1
|
Hanford HE, Price CTD, Uriarte S, Abu Kwaik Y. Inhibition and evasion of neutrophil microbicidal responses by Legionella longbeachae. mBio 2024:e0327424. [PMID: 39679679 DOI: 10.1128/mbio.03274-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Legionella species evade degradation and proliferate within alveolar macrophages as an essential step for the manifestation of disease. However, most intracellular bacterial pathogens are restricted in neutrophils, which are the first line of innate immune defense against invading pathogens. Bacterial degradation within neutrophils is mediated by the fusion of microbicidal granules to pathogen-containing phagosomes and the generation of reactive oxygen species (ROS) by the phagocyte NADPH oxidase complex. Here, we show that human neutrophils fail to trigger microbicidal processes and, consequently, fail to restrict L. longbeachae. In addition, neutrophils infected with L. longbeachae fail to undergo a robust pro-inflammatory response, such as degranulation and IL-8 production. Here, we identify three strategies employed by L. longbeachae for evading restriction by neutrophils and inhibiting the neutrophil microbicidal response to other bacteria co-inhabiting in the same cell. First, L. longbeachae excludes the cytosolic and membrane-bound subunits of the phagocyte NADPH oxidase complex from its phagosomal membrane independent of the type 4 secretion system (T4SS). Consequently, infected neutrophils fail to generate robust ROS in response to L. longbeachae. Second, L. longbeachae impedes the fusion of azurophilic granules to its phagosome and the phagosomes of bacteria co-inhabiting the same cell through T4SS-independent mechanisms. Third, L. longbeachae protects phagosomes of co-inhabiting bacteria from degradation by ROS through a trans-acting T4SS-dependent mechanism. Collectively, we conclude that L. longbeachae evades restriction by human neutrophils via T4SS-independent mechanisms and utilizes trans-acting T4SS-dependent mechanisms for inhibition of neutrophil ROS generation throughout the cell cytosol. IMPORTANCE Legionella longbeachae is commonly found in soil environments where it interacts with a wide variety of protist hosts and microbial competitors. Upon transmission to humans, L. longbeachae invades and replicates within alveolar macrophages, leading to the manifestation of pneumonia. In addition to alveolar macrophages, neutrophils are abundant immune cells acting as the first line of defense against invading pathogens. While most intracellular bacterial species are killed and degraded by neutrophils, we show that L. longbeachae evades degradation. The pathogen impairs the major neutrophils' microbicidal processes, including the fusion of microbicidal granules to the pathogen-containing vacuole. By inhibiting of assembly of the phagocyte NADPH oxidase complex, the pathogen blocks neutrophils from generating microbicide reactive oxygen species. Overall, L. longbeachae employs unique virulence strategies to evade the major microbicidal processes of neutrophils.
Collapse
Affiliation(s)
- Hannah E Hanford
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Christopher T D Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Silvia Uriarte
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Xu J, He C, Cai Y, Wang X, Yan J, Zhang J, Zhang F, Urbonaviciute V, Cheng Y, Lu S, Holmdahl R. NCF4 regulates antigen presentation of cysteine peptides by intracellular oxidative response and restricts activation of autoreactive and arthritogenic T cells. Redox Biol 2024; 72:103132. [PMID: 38547647 PMCID: PMC11096609 DOI: 10.1016/j.redox.2024.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024] Open
Abstract
Autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematous, are regulated by polymorphisms in genes contributing to the NOX2 complex. Mutations in both Ncf1 and Ncf4 affect development of arthritis in experimental models of RA, but the different regulatory pathways mediated by NOX2-derived reactive oxygen species (ROS) have not yet been clarified. Here we address the possibility that intracellular ROS, regulated by the NCF4 protein (earlier often denoted p40phox) which interacts with endosomal membranes, could play an important role in the oxidation of cysteine peptides in mononuclear phagocytic cells, thereby regulating antigen presentation and activation of arthritogenic T cells. To study the role of NCF4 we used mice with an amino acid replacing mutation (NCF4R58A), which is known to affect interaction with endosomal membranes, leading to decreased intracellular ROS production. To study the impact of NCF4 on T cell activation, we used the glucose phosphate isomerase peptide GPI325-339, which contains two cysteine residues (325-339c-c). Macrophages from mice with the NCF458A mutation efficiently presented the peptide when the two cysteines were intact and not crosslinked, leading to a strong arthritogenic T cell response. T cell priming occurred in the draining lymph nodes (LNs) within 8 days after immunization. Clodronate treatment, which depletes antigen-presenting mononuclear phagocytes, ameliorated arthritis severity, whereas treatment with FYT720, which traps activated T cells in LNs, prohibited arthritis. We conclude that NCF4-dependent intracellular ROS maintains cysteine peptides in an oxidized crosslinked state, which prevents presentation of peptides recognized by non-tolerized T cells and thereby protects against autoimmune arthritis.
Collapse
Affiliation(s)
- Jing Xu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, and Department of Rheumatology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China; Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Chang He
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China; Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Cardiology, The Second Affiliated Hospital, Zhejiang University Schoole of Medicine, Zhejiang, Hangzhou, PR China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China
| | - Xipeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, PR China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Yuanyuan Cheng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, and Department of Rheumatology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Rikard Holmdahl
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, and Department of Rheumatology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China; Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
4
|
He C, Luo H, Coelho A, Liu M, Li Q, Xu J, Krämer A, Malin S, Yuan Z, Holmdahl R. NCF4 dependent intracellular reactive oxygen species regulate plasma cell formation. Redox Biol 2022; 56:102422. [PMID: 36095971 PMCID: PMC9482113 DOI: 10.1016/j.redox.2022.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Defective reactive oxygen species (ROS) production by genetically determined variants of the NADPH oxidase 2 (NOX2) complex component, NCF4, leads to enhanced production of autoantibodies to collagen type II (COL2) and severe collagen-induced arthritis (CIA) in mice. To further understand this process, we used mice harboring a mutation in the lipid endosomal membrane binding site (R58A) of NCF4 subunit. This mutation did not affect the extracellular ROS responses but showed instead decreased intracellular responses following B cell stimulation. Immunization with COL2 led to severe arthritis with increased antibody levels in Ncf458A mutated animals without significant effects on antigen presentation, autoreactive T cell activation and germinal center formation. Instead, plasma cell formation was enhanced and had altered CXCR3/CXCR4 expression. This B cell intrinsic effect was further confirmed with chimeric B cell transfer experiments and in vitro LPS or CD40L with anti-IgM stimulation. We conclude that NCF4 regulates the terminal differentiation of B cells to plasma cells through intracellular ROS. Ncf4R58A selectively affects intracellular ROS production after stimulation. Decreased intracellular ROS in B cell promotes plasma cell formation intrinsically. BCR stimulation induced NOX2 complex-ROS regulates CXCR3 expression on plasma cell.
Collapse
Affiliation(s)
- Chang He
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huqiao Luo
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ana Coelho
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Meng Liu
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qijing Li
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Alexander Krämer
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Stephen Malin
- Department of Medicine Solna (MedS) Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
5
|
Saraiva AL, Justino AB, Franco RR, Silva HCG, Arruda FDS, Klein SG, Celes MRN, Goulart LR, Espindola FS. Polyphenols-Rich Fraction from Annona muricata Linn. Leaves Attenuates Oxidative and Inflammatory Responses in Neutrophils, Macrophages, and Experimental Lung Injury. Pharmaceutics 2022; 14:pharmaceutics14061182. [PMID: 35745755 PMCID: PMC9228609 DOI: 10.3390/pharmaceutics14061182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Annona muricata Linn. is a common plant found in the warmest regions of South and Central America and its use in traditional medicine has been reported for the treatment of various illnesses. In the current study, we investigate the antioxidant and anti-inflammatory activities of crude extract and fractions from A. muricata L. leaves in isolated murine phagocytic immune cells as well as experimental LPS-induced acute lung injury (ALI). In a luminol-dependent chemiluminescence assay, we showed that ethyl acetate (EtOAc.f) and n-butanol (BuOH.f) fractions—both rich in polyphenols—reduced the generation of reactive oxygen species (ROS) by neutrophils stimulated with opsonized zymosan; similar results were found in culture of bone marrow-derived macrophages (BMDMs). By evaluating anti-inflammatory activity in BMDMs, EtOAc.f and BuOH.f reduced secretion of IL-6 and expression of the co-stimulatory molecule CD40. Furthermore, in LPS-induced ALI, oral administration of EtOAc.f reduced myeloperoxidase (MPO) activity in lung tissue. In addition, on a mechanism dependent on glutathione levels, the oxidative damage was also attenuated. These findings revealed direct antioxidant and anti-inflammatory activities of polyphenols-rich fractions of A. muricata L. leaves on neutrophils and macrophages. Moreover, the reduced oxidative damage and levels of inflammatory markers in experimental ALI suggest that these fractions might be explored for the development of new therapies for inflammatory conditions.
Collapse
Affiliation(s)
- André Lopes Saraiva
- Institute of Biotechnology, Federal University of Uberlândia, Rua Acre s/n, Bloco 2E, Uberlândia 38400-902, MG, Brazil; (A.L.S.); (A.B.J.); (R.R.F.); (H.C.G.S.)
| | - Allisson Benatti Justino
- Institute of Biotechnology, Federal University of Uberlândia, Rua Acre s/n, Bloco 2E, Uberlândia 38400-902, MG, Brazil; (A.L.S.); (A.B.J.); (R.R.F.); (H.C.G.S.)
| | - Rodrigo Rodrigues Franco
- Institute of Biotechnology, Federal University of Uberlândia, Rua Acre s/n, Bloco 2E, Uberlândia 38400-902, MG, Brazil; (A.L.S.); (A.B.J.); (R.R.F.); (H.C.G.S.)
| | - Heitor Cappato Guerra Silva
- Institute of Biotechnology, Federal University of Uberlândia, Rua Acre s/n, Bloco 2E, Uberlândia 38400-902, MG, Brazil; (A.L.S.); (A.B.J.); (R.R.F.); (H.C.G.S.)
| | - Felipe dos Santos Arruda
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Leste Universitário, Goiânia 74605-050, GO, Brazil; (F.d.S.A.); (M.R.N.C.)
| | - Sandra Gabriela Klein
- Rodent Vivarium Network (REBIR), Dean of Research and Graduate Studies, Federal University of Uberlândia, Rua Ceará s/n, Bloco 4U, Uberlândia 38405-315, MG, Brazil;
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Leste Universitário, Goiânia 74605-050, GO, Brazil; (F.d.S.A.); (M.R.N.C.)
| | | | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Rua Acre s/n, Bloco 2E, Uberlândia 38400-902, MG, Brazil; (A.L.S.); (A.B.J.); (R.R.F.); (H.C.G.S.)
- Correspondence: ; Tel.: +55-34-3225-8439
| |
Collapse
|
6
|
Ellson CD, Goretti Riça I, Kim JS, Huang YMM, Lim D, Mitra T, Hsu A, Wei EX, Barrett CD, Wahl M, Delbrück H, Heinemann U, Oschkinat H, Chang CEA, Yaffe MB. An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils. J Mol Biol 2022; 434:167533. [DOI: 10.1016/j.jmb.2022.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
7
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Tosetti B, Ward B, Grumme D, Herb M, Schramm M, Utermöhlen O, Heukamp LC, Krönke M, Krut O. NOX2 Deficiency Permits Sustained Survival of S. aureus in Macrophages and Contributes to Severity of Infection. Front Immunol 2021; 12:633629. [PMID: 33868252 PMCID: PMC8044967 DOI: 10.3389/fimmu.2021.633629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although the crucial role of professional phagocytes for the clearance of S. aureus infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of S. aureus during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of S. aureus metastases. Infection of bone marrow-derived macrophages (BMDM) with S. aureus revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular S. aureus. Despite of larger intracellular bacterial burden, NOX2-deficient BMDM showed significantly improved survival. Intravenous injection of mice with in vitro-infected BMDMs carrying intracellular viable S. aureus led to higher bacterial loads in kidney and liver of mice compared to injection with plain S. aureus. An even higher frequency of liver abscesses was observed in mice infected with S. aureus-loaded nox2 -/- BMDM. Thus, the improved intracellular survival of S. aureus and improved viability of NOX2-deficient BMDM is associated with an aggravated metastatic dissemination of S. aureus infection. A combination of vancomycin and the intracellularly active antibiotic rifampicin led to complete elimination of S. aureus from liver within 48 h, which was not achieved with vancomycin treatment alone, underscoring the impact of intracellular S. aureus on the course of disease. The results of our study indicate that intracellular S. aureus carried by macrophages are sufficient to establish a systemic infection. This suggests the inclusion of intracellularly active antibiotics in the therapeutic regimen of invasive S. aureus infections, especially in patients with NADPH oxidase deficiencies such as chronic granulomatous disease.
Collapse
Affiliation(s)
- Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Beate Ward
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Daniela Grumme
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research, Bonn-Cologne, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
9
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
NaveenKumar SK, Hemshekhar M, Jagadish S, Manikanta K, Vishalakshi GJ, Kemparaju K, Girish KS. Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system. J Pineal Res 2020; 69:e12676. [PMID: 32597503 DOI: 10.1111/jpi.12676] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/26/2022]
Abstract
Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.
Collapse
Affiliation(s)
| | | | - Swamy Jagadish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | | | | | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| |
Collapse
|
12
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
14
|
Abstract
Classically, canonical autophagy has been considered a survival mechanism initiated in response to nutrient insufficiency. We now understand that autophagy functions in multiple scenarios where it is necessary to maintain homeostasis. Recent evidence has established that a variety of non-canonical functions for autophagy proteins are mechanistically and functionally distinct from autophagy. LC3-associated phagocytosis (LAP) is one such novel function for autophagy proteins and is a contributor to immune regulation and inflammatory responses across various cell and tissue types. Characterized by the conjugation of LC3 family proteins to phagosome membranes, LAP uses a portion of the canonical autophagy machinery, following ligation of surface receptors that recognize a variety of cargos including pathogens, dying cells, soluble ligands and protein aggregates. However, instead of affecting canonical autophagy, manipulation of the LAP pathway in vivo alters immune activation and inflammatory responses. In this Cell Science at a Glance article and the accompanying poster, we detail the divergence of this distinctive mechanism from that of canonical autophagy by comparing and contrasting shared and unique components of each pathway.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Cancer Biology Program, St. Jude Pediatric Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Cancer Biology Program, St. Jude Pediatric Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
15
|
Sumimoto H, Minakami R, Miyano K. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases. Methods Mol Biol 2019; 1982:121-137. [PMID: 31172470 DOI: 10.1007/978-1-4939-9424-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Reiko Minakami
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
16
|
Tran HQ, Park SJ, Shin EJ, Tran TV, Sharma N, Lee YJ, Jeong JH, Jang CG, Kim DJ, Nabeshima T, Kim HC. Clozapine attenuates mitochondrial burdens and abnormal behaviors elicited by phencyclidine in mice via inhibition of p47 phox; Possible involvements of phosphoinositide 3-kinase/Akt signaling. J Psychopharmacol 2018; 32:1233-1251. [PMID: 30207504 DOI: 10.1177/0269881118795244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction have been implicated in the pathophysiology of schizophrenia. AIMS We investigated whether antipsychotic clozapine modulates nicotinamide adenine dinucleotide phosphate oxidase and mitochondrial burdens induced by phencyclidine in mice. METHODS We examined the effect of clozapine on nicotinamide adenine dinucleotide phosphate oxidase activation, mitochondrial burdens (i.e. oxidative stress and mitochondrial dysfunction), and activities of enzymatic antioxidant in the prefrontal cortex, and subsequent abnormal behaviors induced by repeated treatment with phencyclidine. p47 phox Knockout mice and LY294002, a phosphoinositide 3-kinase inhibitor, were employed to elucidate the pharmacological mechanism of clozapine. RESULTS Phencyclidine treatment resulted in an early increase nicotinamide adenine dinucleotide phosphate oxidase activity, membrane translocation of p47 phox, interaction between p-Akt and p47 phox, and mitochondrial burdens in wild-type mice. Although these increases returned to near control level four days post-phencyclidine, mitochondrial superoxide dismutase and glutathione peroxidase activities were decreased at that time. Clozapine, LY294002, or p47 phox knockout significantly ameliorated social withdrawal and recognition memory deficits produced by phencyclidine. Importantly, LY294002 did not significantly alter the effects of clozapine against abnormal behaviors and the interaction between p-Akt and p47 phox induced by phencyclidine. Furthermore, neither LY294002 nor clozapine exhibited any additive effects to the protection afforded by p47 phox knockout against phencyclidine insult. CONCLUSION Our results suggest that p47 phox gene mediates phencyclidine-induced mitochondrial burdens and abnormal behaviors, and that the interactive modulation between p47 phox and phosphoinositide 3-kinase/Akt is important for the understanding on the pharmacological mechanism of clozapine.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Se J Park
- 2 School of Natural Resources and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - The-Vinh Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Yu J Lee
- 3 Clinical Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji H Jeong
- 4 Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- 5 Department of Pharmacology, Sungkyunkwan University, Suwon, Korea
| | - Dae-Joong Kim
- 6 Department of Anatomy and Cell Biology, Kangwon National University, Chunchon, Korea
| | - Toshitaka Nabeshima
- 7 Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,9 Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
17
|
Ewanchuk BW, Yates RM. The phagosome and redox control of antigen processing. Free Radic Biol Med 2018; 125:53-61. [PMID: 29578071 DOI: 10.1016/j.freeradbiomed.2018.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
In addition to debris clearance and antimicrobial function, versatile organelles known as phagosomes play an essential role in the processing of exogenous antigen in antigen presenting cells. While there has been much attention on human leukocyte antigen haplotypes in the determination of antigenic peptide repertoires, the lumenal biochemistries within phagosomes and endosomes are emerging as equally-important determinants of peptide epitope composition and immunodominance. Recently, the lumenal redox microenvironment within these degradative compartments has been shown to impact two key antigenic processing chemistries: proteolysis by lysosomal cysteine proteases and disulfide reduction of protein antigens. Through manipulation of the balance between oxidative and reductive capacities in the phagosome-principally by modulating NADPH oxidase (NOX2) and γ-interferon-inducible lysosomal thiol reductase (GILT) activities-studies have demonstrated changes to antigen processing patterns leading to modified repertoires of antigenic peptides available for presentation, and subsequently, altered disease progression in T cell-driven autoimmunity. This review focuses on the mechanisms and consequences of redox-mediated phagosomal antigen processing, and the potential downstream implications to tolerance and autoimmunity.
Collapse
Affiliation(s)
- Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
18
|
Paloschi MV, Boeno CN, Lopes JA, Eduardo Dos Santos da Rosa A, Pires WL, Pontes AS, da Silva Setúbal S, Soares AM, Zuliani JP. Role of l-amino acid oxidase isolated from Calloselasma rhodostoma venom on neutrophil NADPH oxidase complex activation. Toxicon 2018; 145:48-55. [PMID: 29499246 DOI: 10.1016/j.toxicon.2018.02.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 01/02/2023]
Abstract
The action of Cr-LAAO, an l-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on NADPH oxidase activation in isolated human neutrophil function was investigated. This enzyme has an intrinsic activity of hydrogen peroxide production. Cr-LAAO, in its native form, induces the ROS production in neutrophil and migration of cytosolic NADPH oxidase components p40phox, p47phox and p67phox to the membrane, and Rac, a GTPase protein member, with the involvement of intracellular signaling mediated by phospho PKC-α. In its inactive form, iCr-LAAO does not induce NADPH oxidase activation in neutrophil showing that the intrinsic enzymatic activity does not have a role in this process, suggesting that its primary structure is essential for the cell's stimulation. Accordingly, the data showed for the first time that the Cr-LAAO has a role in NADPH oxidase complex activation triggering relevant proinflammatory events in human neutrophils.
Collapse
Affiliation(s)
- Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Weverson Luciano Pires
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Adriana Silva Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
19
|
Erard M, Dupré-Crochet S, Nüße O. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am J Physiol Regul Integr Comp Physiol 2018; 314:R667-R683. [PMID: 29341828 DOI: 10.1152/ajpregu.00140.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Redox biology has become a major issue in numerous areas of physiology. Reactive oxygen species (ROS) have a broad range of roles from signal transduction to growth control and cell death. To understand the nature of these roles, accurate measurement of the reactive compounds is required. An increasing number of tools for ROS detection is available; however, the specificity and sensitivity of these tools are often insufficient. Furthermore, their specificity has been rarely evaluated in complex physiological conditions. Many ROS probes are sensitive to environmental conditions in particular pH, which may interfere with ROS detection and cause misleading results. Accurate detection of ROS in physiology and pathophysiology faces additional challenges concerning the precise localization of the ROS and the timing of their production and disappearance. Certain ROS are membrane permeable, and certain ROS probes move across cells and organelles. Targetable ROS probes such as fluorescent protein-based biosensors are required for accurate localization. Here we analyze these challenges in more detail, provide indications on the strength and weakness of current tools for ROS detection, and point out developments that will provide improved ROS detection methods in the future. There is no universal method that fits all situations in physiology and cell biology. A detailed knowledge of the ROS probes is required to choose the appropriate method for a given biological problem. The knowledge of the shortcomings of these probes should also guide the development of new sensors.
Collapse
Affiliation(s)
- Marie Erard
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Sophie Dupré-Crochet
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Oliver Nüße
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| |
Collapse
|
20
|
Abstract
Macrophages (MØs) are a key cell type of both the innate and the adaptive immune response and can tailor their response to prevailing conditions. To sense the host's status, MØs employ two classes of receptors: Toll-like receptors (TLRs), which are sensors for pathogen-derived material, and Fcγ receptors (FcγRs) that are detectors of the adaptive immune response. How MØs integrate the input from these various sensors is not understood and is the focus of active study. Here, we review the recent literature on the molecular mechanisms of TLR and FcgR crosstalk and synergy, and discuss the implications of these findings. This overview suggests a multilayered mechanism of receptor synergy that allows the MØ to fine-tune its response to prevailing conditions and provides ideas for future investigation.
Collapse
Affiliation(s)
- Michelle Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12008, USA
| | - James Drake
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12008, USA
| |
Collapse
|
21
|
Naufer A, Hipolito VEB, Ganesan S, Prashar A, Zaremberg V, Botelho RJ, Terebiznik MR. pH of endophagosomes controls association of their membranes with Vps34 and PtdIns(3)P levels. J Cell Biol 2017; 217:329-346. [PMID: 29089378 PMCID: PMC5748975 DOI: 10.1083/jcb.201702179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/03/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Specific changes in phospholipid content are a hallmark of the membranes of maturing endosomes and phagosomes, but is it unclear how this is controlled. Naufer et al. now show that acidification of the lumen of endosomes and phagosomes triggers dissociation of the Vps34 lipid kinase from these organelles, which terminates PtdIns(3)P synthesis and signaling. Phagocytosis of filamentous bacteria occurs through tubular phagocytic cups (tPCs) and takes many minutes to engulf these filaments into phagosomes. Contravening the canonical phagocytic pathway, tPCs mature by fusing with endosomes. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the elongating tPCs. Surprisingly, the regulatory early endosomal lipid phosphatidylinositol-3-phosphate (PtdIns(3)P) persists on tPCs as long as their luminal pH remains neutral. Interestingly, by manipulating cellular pH, we determined that PtdIns(3)P behaves similarly in canonical phagosomes as well as endosomes. We found that this is the product of a pH-based mechanism that induces the dissociation of the Vps34 class III phosphatidylinositol-3-kinase from these organelles as they acidify. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for the turnover of this lipid by PIKfyve. Given that PtdIns(3)P-dependent signaling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes.
Collapse
Affiliation(s)
- Amriya Naufer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Victoria E B Hipolito
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Akriti Prashar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Roberto J Botelho
- Molecular Science Graduate Program, Ryerson University, Toronto, Canada .,Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada .,Department of Cell and System Biology, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
22
|
Gazendam RP, van de Geer A, Roos D, van den Berg TK, Kuijpers TW. How neutrophils kill fungi. Immunol Rev 2017; 273:299-311. [PMID: 27558342 DOI: 10.1111/imr.12454] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus.
Collapse
Affiliation(s)
- Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Liu D, Wu N, Sun H, Dong M, Guo T, Chi P, Li G, Sun D, Jin Y. ABCG2 and NCF4 polymorphisms are associated with clinical outcomes in diffuse large B-cell lymphoma patients treated with R-CHOP. Oncotarget 2017; 8:58292-58303. [PMID: 28938556 PMCID: PMC5601652 DOI: 10.18632/oncotarget.16869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
The impact of pharmacogenetics on predicting survival in diffuse large B-cell lymphoma (DLBCL) remains unclear. We tested 337 DLBCL patients treated with rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for 9 single nucleotide polymorphisms from 6 genes (CD20, FCGR2A, NAD(P)H, ABCC2, ABCG2 and CYP3A5). Patients who carried the NCF4 rs1883112 GG genotype showed significantly shorter progression-free survival (PFS) (P = 0.023) and event-free survival (EFS) (P < 0.001) comparing with A allele. A significantly shortened PFS (P = 0.013) and EFS (P = 0.002) was also observed in the patients with ABCG2 rs2231137 GG genotype. Furthermore, the elder (> 60 years old) or male patients with ABCG2 rs2231137 GG genotype had poorer PFS and EFS than A allele. Moreover, CD20 rs2070770 CC and RAC2 rs13058338 AT genotypes were independent predictors of chemotherapy-induced toxicity. Cox proportional hazards analyses demonstrated that the GG genotype of ABCG2 rs2231137 and NCF4 rs1883112 were risk factors in DLBCL patients. In conclusion, the identified polymorphisms provide guide for the identification of DLBCL patients who are likely to benefit from chemotherapy.
Collapse
Affiliation(s)
- Duo Liu
- Department of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Nan Wu
- Department of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Haiming Sun
- Department of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tianzhu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Peng Chi
- Department of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Guofu Li
- Department of Neurosurvery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Donglin Sun
- Department of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Jin
- Department of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
24
|
Mendoza-Coronel E, Ortega E. Macrophage Polarization Modulates FcγR- and CD13-Mediated Phagocytosis and Reactive Oxygen Species Production, Independently of Receptor Membrane Expression. Front Immunol 2017; 8:303. [PMID: 28396660 PMCID: PMC5366847 DOI: 10.3389/fimmu.2017.00303] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
In response to microenvironmental cues, macrophages undergo a profound phenotypic transformation acquiring distinct activation phenotypes ranging from pro-inflammatory (M1) to anti-inflammatory (M2). To study how activation phenotype influences phagocytosis and production of reactive oxygen species (ROS) mediated by receptors for IgG antibodies (Fcγ receptors) and by CD13, human monocyte-derived macrophages were polarized to distinct phenotypes using IFN-γ (Mϕ-IFN-γ), IL-4 (Mϕ-IL-4), or IL-10 (Mϕ-IL-10). Phenotypically, Mϕ-IFN-γ were characterized as CD14+CD80+CD86+ cells, Mϕ-IL-4 as CD209highCD206+CD11b+CD14low, and Mϕ-IL-10 as CD16+CD163+ cells. Compared to non-polarized macrophages, FcγRI expression increased in Mϕ-IFN-γ and Mϕ-IL-10 and FcγRIII expression increased in Mϕ-IL-10. None of the polarizing cytokines modified FcγRII or CD13 expression. Functionally, we found that cytokine-mediated activation significantly and distinctively affected FcγR- and CD13-mediated phagocytosis and ROS generation. Compared to non-polarized macrophages, FcγRI-, FcγRII-, and CD13-mediated phagocytosis was significantly increased in Mϕ-IL-10 and decreased in Mϕ-IFN-γ, although both cytokines significantly upregulated FcγRI expression. IL-10 also increased phagocytosis of Escherichia coli, showing that the effect of IL-10 on macrophage phagocytosis is not specific for a particular receptor. Interestingly, Mϕ-IL-4, which showed poor FcγR- and CD13-mediated phagocytosis, showed very high phagocytosis of E. coli and zymosan. Coupled with phagocytosis, macrophages produce ROS that contribute to microbial killing. As expected, Mϕ-IFN-γ showed significant production of ROS after FcγRI-, FcγRII-, or CD13-mediated phagocytosis. Unexpectedly, we found that Mϕ-IL-10 can also produce ROS after simultaneous stimulation through several phagocytic receptors, as coaggregation of FcγRI/FcγRII/CD13 induced a belated but significant ROS production. Together, these results demonstrate that activation of macrophages by each cytokine distinctly modulates expression of phagocytic receptors, FcγR- and CD13-mediated phagocytosis, and ROS production.
Collapse
Affiliation(s)
- Elizabeth Mendoza-Coronel
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| |
Collapse
|
25
|
Single Cell Analysis of Phagocytosis, Phagosome Maturation, Phagolysosomal Leakage, and Cell Death Following Exposure of Macrophages to Silica Particles. Methods Mol Biol 2017; 1519:55-77. [PMID: 27815873 DOI: 10.1007/978-1-4939-6581-6_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inhalation of silica in various occupational settings results in the development of silicosis, a disease characterized by lung fibrosis. Uptake of silica particles by alveolar macrophages results in cell death and this is one of the contributing factors to the development of silicosis. We have characterized the uncoated or protein-coated (non-opsonized) and Fc receptor-mediated (antibody-opsonized) routes of silica phagocytosis and toxicity. Numerous microscopy techniques and fluorescent probes are outlined in this chapter to carefully measure particle uptake, by macrophages, phagosome maturation, phagosomal reactive oxygen species generation, phagolysosomal leakage, and cell death.
Collapse
|
26
|
Winter S, Hultqvist Hopkins M, Laulund F, Holmdahl R. A Reduction in Intracellular Reactive Oxygen Species Due to a Mutation in NCF4 Promotes Autoimmune Arthritis in Mice. Antioxid Redox Signal 2016; 25:983-996. [PMID: 27231144 DOI: 10.1089/ars.2016.6675] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS The mechanisms linking deficits in the phagocytic NADPH oxidase 2 (NOX2) complex to autoimmunity are so far incompletely understood. Deficiency in neutrophil cytosolic factor 1 (NCF1) inactivates the NOX2 complex, leading to a dramatic reduction of intra- and extracellular reactive oxygen species (ROS) and enhanced susceptibility to autoimmune disease. The contribution of intracellular NOX2 activity to autoimmune regulation is, however, unknown. Another component of the NOX2 complex, NCF4, directs the NOX2 complex to phagosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns3P) and has been proposed to regulate intracellular ROS levels. To address the impact of NCF4 and selective changes in intracellular ROS production on autoimmune inflammation, we studied collagen-induced arthritis (CIA) and mannan-induced psoriatic arthritis-like disease (MIP) in mice lacking NCF4 and mice with a mutation in the PtdIns3P-binding site of NCF4. RESULTS Targeted deletion of Ncf4 (Ncf4-/-) led to severe defects in overall ROS production due to concomitant reduction of NCF2 and NCF1. These mice displayed delayed neutrophil apoptosis and enhanced innate immune responses, and they developed aggravated CIA and MIP. Disruption of the PtdIns3P-binding site by targeted mutation (Ncf4*/*) resulted in selective defects in intracellular NOX2 activity, which entailed milder effects on innate immunity and MIP but clearly promoted susceptibility to CIA. Innovation and Conclusion: This is, to our knowledge, the first study addressing the development of autoimmunity in an organism with selectively compromised NOX2-dependent intracellular ROS levels. Our data reveal a specific role for NCF4-mediated intracellular ROS production in regulating autoimmunity and chronic inflammation. Antioxid. Redox Signal. 25, 983-996.
Collapse
Affiliation(s)
- Susann Winter
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden
| | - Malin Hultqvist Hopkins
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden
| | - Frida Laulund
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden
| |
Collapse
|
27
|
Lindberg E, Winssinger N. High Spatial Resolution Imaging of Endogenous Hydrogen Peroxide in Living Cells by Solid-State Fluorescence. Chembiochem 2016; 17:1612-5. [PMID: 27271247 DOI: 10.1002/cbic.201600211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 11/11/2022]
Abstract
Herein, we describe selective imaging of hydrogen peroxide using a precipitating dye conjugated to a boronic acid-based immolative linker. We achieved visualization of endogenous hydrogen peroxide in phagosomes by solid-state two-photon fluorescence imaging in living cells with exceptionally high spatial resolution.
Collapse
Affiliation(s)
- Eric Lindberg
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
| |
Collapse
|
28
|
Surewaard BGJ, Deniset JF, Zemp FJ, Amrein M, Otto M, Conly J, Omri A, Yates RM, Kubes P. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J Exp Med 2016; 213:1141-51. [PMID: 27325887 PMCID: PMC4925027 DOI: 10.1084/jem.20160334] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
Kubes et al. show that methicillin-resistant Staphylococcus aureus (MRSA) survive and proliferate inside Kupffer cells. Intracellular MRSA is resistant to neutrophil-killing and antibiotics treatment and, when released into the circulation, can infect other organs. Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is reaching epidemic proportions causing morbidity, mortality, and chronic disease due to relapses, suggesting an intracellular reservoir. Using spinning-disk confocal intravital microscopy to track MRSA-GFP in vivo, we identified that within minutes after intravenous infection MRSA is primarily sequestered and killed by intravascular Kupffer cells (KCs) in the liver. However, a minority of the Staphylococci overcome the KC’s antimicrobial defenses. These bacteria survive and proliferate for many days within this intracellular niche, where they remain undetected by recruited neutrophils. Over time, the KCs lyse, releasing bacteria into the circulation, enabling dissemination to other organs such as the kidneys. Vancomycin, the antibiotic of choice to treat MRSA bacteremia, could not penetrate the KCs to eradicate intracellular MRSA. However, based on the intravascular location of these specific macrophages, we designed a liposomal formulation of vancomycin that is efficiently taken up by KCs and diminished the intracellular MRSA. Targeting the source of the reservoir dramatically protected the liver but also dissemination to other organs, and prevented mortality. This vancomycin formulation strategy could help treat patients with Staphylococcal bacteremia without a need for novel antibiotics by targeting the previously inaccessible intracellular reservoir in KCs.
Collapse
Affiliation(s)
- Bas G J Surewaard
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Medical Microbiology, University Medical Centre, 3584 CX Utrecht, the Netherlands
| | - Justin F Deniset
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Franz J Zemp
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John Conly
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Pathology and Laboratory Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Microbiology, Infectious Diseases and Immunology, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Ontario, Canada
| | - Robin M Yates
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Physiology and Pharmacology, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| |
Collapse
|
29
|
Balce DR, Rybicka JM, Greene CJ, Ewanchuk BW, Yates RM. Ligation of FcγR Alters Phagosomal Processing of Protein via Augmentation of NADPH Oxidase Activity. Traffic 2016; 17:786-802. [PMID: 27020146 DOI: 10.1111/tra.12396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023]
Abstract
Proteolysis and the reduction of disulfides, both major components of protein degradation, are profoundly influenced by phagosomal redox conditions in macrophages. We evaluated the activation of phagocytic receptors that are known to influence activation of the phagocyte NADPH oxidase (NOX2), and its effect on phagosomal protein degradation. Population-based and single phagosome analyses of phagosomal chemistries in murine macrophages revealed that activation of NOX2 via the Fcγ receptor (FcγR) during phagocytosis decreased rates of proteolysis and disulfide reduction. Immunoglobulin G (IgG)-stimulated reactive oxygen species (ROS) production and the inhibition of phagosomal proteolysis and disulfide reduction were dependent on NOX2, FcγR and protein kinase C (PKC)/spleen tyrosine kinase (Syk) signaling. In contrast, low levels of ROS production were observed following the phagocytosis of unopsonized beads, which resulted in higher rates of phagosomal proteolysis and disulfide reduction. Phagosomes displayed autonomy with respect to FcγR-mediated differences in NOX2 activation and proteolysis, as phagosomes containing unopsonized cargo retained low NOX2 activation and high proteolysis even in the presence of phagosomes containing IgG-opsonized cargo in the same macrophage. These results show that opsonization of phagocytic cargo results in vastly different phagosomal processing of proteins through the FcγR-triggered, PKC/Syk-dependent local assembly and activation of NOX2.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada
| | - Joanna M Rybicka
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada
| | - Catherine J Greene
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
30
|
Li XJ, Deng L, Brandt SL, Goodwin CB, Ma P, Yang Z, Mali RS, Liu Z, Kapur R, Serezani CH, Chan RJ. Role of p85α in neutrophil extra- and intracellular reactive oxygen species generation. Oncotarget 2016; 7:23096-105. [PMID: 27049833 PMCID: PMC5029613 DOI: 10.18632/oncotarget.8500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Drug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in intracellular ROS with no change in phagocytosis in response to both Fcγ receptor and complement receptor stimulation. Furthermore, the increased intracellular ROS correlated with significantly improved neutrophil killing of both methicillin-susceptible and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel approach to improving the clearance of resistant pathogens.
Collapse
Affiliation(s)
- Xing Jun Li
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Lisa Deng
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | | | - Charles B. Goodwin
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Peilin Ma
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhenyun Yang
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Raghu S. Mali
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Ziyue Liu
- Department of Biostatistics, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indianapolis, IN, USA
| | | | - Rebecca J. Chan
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| |
Collapse
|
31
|
Joshi GN, Goetjen AM, Knecht DA. Silica particles cause NADPH oxidase-independent ROS generation and transient phagolysosomal leakage. Mol Biol Cell 2015. [PMID: 26202463 PMCID: PMC4569308 DOI: 10.1091/mbc.e15-03-0126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phagosomes containing silica particles leak their contents into the cytoplasm, leading to apoptosis, and leakage has been linked to ROS. Unlike latex particles, silica generates phagosomal and cytoplasmic ROS independent of NADPH oxidase. Leakage is transient, and, after sealing, phagosomes continue to fuse with endosomes. Chronic inhalation of silica particles causes lung fibrosis and silicosis. Silica taken up by alveolar macrophages causes phagolysosomal membrane damage and leakage of lysosomal material into the cytoplasm to initiate apoptosis. We investigated the role of reactive oxygen species (ROS) in this membrane damage by studying the spatiotemporal generation of ROS. In macrophages, ROS generated by NADPH oxidase 2 (NOX2) was detected in phagolysosomes containing either silica particles or nontoxic latex particles. ROS was only detected in the cytoplasm of cells treated with silica and appeared in parallel with an increase in phagosomal ROS, as well as several hours later associated with mitochondrial production of ROS late in apoptosis. Pharmacological inhibition of NOX activity did not prevent silica-induced phagolysosomal leakage but delayed it. In Cos7 cells, which do not express NOX2, ROS was detected in silica-containing phagolysosomes that leaked. ROS was not detected in phagolysosomes containing latex particles. Leakage of silica-containing phagolysosomes in both cell types was transient, and after resealing of the membrane, endolysosomal fusion continued. These results demonstrate that silica particles can generate phagosomal ROS independent of NOX activity, and we propose that this silica-generated ROS can cause phagolysosomal leakage to initiate apoptosis.
Collapse
Affiliation(s)
- Gaurav N Joshi
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Alexandra M Goetjen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
32
|
Li XJ, Goodwin CB, Nabinger SC, Richine BM, Yang Z, Hanenberg H, Ohnishi H, Matozaki T, Feng GS, Chan RJ. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst. J Biol Chem 2014; 290:3894-909. [PMID: 25538234 DOI: 10.1074/jbc.m114.614057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2(flox/flox);Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation.
Collapse
Affiliation(s)
- Xing Jun Li
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and
| | - Charles B Goodwin
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sarah C Nabinger
- the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Briana M Richine
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhenyun Yang
- West Coast University, Los Angeles, California 91606
| | - Helmut Hanenberg
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, the Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hiroshi Ohnishi
- the Gunma University Graduate School of Health Sciences, Maebashi, Gunma 371-8514, Japan
| | - Takashi Matozaki
- the Kobe University Graduate School of Medicine, Chuo-Ku, Kobe 650-0017, Japan, and
| | - Gen-Sheng Feng
- the Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Rebecca J Chan
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
33
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
34
|
Balce DR, Allan ERO, McKenna N, Yates RM. γ-Interferon-inducible lysosomal thiol reductase (GILT) maintains phagosomal proteolysis in alternatively activated macrophages. J Biol Chem 2014; 289:31891-31904. [PMID: 25253686 DOI: 10.1074/jbc.m114.584391] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although it is known that lysosomal cysteine cathepsins require a reducing environment for optimal activity, it is not firmly established how these enzymes are maintained in their reduced-active state in the acidic and occasionally oxidative environment within phagosomes and lysosomes. γ-Interferon-inducible lysosomal thiol reductase (GILT) has been the only enzyme described in the endosomes, lysosomes, and phagosomes with the potential to catalyze the reduction of cysteine cathepsins. Our goal in the current study was to assess the effect of GILT on major phagosomal functions with an emphasis on proteolytic efficiency in murine bone marrow-derived macrophages. Assessment of phagosomal disulfide reduction upon internalization of IgG-opsonized experimental particles confirmed a major role for GILT in phagosomal disulfide reduction in both resting and interferon-γ-activated macrophages. Furthermore we observed a decrease in early phagosomal proteolytic efficiency in GILT-deficient macrophages, specifically in the absence of an NADPH oxidase-mediated respiratory burst. This deficiency was more prominent in IL-4-activated macrophages that inherently possess lower levels of NADPH oxidase activity. Finally, we provide evidence that GILT is required for optimal activity of the lysosomal cysteine protease, cathepsin S. In summary, our results suggest a role for GILT in maintaining cysteine cathepsin proteolytic efficiency in phagosomes, particularly in the absence of high NADPH oxidase activity, which is characteristic of alternatively activated macrophages.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Euan R O Allan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Neil McKenna
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine and University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
35
|
Levin R, Grinstein S, Schlam D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:805-23. [PMID: 25238964 DOI: 10.1016/j.bbalip.2014.09.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/23/2014] [Accepted: 09/08/2014] [Indexed: 01/08/2023]
Abstract
Professional phagocytes provide immunoprotection and aid in the maintenance of tissue homeostasis. They perform these tasks by recognizing, engulfing and eliminating pathogens and endogenous cell debris. Here, we examine the paramount role played by phosphoinositides in phagocytosis and macropinocytosis, two major endocytic routes that mediate the uptake of particulate and fluid matter, respectively. We analyze accumulating literature describing the molecular mechanisms whereby phosphoinositides translate environmental cues into the complex, sophisticated responses that underlie the phagocytic and macropinocytic responses. In addition, we exemplify virulence strategies involving modulation of host cell phosphoinositide signaling that are employed by bacteria to undermine immunity. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roni Levin
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria St., Toronto M5C1N8, Canada.
| | - Daniel Schlam
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada
| |
Collapse
|
36
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|
37
|
Gibson-Corley KN, Bockenstedt MM, Li H, Boggiatto PM, Phanse Y, Petersen CA, Bellaire BH, Jones DE. An in vitro model of antibody-enhanced killing of the intracellular parasite Leishmania amazonensis. PLoS One 2014; 9:e106426. [PMID: 25191842 PMCID: PMC4156363 DOI: 10.1371/journal.pone.0106426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022] Open
Abstract
Footpad infection of C3HeB/FeJ mice with Leishmania amazonensis leads to chronic lesions accompanied by large parasite loads. Co-infecting these animals with L. major leads to induction of an effective Th1 immune response that can resolve these lesions. This cross-protection can be recapitulated in vitro by using immune cells from L. major-infected animals to effectively activate L. amazonensis-infected macrophages to kill the parasite. We have shown previously that the B cell population and their IgG2a antibodies are required for effective cross-protection. Here we demonstrate that, in contrast to L. major, killing L. amazonensis parasites is dependent upon FcRγ common-chain and NADPH oxidase-generated superoxide from infected macrophages. Superoxide production coincided with killing of L. amazonensis at five days post-activation, suggesting that opsonization of the parasites was not a likely mechanism of the antibody response. Therefore we tested the hypothesis that non-specific immune complexes could provide a mechanism of FcRγ common-chain/NADPH oxidase dependent parasite killing. Macrophage activation in response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was effective in significantly reducing the percentage of macrophages infected with L. amazonensis. These results define a host protection mechanism effective during Leishmania infection and demonstrate for the first time a novel means by which IgG antibodies can enhance killing of an intracellular pathogen.
Collapse
Affiliation(s)
- Katherine N. Gibson-Corley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Marie M. Bockenstedt
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Huijuan Li
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Paola M. Boggiatto
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yashdeep Phanse
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Christine A. Petersen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Douglas E. Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kovács I, Horváth M, Kovács T, Somogyi K, Tretter L, Geiszt M, Petheő GL. Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes. Free Radic Res 2014; 48:1190-9. [DOI: 10.3109/10715762.2014.938234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Roos D, van Buul JD, Tool ATJ, Matute JD, Marchal CM, Hayee B, Köker MY, de Boer M, van Leeuwen K, Segal AW, Pick E, Dinauer MC. Two CGD Families with a Hypomorphic Mutation in the Activation Domain of p67 phox. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5:1000231. [PMID: 25937994 PMCID: PMC4414043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
STUDY BACKGROUND Chronic granulomatous Disease (CGD) is a rare immunodeficiency caused by a defect in the leukocyte NADPH oxidase. This enzyme generates superoxide, which is needed for the killing of bacteria and fungi by phagocytic leukocytes. Most CGD patients have mutations in CYBB, the X-linked gene that encodes gp91phox, the catalytic subunit of the leukocyte NADPH oxidase. We report here three autosomal recessive CGD patients from two families with a homozygous mutation in NCF2, the gene that encodes p67phox, the activator subunit of the NADPH oxidase. METHODS Leukocyte NADPH oxidase activity, expression of oxidase components and gene sequences were measured with standard methods. The mutation found in the patients' NCF2 gene was expressed as Ala202Val-p67phox in K562 cells to measure its effect on NADPH oxidase activity. Translocation of the mutated p67phox from the cytosol of the patients' neutrophils to the plasma membrane was measured by confocal microscopy and by Western blotting after membrane purification. RESULTS The exceptional feature of the A67 CGD patients reported here is that the p.Ala202Val mutation in the activation domain of p67phox was clearly hypomorphic: substantial expression of p67phox protein was noted and the NADPH oxidase activity in the neutrophils of the patients was 20-70% of normal, dependent on the stimulus used to activate the cells. The extent of Ala202Val-p67phox translocation to the plasma membrane during cell activation was also stimulus dependent. Ala202Val-p67phox in K562 cells mediated only about 3% of normal oxidase activity compared to cells transfected with the wild-type p67phox. CONCLUSION The mutation found in NCF2 is the cause of the decreased NADPH oxidase activity and the (mild) clinical problems of the patients. We propose that the p.Ala202Val mutation has changed the conformation of the activation domain of p67phox, resulting in reduced activation of gp91phox.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Anton TJ Tool
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Juan D Matute
- Departments of Pediatrics (Hematology/Oncology), Microbiology/Immunology, and Medical and Molecular Genetics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christophe M Marchal
- Departments of Pediatrics (Hematology/Oncology), Microbiology/Immunology, and Medical and Molecular Genetics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bu’Hussain Hayee
- Department of Medicine, University College London, London, United Kingdom
| | - M Yavuz Köker
- Department of Immunology and Immunology Laboratory, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| | - Martin de Boer
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Anthony W Segal
- Department of Medicine, University College London, London, United Kingdom
| | - Edgar Pick
- Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Sackler School of Medicine, Tel Aviv University, Israel
| | - Mary C Dinauer
- Departments of Pediatrics (Hematology/Oncology), Microbiology/Immunology, and Medical and Molecular Genetics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Gustafson HL, Yao S, Goldman BH, Lee K, Spier CM, LeBlanc ML, Rimsza LM, Cerhan JR, Habermann TM, Link BK, Maurer MJ, Slager SL, Persky DO, Miller TP, Fisher RI, Ambrosone CB, Briehl MM. Genetic polymorphisms in oxidative stress-related genes are associated with outcomes following treatment for aggressive B-cell non-Hodgkin lymphoma. Am J Hematol 2014; 89:639-45. [PMID: 24633940 DOI: 10.1002/ajh.23709] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 11/10/2022]
Abstract
Variable survival outcomes are seen following treatment for aggressive non-Hodgkin lymphoma (NHL). This study examined whether outcomes for aggressive B-cell NHL are associated with single nucleotide polymorphisms (SNPs) in oxidative stress-related genes, which can alter drug metabolism and immune responses. Genotypes for 53 SNPs in 29 genes were determined for 337 patients given anthracycline-based therapies. Their associations with progression-free survival (PFS) and overall survival (OS) were estimated by Cox proportional hazard regression; associations with hematologic toxicity were estimated by logistic regression. To validate the findings, the top three SNPs were tested in an independent cohort of 572 DLBCL patients. The top SNPs associated with PFS in the discovery cohort were the rare homozygotes for MPO rs2243828 (hazard ratio [HR] = 1.87, 95% confidence interval [CI] = 1.14-3.06, P = 0.013), AKR1C3 rs10508293 (HR = 2.09, 95% CI = 1.28-3.41, P = 0.0032) and NCF4 rs1883112 (HR = 0.66, 95% CI = 0.43-1.02, P = 0.06). The association of the NCF4 SNP with PFS was replicated in the validation dataset (HR = 0.66, 95% CI = 0.44-1.01, P = 0.05) and the meta-analysis was significant (HR = 0.66, 95% CI = 0.49-0.89, P < 0.01). The association of the MPO SNP was attenuated in the validation dataset, while the meta-analysis remained significant (HR = 1.64, 95% CI = 1.12-2.41). These two SNPs showed similar trends with OS in the meta-analysis (for NCF4, HR = 0.72, 95% CI = 0.51-1.02, P = 0.07 and for MPO, HR = 2.06, 95% CI = 1.36-3.12, P < 0.01). In addition, patients with the rare homozygote of the NCF4 SNP had an increased risk of hematologic toxicity. We concluded that genetic variations in NCF4 may contribute to treatment outcomes for patients with aggressive NHL.
Collapse
Affiliation(s)
- Heather L. Gustafson
- Cancer Biology Graduate Interdisciplinary Program; University of Arizona; Tucson Arizona
| | - Song Yao
- Department of Cancer Prevention and Control; Roswell Park Cancer Institute; Buffalo New York
| | - Bryan H. Goldman
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Center; Seattle Washington
| | - Kristy Lee
- Cancer Biology Graduate Interdisciplinary Program; University of Arizona; Tucson Arizona
| | | | - Michael L. LeBlanc
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Center; Seattle Washington
| | - Lisa M. Rimsza
- Department of Pathology; University of Arizona; Tucson Arizona
| | - James R. Cerhan
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | | | - Brian K. Link
- Department of Internal Medicine; University of Iowa Hospitals and Clinics; Iowa City Iowa
| | - Matthew J. Maurer
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | - Susan L. Slager
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | | | | | | | - Christine B. Ambrosone
- Department of Cancer Prevention and Control; Roswell Park Cancer Institute; Buffalo New York
| | | |
Collapse
|
41
|
Abstract
Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that physiologically relevant concentrations of pyruvate, a potent H2O2 scavenger, and provided passive protection to B. burgdorferi and L. interrogans against H2O2. When extracellular pyruvate was absent, both spirochetes were sensitive to a low dose of H2O2 (≈0.6 µM per h) generated by glucose oxidase (GOX). Despite encoding a functional catalase, L. interrogans was more sensitive than B. burgdorferi to H2O2 generated by GOX, which may be due to the inherent resistance of B. burgdorferi because of the virtual absence of intracellular iron. In B. burgdorferi, the nucleotide excision repair (NER) and the DNA mismatch repair (MMR) pathways were important for survival during H2O2 challenge since deletion of the uvrB or the mutS genes enhanced its sensitivity to H2O2 killing; however, the presence of pyruvate fully protected ΔuvrB and ΔmutS from H2O2 killing further demonstrating the importance of pyruvate in protection. These findings demonstrated that pyruvate, in addition to its classical role in central carbon metabolism, serves as an important H2O2 scavenger for pathogenic spirochetes. Furthermore, pyruvate reduced ROS generated by human neutrophils in response to the Toll-like receptor 2 (TLR2) agonist zymosan. In addition, pyruvate reduced neutrophil-derived ROS in response to B. burgdorferi, which also activates host expression through TLR2 signaling. Thus, pathogenic spirochetes may exploit the metabolite pyruvate, present in blood and tissues, to survive H2O2 generated by the host antibacterial response generated during infection.
Collapse
|
42
|
Kim YM, Cho M. Activation of NADPH oxidase subunit NCF4 induces ROS-mediated EMT signaling in HeLa cells. Cell Signal 2013; 26:784-96. [PMID: 24378533 DOI: 10.1016/j.cellsig.2013.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a critical biological process characterized by morphological and behavioral changes in cells. The regulatory and signaling mechanisms of both developmental and pathological EMT have been investigated. Reactive oxygen species (ROS) play a role in early EMT, but the exact mechanism by which ROS are involved is unclear. We investigated ROS-mediated EMT in human HeLa cells. Transforming growth factor beta (TGF-β) treatments lead to dramatic NADPH oxidase 2 (NOX2) inductions in HeLa cells; antioxidant treatment prevented TGF-β-driven EMT. Over-expression of the p40phox subunit (NCF4) led to activation of the NOX2 complex and ROS production. We showed that NOX2 and NOX5 mRNA was increased, along with increased expression of several matrix metalloproteinases (MMPs) in response to NCF4 expression. Moreover, these changes were reversible upon ROS scavenging. Down-regulation of E-cadherin and up-regulation of Snail, Slug and vimentin occurred at the transcriptional level. We also showed that new EMT regulator, YB-1 is a downstream target in ROS-induced EMT. Together, these data suggest that ROS switching is necessary for increased EMT but is not required for the morphological changes that accompany EMT.
Collapse
Affiliation(s)
- Young Mee Kim
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
| | - Moonjae Cho
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea; Institute of Medical Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
43
|
Franchini AM, Hunt D, Melendez JA, Drake JR. FcγR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J Biol Chem 2013; 288:25098-25108. [PMID: 23857584 DOI: 10.1074/jbc.m113.474106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the FcγR via antigen containing immune complexes can lead to the generation of reactive oxygen species, which are potent signal transducing molecules. However, whether ROS contribute to FcγR signaling has not been studied extensively. We set out to elucidate the role of NADPH oxidase-generated ROS in macrophage activation following FcγR engagement using antigen-containing immune complexes. We hypothesized that NOX2 generated ROS is necessary for propagation of downstream FcγR signaling and initiation of the innate immune response. Following exposure of murine bone marrow-derived macrophages (BMDMs) to inactivated Francisella tularensis (iFt)-containing immune complexes, we observed a significant increase in the innate inflammatory cytokine IL-6 at 24 h compared with macrophages treated with Ft LVS-containing immune complexes. Ligation of the FcγR by opsonized Ft also results in significant ROS production. Macrophages lacking the gp91(phox) subunit of NOX2 fail to produce ROS upon FcγR ligation, resulting in decreased Akt phosphorylation and a reduction in the levels of IL-6 compared with wild type macrophages. Similar results were seen following infection of BMDMs with catalase deficient Ft that fail to scavenge hydrogen peroxide. In conclusion, our findings demonstrate that ROS participate in elicitation of an effective innate immune in response to antigen-containing immune complexes through FcγR.
Collapse
Affiliation(s)
- Anthony M Franchini
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - Danielle Hunt
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - J Andres Melendez
- the College of Nanoscale Science and Engineering, University at Albany-State University of New York, Albany, New York 12203
| | - James R Drake
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and.
| |
Collapse
|
44
|
Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ. Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal 2013; 18:603-21. [PMID: 23050834 PMCID: PMC3549212 DOI: 10.1089/ars.2012.4623] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The sources of cytosolic superoxide in skeletal muscle have not been defined. This study examined the subcellular sites that contribute to cytosolic superoxide in mature single muscle fibers at rest and during contractile activity. RESULTS Isolated fibers from mouse flexor digitorum brevis loaded with superoxide and nitric-oxide-sensitive fluorescent probes, specific pathway inhibitors and immunolocalization techniques were used to identify subcellular sites contributing to cytosolic superoxide. Treatment with the electron transport chain complex III inhibitor, antimycin A, but not the complex I inhibitor, rotenone, caused increased cytosolic superoxide through release from the mitochondrial intermembrane space via voltage-dependent anion or Bax channels, but inhibition of these channels did not affect contraction-induced increases in cytosolic superoxide. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors decreased cytosolic superoxide at rest and following contractions. Protein and mRNA expression of NADPH oxidase subunits was demonstrated in single fibers. NOX2, NOX4, and p22(phox) subunits localized to the sarcolemma and transverse tubules; NOX4 was additionally expressed in mitochondria. Regulatory p40(phox) and p67(phox) proteins were found in the cytoplasm of resting fibers, but following contractions, p40(phox) appeared to translocate to the sarcolemma. INNOVATION Superoxide and other reactive oxygen species generated by skeletal muscle are important regulators of muscle force production and adaptations to contractions. This study has defined the relative contribution of mitochondrial and cytosolic sources of superoxide within the cytosol of single muscle fibers at rest and during contractions. CONCLUSION Muscle mitochondria do not modulate cytosolic superoxide in skeletal muscle but NADPH oxidase is a major contributor both at rest and during contractions.
Collapse
Affiliation(s)
- Giorgos Konstantinos Sakellariou
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Monfregola J, Johnson JL, Meijler MM, Napolitano G, Catz SD. MUNC13-4 protein regulates the oxidative response and is essential for phagosomal maturation and bacterial killing in neutrophils. J Biol Chem 2012; 287:44603-18. [PMID: 23115246 DOI: 10.1074/jbc.m112.414029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophils use diverse mechanisms to kill pathogens including phagocytosis, exocytosis, generation of reactive oxygen species (ROS), and neutrophil extracellular traps. These mechanisms rely on their ability to mobilize intracellular organelles and to deliver granular cargoes to specific cellular compartments or into the extracellular milieu, but the molecular mechanisms regulating vesicular trafficking in neutrophils are not well understood. MUNC13-4 is a RAB27A effector that coordinates exocytosis in hematopoietic cells, and its deficiency is associated with the human immunodeficiency familial hemophagocytic lymphohistiocytosis type 3. In this work, we have established an essential role for MUNC13-4 in selective vesicular trafficking, phagosomal maturation, and intracellular bacterial killing in neutrophils. Using neutrophils from munc13-4 knock-out (KO) mice, we show that MUNC13-4 is necessary for the regulation of p22(phox)-expressing granule trafficking to the plasma membrane and regulates extracellular ROS production. MUNC13-4 was also essential for the regulation of intracellular ROS production induced by Pseudomonas aeruginosa despite normal trafficking of p22(phox)-expressing vesicles toward the phagosome. Importantly, in the absence of MUNC13-4, phagosomal maturation was impaired as observed by the defective delivery of azurophilic granules and multivesicular bodies to the phagosome. Significantly, this mechanism was intact in RAB27A KO neutrophils. Intracellular bacterial killing was markedly impaired in MUNC13-4 KO neutrophils. MUNC13-4-deficient cells showed a significant increase in neutrophil extracellular trap formation but were unable to compensate for the impaired bacterial killing. Altogether, these findings characterize novel functions of MUNC13-4 in the innate immune response of the neutrophil and have direct implications for the understanding of immunodeficiencies in patients with MUNC13-4 deficiency.
Collapse
Affiliation(s)
- Jlenia Monfregola
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
46
|
Activation of neutrophil respiratory burst by fungal particles requires phosphatidylinositol 3-phosphate binding to p40phox in humans but not in mice. Blood 2012; 120:3385-7. [DOI: 10.1182/blood-2012-07-445619] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Crotzer VL, Matute JD, Arias AA, Zhao H, Quilliam LA, Dinauer MC, Blum JS. Cutting edge: NADPH oxidase modulates MHC class II antigen presentation by B cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:3800-4. [PMID: 22984083 DOI: 10.4049/jimmunol.1103080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phagocyte NADPH oxidase plays a key role in pathogen clearance via reactive oxygen species (ROS) production. Defects in oxidase function result in chronic granulomatous disease with hallmark recurrent microbial infections and inflammation. The oxidase's role in the adaptive immune response is not well understood. Class II presentation of cytoplasmic and exogenous Ag to CD4(+) T cells was impaired in human B cells with reduced oxidase p40(phox) subunit expression. Naturally arising mutations, which compromise p40(phox) function in a chronic granulomatous disease patient, also perturbed class II Ag presentation and intracellular ROS production. Reconstitution of patient B cells with a wild-type, but not a mutant, p40(phox) allele restored exogenous Ag presentation and intracellular ROS generation. Remarkably, class II presentation of epitopes from membrane Ag was robust in p40(phox)-deficient B cells. These studies reveal a role for NADPH oxidase and p40(phox) in skewing epitope selection and T cell recognition of self Ag.
Collapse
Affiliation(s)
- Victoria L Crotzer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Buntru A, Roth A, Nyffenegger-Jann NJ, Hauck CR. HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens. Arch Biochem Biophys 2012; 524:77-83. [DOI: 10.1016/j.abb.2012.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
49
|
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110:1364-90. [PMID: 22581922 PMCID: PMC3365576 DOI: 10.1161/circresaha.111.243972] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
50
|
Hu X, Zhou H, Zhang D, Yang S, Qian L, Wu HM, Chen PS, Wilson B, Gao HM, Lu RB, Hong JS. Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J Neuroimmune Pharmacol 2012; 7:187-201. [PMID: 21870076 PMCID: PMC3633602 DOI: 10.1007/s11481-011-9309-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Increasing evidence suggests a possible involvement of neuroinflammation in some psychiatric disorders, and also pharmacological reports indicate that anti-inflammatory effects are associated with therapeutic actions of psychoactive drugs, such as anti-depressants and antipsychotics. The purpose of this study was to explore whether clozapine, a widely used antipsychotic drugs, displays anti-inflammatory and neuroprotective effects. Using primary cortical and mesencephalic neuron-glia cultures, we found that clozapine was protective against inflammation-related neurodegeneration induced by lipopolysaccharide (LPS). Pretreatment of cortical or mesencephalic neuron-glia cultures with clozapine (0.1 or 1 μM) for 24 h attenuated LPS-induced neurotoxicity. Clozapine also protected neurons against 1-methyl-4-phenylpyridinium(+) (MPP(+))-induced neurotoxicity, but only in cultures containing microglia, indicating an indispensable role of microglia in clozapine-afforded neuroprotection. Further observation revealed attenuated LPS-induced microglial activation in primary neuron-glia cultures and in HAPI microglial cell line with clozapine pretreatment. Clozapine ameliorated the production of microglia-derived superoxide and intracellular reactive oxygen species (ROS), as well as the production of nitric oxide and TNF-α following LPS. In addition, the protective effect of clozapine was not observed in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX), a key enzyme for superoxide production in immune cells. Further mechanistic studies demonstrated that clozapine pretreatment inhibited LPS-induced translocation of cytosolic subunit p47(phox) to the membrane in microglia, which was most likely through inhibiting the phosphoinositide 3-kinase (PI3K) pathway. Taken together, this study demonstrates that clozapine exerts neuroprotective effect via the attenuation of microglia activation through inhibition of PHOX-generated ROS production and suggests potential use of antipsychotic drugs for neuroprotection.
Collapse
Affiliation(s)
- Xiaoming Hu
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
- Department of Neurology and Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Hui Zhou
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Dan Zhang
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Sufen Yang
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Li Qian
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Hung-Ming Wu
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
- Institute of Behavioral Medicine and Department of Psychiatry, College of Medicine & Hospital, National Cheng-Kung University, Tainan, Taiwan
| | - Po-See Chen
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Belinda Wilson
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Hui-Ming Gao
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Ru-band Lu
- Institute of Behavioral Medicine and Department of Psychiatry, College of Medicine & Hospital, National Cheng-Kung University, Tainan, Taiwan
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| |
Collapse
|