1
|
Cruz-Rodriguez N, Tang H, Bateman B, Tang W, Deininger M. BCR::ABL1 Proteolysis-targeting chimeras (PROTACs): The new frontier in the treatment of Ph + leukemias? Leukemia 2024; 38:1885-1893. [PMID: 39098922 DOI: 10.1038/s41375-024-02365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BCR::ABL1 tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal condition into a chronic ailment. With optimal management, the survival of CML patients diagnosed in the chronic phase is approaching that of age-matched controls. However, only one-third of patients can discontinue TKIs and enter a state of functional cure termed treatment-free remission (TFR), while the remainder require life-long TKI therapy to avoid the recurrence of active leukemia. Approximately 10% of patients exhibit primary or acquired TKI resistance and eventually progress to the blast phase. It is thought that recurrence after attempted TFR originates from CML stem cells (LSCs) surviving despite continued suppression of BCR::ABL1 kinase. Although kinase activity is indispensable for induction of overt CML, kinase-independent scaffold functions of BCR::ABL1 are known to contribute to leukemogenesis, raising the intriguing but as yet hypothetical possibility, that degradation of BCR::ABL1 protein may accomplish what TKIs fail to achieve - eliminate residual LSCs to turn functional into real cures. The advent of BCR::ABL1 proteolysis targeting chimeras (PROTACs), heterobifunctional molecules linking a TKI-based warhead to an E3 ligase recruiter, has moved clinical protein degradation into the realm of the possible. Here we examine the molecular rationale as well as pros and cons of degrading BCR::ABL1 protein. We review reported BCR::ABL1 PROTACs, point out limitations of available data and compounds and suggest directions for future research. Ultimately, clinical testing of a potent and specific BCR::ABL1 degrader will be required to determine the efficacy and tolerability of this approach.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Proteolysis
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm
- Proto-Oncogene Proteins c-abl/metabolism
- Animals
- Proteolysis Targeting Chimera
Collapse
Affiliation(s)
| | - Hua Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Weiping Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Deininger
- Versiti Blood Research Institute, Milwaukee, WI, USA.
- Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Ozel B, Kipcak S, Biray Avci C, Sabour Takanlou M, Sabour Takanlou L, Tezcanli Kaymaz B, Karatekin I, Gunduz C, Selvi Gunel N. Targeting UPR signaling pathway by dasatinib as a promising therapeutic approach in chronic myeloid leukemia. Med Oncol 2022; 39:126. [PMID: 35716222 DOI: 10.1007/s12032-022-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease that mediated by BCR/ABL oncogenic signaling. CML can be targeted with the imatinib, dasatinib, and nilotinib TKI inhibitors, the latter two of them have been approved for imatinib-resistant or -intolerant CML patients. The TKIs resistance occurs by different molecular mechanisms, including overexpression of BCR-ABL, mutations in the TKI binding site of BCR/ABL, and ER-stress. Unfolded protein responses (UPR) is a cytoprotective mechanism which is activated by ER-stress. The IRE1, PERK, and ATF6 are three main arms of the UPR mechanism and are activated by a common mechanism involving the dissociation of the ER-chaperone BiP/GP78. There is a correlation between ER-stress, CML progression, and response to TKI treatment. In the present study, we aimed to determine alterations of the expression levels of genes related to UPR pathway signaling after treatment with dasatinib in K562 chronic myeloid leukemia cell line by quantitative RT-PCR relatively. The array-data revealed that treatment with dasatinib significantly decreased the UPR mechanism-related genes (including HSPA1B, HSPA2, HSPA4L, ATF6, ATF6B, CEBPB, PERK, TRIB3, DNAJB, ERN1, and UHRF1) in K562 cells. In conclusion, the results showed that dasatinib regulates the UPR mechanism that plays a significant role in cancer progression and therapy resistance in CML. Thus, dasatinib-induced dysfunction of the UPR mechanism may promise encouraging therapy for CML.
Collapse
Affiliation(s)
- Buket Ozel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Sezgi Kipcak
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Maryam Sabour Takanlou
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Leila Sabour Takanlou
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Burcin Tezcanli Kaymaz
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Ilknur Karatekin
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Nur Selvi Gunel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
3
|
Zhou W, Li J. Integrated Analysis of Genes Associated With Immune Microenvironment and Distant Metastasis in Uveal Melanoma. Front Cell Dev Biol 2022; 10:874839. [PMID: 35433689 PMCID: PMC9006059 DOI: 10.3389/fcell.2022.874839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Inflammatory infiltration plays an essential role in the progression of tumor malignancy. The aim of this study was to identify genes associated with inflammatory microenvironment and clinical traits for survival prediction of uveal melanoma (UVM) patients. The datasets and clinical characteristics of UVM were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We divided the UVM patients into low and high immune cell infiltration groups, identified differentially expressed genes (DEGs), constructed weighted gene co-expression network, and established prognostic prediction model and nomogram for UVM. Our analysis showed that DEGs were enriched in cytokine signaling in immune system, positive regulation of immune response and adaptive immune system. A total of fifteen candidate genes were extracted from DEGs and genes that were positively associated with tumor metastasis. Subsequently, five prognostic genes were selected to construct the final prognostic prediction model, including two up-regulated genes LHFPL3 antisense RNA 1 (LHFPL3-AS1) and LYN proto-oncogene (LYN), and three down-regulated genes SLCO4A1 antisense RNA 1 (SLCO4A1-AS1), Zinc-α2-glycoprotein 1 (AZGP1) and Deleted in Liver Cancer-1 (DLC1) in the high risk group. The model showed an Area Under Curve (AUC) value of 0.877. Our analysis highlighted the importance of immune-related genes in the progression of UVM and also provided potential targets for the immunotherapy of UVM.
Collapse
|
4
|
De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming Resistance to Kinase Inhibitors: The Paradigm of Chronic Myeloid Leukemia. Onco Targets Ther 2022; 15:103-116. [PMID: 35115784 PMCID: PMC8800859 DOI: 10.2147/ott.s289306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) play crucial roles in cellular proliferation and survival, hence their deregulation is a common event in the pathogenesis of solid and hematologic malignancies. Targeting PKs has been a promising strategy in cancer treatment, and there are now a variety of approved anticancer drugs targeting PKs. However, the phenomenon of resistance remains an obstacle to be addressed and overcoming resistance is a goal to be achieved. Chronic myeloid leukemia (CML) is the first as well as one of the best examples of a cancer that can be targeted by molecular therapy; hence, it can be used as a model disease for other cancers. This review aims to summarize up-to-date knowledge on the main mechanisms implicated in resistance to PK inhibitory therapies and to outline the main strategies that are being explored to overcome resistance. The importance of molecular diagnostics and disease monitoring in counteracting resistance will also be discussed.
Collapse
Affiliation(s)
- Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- Correspondence: Sara De Santis Insitute of Hematology “Lorenzo e Ariosto Seràgnoli”, Via Massarenti 9, Bologna, 40138, ItalyTel +39 051 2143791Fax +39 051 2144037 Email
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Michele Cavo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Kondreddy V, Magisetty J, Keshava S, Rao LVM, Pendurthi UR. Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1987-2005. [PMID: 33827252 PMCID: PMC8147699 DOI: 10.1161/atvbaha.121.316153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
6
|
Jiang S, Wang X, He Y, Huang H, Cao B, Zhang Z, Liu J, Wang Q, Huang Z, Mao X. Suppression of USP7 induces BCR-ABL degradation and chronic myelogenous leukemia cell apoptosis. Cell Death Dis 2021; 12:456. [PMID: 33963175 PMCID: PMC8105359 DOI: 10.1038/s41419-021-03732-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Chronic myelogenous leukemia (CML) is a clonal malignancy of hematopoietic stem cells featured with the fusion protein kinase BCR-ABL. To elicit the mechanism underlying BCR-ABL stability, we perform a screen against a panel of deubiquitinating enzymes (DUBs) and find that the ubiquitin-specific protease 7 (USP7) drastically stabilizes the BCR-ABL fusion protein. Further studies show that USP7 interacts with BCR-ABL and blocks its polyubiquitination and degradation. Moreover, USP7 knockdown triggers BCR-ABL degradation and suppresses its downstream signaling transduction. In line with this finding, genetic or chemical inhibition of USP7 leads to BCR-ABL protein degradation, suppresses BCR/ABL signaling, and induces CML cell apoptosis. Furthermore, we find the antimalarial artesunate (ART) significantly inhibits USP7/BCR-ABL interaction, thereby promoting BCR-ABL degradation and inducing CML cell death. This study thus identifies USP7 as a putative Dub of BCR-ABL and provides a rationale in targeting USP7/BCR-ABL for the treatment of CML.
Collapse
Affiliation(s)
- Shuoyi Jiang
- Department of Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.,Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Xiaoge Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuanming He
- Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.,Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Hongbiao Huang
- Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Biyin Cao
- Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Jinbao Liu
- Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qi Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhenqian Huang
- Department of Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xinliang Mao
- Department of Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China. .,Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China. .,Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
7
|
Lu T, Cao J, Zou F, Li X, Wang A, Wang W, Liang H, Liu Q, Hu C, Chen C, Hu Z, Wang W, Li L, Ge J, Shen Y, Ren T, Liu J, Xia R, Liu Q. Discovery of a highly potent kinase inhibitor capable of overcoming multiple imatinib-resistant ABL mutants for chronic myeloid leukemia (CML). Eur J Pharmacol 2021; 897:173944. [PMID: 33581133 DOI: 10.1016/j.ejphar.2021.173944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
As the critical driving force for chronic myeloid leukemia (CML), BCR gene fused ABL kinase has been extensively explored as a validated target of drug discovery. Although imatinib has achieved tremendous success as the first-line treatment for CML, the long-term application ultimately leads to resistance, primarily via various acquired mutations occurring in the BCR-ABL kinase. Although dasatinib and nilotinib have been approved as second-line therapies that could overcome some of these mutants, the most prevalent gatekeeper T315I mutant remains unconquered. Here, we report a novel type II kinase inhibitor, CHMFL-48, that potently inhibits the wild-type BCR-ABL (wt) kinase as well as a panel of imatinib-resistant mutants, including T315I, F317L, E255K, Y253F, and M351T. CHMFL-48 displayed great inhibitory activity against ABL wt (IC50: 1 nM, 70-fold better than imatinib) and the ABL T315I mutant (IC50: 0.8 nM, over 10,000-fold better than imatinib) in a biochemical assay and potently blocked the autophosphorylation of BCR-ABL wt and BCR-ABL mutants in a cellular context, which further affected downstream signalling mediators, including signal transducer and activator of transcription 5 (STAT5) and CRK like proto-oncogene (CRKL), and led to the cell cycle progression blockage as well as apoptosis induction. CHMFL-48 also exhibited great anti-leukemic efficacies in vivo in K562 cells and p210-T315I-transformed BaF3 cell-inoculated murine models. This discovery extended the pharmacological diversity of BCR-ABL kinase inhibitors and provided more potential options for anti-CML therapies.
Collapse
Affiliation(s)
- Tingting Lu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Huamin Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Lili Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yang Shen
- The First Hospital of Jiaxing, 1882 Zhonghuan South Rd, Jiaxing, Zhejiang, 314000, PR China
| | - Tao Ren
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
8
|
|
9
|
Teng YQ, Jin H, Liu ZY, Li DD, Ye XM, Yang LY, Zhou J. The Lyn-SIRT1 signaling pathway is involved in imatinib resistance in chronic myeloid leukaemia. Am J Transl Res 2020; 12:2711-2725. [PMID: 32655803 PMCID: PMC7344074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Imatinib resistance is commonly associated with the activation of BCR-ABL signaling in chronic myeloid leukaemia (CML). The activation of Lyn can result in imatinib resistance by regulating the formation of BCR-ABL protein complexes. SIRT1 is a novel survival pathway activated by BCR-ABL expression in haematopoietic progenitor cells. This study aimed to investigate whether the signaling pathway of Lyn/BCR-ABL/SIRT1 could mediate imatinib resistance in CML. METHODS The MTT assay was used to detect cell viability. Apoptosis was measured by a flow cytometry assay. Protein expression was detected by Western blotting. Knockdown CML cells were constructed by shRNA interference. The CML mouse model was used to investigate the role of SIRT1 in CML in vivo. RESULTS Lyn was overexpressed in K562R cells. BCR-ABL phosphorylation and activation were promoted by Lyn. Imatinib suppressed BCR-ABL phosphorylation in both K562 and K562R cells. BCR-ABL positively regulated SIRT1 and Foxo1 but negatively regulated acetylated Foxo1 (Ac-Foxo1) and p53 expression. Pharmacological inhibition of SIRT1 or knockdown of SIRT1 increased apoptosis and reduced growth in vitro and in vivo. Foxo1 was downregulated by SIRT1 inhibition or knockdown, while Ac-Foxo1 and p53 were upregulated. In vivo experiments showed that imatinib and/or SIRT1 inhibition both prolonged the survival of the CML mouse model and that the effects of imatinib were enhanced in combination with SIRT1 inhibition. CONCLUSION We proposed a novel molecular mechanism of imatinib resistance in CML in which the high expression of Lyn in imatinib-resistant cells inhibited Ac-Foxo1 and p53 expression through the BCR-ABL/SIRT1/Foxo1 signaling pathway, thus reducing apoptosis and mediating imatinib resistance.
Collapse
Affiliation(s)
- Yue-Qiu Teng
- Central Laboratory of Blood Cancer, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, P. R. China
| | - Hua Jin
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical UniversityHarbin 150040, Heilongjiang Province, P. R. China
| | - Zhi-Yu Liu
- Central Laboratory of Blood Cancer, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, P. R. China
| | - Dan-Dan Li
- Department of Hematology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, P. R. China
| | - Xiang-Mei Ye
- Central Laboratory of Blood Cancer, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, P. R. China
| | - Lu-Yuan Yang
- Central Laboratory of Blood Cancer, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, P. R. China
| | - Jin Zhou
- Department of Hematology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, P. R. China
| |
Collapse
|
10
|
Mechanisms of Disease Progression and Resistance to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia: An Update. Int J Mol Sci 2019; 20:ijms20246141. [PMID: 31817512 PMCID: PMC6940932 DOI: 10.3390/ijms20246141] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the presence of the BCR-ABL1 fusion gene, which encodes a constitutive active tyrosine kinase considered to be the pathogenic driver capable of initiating and maintaining the disease. Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1, some patients may not respond (primary resistance) or may relapse after an initial response (secondary resistance). In a small proportion of cases, development of resistance is accompanied or shortly followed by progression from chronic to blastic phase (BP), characterized by a dismal prognosis. Evolution from CP into BP is a multifactorial and probably multistep phenomenon. Increase in BCR-ABL1 transcript levels is thought to promote the onset of secondary chromosomal or genetic defects, induce differentiation arrest, perturb RNA transcription, editing and translation that together with epigenetic and metabolic changes may ultimately lead to the expansion of highly proliferating, differentiation-arrested malignant cells. A multitude of studies over the past two decades have investigated the mechanisms underlying the closely intertwined phenomena of drug resistance and disease progression. Here, we provide an update on what is currently known on the mechanisms underlying progression and present the latest acquisitions on BCR-ABL1-independent resistance and leukemia stem cell persistence.
Collapse
|
11
|
Liang X, He X, Li Y, Wang J, Wu D, Yuan X, Wang X, Li G. Lyn regulates epithelial-mesenchymal transition in CS-exposed model through Smad2/3 signaling. Respir Res 2019; 20:201. [PMID: 31477108 PMCID: PMC6720409 DOI: 10.1186/s12931-019-1166-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is progressive and not fully reversible. Cigarette smoking is one of the most commonly and important risk factors for COPD, which contributes to airway remodeling, the outstanding pathological changes in COPD. One potential mechanism which might be important for airway remodeling is the process called epithelial-mesenchymal transition (EMT). However, the underlying molecular mechanisms of EMT in CS-induced COPD are still poorly understood. METHODS Two Gene Expression Omnibus (GEO) datasets (GSE108134 and GSE5058) were combined to identify the key genes involved in COPD. Then, single-gene analysis of Lyn was performed. Lyn expression was confirmed in patients with COPD. 16HBE cells were treated with cigarette smoking extracts (CSE). Wild type (WT) C57BL/6 J mice and Lyn+/+ transgenic mice were exposed to CSE to establish CS-exposed model. Pathological changes were observed by hematoxylin-eosin staining. The expression levels of EMT markers were examined by using western blot and immunofluorescence. The expression and phosphorylation levels of Lyn and Smad2/3 were detected as well. RESULTS The gain of mesenchymal markers vimentin and α-SMA with a concomitant loss of E-cadherin was observed in both in vivo and in vitro studies. Meanwhile, cigarette smoking extracts (CSE) induced EMT in 16HBE cells in a time- and dose- dependent manner. Furthermore, by analyzing GEO datasets and using molecular methods, we explored a kinase, Lyn, its expression correlated with the expression of E-cadherin, vimentin and α-SMA in CS-exposed model. Moreover, we found that EMT induced by CSE was regulated by activated Lyn through phosphorylation of Smad2/3. CONCLUSIONS In summary, we found that Lyn regulates epithelial-mesenchymal transition in CS-exposed model through Smad2/3 signaling. As a kinase, Lyn is "druggable", and might provide a therapeutic opportunity for targeting EMT. Therefore, our research might provide a new method to treat COPD by targeting Lyn kinase specifically.
Collapse
Affiliation(s)
- Xiaobo Liang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Xiang He
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Affiliated Hospital of Fudan University, Shanghai, 200032 China
| | - Junyi Wang
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Dehong Wu
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Guoping Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| |
Collapse
|
12
|
Xin P, Xu W, Zhu X, Li C, Zheng Y, Zheng T, Cheng W, Peng Q. Protective autophagy or autophagic death: effects of BEZ235 on chronic myelogenous leukemia. Cancer Manag Res 2019; 11:7933-7951. [PMID: 31686909 PMCID: PMC6709803 DOI: 10.2147/cmar.s204472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the effects of BEZ235 on chronic myeloid leukemia (CML) cells. Methods MTS assay was used to detect the proliferation of CML cells. The proteins expression were detected by Western blot assay. The effects of BEZ235 on autophagy in CML cells were verified through transmission electron microscopy and evaluated by laser confocal microscopy. Annexin V-FITC/PI double staining flow cytometry was used to detect apoptosis. A xenograft model was established to observe the therapeutic effect of BEZ235 in vivo. Results BEZ235 could inhibit the proliferation of CML cells; CQ and 3-MA could increase the proliferation inhibition and Z-VAD-FMK can reduce the proliferation inhibition of BEZ235 on CML cells (P<0.05). Results of TEM showed that the autophagosomes of CML cells treated with BEZ235 increased (P<0.05). The results by confocal microscopy showed that the autophagic activity of K562 cells increased with BEZ235 treatment. When BEZ235 combined with CQ, BEZ235-induced autophagic flow was blocked. FCM results showed that BEZ235 could induces apoptosis in CML cells. Z-VAD-FMK could decrease the apoptosis of CML cells induced by BEZ235. CQ increased the apoptosis of CML cells induced by BEZ235 (P<0.05). Western blot showed that BEZ235 inhibited the phosphorylation of AKT and S6K. BEZ235 alone could upregulate the expression of cleaved caspase-3 and LC3II. When combined with Z-VAD-FMK, the expression of cleaved caspase-3 was lower than that of BEZ235 alone. When combined with CQ, the expression of cleaved caspase-3 and LC3II were higher than those of BEZ235 alone (P<0.05). BEZ235 could inhibit the growth of xenografts of CML cell line. Conclusion BEZ235 can inhibit the proliferation of CML cells, induce apoptosis, and enhance autophagy activity. It induces protective autophagy. The combination of CQ can enhance the apoptosis and proliferation inhibition of CML cells induced by BEZ235.
Collapse
Affiliation(s)
- Pengliang Xin
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Wenqian Xu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Xiongpeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Chuntuan Li
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Yan Zheng
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Tingjin Zheng
- Central Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| | - Wenzhao Cheng
- Stem Cell Translational Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Qunyi Peng
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
13
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
14
|
Zhang Q, Meng X, Qin G, Xue X, Dang N. Lyn Kinase Promotes the Proliferation of Malignant Melanoma Cells through Inhibition of Apoptosis and Autophagy via the PI3K/Akt Signaling Pathway. J Cancer 2019; 10:1197-1208. [PMID: 30854129 PMCID: PMC6400685 DOI: 10.7150/jca.28908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/05/2019] [Indexed: 01/02/2023] Open
Abstract
Melanoma is a malignant tumor of cutaneous melanocytes that is characterized by high grade malignancy, rapid progression and high mortality. Thus far, its specific etiological mechanism has been unclear. In this study, we discovered that Lyn kinase expression was up-regulated in melanoma tissues and cells. The function of Lyn was determined by knocking down its expression with a lentivirus containing Lyn shRNA and upregulating its expression with pcDNA3.1-Lyn in the melanoma cell lines M14 and A375. The results showed that Lyn knockdown could significantly inhibit the proliferation, migration and invasiveness through its inhibition of apoptosis and autophagy via the PI3K/Akt pathway in melanoma cell lines. This was further confirmed by treatment with PI3K inhibitor BEZ235. Up-regulation of Lyn promoted the expression of p-Akt and Cyclin D1. Additionally, we investigated the effects of Lyn inhibitor Bafetinib on melanoma cells and the results were consistent with Lyn knockdown. Collectively, our results indicated that Lyn plays a carcinogenic role in multiple cellular functions during melanoma development through regulating apoptosis and autophagy via the PI3K/Akt pathway and may be a valuable potential target for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
- Taishan Medical University, Taian, Shandong Province, China
- Department of Dermatology, No. 960 Hospital of The Chinese People's Liberation Army, Taian, Shandong Province, China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| | - Guojing Qin
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xiaotong Xue
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ningning Dang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
15
|
Bunaciu RP, MacDonald RJ, Jensen HA, Gao F, Wang X, Johnson L, Varner JD, Yen A. Retinoic acid and 6-formylindolo(3,2-b)carbazole (FICZ) combination therapy reveals putative targets for enhancing response in non-APL AML. Leuk Lymphoma 2018; 60:1697-1708. [PMID: 30570341 DOI: 10.1080/10428194.2018.1543880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In non-acute promyelotic leukemia (APL)- non myelocytic leukemia (AML), identification of a signaling signature would predict potentially actionable targets to enhance differentiation effects of all-trans-retinoic acid (RA) and make combination differentiation therapy realizable. Components of such a signaling machine/signalsome found to drive RA-induced differentiation discerned in a FAB M2 cell line/model (HL-60) were further characterized and then compared against AML patient expression profiles. FICZ, known to enhance RA-induced differentiation, was used to experimentally augment signaling for analysis. FRET revealed novel signalsome protein associations: CD38 with pS376SLP76 and caveolin-1 with CD38 and AhR. The signaling molecules driving differentiation in HL-60 cluster in non-APL AML de novo samples, too. Pearson correlation coefficients for this molecular ensemble are nearer 1 in the FAB M2 subtype than in non-APL AML. SLP76 correlation to RXRα and p47phox were conserved in FAB M2 model and patient subtype but not in general non-APL AML. The signalsome ergo identifies potential actionable targets in AML.
Collapse
Affiliation(s)
- Rodica P Bunaciu
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Robert J MacDonald
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Holly A Jensen
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA.,b Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , NY , USA
| | - Feng Gao
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA.,c Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , China
| | - Xin Wang
- c Department of Biomedical Sciences , City University of Hong Kong , Hong Kong , China
| | - Lynn Johnson
- d Cornell Statistical Unit , Cornell University , Ithaca , NY , USA
| | - Jeffrey D Varner
- b Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , NY , USA
| | - Andrew Yen
- a Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| |
Collapse
|
16
|
Xu Y, He Q, Lu Y, Tao F, Zhao L, Ou R. MicroRNA-218-5p inhibits cell growth and metastasis in cervical cancer via LYN/NF-κB signaling pathway. Cancer Cell Int 2018; 18:198. [PMID: 30524205 PMCID: PMC6278036 DOI: 10.1186/s12935-018-0673-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Background We are committed to investigate miR-218-5 effects on the progression of cervical cancer (CC) cell and find out the molecular mechanism. Methods GSE9750 was obtained from GEO database and R Limma package was applied to filter out dysregulated genes. The pathways were enriched by GSEA software, ClusterProfiler and enrichplot packages to predict the function of DEGs. The binding sites of LYN were detected by miRanda and TargetScan. The miR2Disease database was used to find miRNAs related with CC. The expression of miR-218-5p and LYN were quantified by qRT-PCR and that of LYN protein was measured by western blot. The targeted relationships between miR-218-5p and LYN were verified by dual-luciferase reporter assay. Colony formation assays, wound healing, transwell invasion assay and flow cytometer analysis were performed to investigate the roles that miR-218-5p and LYN played in migration, invasion and death of cervical carcinoma. Xenografts established in nude mice were used to assess tumor growth in vivo. Results The highly expressed mRNA LYN was selected by microarray analysis in GSE9750. NF-κB signaling pathway was enriched base on GSEA results. The expression of miR-218-5p was lower but LYN was higher in CC primary tumors compared with normal control. In addition, miR-218-5p could regulate the expression of LYN in HeLa cells negatively. Overexpression of LYN could promote cell migration and invasion, but inhibit cell death in vitro, and also promote tumor formation in vivo via activating NF-κB signaling pathway which could be reversed by miR-218-5p. Conclusions MiR-218-5p suppressed the progression of CC via LYN/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yunsheng Xu
- 1Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China.,2Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen, 518107 Guangdong China
| | - Qin He
- 3Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yiyi Lu
- 3Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Fengxing Tao
- 3Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Liang Zhao
- 1Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Rongying Ou
- 4Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
17
|
Tsubaki M, Takeda T, Kino T, Sakai K, Itoh T, Imano M, Nakayama T, Nishio K, Satou T, Nishida S. Contributions of MET activation to BCR-ABL1 tyrosine kinase inhibitor resistance in chronic myeloid leukemia cells. Oncotarget 2018; 8:38717-38730. [PMID: 28418880 PMCID: PMC5503566 DOI: 10.18632/oncotarget.16314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/20/2017] [Indexed: 12/02/2022] Open
Abstract
Resistance to the breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitor (TKI) imatinib poses a major problem when treating chronic myeloid leukemia (CML). Imatinib resistance often results from a secondary mutation in BCR-ABL1. However, in the absence of a mutation in BCR-ABL1, the basis of BCR-ABL1-independent resistance must be elucidated. To gain insight into the mechanisms of BCR-ABL1-independent imatinib resistance, we performed an array-based comparative genomic hybridization. We identified various resistance-related genes, and focused on MET. Treatment with a MET inhibitor resensitized K562/IR cells to BCR-ABL1 TKIs. Combined treatment of K562/IR cells with imatinib and a MET inhibitor suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activation, but did not affect AKT activation. Our findings implicate the MET/ERK and MET/JNK pathways in conferring resistance to imatinib, providing new insights into the mechanisms of BCR-ABL1 TKI resistance in CML.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Toshiki Kino
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kindai University School of Agriculture, Nara, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| |
Collapse
|
18
|
Liu S, Hao X, Ouyang X, Dong X, Yang Y, Yu T, Hu J, Hu L. Tyrosine kinase LYN is an oncotarget in human cervical cancer: A quantitative proteomic based study. Oncotarget 2018; 7:75468-75481. [PMID: 27690342 PMCID: PMC5342753 DOI: 10.18632/oncotarget.12258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/02/2016] [Indexed: 01/05/2023] Open
Abstract
Cervical cancer is one of the most common malignant tumor in women. The mechanisms of cervical cancer are intricate and have not been fully understood. Therefore, we employed iTRAQ to obtain novel proteins profile which participates in the tumor oncogenesis of cervical cancer. 3300 proteins were identified aberrantly expressed in cervical cancer, and western bolt was performed to validate the results of iTRAQ. Then, we selected LYN for further study. Immunohistochemistry identified that LYN expression was significantly increased in cervical cancer tissues than that in cancer adjacent normal cervical tissues and normal cervical tissues. The increased LYN expression was significantly correlated with cancer differentiation and FIGO stage. Silencing LYN inhibited cell proliferation, migration and invasion, conversely, overexpression LYN promoted cell proliferation, migration and invasion. In terms of mechanism, LYN could also promote cervical cancer cells metastasis through activating IL-6/STAT3 pathway. In vivo study, overexpression LYN promoted tumor growth, meanwhile knockdown LYN inhibited tumor growth. These results indicate that LYN tyrosine kinase is an oncogenic gene and can serve as a novel target for cervical cancer research and therapy.
Collapse
Affiliation(s)
- Shuaibin Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaoming Hao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaolan Ouyang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Lina Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
19
|
Leonard JT, Rowley JSJ, Eide CA, Traer E, Hayes-Lattin B, Loriaux M, Spurgeon SE, Druker BJ, Tyner JW, Chang BH. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia. Sci Transl Med 2017; 8:354ra114. [PMID: 27582059 DOI: 10.1126/scitranslmed.aaf5309] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+)ALL) remains a challenge. Although the addition of targeted tyrosine kinase inhibitors (TKIs) to standard cytotoxic therapy has greatly improved upfront treatment, treatment-related morbidity and mortality remain high. TKI monotherapy provides only temporary responses and renders patients susceptible to the development of TKI resistance. Thus, identifying agents that could enhance the activity of TKIs is urgently needed. Recently, a selective inhibitor of B cell lymphoma 2 (BCL-2), ABT-199 (venetoclax), has shown impressive activity against hematologic malignancies. We demonstrate that the combination of TKIs with venetoclax is highly synergistic in vitro, decreasing cell viability and inducing apoptosis in Ph(+)ALL. Furthermore, the multikinase inhibitors dasatinib and ponatinib appear to have the added advantage of inducing Lck/Yes novel tyrosine kinase (LYN)-mediated proapoptotic BCL-2-like protein 11 (BIM) expression and inhibiting up-regulation of antiapoptotic myeloid cell leukemia 1 (MCL-1), thereby potentially overcoming the development of venetoclax resistance. Evaluation of the dasatinib-venetoclax combination for the treatment of primary Ph(+)ALL patient samples in xenografted immunodeficient mice confirmed the tolerability of this drug combination and demonstrated its superior antileukemic efficacy compared to either agent alone. These data suggest that the combination of dasatinib and venetoclax has the potential to improve the treatment of Ph(+)ALL and should be further evaluated for patient care.
Collapse
Affiliation(s)
- Jessica T Leonard
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joelle S J Rowley
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Hayes-Lattin
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen E Spurgeon
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Division of Pediatric Hematology and Oncology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
20
|
Kumar R, Kapoor R. Primary imatinib failure rescued by dasatinib and maintained by reintroduction of imatinib. Rev Bras Hematol Hemoter 2017; 39:360-363. [PMID: 29150111 PMCID: PMC5693385 DOI: 10.1016/j.bjhh.2017.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 11/28/2022] Open
Affiliation(s)
- Rajiv Kumar
- Army Hospital (Research & Referral), New Delhi, India.
| | - Rajan Kapoor
- Army Hospital (Research & Referral), New Delhi, India
| |
Collapse
|
21
|
Patel AB, O'Hare T, Deininger MW. Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and the Development of Next Generation ABL Kinase Inhibitors. Hematol Oncol Clin North Am 2017; 31:589-612. [PMID: 28673390 PMCID: PMC5505321 DOI: 10.1016/j.hoc.2017.04.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic myeloid leukemia is increasingly viewed as a chronic illness; most patients have a life expectancy close to that of the general population. Despite progress made using BCR-ABL1 tyrosine kinase inhibitors (TKIs), drug resistance via BCR-ABL1-dependent and BCR-ABL1-independent mechanisms continues to be an issue. BCR-ABL1-dependent resistance is primarily mediated through oncoprotein kinase domain mutations and usually results in overt resistance to TKIs. However, BCR-ABL1-independent resistance in the setting of effective BCR-ABL1 inhibition is recognized as a major contributor to minimal residual disease. Efforts to eradicate persistent leukemic stem cells have focused on combination therapy.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biological Availability
- Biomarkers
- Cell Survival/drug effects
- Cell Survival/genetics
- Dose-Response Relationship, Drug
- Drug Discovery
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Immunotherapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Molecular Targeted Therapy
- Mutation
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ami B Patel
- Department of Hematology and Oncology, Huntsman Cancer Institute, 2000 Circle of Hope Drive, The University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Thaper D, Vahid S, Nip KM, Moskalev I, Shan X, Frees S, Roberts ME, Ketola K, Harder KW, Gregory-Evans C, Bishop JL, Zoubeidi A. Targeting Lyn regulates Snail family shuttling and inhibits metastasis. Oncogene 2017; 36:3964-3975. [PMID: 28288135 DOI: 10.1038/onc.2017.5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/27/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023]
Abstract
The acquisition of an invasive phenotype by epithelial cells occurs through a loss of cellular adhesion and polarity, heralding a multistep process that leads to metastatic dissemination. Since its characterization in 1995, epithelial-mesenchymal transition (EMT) has been closely linked to the metastatic process. As a defining aspect of EMT, loss of cell adhesion through downregulation of E-cadherin is carried out by several transcriptional repressors; key among them the SNAI family of transcription factors. Here we identify for the first time that Lyn kinase functions as a key modulator of SNAI family protein localization and stability through control of the Vav-Rac1-PAK1 (Vav-Rac1-p21-activated kinase) pathway. Accordingly, targeting Lyn in vitro reduces EMT and in vivo reduces metastasis of primary tumors. We also demonstrate the clinical relevance of targeting Lyn as a key player controlling EMT; patient samples across many cancers revealed a strong negative correlation between Lyn and E-cadherin, and high Lyn expression in metastatic tumors as well as metastasis-prone primary tumors. This work reveals a novel pancancer mechanism of Lyn-dependent control of EMT and further underscores the role of this kinase in tumor progression.
Collapse
Affiliation(s)
- D Thaper
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| | - S Vahid
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| | - K M Nip
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| | - I Moskalev
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - X Shan
- Faculty of Medicine, Department Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - S Frees
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - M E Roberts
- Faculty of Science, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - K Ketola
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - K W Harder
- Faculty of Science, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - C Gregory-Evans
- Faculty of Medicine, Department Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J L Bishop
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - A Zoubeidi
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Plani-Lam JHC, Slavova-Azmanova NS, Kucera N, Louw A, Satiaputra J, Singer P, Lam KP, Hibbs ML, Ingley E. Csk-binding protein controls red blood cell development via regulation of Lyn tyrosine kinase activity. Exp Hematol 2016; 46:70-82.e10. [PMID: 27751872 DOI: 10.1016/j.exphem.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
Erythropoiesis is controlled principally through erythropoietin (Epo) receptor signaling, which involves Janus kinase 2 (JAK2) and Lyn tyrosine kinase, both of which are important for regulating red blood cell (RBC) development. Negative regulation of Lyn involves C-Src kinase (Csk)-mediated phosphorylation of its C-terminal tyrosine, which is facilitated by the transmembrane adaptor Csk-binding protein (Cbp). Although Cbp has significant functions in controlling Lyn levels and activity in erythroid cells in vitro, its importance to primary erythroid cell development and signaling has remained unclear. To address this, we assessed the consequence of loss of Cbp on the erythroid compartment in vivo and whether Epo-responsive cells isolated from Cbp-knockout mice exhibited altered signaling. Our data show that male Cbp-/- mice display a modest but significant alteration to late erythroid development in bone marrow with evidence of increased erythrocytes in the spleen, whereas female Cbp-/- mice exhibit a moderate elevation in early erythroid progenitors (not seen in male mice) that does not influence the later steps in RBC development. In isolated primary erythroid cells and cell lines generated from Cbp-/- mice, survival signaling through Lyn/Akt/FoxO3 was elevated, resulting in sustained viability during differentiation. The high Akt activity disrupted GAB2/SHP-2 feedback inhibition of Lyn; however, the elevated Lyn activity also increased inhibitory signaling via SHP-1 to restrict the Erk1/2 pathway. Interestingly, whereas loss of Cbp led to mild changes to late RBC development in male mice, this was not apparent in female Cbp-/- mice, possibly due to their elevated estrogen, which is known to facilitate early progenitor self-renewal.
Collapse
Affiliation(s)
- Janice H C Plani-Lam
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Neli S Slavova-Azmanova
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Nicole Kucera
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Alison Louw
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiulia Satiaputra
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Peter Singer
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Laboratory of Immunology, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Evan Ingley
- Cell Signalling Group, Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
24
|
ABCB1 Overexpression Is a Key Initiator of Resistance to Tyrosine Kinase Inhibitors in CML Cell Lines. PLoS One 2016; 11:e0161470. [PMID: 27536777 PMCID: PMC4990177 DOI: 10.1371/journal.pone.0161470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/06/2016] [Indexed: 02/06/2023] Open
Abstract
The tyrosine kinase inhibitor (TKI) imatinib has resulted in excellent responses in the majority of Chronic Myeloid Leukaemia (CML) patients; however, resistance is observed in 20–30% of patients. More recently, resistance to the second generation TKIs, nilotinib and dasatinib, has also been observed albeit at a lower incidence. ABCB1 has previously been implicated in TKI export and its overexpression linked to TKI resistance. In this study the dynamics of nilotinib resistance was studied in CML cell lines with particular focus on ABCB1 expression levels during development of resistance. Results revealed ABCB1 overexpression is likely an important initiator of nilotinib resistance in vitro. ABCB1 overexpression was also observed in cell lines as an intermediate step during development of resistance to imatinib and dasatinib in vitro. We conclude that ABCB1 overexpression may provide an initial platform to facilitate development of additional mechanisms for resistance to TKIs. This provides a rationale for investigating this phenomenon in patients undergoing TKI therapy.
Collapse
|
25
|
Sweet K, Pinilla-Ibarz J. Early switch in tyrosine kinase inhibitor therapy for patients with chronic myeloid leukemia: An emerging clinical question. Crit Rev Oncol Hematol 2016; 103:99-108. [DOI: 10.1016/j.critrevonc.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 03/29/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023] Open
|
26
|
The clinical significance of ABCB1 overexpression in predicting outcome of CML patients undergoing first-line imatinib treatment. Leukemia 2016; 31:75-82. [DOI: 10.1038/leu.2016.179] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
|
27
|
Telford N, Alexander S, McGinn OJ, Williams M, Wood KM, Bloor A, Saha V. Myeloproliferative neoplasm with eosinophilia and T-lymphoblastic lymphoma with ETV6-LYN gene fusion. Blood Cancer J 2016; 6:e412. [PMID: 27058227 PMCID: PMC4855251 DOI: 10.1038/bcj.2016.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- N Telford
- Oncology Cytogenetics, The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, UK
| | - S Alexander
- Children's Cancer Group, Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer, University of Manchester, Manchester, UK
| | - O J McGinn
- Children's Cancer Group, Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer, University of Manchester, Manchester, UK
| | - M Williams
- Leukaemia Biology Group, Institute of Cancer, University of Manchester, Manchester, UK
| | - K M Wood
- Department of Cellular Pathology, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - A Bloor
- Haematology and Transplant Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - V Saha
- Children's Cancer Group, Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer, University of Manchester, Manchester, UK
- Tata Translational Cancer Research Centre, Tata Medical Center, Kolkata, India
| |
Collapse
|
28
|
Kazi JU, Kabir NN, Rönnstrand L. Brain-Expressed X-linked (BEX) proteins in human cancers. Biochim Biophys Acta Rev Cancer 2015; 1856:226-33. [PMID: 26408910 DOI: 10.1016/j.bbcan.2015.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The Brain-Expressed X-linked (BEX) family proteins are comprised of five human proteins including BEX1, BEX2, BEX3, BEX4 and BEX5. BEX family proteins are expressed in a wide range of tissues and are known to play a role in neuronal development. Recent studies suggest a role of BEX family proteins in cancers. BEX1 expression is lost in a subgroup of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Expression of BEX1 controls cell surface receptor signaling and restores imatinib response in resistant cells. BEX2 is overexpressed in a group of breast cancer patients and also in gliomas. Increased BEX2 expression led to enhanced NF-κB signaling as well as cell proliferation. Although BEX2 acts as tumor promoter in a subset of breast cancer, BEX3 expression displayed an opposite role. Overexpression of BEX3 resulted in inhibition of tumor formation in breast cancer mouse xenograft models. The role of BEX4 and BEX5 in cancer has not yet been defined. Collectively this suggests that BEX family members have distinct roles in cancers. While BEX1 and BEX3 act as tumor suppressors, BEX2 seems to act as an oncogene.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404 ,Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh.
| | - Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404 ,Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
29
|
Gioia R, Trégoat C, Dumas PY, Lagarde V, Prouzet-Mauléon V, Desplat V, Sirvent A, Praloran V, Lippert E, Villacreces A, Leconet W, Robert B, Vigon I, Roche S, Mahon FX, Pasquet JM. CBL controls a tyrosine kinase network involving AXL, SYK and LYN in nilotinib-resistant chronic myeloid leukaemia. J Pathol 2015; 237:14-24. [PMID: 25965880 DOI: 10.1002/path.4561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022]
Abstract
A tyrosine kinase network composed of the TAM receptor AXL and the cytoplasmic kinases LYN and SYK is involved in nilotinib-resistance of chronic myeloid leukaemia (CML) cells. Here, we show that the E3-ubiquitin ligase CBL down-regulation occurring during prolonged drug treatment plays a critical role in this process. Depletion of CBL in K562 cells increases AXL and LYN protein levels, promoting cell resistance to nilotinib. Conversely, forced expression of CBL in nilotinib-resistant K562 cells (K562-rn) dramatically reduces AXL and LYN expression and resensitizes K562-rn cells to nilotinib. A similar mechanism was found to operate in primary CML CD34(+) cells. Mechanistically, the E3-ligase CBL counteracts AXL/SYK signalling, promoting LYN transcription by controlling AXL protein stability. Surprisingly, the role of AXL in resistance was independent of its ligand GAS6 binding and its TK activity, in accordance with a scaffold activity for this receptor being involved in this cellular process. Collectively, our results demonstrate a pivotal role for CBL in the control of a tyrosine kinase network mediating resistance to nilotinib treatment in CML cells.
Collapse
Affiliation(s)
- Romain Gioia
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Claire Trégoat
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Pierre-Yves Dumas
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Valérie Lagarde
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Valérie Prouzet-Mauléon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Vanessa Desplat
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Audrey Sirvent
- CNRS UMR5237, Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
| | - Vincent Praloran
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Eric Lippert
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Arnaud Villacreces
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Wilhem Leconet
- Equipe Immunociblage et Radiobiologie en Oncologie, IRCM Institut de Recherche en Cancérologie de Montpellier, INSERM U896-Université Montpellier1-ICM, Montpellier, France
| | - Bruno Robert
- Equipe Immunociblage et Radiobiologie en Oncologie, IRCM Institut de Recherche en Cancérologie de Montpellier, INSERM U896-Université Montpellier1-ICM, Montpellier, France
| | - Isabelle Vigon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Serge Roche
- CNRS UMR5237, Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
| | - François-Xavier Mahon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Jean-Max Pasquet
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| |
Collapse
|
30
|
Abstract
Cancer cells are dependent on protein kinase signalling networks to drive proliferation and to promote survival, and, accordingly, kinases continue to represent a major target class for development of anti-cancer therapeutics. Kinase inhibitors nevertheless have yielded only limited success with many different malignancies due to the inability of single agents to sustain a durable clinical response. Cancer cell kinomes are highly resilient and able to bypass targeted kinase inhibition, leading to tumour resistance. A novel platform has been developed to analyse the activity of the expressed kinome using MIBs (multiplexed inhibitor beads), which consist of Sepharose beads with covalently immobilized inhibitors that preferentially bind activated kinases. Coupling MIB capture with MS (MIB-MS) allows simultaneous determination of the activity of over 75% of the expressed kinome, facilitating high-throughput assessment of adaptive kinase responses resulting from deregulated feedback and feedforward regulatory mechanisms. The adaptive response frequently involves transcriptional up-regulation of specific kinases that allow bypass of the targeted kinase. Understanding how the kinome reprogrammes to targeted kinase inhibition will allow novel therapeutic strategies to be developed for durable clinical responses.
Collapse
|
31
|
Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, Izon D, Campbell L, Cheng HC, Nandurkar H. Src family kinases and their role in hematological malignancies. Leuk Lymphoma 2015; 56:577-86. [PMID: 24898666 DOI: 10.3109/10428194.2014.907897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Src family protein tyrosine kinases (SFKs) are non-receptor intracellular kinases that have important roles in both hematopoiesis and leukemogenesis. The derangement of their expression or activation has been demonstrated to contribute to hematological malignancies. This review first examines the mechanisms of SFK overexpression and hyperactivation, emphasizing the dysregulation of the upstream modulators. Subsequently, the role of SFK up-regulation in the initiation, progression and therapy resistance of many hematological malignancies is also analyzed. The presented evidence endeavors to highlight the influence of SFK up-regulation on an extensive number of hematological malignancies and the need to consider them as candidates in targeted anticancer therapy.
Collapse
Affiliation(s)
- Matthew Ku
- Haematology Department and Victorian Cancer Cytogenetics Service, St Vincent's Hospital , Fitzroy , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gniot M, Lewandowski K, Ratajczak B, Lewandowska M, Lehmann-Kopydłowska A, Jarmuż-Szymczak M, Komarnicki M. Transient presence of clonal chromosomal aberrations in Ph-negative cells in patients with chronic myeloid leukemia remaining in deep molecular response on tyrosine kinase inhibitor treatment. Cancer Genet 2014; 207:503-10. [PMID: 25496750 DOI: 10.1016/j.cancergen.2014.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022]
Abstract
Advancements in treatment of chronic myeloid leukemia (CML) turned this formerly fatal neoplasm into a manageable chronic condition. Therapy with tyrosine kinase inhibitors (TKIs) often leads to significant reduction of disease burden, known as the deep molecular response (DMR). Herein, we decided to analyze the cohort of CML patients treated in our center with TKIs, who obtain and retain DMR for a period longer than 24 months. The aim of the study was to evaluate the frequency of clonal cytogenetic aberrations in Philadelphia-negative (Ph-) cells in patients with DMR during TKI treatment. The analyzed data was obtained during routine molecular and cytogenetic treatment monitoring, using G-banded trypsin and Giemsa stain (GTG) karyotyping and reverse transcription quantitative PCR. We noticed that approximately 50% of patients (28 of 55) in DMR had, at some follow-up point, transient changes in the karyotype of their Ph- bone marrow cells. In 9.1% of cases (5 of 55), the presence of the same aberrations was observed at different time points. The most frequently appearing aberrations were monosomies of chromosomes 19, 20, 21, and Y. Statistical analysis suggests that the occurrence of such abnormalities in CML patients correlates with the TKI treatment time.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Chromosome Aberrations
- Cytogenetic Analysis
- Female
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative
- Male
- Middle Aged
- Philadelphia Chromosome
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Michał Gniot
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland.
| | - Krzysztof Lewandowski
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| | - Błażej Ratajczak
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| | - Maria Lewandowska
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| | | | - Małgorzata Jarmuż-Szymczak
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland; Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska, Poznan, Poland
| | - Mieczysław Komarnicki
- Department of Hematology, University of Medical Sciences, Szamarzewskiego, Poznan, Poland
| |
Collapse
|
33
|
Nanì S, Fumagalli L, Sinha U, Kamen L, Scapini P, Berton G. Src family kinases and Syk are required for neutrophil extracellular trap formation in response to β-glucan particles. J Innate Immun 2014; 7:59-73. [PMID: 25277753 DOI: 10.1159/000365249] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
We report that particles of β-glucan, one of the surface components of yeasts, are powerful inducers of neutrophil extracellular trap (NET) formation in human neutrophils. β-Glucan triggered a prolonged phosphorylation of Src family kinases and Syk that were suppressed by the Src family inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3, 4-d] pyrimidine (PP2) and a novel Syk inhibitor, PRT-060318, respectively. PP2 and PRT-060318 also inhibited β-glucan-induced NET formation and reactive oxygen species (ROS) generation, suggesting that both responses are triggered by a Src/Syk-regulated signaling pathway. Given that the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) markedly inhibited NET formation, our findings suggest that ROS are required for the full-blown formation of NETs in response to β-glucan particles. Contrary to β-glucan, ROS generation triggered by phorbol myristate acetate (PMA) was unaffected by PP2 and PRT-060318, but these compounds, as well as DPI, suppressed Src/Syk phosphorylation triggered by PMA. Whereas PP2 had no effect on PMA-induced NET formation, PRT-060318 had a significant, albeit partial, inhibitory effect, thus suggesting that ROS induce NET formation in part via activation of Syk. These findings were substantiated by the evidence that neutrophils from mice with the conditional deletion of Syk were defective in formation of NETs in response to β-glucan.
Collapse
Affiliation(s)
- Sara Nanì
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Obr A, Röselová P, Grebeňová D, Kuželová K. Real-time analysis of imatinib- and dasatinib-induced effects on chronic myelogenous leukemia cell interaction with fibronectin. PLoS One 2014; 9:e107367. [PMID: 25198091 PMCID: PMC4157868 DOI: 10.1371/journal.pone.0107367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/13/2014] [Indexed: 11/19/2022] Open
Abstract
Attachment of stem leukemic cells to the bone marrow extracellular matrix increases their resistance to chemotherapy and contributes to the disease persistence. In chronic myelogenous leukemia (CML), the activity of the fusion BCR-ABL kinase affects adhesion signaling. Using real-time monitoring of microimpedance, we studied in detail the kinetics of interaction of human CML cells (JURL-MK1, MOLM-7) and of control BCR-ABL-negative leukemia cells (HEL, JURKAT) with fibronectin-coated surface. The effect of two clinically used kinase inhibitors, imatinib (a relatively specific c-ABL inhibitor) and dasatinib (dual ABL/SRC family kinase inhibitor), on cell binding to fibronectin is described. Both imatinib and low-dose (several nM) dasatinib reinforced CML cell interaction with fibronectin while no significant change was induced in BCR-ABL-negative cells. On the other hand, clinically relevant doses of dasatinib (100 nM) had almost no effect in CML cells. The efficiency of the inhibitors in blocking the activity of BCR-ABL and SRC-family kinases was assessed from the extent of phosphorylation at autophosphorylation sites. In both CML cell lines, SRC kinases were found to be transactivated by BCR-ABL. In the intracellular context, EC50 for BCR-ABL inhibition was in subnanomolar range for dasatinib and in submicromolar one for imatinib. EC50 for direct inhibition of LYN kinase was found to be about 20 nM for dasatinib and more than 10 µM for imatinib. Cells pretreated with 100 nM dasatinib were still able to bind to fibronectin and SRC kinases are thus not necessary for the formation of cell-matrix contacts. However, a minimal activity of SRC kinases might be required to mediate the increase in cell adhesivity induced by BCR-ABL inhibition. Indeed, active (autophosphorylated) LYN was found to localize in cell adhesive structures which were visualized using interference reflection microscopy.
Collapse
Affiliation(s)
- Adam Obr
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pavla Röselová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dana Grebeňová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
35
|
Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 2014; 4:54. [PMID: 24724051 PMCID: PMC3971203 DOI: 10.3389/fonc.2014.00054] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022] Open
Abstract
The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR-ABL1 fusion gene encoding for a chimeric BCR-ABL1 protein. It is present in 3-4% of pediatric acute lymphoblastic leukemia (Ph(+) ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph(+) ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph(+) ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph(+) ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph(+) ALL expanded exponentially through careful mapping of pathways downstream of BCR-ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph(+) ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph(+) ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph(+) ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias.
Collapse
Affiliation(s)
- Kathrin M Bernt
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Stephen P Hunger
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|
36
|
Puissant A, Fenouille N, Alexe G, Pikman Y, Bassil CF, Mehta S, Du J, Kazi JU, Luciano F, Rönnstrand L, Kung AL, Aster JC, Galinsky I, Stone RM, DeAngelo DJ, Hemann MT, Stegmaier K. SYK is a critical regulator of FLT3 in acute myeloid leukemia. Cancer Cell 2014; 25:226-42. [PMID: 24525236 PMCID: PMC4106711 DOI: 10.1016/j.ccr.2014.01.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer pathogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via direct binding. Highly activated SYK is predominantly found in FLT3-ITD positive AML and cooperates with FLT3-ITD to activate MYC transcriptional programs. FLT3-ITD AML cells are more vulnerable to SYK suppression than FLT3 wild-type counterparts. In a FLT3-ITD in vivo model, SYK is indispensable for myeloproliferative disease (MPD) development, and SYK overexpression promotes overt transformation to AML and resistance to FLT3-ITD-targeted therapy.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Blotting, Western
- Cell Proliferation
- Cell Transformation, Neoplastic
- Cells, Cultured
- Drug Resistance, Neoplasm
- Fluorouracil/pharmacology
- Humans
- Immunoenzyme Techniques
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred BALB C
- Mutation/genetics
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Syk Kinase
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Alexandre Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Nina Fenouille
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bassil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Swapnil Mehta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jinyan Du
- The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julhash U Kazi
- Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Medicon Village, 221 00 Lund, Sweden
| | - Frédéric Luciano
- C3M/ INSERM U1065 Team Cell Death, Differentiation, Inflammation and Cancer, 06204 Nice, France
| | - Lars Rönnstrand
- Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Medicon Village, 221 00 Lund, Sweden
| | - Andrew L Kung
- Pediatric Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Jabbour EJ, Cortes JE, Kantarjian HM. Tyrosine kinase inhibition: a therapeutic target for the management of chronic-phase chronic myeloid leukemia. Expert Rev Anticancer Ther 2013; 13:1433-52. [PMID: 24236822 PMCID: PMC4181370 DOI: 10.1586/14737140.2013.859074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematologic neoplasm with a progressive, ultimately terminal, disease course. In most cases, CML arises owing to the aberrant formation of a chimeric gene for a constitutively active tyrosine kinase. Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. New tyrosine kinase inhibitors continue to improve the management of CML, offering alternative options for those resistant to or intolerant of standard tyrosine kinase inhibitors. Here we review the pathobiology of CML and explore emerging strategies to optimize the management of chronic-phase CML, particularly first-line treatment.
Collapse
Affiliation(s)
- Elias J Jabbour
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge E Cortes
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
38
|
The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:789184. [PMID: 24369535 PMCID: PMC3863468 DOI: 10.1155/2013/789184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/30/2013] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to determine the effect of apigenin on the pharmacokinetics of imatinib and N-desmethyl imatinib in rats. Healthy male SD rats were randomly divided into four groups: A group (the control group), B group (the long-term administration of 165 mg/kg apigenin for 15 days), C group (a single dose of 165 mg/kg apigenin), and D group (a single dose of 252 mg/kg apigenin). The serum concentrations of imatinib and N-desmethyl imatinib were measured by HPLC, and pharmacokinetic parameters were calculated using DAS 3.0 software. The parameters of AUC(0−t), AUC(0−∞), Tmax, Vz/F, and CLz/F for imatinib in group B were different from those in group A (P < 0.05). Besides, MRT(0−t) and MRT(0−∞) in groups C and D differed distinctly from those in group A as well. The parameters of AUC(0−t) and Cmax for N-desmethyl imatinib in group C were significantly lower than those in group A (P < 0.05); however, compared with groups B and D, the magnitude of effect was modest. Those results indicated that apigenin in the short-term study inhibited the metabolism of imatinib and its metabolite N-desmethyl imatinib, while in the long-term study the metabolism could be accelerated.
Collapse
|
39
|
Kimura S, Ando T, Kojima K. Ever-advancing chronic myeloid leukemia treatment. Int J Clin Oncol 2013; 19:3-9. [DOI: 10.1007/s10147-013-0641-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Indexed: 01/20/2023]
|
40
|
Bucur O, Stancu AL, Goganau I, Petrescu SM, Pennarun B, Bertomeu T, Dewar R, Khosravi-Far R. Combination of bortezomib and mitotic inhibitors down-modulate Bcr-Abl and efficiently eliminates tyrosine-kinase inhibitor sensitive and resistant Bcr-Abl-positive leukemic cells. PLoS One 2013; 8:e77390. [PMID: 24155950 PMCID: PMC3796452 DOI: 10.1371/journal.pone.0077390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/06/2013] [Indexed: 12/17/2022] Open
Abstract
Emergence of resistance to Tyrosine-Kinase Inhibitors (TKIs), such as imatinib, dasatinib and nilotinib, in Chronic Myelogenous Leukemia (CML) demands new therapeutic strategies. We and others have previously established bortezomib, a selective proteasome inhibitor, as an important potential treatment in CML. Here we show that the combined regimens of bortezomib with mitotic inhibitors, such as the microtubule-stabilizing agent Paclitaxel and the PLK1 inhibitor BI2536, efficiently kill TKIs-resistant and -sensitive Bcr-Abl-positive leukemic cells. Combined treatment activates caspases 8, 9 and 3, which correlate with caspase-induced PARP cleavage. These effects are associated with a marked increase in activation of the stress-related MAP kinases p38MAPK and JNK. Interestingly, combined treatment induces a marked decrease in the total and phosphorylated Bcr-Abl protein levels, and inhibits signaling pathways downstream of Bcr-Abl: downregulation of STAT3 and STAT5 phosphorylation and/or total levels and a decrease in phosphorylation of the Bcr-Abl-associated proteins CrkL and Lyn. Moreover, we found that other mitotic inhibitors (Vincristine and Docetaxel), in combination with bortezomib, also suppress the Bcr-Abl-induced pro-survival signals and result in caspase 3 activation. These results open novel possibilities for the treatment of Bcr-Abl-positive leukemias, especially in the imatinib, dasatinib and nilotinib-resistant CML cases.
Collapse
Affiliation(s)
- Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andreea Lucia Stancu
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ioana Goganau
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Bodvael Pennarun
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Thierry Bertomeu
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Rajan Dewar
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts, United States of America;
- * E-mail:
| |
Collapse
|
41
|
Jabbour EJ, Cortes JE, Kantarjian HM. Resistance to tyrosine kinase inhibition therapy for chronic myelogenous leukemia: a clinical perspective and emerging treatment options. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2013; 13:515-29. [PMID: 23890944 PMCID: PMC4160831 DOI: 10.1016/j.clml.2013.03.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/06/2013] [Indexed: 01/12/2023]
Abstract
The development of tyrosine kinase inhibitors (TKIs) has led to extended lifespans for many patients with chronic myelogenous leukemia (CML). However, 20% to 30% of patients fail to respond, respond suboptimally, or experience disease relapse after treatment with imatinib. A key factor is drug resistance. The molecular mechanisms implicated in this resistance include those that involve upregulation or mutation of BCR-ABL kinase and those that are BCR-ABL independent. The clinical consequences of these molecular mechanisms of resistance for disease pathogenesis remain open for debate. This review summarizes the molecular mechanisms and clinical consequences of TKI resistance and addresses the current and future treatment approaches for patients with TKI-resistant CML.
Collapse
Affiliation(s)
- Elias J Jabbour
- The University of Texas, MD Anderson Cancer Center, Houston, TX.
| | | | | |
Collapse
|
42
|
JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood 2013; 122:2167-75. [PMID: 23926299 DOI: 10.1182/blood-2013-02-485573] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor signal transducers and activators of transcription 5 (STAT5) has an important and unique role in Breakpoint Cluster Region - Abelson 1 (BCR-ABL1)-driven neoplasias. STAT5 is an essential component in the signaling network that maintains the survival and growth of chronic myeloid leukemia (CML) cells. In contrast, the function of the prototypical upstream kinase of STAT5, the Janus kinase JAK2, in CML is still under debate. Although there is widespread agreement that JAK2 is part of the signaling network downstream of BCR-ABL1, it is unclear whether and under what circumstances JAK2 inhibitors may be beneficial for CML patients. Recent studies in murine models have cast doubt on the importance of JAK2 in CML maintenance. Nevertheless, JAK2 has been proposed to have a central role in the cytokine signaling machinery that allows the survival of CML stem cells in the presence of BCR-ABL1 tyrosine kinase inhibitors. In this review, we summarize the current debate and provide an overview of the arguments on both sides of the fence. We present recent evidence showing that CML stem cells do not depend on BCR-ABL1 kinase activity but require the continuous support of the hematopoietic niche and its distinct cytokine environment and suggest that it has the potential to resolve the dispute.
Collapse
|
43
|
Xia Y, Fang H, Zhang J, Du Y. Endoplasmic reticulum stress-mediated apoptosis in imatinib-resistant leukemic K562-r cells triggered by AMN107 combined with arsenic trioxide. Exp Biol Med (Maywood) 2013; 238:932-42. [PMID: 23883479 DOI: 10.1177/1535370213492689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The first tyrosine kinase inhibitor (TKI) imatinib mesylate (imatinib) targets the kinase domain of BCR-ABL and induces apoptosis in newly diagnosed chronic myeloid leukaemia (CML). However, resistant and relapse are common problems in imatinib-treated patients. Although second-generation TKI such as AMN107 appears to improve the treatment of CML, TKI resistance and relapse are also frequently occurred in the patients. To test whether arsenic trioxide (ATO) could potentiate the efficacy of AMN107 in imatinib-resistant cells, we conducted a series of assays in TKI-resistant K562-r cells treated with AMN107 and ATO. Based on a time-course cDNA microarray analysis, we found many genes typically involved in the endoplasmic reticulum (ER) stress signalling were significantly up-regulated, implicating the occurrence of ER stress-mediated apoptosis in K562-r cells treated with the combination of ATO and AMN107. Such implication was also supported by the data showing the activation of members in the JNK pathway, which are known to be characteristic markers bridging ER-stress and apoptosis. Partial knock-down of the JNK activities alleviated the effects of apoptosis (p < 0.05) triggered by combining AMN107 with ATO. In conclusion, this study for the first time demonstrates a synergistic effect of AMN107 with ATO, allowing insights into the possible mechanisms underlying imatinib-induced resistance in CML. Our data also suggest that combination of AMN107 with ATO may represent a new strategy for the treatment of imatinib-resistant CML patients.
Collapse
Affiliation(s)
- Yuan Xia
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | |
Collapse
|
44
|
Cooper MJ, Cox NJ, Zimmerman EI, Dewar BJ, Duncan JS, Whittle MC, Nguyen TA, Jones LS, Ghose Roy S, Smalley DM, Kuan PF, Richards KL, Christopherson RI, Jin J, Frye SV, Johnson GL, Baldwin AS, Graves LM. Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia. PLoS One 2013; 8:e66755. [PMID: 23826126 PMCID: PMC3691232 DOI: 10.1371/journal.pone.0066755] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/12/2013] [Indexed: 12/26/2022] Open
Abstract
Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.
Collapse
Affiliation(s)
- Matthew J. Cooper
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nathan J. Cox
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Eric I. Zimmerman
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brian J. Dewar
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James S. Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Martin C. Whittle
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Thien A. Nguyen
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lauren S. Jones
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sreerupa Ghose Roy
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David M. Smalley
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Pei Fen Kuan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kristy L. Richards
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lee M. Graves
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Halbach S, Rigbolt KT, Wöhrle FU, Diedrich B, Gretzmeier C, Brummer T, Dengjel J. Alterations of Gab2 signalling complexes in imatinib and dasatinib treated chronic myeloid leukaemia cells. Cell Commun Signal 2013; 11:30. [PMID: 23607741 PMCID: PMC3640961 DOI: 10.1186/1478-811x-11-30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/25/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The Gab2 docking protein acts as an important signal amplifier downstream of various growth factor receptors and Bcr-Abl, the driver of chronic myeloid leukaemia (CML). Despite the success of Bcr-Abl tyrosine kinase inhibitors (TKI) in the therapy of CML, TKI-resistance remains an unsolved problem in the clinic. We have recently shown that Gab2 signalling counteracts the efficacy of four distinct Bcr-Abl inhibitors. In the course of that project, we noticed that two clinically relevant drugs, imatinib and dasatinib, provoke distinct alterations in the electrophoretic mobility of Gab2, its signalling output and protein interactions. As the signalling potential of the docking protein is highly modulated by its phosphorylation status, we set out to obtain more insights into the impact of TKIs on Gab2 phosphorylation. FINDINGS Using stable isotope labelling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry (MS), we show now that imatinib and dasatinib provoke distinct effects on the phosphorylation status and interactome of Gab2. This study identifies several new phosphorylation sites on Gab2 and confirms many sites previously known from other experimental systems. At equimolar concentrations, dasatinib is more effective in preventing Gab2 tyrosine and serine/threonine phosphorylation than imatinib. It also affects the phosphorylation status of more residues than imatinib. In addition, we also identify novel components of the Gab2 signalling complex, such as casein kinases, stathmins and PIP1 as well as known interaction partners whose association with Gab2 is disrupted by imatinib and/or dasatinib. CONCLUSIONS By using MS-based proteomics, we have identified new and confirmed known phosphorylation sites and interaction partners of Gab2, which may play an important role in the regulation of this docking protein. Given the growing importance of Gab2 in several tumour entities we expect that our results will help to understand the complex regulation of Gab2 and how this docking protein can contribute to malignancy.
Collapse
Affiliation(s)
- Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str, 17, Freiburg 79104, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chen M, Gallipoli P, DeGeer D, Sloma I, Forrest DL, Chan M, Lai D, Jorgensen H, Ringrose A, Wang HM, Lambie K, Nakamoto H, Saw KM, Turhan A, Arlinghaus R, Paul J, Stobo J, Barnett MJ, Eaves A, Eaves CJ, Holyoake TL, Jiang X. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. J Natl Cancer Inst 2013; 105:405-23. [PMID: 23446755 PMCID: PMC3601953 DOI: 10.1093/jnci/djt006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/25/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Imatinib mesylate (IM) induces clinical remission of chronic myeloid leukemia (CML). The Abelson helper integration site 1 (AHI-1) oncoprotein interacts with BCR-ABL and Janus kinase 2 (JAK2) to mediate IM response of primitive CML cells, but the effect of the interaction complex on the response to ABL and JAK2 inhibitors is unknown. METHODS The AHI-1-BCR-ABL-JAK2 interaction complex was analyzed by mutational analysis and coimmunoprecipitation. Roles of the complex in regulation of response or resistance to ABL and JAK2 inhibitors were investigated in BCR-ABL (+) cells and primary CML stem/progenitor cells and in immunodeficient NSG mice. All statistical tests were two-sided. RESULTS The WD40-repeat domain of AHI-1 interacts with BCR-ABL, whereas the N-terminal region interacts with JAK2; loss of these interactions statistically significantly increased the IM sensitivity of CML cells. Disrupting this complex with a combination of IM and an orally bioavailable selective JAK2 inhibitor (TG101209 [TG]) statistically significantly induced death of AHI-1-overexpressing and IM-resistant cells in vitro and enhanced survival of leukemic mice, compared with single agents (combination vs TG alone: 63 vs 53 days, ratio = 0.84, 95% confidence interval [CI] = 0.6 to 1.1, P = .004; vs IM: 57 days, ratio = 0.9, 95% CI = 0.61 to 1.2, P = .003). Combination treatment also statistically significantly enhanced apoptosis of CD34(+) leukemic stem/progenitor cells and eliminated their long-term leukemia-initiating activity in NSG mice. Importantly, this approach was effective against treatment-naive CML stem cells from patients who subsequently proved to be resistant to IM therapy. CONCLUSIONS Simultaneously targeting BCR-ABL and JAK2 activities in CML stem/progenitor cells may improve outcomes in patients destined to develop IM resistance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Vesicular Transport
- Administration, Oral
- Animals
- Antigens, CD34/analysis
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Biological Availability
- Blotting, Western
- Cell Proliferation/drug effects
- DNA Mutational Analysis
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Imatinib Mesylate
- Immunoprecipitation
- Janus Kinase 2/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Microfilament Proteins/metabolism
- Mutation
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Phosphorylation/drug effects
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- Remission Induction
- Sulfonamides/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Min Chen
- Terry Fox Laboratory, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang H, Li S. Molecular mechanisms for survival regulation of chronic myeloid leukemia stem cells. Protein Cell 2013; 4:186-96. [PMID: 23483480 DOI: 10.1007/s13238-013-2115-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/16/2013] [Indexed: 12/15/2022] Open
Abstract
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identification of the first cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely difficult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless self-renewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs.
Collapse
Affiliation(s)
- Haojian Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
48
|
Žáčková M, Moučková D, Lopotová T, Ondráčková Z, Klamová H, Moravcová J. Hsp90 — a potential prognostic marker in CML. Blood Cells Mol Dis 2013. [DOI: 10.1016/j.bcmd.2012.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Santos FPS, Cortes J. Dasatinib for the treatment of Philadelphia chromosome-positive leukemias. Expert Opin Pharmacother 2012; 13:2381-95. [PMID: 22992064 DOI: 10.1517/14656566.2012.725722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dasatinib is a dual Abl/Src tyrosine kinase inhibitor (TKI), which was developed to treat patients with chronic myelogenous leukemia (CML), who had failed or were intolerant to therapy with imatinib. AREAS COVERED In this article, we review preclinical and clinical studies with dasatinib for the therapy of Philadelphia (Ph)-positive leukemias. EXPERT OPINION Dasatinib is very effective in the setting of CML resistance or intolerance to imatinib, particularly in patients in chronic phase (CP). Dasatinib is also effective against most BCR-ABL1 mutations that arise during therapy with imatinib. Further studies have confirmed activity of dasatinib as a single-agent, and combined with chemotherapy, for the treatment of patients with Philadelphia-positive acute lymphoblastic leukemia (Ph+-ALL). More recently, randomized trials have demonstrated that dasatinib is superior to imatinib in the initial therapy of patients with CML, and the drug was approved by the FDA for this indication in 2011.
Collapse
Affiliation(s)
- Fabio P S Santos
- Hematology and Oncology Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | |
Collapse
|
50
|
Xiao Z, Wang C, Mo D, Li J, Chen Y, Zhang Z, Cong P. Promoter CpG methylation status in porcine Lyn is associated with its expression levels. Gene 2012; 511:73-8. [PMID: 23000019 DOI: 10.1016/j.gene.2012.08.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/07/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
Abstract
Resistance to disease and improvement of product quality are important goals in pig farming. Tyrosine Protein Kinase Lyn (LYN) is one of several Src-family tyrosine kinases in immune cells. This protein functions both as a positive and negative regulator of B cell activation, and regulates signaling pathways through phosphorylation of inhibitory receptors, enzymes and adaptors, which suggested that LYN could be correlated with immunity and can be considered as a candidate gene to study in disease resistance. Until now, the profiles of expression and transcriptional regulation of the LYN gene in pig breeds different in immune capacity remain unclear. Using real-time PCR, it indicated that porcine LYN mRNA expressed mainly in immune organs including the spleen, duodenum and liver. Furthermore, Dahuabai pigs (a kind of Chinese indigenous pig breeds with higher immune capacity) showed significant higher LYN mRNA expression levels than that in Landrace. Methylation analysis indicates that LYN expression levels were associated with the methylation status of the LYN promoter, and methylation of the novel CpG site at -1268C/-1267G generated by transposition at -1267 (A→G) results in up-regulating transcriptional activity of this gene. Interestingly, the base A located in -1267 mainly exhibited in landrace while the base G mainly in Dahuabai pigs. These results might contribute to study the function of this gene in pig breeding for disease resistance.
Collapse
Affiliation(s)
- Zhengzhong Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | | | | | | | | | | | | |
Collapse
|