of the tissue microenvironment in CLL that help nurture the growth of leukemic cells by providing the necessary stimuli for their proliferation and survival. The diverse stimuli in the specialized tissue microenvironment of CLL lead to constitutive activation of several signaling pathways that includes B cell receptor signaling and the associated mitogen-activated protein kinase (MAPK) signaling. Recent findings have described aberrant activation of MAPK signaling and its interactions with other cellular signaling pathways in the pathogenesis of CLL. These studies have shed light on the deregulated molecular mechanisms contributing to hyperactivation of MAPK signaling and provided avenues for therapeutic options for aggressive CLL. In this review, we describe and discuss the current status of our understanding into the role of MAPK signaling in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Ashima Shukla
- a Sanford Burnham Prebys Medical Discovery Institute , La Jolla , CA , USA
| | - Vipul Shukla
- b La Jolla Institute for Allergy and Immunology , La Jolla , CA , USA
| | - Shantaram S Joshi
- c Department of Genetics Cell Biology and Anatomy , University of Nebraska Medical Centre , Omaha , NE , USA
| |
Collapse
|
28
|
Liu Q, Wang YP, Liu Q, Zhao Q, Chen XM, Xue XH, Zhou LN, Ding Y, Tang XM, Zhao XD, Zhang ZY. Novel compound heterozygous mutations in ZAP70 in a Chinese patient with leaky severe combined immunodeficiency disorder. Immunogenetics 2017; 69:199-209. [PMID: 28124082 DOI: 10.1007/s00251-017-0971-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/13/2017] [Indexed: 11/28/2022]
Abstract
In humans, the complete lack of tyrosine kinase ZAP70 function results in combined immunodeficiency (CID), with abnormal thymic development and defective T cell receptor (TCR) signaling of peripheral T cells, characterized by the selective absence of CD8+ T cells. So far, 15 unique ZAP70 mutations have been identified in approximately 20 patients with CID, with variable clinical presentations. Herein, we report the first case from China of novel compound heterozygous mutations in ZAP70 (c.598-599delCT, p.L200fsX28; c.847 C>T, R283H). The patient suffered from early-onset and recurrent infections, but showed normal growth and development without signs of failure to thrive, thus presenting as leaky SCID. The patient also had clinical manifestations of autoimmunity, such as eczematous skin lesion, inflammatory bowel disease (IBD), and intractable diarrhea, suggesting compromised T cell tolerogenic functions. Residual ZAP70 expression was identified. Immunological analysis revealed the selective absence of CD8+ T cells in the periphery and the presence of CD4+ T cells that failed to respond to phytohemagglutinin. Stimulation with lectin from pokeweed mitogen also failed to stimulate B cell proliferation in the patient. The frequency of Tfhs and Tregs in the patient was lower compared with the normal reference. Compared with the age-matched healthy control, the level of IL-17 was higher and the levels of IFN-γ, IL-4, and IL-21 were lower. Infants with selected CD8 deficiency and severe autoimmune disorders or exaggerated inflammation should be screened for ZAP70 deficiency.
Collapse
Affiliation(s)
- Qing Liu
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yan-Ping Wang
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qiao Liu
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Zhao
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xue-Mei Chen
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiu-Hong Xue
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Li-Na Zhou
- Clinical Laboratory Center, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xue-Mei Tang
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiao-Dong Zhao
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhi-Yong Zhang
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
29
|
Brumbaugh K, Liao WC, Houchins JP, Cooper J, Stoesz S. Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications. Methods Mol Biol 2017; 1554:1-40. [PMID: 28185181 DOI: 10.1007/978-1-4939-6759-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphate addition is a posttranslational modification of proteins, and this modification can affect the activity and other properties of intracellular proteins. Different animal species can be used to generate phosphosite-specific antibodies as either polyclonals or monoclonals, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is vital for their use in proteomics and profiling of disease.
Collapse
Affiliation(s)
- Kathy Brumbaugh
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA.
| | - Wen-Chie Liao
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - J P Houchins
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Jeff Cooper
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Steve Stoesz
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| |
Collapse
|
30
|
Alsagaby SA, Brennan P, Pepper C. Key Molecular Drivers of Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:593-606. [PMID: 27601002 DOI: 10.1016/j.clml.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is an adult neoplastic disease of B cells characterized by variable clinical outcomes. Although some patients have an aggressive form of the disease and often encounter treatment failure and short survival, others have more stable disease with long-term survival and little or no need for theraphy. In the past decade, significant advances have been made in our understanding of the molecular drivers that affect the natural pathology of CLL. The present review describes what is known about these key molecules in the context of their role in tumor pathogenicity, prognosis, and therapy.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory, College of Science, Majmaah University, Al-Zuli, Kingdom of Saudi Arabia; Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Paul Brennan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chris Pepper
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
31
|
Dezorella N, Katz BZ, Shapiro M, Polliack A, Perry C, Herishanu Y. SLP76 integrates into the B-cell receptor signaling cascade in chronic lymphocytic leukemia cells and is associated with an aggressive disease course. Haematologica 2016; 101:1553-1562. [PMID: 27443285 DOI: 10.3324/haematol.2015.139154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/12/2016] [Indexed: 01/07/2023] Open
Abstract
I In the last decade, the B-cell receptor has emerged as a pivotal stimulus in the pathogenesis of chronic lymphocytic leukemia, and a very feasible therapeutic target in this disease. B-cell receptor responsiveness in chronic lymphocytic leukemia cells is heterogeneous among patients and correlates with aggressiveness of the disease. Here we show, for the first time, that SLP76, a key scaffold protein in T-cell receptor signaling, is ectopically expressed in chronic lymphocytic leukemia cells, with variable levels among patients, and correlates positively with unmutated immunoglobulin heavy chain variable gene status and ZAP-70 expression. We found that SLP76 was functionally active in chronic lymphocytic leukemia cells. A SYK-dependent basal level of phosphorylated SLP76 exists in the cells, and upon B-cell receptor engagement, SLP76 tyrosine phosphorylation is significantly enhanced concomitantly with increased physical association with BTK. B-cell receptor-induced SLP76 phosphorylation is mediated by upstream signaling events involving LCK and SYK. Knockdown of SLP76 in the cells resulted in decreased induction of BTK, PLCγ2 and IκB phosphorylation, as well as cell viability after B-cell receptor activation with anti-IgM. Consistent with our biochemical findings, high total SLP76 expression in chronic lymphocytic leukemia cells correlated with a more aggressive disease course. IN CONCLUSION SLP76 is ectopically expressed in chronic lymphocytic leukemia cells where it plays a role in B-cell receptor signaling.
Collapse
Affiliation(s)
- Nili Dezorella
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Jerusalem, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Jerusalem, Israel
| | - Ben-Zion Katz
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Jerusalem, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Jerusalem, Israel
| | - Mika Shapiro
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Jerusalem, Israel
| | - Aaron Polliack
- Department of Hematology, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Chava Perry
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Jerusalem, Israel
| | - Yair Herishanu
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Jerusalem, Israel .,Sackler Faculty of Medicine, Tel-Aviv University, Jerusalem, Israel
| |
Collapse
|
32
|
Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Models of B-Cell Non-Hodgkin Lymphoma. PLoS One 2016; 11:e0159607. [PMID: 27434128 PMCID: PMC4951150 DOI: 10.1371/journal.pone.0159607] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL). First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR) was 25% (5/20) with a median progression free survival (PFS) of 22.5 days. Clinical benefit was observed in 30% (6/20) of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL).
Collapse
|
33
|
Li K, Xiang X, Sun J, He HT, Wu J, Wang Y, Zhu C. Imaging Spatiotemporal Activities of ZAP-70 in Live T Cells Using a FRET-Based Biosensor. Ann Biomed Eng 2016; 44:3510-3521. [PMID: 27384937 DOI: 10.1007/s10439-016-1683-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 01/20/2023]
Abstract
The zeta-chain-associated protein kinase 70 kDa (ZAP-70), a member of the spleen tyrosine kinase (Syk) family, plays an essential role in early T cell receptor (TCR) signaling. Defects in ZAP-70 lead to impaired thymocyte development and peripheral T cell activation. To better understand its activation dynamics and regulation, we visualized ZAP-70 activities in single live T cells with a Förster resonance energy transfer (FRET)-based biosensor, which was designed for probing kinase activities of the Syk family. We observed in Jurkat E6.1 T cells rapid and specific FRET changes following anti-CD3 stimulation and subsequent piceatannol inhibition. The initiation of ZAP-70 activation was prompt (within 10 s) and correlates with the accompanied intracellular calcium elevation, as revealed by simultaneous imaging of the biosensor and calcium. Different from the previously reported ZAP-70 activation in the immunological synapse and the opposite pole (anti-synapse), we have observed rapid and sustained ZAP-70 activation only at the synapse with superantigen-pulsed Raji B cells. Furthermore, ZAP-70 signaling was impaired by cholesterol depletion, further supporting the importance of membrane organization in TCR signaling. Together our results provide a direct characterization of the spatiotemporal features of ZAP-70 activity in real time at subcellular levels.
Collapse
Affiliation(s)
- Kaitao Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xue Xiang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Life Sciences, SUN YAT-SEN University, Guangzhou, China.,UnionPay Smart Co., Ltd, Shanghai, China
| | - Jie Sun
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Jianhua Wu
- School of Life Sciences, SUN YAT-SEN University, Guangzhou, China.,School of Bioscience, South China University of Technology, Guangzhou, China
| | - Yingxiao Wang
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
34
|
Franiak-Pietryga I, Maciejewski H, Ostrowska K, Appelhans D, Voit B, Misiewicz M, Kowalczyk P, Bryszewska M, Borowiec M. Dendrimer-based nanoparticles for potential personalized therapy in chronic lymphocytic leukemia: Targeting the BCR-signaling pathway. Int J Biol Macromol 2016; 88:156-61. [DOI: 10.1016/j.ijbiomac.2016.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/08/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
|
35
|
Allen JC, Talab F, Slupsky JR. Targeting B-cell receptor signaling in leukemia and lymphoma: how and why? Int J Hematol Oncol 2016; 5:37-53. [PMID: 30302202 DOI: 10.2217/ijh-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
B-lymphocytes are dependent on B-cell receptor (BCR) signaling for the constant maintenance of their physiological function, and in many B-cell malignancies this signaling pathway is prone to aberrant activation. This understanding has led to an ever-increasing interest in the signaling networks activated following ligation of the BCR in both normal and malignant cells, and has been critical in establishing an array of small molecule inhibitors targeting BCR-induced signaling. By dissecting how different malignancies signal through BCR, researchers are contributing to the design of more customized therapeutics which have greater efficacy and lower toxicity than previous therapies. This allows clinicians access to an array of approaches to best treat patients whose malignancies have BCR signaling as a driver of pathogenesis.
Collapse
Affiliation(s)
- John C Allen
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Fatima Talab
- Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK.,Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK
| | - Joseph R Slupsky
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
36
|
IL-4 enhances expression and function of surface IgM in CLL cells. Blood 2016; 127:3015-25. [PMID: 27002119 DOI: 10.1182/blood-2015-11-682906] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
Kinase inhibitors targeting the B-cell receptor (BCR) are now prominent in the treatment of chronic lymphocytic leukemia (CLL). We have focused here on interleukin 4 (IL-4), a cytokine that protects normal and malignant B cells from apoptosis and increases surface immunoglobulin M (sIgM) expression on murine splenic B cells. First, we have demonstrated that IL-4 treatment increased sIgM expression in vitro on peripheral blood B cells obtained from healthy individuals. In CLL, IL-4 target genes are overexpressed in cells purified from the lymph nodes of patients compared with cells derived from matched blood and bone marrow samples. As for normal B cells, IL-4 increased sIgM expression on CLL cells in vitro, especially in samples expressing unmutated V-genes. IL-4-induced sIgM expression was associated with increased receptor signalling activity, measured by anti-IgM-induced calcium mobilization, and with increased expression of CD79B messenger RNA and protein, and the "mature" glycoform of sIgM. Importantly, the ability of the BCR-associated kinase inhibitors idelalisib and ibrutinib, approved for treatment of CLL and other B-cell malignancies, to inhibit anti-IgM-induced signalling was reduced following IL-4 pretreatment in samples from the majority of patients. In contrast to stimulatory effects on sIgM, IL-4 decreased CXCR4 and CXCR5 expression; therefore, CLL cells, particularly within the progressive unmutated V-gene subset, may harness the ability of IL-4 to promote BCR signalling and B-cell retention within lymph nodes. Effects of IL-4 were mediated via JAK3/STAT6 and we propose a potential role for JAK inhibitors in combination with BCR kinase inhibitors for the treatment of CLL.
Collapse
|
37
|
Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:401-413. [PMID: 26193078 PMCID: PMC4715999 DOI: 10.1016/j.bbamcr.2015.07.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Models, Biological
- Molecular Targeted Therapy
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinases/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
38
|
Wagner M, Oelsner M, Moore A, Götte F, Kuhn PH, Haferlach T, Fiegl M, Bogner C, Baxter EJ, Peschel C, Follows GA, Ringshausen I. Integration of innate into adaptive immune responses in ZAP-70-positive chronic lymphocytic leukemia. Blood 2016; 127:436-48. [PMID: 26508782 DOI: 10.1182/blood-2015-05-646935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/10/2015] [Indexed: 12/30/2022] Open
Abstract
The crucial dependence of chronic lymphocytic leukemia (CLL) cells on signals derived from the B cell receptor (BCR) has encouraged the development of new inhibitors, which interfere with BCR signaling and demonstrate clinical benefits in nearly all patients. In addition, signaling through Toll-like receptor (TLR) 9 of the innate immune system has been shown to further contribute to the activation of CLL cells. However, responses to TLR9 engagement are not uniform, but diametrically opposed with cell death in some patients and cell proliferation in others. We now provide evidence that heterogeneous responses to TLR agonists are related to differences in the ability of CLL cells to activate the BCR-associated kinase Syk. Notably, expression of ZAP-70 appears to be of crucial importance for TLR9-mediated activation of Syk. We show that the activation of Syk provides an antiapoptotic signal, which is independent of Mcl-1, Bcl-2, and Bcl-XL, but related to the degradation of the proapoptotic Bim. Mechanistically, TLR9-mediated antiapoptotic signals in ZAP-70-positive CLL trigger secretion of immunoglobulin M, which then serves as (auto-) antigen for a prosurvival BCR signal. Thus, our data show that single activation of the innate immune receptor TLR9 is sufficient to fully engage BCR signaling in ZAP-70-positive CLL, protecting malignant cells from apoptosis. We conclude that the integration of TLR signaling into an adaptive immune response can further promote survival of CLL cells and may contribute to the unfavorable prognosis of ZAP-70-positive CLL.
Collapse
Affiliation(s)
- Michaela Wagner
- 3rd Department of Medicine, Technical University Munich, Munich, Germany
| | - Madlen Oelsner
- 3rd Department of Medicine, Technical University Munich, Munich, Germany
| | - Andrew Moore
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Frederik Götte
- 3rd Department of Medicine, Technical University Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute for Pathology and Anatomy, Institute for Advanced Study, Technical University Munich, Munich, Germany
| | | | - Michael Fiegl
- 3rd Department of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Christian Bogner
- 3rd Department of Medicine, Technical University Munich, Munich, Germany
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Peschel
- 3rd Department of Medicine, Technical University Munich, Munich, Germany
| | - George A Follows
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Ingo Ringshausen
- 3rd Department of Medicine, Technical University Munich, Munich, Germany; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 2016; 48:253-64. [PMID: 26780610 DOI: 10.1038/ng.3488] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022]
Abstract
Charting differences between tumors and normal tissue is a mainstay of cancer research. However, clonal tumor expansion from complex normal tissue architectures potentially obscures cancer-specific events, including divergent epigenetic patterns. Using whole-genome bisulfite sequencing of normal B cell subsets, we observed broad epigenetic programming of selective transcription factor binding sites coincident with the degree of B cell maturation. By comparing normal B cells to malignant B cells from 268 patients with chronic lymphocytic leukemia (CLL), we showed that tumors derive largely from a continuum of maturation states reflected in normal developmental stages. Epigenetic maturation in CLL was associated with an indolent gene expression pattern and increasingly favorable clinical outcomes. We further uncovered that most previously reported tumor-specific methylation events are normally present in non-malignant B cells. Instead, we identified a potential pathogenic role for transcription factor dysregulation in CLL, where excess programming by EGR and NFAT with reduced EBF and AP-1 programming imbalances the normal B cell epigenetic program.
Collapse
|
40
|
Xia B, Qu F, Yuan T, Zhang Y. Targeting Bruton's tyrosine kinase signaling as an emerging therapeutic agent of B-cell malignancies. Oncol Lett 2015; 10:3339-3344. [PMID: 26788133 DOI: 10.3892/ol.2015.3802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/14/2015] [Indexed: 01/09/2023] Open
Abstract
It is becoming increasingly evident that B-cell receptor (BCR) signaling is central to the development and function of B cells. BCR signaling has emerged as a pivotal pathway and a key driver of numerous B-cell lymphomas. Disruption of BCR signaling can be lethal to malignant B cells. Recently, kinase inhibitors that target BCR signaling have induced notable clinical responses. These inhibitors include spleen tyrosine kinase, mammalian target of rapamycin, phosphoinositide 3'-kinase and Bruton's tyrosine kinase (BTK). Ibrutinib, an oral irreversible BTK inhibitor, has emerged as a promising targeted therapy for patients with B-cell malignancies. The present review discusses the current understanding of BTK-mediated BCR signaling in the biology and pathobiology of normal and malignant B cells, and the cellular interaction with the tumor microenvironment. The data on ibrutinib in the preclinical and clinical settings is also discussed, and perspectives for the future use of ibrutinib are outlined.
Collapse
Affiliation(s)
- Bing Xia
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Fulian Qu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Tian Yuan
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
41
|
Crassini K, Stevenson WS, Mulligan SP, Best OG. The MEK1/2 inhibitor, MEKi-1, induces cell death in chronic lymphocytic leukemia cells under conditions that mimic the tumor microenvironment and is synergistic with fludarabine. Leuk Lymphoma 2015; 56:3407-17. [PMID: 25804768 DOI: 10.3109/10428194.2015.1032963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Raf-1/MEK/ERK1/2 pathway has become a focus for novel cancer therapies. This study sought to investigate whether targeting MEK1/2 may represent a therapeutic option for chronic lymphocytic leukemia (CLL). The MEK1/2 inhibitor, MEKi-1, induced apoptosis of CLL cells and was synergistic with fludarabine under conditions that mimic the tumor microenvironment, irrespective of poor-risk characteristics. MEKi-1 down-regulated the activities of AKT and ERK1/2 and was synergistic with fludarabine through a mechanism that involved potentiation of DNA damage and attenuation of the activity of ERK1/2 and expression of Mcl-1. This study highlights the significant role of the mitogen-activated protein kinase (MAPK)-ERK1/2 pathway in mediating the effects of the CLL tumor microenvironment and suggests that targeting MEK1/2 in CLL cells may impact upon the activity of both ERK1/2 and AKT. Inhibitors of MEK1/2 as single agents or in combination with DNA-damaging agents may represent a novel therapeutic strategy for CLL.
Collapse
Affiliation(s)
- Kyle Crassini
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| | - William S Stevenson
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| | - Stephen P Mulligan
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| | - O Giles Best
- a Northern Blood Research Centre, Kolling Institute of Medical Research, Royal North Shore Hospital , St Leonards, Sydney , NSW , Australia.,b CLL Australian Research Consortium (CLLARC) , Sydney , NSW , Australia
| |
Collapse
|
42
|
Lafarge ST, Hou S, Pauls SD, Johnston JB, Gibson SB, Marshall AJ. Differential expression and function of CD27 in chronic lymphocytic leukemia cells expressing ZAP-70. Leuk Res 2015; 39:773-8. [PMID: 26002513 DOI: 10.1016/j.leukres.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022]
Abstract
Chronic lymphocytic leukemia is a malignancy driven by abberant B cell signaling and survival. Leukemic B cells accumulate in the peripheral blood and the lymphoid organs where contact with stromal cells and T cells provide critical survival signals. Clinical severity of CLL is associated with several prognostic markers including expression of the kinase ZAP-70. ZAP-70 expression enhances signaling via the B cell antigen receptor and is associated with increased cell adhesion and migration capacity. Here we report that ZAP-70-positive CLL patients display significantly higher expression of the TNF superfamily receptor and memory marker CD27 than do ZAP-70 negative patients. CD27 expression by CLL was acutely elevated upon BCR cross-linking, or upon ectopic expression of ZAP-70. CD27 expression correlated with functional capacity to adhere to stromal cells and antibody blockade of CD27 impaired CLL binding to stroma. These results provide the first evidence for differential expression of CD27 among CLL prognostic groups, suggest a role for ZAP-70 dependent signaling in CD27 induction and implicate CD27 in cell-cell interactions with the lymphoid tissue microenvironment.
Collapse
Affiliation(s)
- Sandrine T Lafarge
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada; CancerCare Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - Sen Hou
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Samantha D Pauls
- University of Manitoba, Department of Biochemistry and Medical Genetics, Winnipeg, MB, Canada
| | - James B Johnston
- CancerCare Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - Spencer B Gibson
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada; CancerCare Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, Canada; University of Manitoba, Department of Biochemistry and Medical Genetics, Winnipeg, MB, Canada
| | - Aaron J Marshall
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada; University of Manitoba, Department of Biochemistry and Medical Genetics, Winnipeg, MB, Canada.
| |
Collapse
|
43
|
The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood 2015; 125:2915-22. [PMID: 25755291 DOI: 10.1182/blood-2014-09-585869] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
The safety and efficacy of ibrutinib, an oral inhibitor of Bruton tyrosine kinase, were evaluated with chemoimmunotherapy (CIT) in a multicenter phase 1b study. Patients with relapsed/refractory chronic lymphocytic leukemia received bendamustine and rituximab (BR) or fludarabine, cyclophosphamide, and rituximab (FCR) for up to 6 cycles with daily ibrutinib (420 mg) until progressive disease or unacceptable toxicity. Enrollment to FCR-ibrutinib closed early due to a lack of fludarabine-naïve previously treated patients. No patients treated with BR-ibrutinib (n = 30) or FCR-ibrutinib (n = 3) experienced prolonged hematologic toxicity in cycle 1 (primary end point). Tolerability was as expected with either CIT or single-agent ibrutinib. The overall response rate (ORR) with BR-ibrutinib was 93.3%, including 16.7% complete responses (CRs) initially, which increased to 40% with the extension period. Including 1 patient with partial response with lymphocytosis, the best ORR was 96.7%. Sixteen of 21 patients with baseline cytopenias had sustained hematologic improvement. At 12 and 36 months, 86.3% and 70.3% remained progression-free, respectively. All 3 patients treated with ibrutinib-FCR achieved CR. Ibrutinib may enhance CIT efficacy without additive toxicities, providing the rationale for studying this combination in an ongoing phase 3 trial. The study is registered to www.clinicaltrials.gov as #NCT01292135.
Collapse
|
44
|
Spleen-specific isoforms of Pax5 and Ataxin-7 as potential proteomic markers of lymphoma-affected spleen. Mol Cell Biochem 2015; 402:181-91. [PMID: 25573326 DOI: 10.1007/s11010-014-2325-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/23/2014] [Indexed: 02/06/2023]
Abstract
The splenomegaly, enlargement of spleen, has been observed in several diseases. It has been intended to evaluate histochemical alterations, spleen-specific enzymatic and proteomic markers during splenomegaly, and lympho-proliferative disorders from spleen of mice bearing Dalton's lymphoma. The higher expression of c-fos, c-jun, and MAPK testifies proliferation of lymphocytes. The lower expression of Pax5, higher expression of CD3, and the presence of additional form of Zap-70 suggest hypertrophy of follicles and splenomegaly influenced by weak B-cell receptor-mediated signaling, but activated T-cell receptor-mediated signaling. Simultaneously, lower levels of SOD, NDR2, and MIB2 and higher expression levels of Ataxin-7 and LDH also suggest impact of stress either as a cause or effect of cell proliferation. Spleen-specific isoform of Pax5, NDR2, MIB2, and Ataxin-7 can be considered as spleen-specific unique molecular markers for the evaluation of splenomegaly and lympho-proliferative disorders.
Collapse
|
45
|
Prognosis and therapy of chronic lymphocytic leukemia and small lymphocytic lymphoma. Cancer Treat Res 2015; 165:147-75. [PMID: 25655609 DOI: 10.1007/978-3-319-13150-4_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course that has guided treatment principles in as much as anti-leukemic therapy is reserved for patients with active disease. This heterogeneity is somewhat dissected by prognostic markers, many of which represent pathogenic mechanisms. Recently, the introduction of highly active targeted agents and maturing data on predictive markers may lead to more individualized therapeutic approaches. In this chapter, we review key prognostic markers, current and emerging therapy, and will attempt to outline a future "where the two may connect".
Collapse
|
46
|
Krisenko MO, Geahlen RL. Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:254-63. [PMID: 25447675 DOI: 10.1016/j.bbamcr.2014.10.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
SYK (spleen tyrosine kinase) is well-characterized in the immune system as an essential enzyme required for signaling through multiple classes of immune recognition receptors. As a modulator of tumorigenesis, SYK has a bit of a schizophrenic reputation, acting in some cells as a tumor promoter and in others as a tumor suppressor. In many hematopoietic malignancies, SYK provides an important survival function and its inhibition or silencing frequently leads to apoptosis. In cancers of non-immune cells, SYK provides a pro-survival signal, but can also suppress tumorigenesis by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration.
Collapse
Affiliation(s)
- Mariya O Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
47
|
Ruiz-Lafuente N, Alcaraz-García MJ, Sebastián-Ruiz S, Gómez-Espuch J, Funes C, Moraleda JM, García-Garay MC, Montes-Barqueros N, Minguela A, Álvarez-López MR, Parrado A. The gene expression response of chronic lymphocytic leukemia cells to IL-4 is specific, depends on ZAP-70 status and is differentially affected by an NFκB inhibitor. PLoS One 2014; 9:e109533. [PMID: 25280001 PMCID: PMC4184842 DOI: 10.1371/journal.pone.0109533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
Interleukin 4 (IL-4), an essential mediator of B cell development, plays a role in survival of chronic lymphocytic leukemia (CLL) cells. To obtain new insights into the function of the IL-4 pathway in CLL, we analyzed the gene expression response to IL-4 in CLL and in normal B cells (NBC) by oligonucleotide microarrays, resulting in the identification of 232 non-redundant entities in CLL and 146 in NBC (95 common, 283 altogether), of which 189 were well-defined genes in CLL and 123 in NBC (83 common, 229 altogether) (p<0.05, 2-fold cut-off). To the best of our knowledge, most of them were novel IL-4 targets for CLL (98%), B cells of any source (83%), or any cell type (70%). Responses were significantly higher for 54 and 11 genes in CLL and NBC compared to each other, respectively. In CLL, ZAP-70 status had an impact on IL-4 response, since different sets of IL-4 targets correlated positively or negatively with baseline expression of ZAP-70. In addition, the NFκB inhibitor 6-Amino-4-(4-phenoxyphenethylamino)quinazoline, which reversed the anti-apoptotic effect of IL-4, preferentially blocked the response of genes positively correlated with ZAP-70 (e.g. CCR2, SUSD2), but enhanced the response of genes negatively correlated with ZAP-70 (e.g. AUH, BCL6, LY75, NFIL3). Dissection of the gene expression response to IL-4 in CLL and NBC contributes to the understanding of the anti-apoptotic response. Initial evidence of a connection between ZAP-70 and NFκB supports further exploration of targeting NFκB in the context of the assessment of inhibition of the IL-4 pathway as a therapeutic strategy in CLL, especially in patients expressing bad prognostic markers.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Blotting, Western
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Gene Expression Profiling
- Humans
- I-kappa B Proteins/genetics
- Interleukin-4/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/cytology
- Lymphocytes/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- ZAP-70 Protein-Tyrosine Kinase/genetics
Collapse
Affiliation(s)
- Natalia Ruiz-Lafuente
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María-José Alcaraz-García
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Silvia Sebastián-Ruiz
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Joaquín Gómez-Espuch
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Consuelo Funes
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - José-María Moraleda
- Servicio de Hematología y Hemoterapia, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | | | - Natividad Montes-Barqueros
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Alfredo Minguela
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María-Rocío Álvarez-López
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Antonio Parrado
- Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
- * E-mail:
| |
Collapse
|
48
|
Dielschneider RF, Xiao W, Yoon JY, Noh E, Banerji V, Li H, Marshall AJ, Johnston JB, Gibson SB. Gefitinib targets ZAP-70-expressing chronic lymphocytic leukemia cells and inhibits B-cell receptor signaling. Cell Death Dis 2014; 5:e1439. [PMID: 25275600 PMCID: PMC4649506 DOI: 10.1038/cddis.2014.391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/04/2014] [Accepted: 08/06/2014] [Indexed: 01/03/2023]
Abstract
Chronic lymphocytic leukemia (CLL) can be divided into groups based on biomarkers of poor prognosis. The expression of the tyrosine kinase ZAP-70 (member of the Syk tyrosine kinase family) in CLL cells is associated with shorter overall survival in CLL patients. Currently, there is a lack of targeted therapies for patients with ZAP-70 expression in CLL cells. The tyrosine kinase inhibitor gefitinib has been shown to be effective at induce apoptosis in acute myeloid leukemia through inhibition of Syk. In this study, we sought to test the efficacy of gefitinib in primary human ZAP-70+ CLL cells. We demonstrate that gefitinib preferentially induces cell death in ZAP-70-expressing CLL cells with a median IC50 of 4.5 μM. In addition, gefitinib decreases the viability of ZAP-70+ Jurkat T leukemia cells but fails to affect T cells from CLL patients. Western blot analysis shows gefitinib reduces both basal and B-cell receptor (BCR)-stimulated phosphorylation of Syk/ZAP-70, ERK, and Akt in ZAP-70+ CLL cells. Moreover, gefitinib inhibits the pro-survival response from BCR stimulation and decreases pro-survival proteins such as Mcl-1. Finally, ZAP-70 expression sensitizes Raji cells to gefitinib treatment. These results demonstrate that gefitinib specifically targets ZAP-70+ CLL cells and inhibits the BCR cell survival pathway leading to apoptosis. This represents the likelihood of tyrosine kinase inhibitors being effective targeted treatments for ZAP-70+ CLL cells.
Collapse
Affiliation(s)
- R F Dielschneider
- 1] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada [2] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - W Xiao
- Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - J-Y Yoon
- 1] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [2] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - E Noh
- Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - V Banerji
- 1] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [2] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada [3] Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - H Li
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - A J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - J B Johnston
- 1] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [2] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - S B Gibson
- 1] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada [2] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [3] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada [4] Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
49
|
Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 2014; 94:193-205. [PMID: 25080849 DOI: 10.1111/ejh.12427] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.
Collapse
Affiliation(s)
- Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
50
|
Lafarge ST, Li H, Pauls SD, Hou S, Johnston JB, Gibson SB, Marshall AJ. ZAP70 expression directly promotes chronic lymphocytic leukaemia cell adhesion to bone marrow stromal cells. Br J Haematol 2014; 168:139-42. [PMID: 25088442 DOI: 10.1111/bjh.13063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sandrine T Lafarge
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Cancercare Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|