1
|
Glinton K, Thakkar AV, Jones R, Inui H, Ge ZD, Thorp EB. Leukocyte-lymphatic intersections during cardiac inflammation. J Mol Cell Cardiol 2025; 198:13-20. [PMID: 39592090 PMCID: PMC11717605 DOI: 10.1016/j.yjmcc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Advances in genetic, pharmacologic, and sequencing technology have led to new insight into the role of lymphatics in health and disease. This includes fundamental aspects of the crosstalk between immune cells with cardiac lymphatics. At the interface between leukocytes and lymphatic endothelial cells, myeloid populations are sources of lymphatic growth factors during inflammation. Lymphatic endothelial cells also secrete signals that activate leukocytes, including to antigen presenting cells. Taken together, a view of the lymphatic vasculature as a supplemental cardiac immune hub is emerging. Herein, we discuss reciprocal cell and molecular crosstalk between leukocytes and lymphatics in the myocardium, with implications for health and cardiac inflammation.
Collapse
Affiliation(s)
- Kristofor Glinton
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Abhishek V Thakkar
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Rebecca Jones
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Hiroyasu Inui
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Zhi-Dong Ge
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill, United States of America
| | - Edward B Thorp
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
2
|
Chen YL, Lin YN, Xu J, Qiu YX, Wu YH, Qian XG, Wu YQ, Wang ZN, Zhang WW, Li YC. Macrophage-derived VEGF-C reduces cardiac inflammation and prevents heart dysfunction in CVB3-induced viral myocarditis via remodeling cardiac lymphatic vessels. Int Immunopharmacol 2024; 143:113377. [PMID: 39405931 DOI: 10.1016/j.intimp.2024.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Cardiac lymphatic vessels are important channels for cardiac fluid circulation and immune regulation. In myocardial infarction and chronic heart failure, promoting cardiac lymphangiogenesis is beneficial in reducing cardiac edema and inflammation. However, the specific involvement of cardiac lymphangiogenesis in viral myocarditis (VMC) has not been studied. Despite the recognized participation of macrophages in lymphangiogenesis, the contribution of macrophages to cardiac lymphangiogenesis in VMC is still unclear. METHODS The male Balb/c mice with VMC were grouped according to the time to explore changes in inflammation, cardiac function and lymphangiogenesis. Adeno-associated virus (AAV) was used to determine the effect of cardiac lymphangiogenesis in VMC. Macrophage depletion and VEGF-CC156S treatment were used to investigate the connection between macrophages and cardiac lymphangiogenesis. RESULTS Cardiac inflammation and lymphatic vessel density were both upregulated, peaking on day 7 following CVB3 infection. After treatment with AAV-sVEGFR3, lymphangiogenesis was inhibited, leading to worsened cardiac dysfunction and aggravated inflammation. However, these effects were reversed by AAV-VEGF-C treatment. Furthermore, macrophages infiltrated the inflamed myocardium and secreted VEGF-C. In vitro, VEGF-C was upregulated when RAW264.7 cells were co-cultured with CVB3. Macrophage depletion in mice with VMC inhibited lymphangiogenesis, while supplementation with VEGF-CC156S depressed it. CONCLUSION Collectively, these results indicate that activation of the VEGF-C/VEGFR3 axis exerts a protective effect in CVB3-induced VMC by resolving inflammation and alleviating cardiac dysfunction through increased lymphatic vasculature density, with macrophage-derived VEGF-C partially contributing to this effect.
Collapse
Affiliation(s)
- Yi-Lian Chen
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Nan Lin
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Xuan Qiu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hao Wu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Ge Qian
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Qing Wu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Ning Wang
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Wu Zhang
- Department of Intensive Care Unit, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Yang Y, Wu A, Deng AN, Liu H, Lan Q, Mazhar M, Xue JY, Chen MT, Luo G, Liu MN. Macrophages after myocardial infarction: Mechanisms for repairing and potential as therapeutic approaches. Int Immunopharmacol 2024; 143:113562. [PMID: 39536484 DOI: 10.1016/j.intimp.2024.113562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Macrophages - one of the crucial immune cells, are recruited to the cardiac tissue by chemokines, cytokines and upregulated endothelial adhesion molecules after myocardial infarction (MI). During the course of inflammation in the cardiac tissue, necrotic cells and matrix debris is phagocytosed by M1 macrophages. During the resolution phase of cardiac inflammation, M2 macrophages promote cardiac recovery. Suppression or over expression of both the M1 and M2 macrophage subtypes significantly affect the reparation of infarction. Stem cells therapy, cytokine regulation and immune cells therapy are considered as effective interventions to regulate the phenotypic transformation of cardiac macrophages after MI. Intervention with macrophages in the myocardium has shown unique advantages. In this review, the mechanisms and role of macrophages in the development of MI are elaborated in detail, the promising therapeutic methods for regulating macrophage phenotypes, their limitations and possible future research directions are discussed.
Collapse
Affiliation(s)
- You Yang
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ai Wu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Ni Deng
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Liu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming-Tai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China.
| | - Gang Luo
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Majima M, Matsuda Y, Watanabe SI, Ohtaki Y, Hosono K, Ito Y, Amano H. Prostanoids Regulate Angiogenesis and Lymphangiogenesis in Pathological Conditions. Cold Spring Harb Perspect Med 2024; 14:a041182. [PMID: 38565267 PMCID: PMC11610754 DOI: 10.1101/cshperspect.a041182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Angiogenesis, the formation of new blood vessels from the preexistent microvasculature, is an essential component of wound repair and tumor growth. Nonsteroidal anti-inflammatory drugs that suppress prostanoid biosynthesis are known to suppress the incidence and progression of malignancies including colorectal cancers, and also to delay the wound healing. However, the precise mechanisms are not fully elucidated. Accumulated results obtained from prostanoid receptor knockout mice indicate that a prostaglandin E-type receptor signaling EP3 in the host microenvironment is critical in tumor angiogenesis inducing vascular endothelial growth factor A (VEGF-A). Further, lymphangiogenesis was also enhanced by EP signaling via VEGF-C/D inductions in pathological settings. These indicate the importance of EP receptor to facilitate angiogenesis and lymphangiogenesis in vivo. Prostanoids act beyond their commonly understood activities in smooth muscle contraction and vasoactivity, both of which are quick responses elicited within several seconds on stimulations. Prostanoid receptor signaling will be a potential therapeutic target for disease conditions related to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Yasuaki Ohtaki
- Department of Human Sensing, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
5
|
Boyer DS, Steinle NC, Pearlman JA, Stone CM, Crawford C, Gupta S, Dugel PU, Baldwin ME, Leitch IM. Phase 1b Dose Escalation Study of Sozinibercept Inhibition of Vascular Endothelial Growth Factors C and D With Aflibercept for Diabetic Macular Edema. Transl Vis Sci Technol 2024; 13:32. [PMID: 39699889 DOI: 10.1167/tvst.13.12.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Purpose Sozinibercept inhibits vascular endothelial growth factors (VEGFs) C and D. This study evaluated outcomes following switching from anti-VEGF-A monotherapy to intravitreal injections of three dose levels of sozinibercept in combination with aflibercept in patients with diabetic macular edema (DME). Methods A phase 1b, open-label, multicenter dose-escalation study with a 24-week follow-up. Patients received 3 loading doses of aflibercept (2 mg) in combination with sozinibercept (0.3, 1, or 2 mg) once every 4 weeks and were followed through week 24. The primary endpoint was safety, and secondary endpoints included mean change from baseline in best-corrected visual acuity (BCVA) and anatomic changes on imaging. Results Nine patients received sozinibercept in combination with aflibercept after a mean (SD) of 6.3 (2.4) injections of previous anti-VEGF-A. Sozinibercept combination therapy was well tolerated with no dose-limiting toxicities. Mean change in BCVA at week 12 was +7.7 letters (95% confidence interval [CI], 2-13.3) from baseline (65 letters [SD 5.5]) with a dose response for increasing doses of sozinibercept. At week 12, central subfield thickness (CST) was decreased by -71 µm (95% CI, -117 to -26) from baseline (434 µm [SD 58]), and 6 of 9 (67%) patients had a ≥50% reduction in excess foveal thickness. Conclusions In prior-treated patients with center-involved DME, switching to sozinibercept in combination with aflibercept was well tolerated with improved visual and anatomic outcomes. Translational Relevance This first-in-human study builds upon basic research by providing safety and preliminary efficacy of sozinibercept (anti-VEGF-C/-D) in combination with aflibercept for DME.
Collapse
Affiliation(s)
- David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | | | | | | | | | - Sunil Gupta
- Retina Specialty Institute, Pensacola, FL, USA
| | | | | | | |
Collapse
|
6
|
Lu X, Ma K, Ren J, Peng H, Wang J, Wang X, Nasser MI, Liu C. The immune regulatory role of lymphangiogenesis in kidney disease. J Transl Med 2024; 22:1053. [PMID: 39578812 PMCID: PMC11583545 DOI: 10.1186/s12967-024-05859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
The renal lymphatic system is critical for maintaining kidney homeostasis and regulating the immune response inside the kidney. In various kidney pathological situations, the renal lymphatic network experiences lymphangiogenesis, which is defined as the creation of new lymphatic vessels. Kidney lymphangiogenesis controls immunological response inside the kidney by controlling lymphatic flow, immune cell trafficking, and immune cell regulation. Ongoing study reveals lymphangiogenesis's different architecture and functions in numerous tissues and organs. New research suggests that lymphangiogenesis in kidney disorders may regulate the renal immune response in various ways. The flexibility of lymphatic endothelial cells (LECs) improves the kidney's immunological regulatory function of lymphangiogenesis. Furthermore, current research has shown disparate findings regarding its impact on distinct renal diseases, resulting in contradictory outcomes even within the same kidney condition. The fundamental causes of the various effects of lymphangiogenesis on renal disorders remain unknown. In this thorough review, we explore the dual impacts of renal lymphangiogenesis on several kidney pathologies, with a particular emphasis on existing empirical data and new developments in understanding its immunological regulatory function in kidney disease. An improved understanding of the immunological regulatory function of lymphangiogenesis in kidney diseases might help design novel medicines targeting lymphatics to treat kidney pathologies.
Collapse
Affiliation(s)
- Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Xiaoxiao Wang
- Department of Organ Transplantation, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
7
|
Jian Y, Li Y, Zhang Y, Tang M, Deng M, Liu C, Cheng M, Xiao S, Deng C, Wei Z. Lymphangiogenesis: novel strategies to promote cutaneous wound healing. BURNS & TRAUMA 2024; 12:tkae040. [PMID: 39328366 PMCID: PMC11427083 DOI: 10.1093/burnst/tkae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 09/28/2024]
Abstract
The cutaneous lymphatic system regulates tissue inflammation, fluid balance and immunological responses. Lymphangiogenesis or lymphatic dysfunction may lead to lymphedema, immune deficiency, chronic inflammation etc. Tissue regeneration and healing depend on angiogenesis and lymphangiogenesis during wound healing. Tissue oedema and chronic inflammation can slow wound healing due to impaired lymphangiogenesis or lymphatic dysfunction. For example, impaired lymphangiogenesis or lymphatic dysfunction has been detected in nonhealing wounds such as diabetic ulcers, venous ulcers and bedsores. This review summarizes the structure and function of the cutaneous lymphatic vessel system and lymphangiogenesis in wounds. Furthermore, we review wound lymphangiogenesis processes and remodelling, especially the influence of the inflammatory phase. Finally, we outline how to control lymphangiogenesis to promote wound healing, assess the possibility of targeting lymphangiogenesis as a novel treatment strategy for chronic wounds and provide an analysis of the possible problems that need to be addressed.
Collapse
Affiliation(s)
- Yang Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanji Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingyuan Tang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingfu Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Chenxiaoxiao Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Maolin Cheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| |
Collapse
|
8
|
Meng EX, Verne GN, Zhou Q. Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses. Int J Mol Sci 2024; 25:9422. [PMID: 39273369 PMCID: PMC11395020 DOI: 10.3390/ijms25179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.
Collapse
Affiliation(s)
| | - George Nicholas Verne
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Qiqi Zhou
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Xian Y, Liu J, Dai M, Zhang W, He M, Wei Z, Jiang Y, Le S, Lin Z, Tang S, Zhou Y, Dong L, Liang J, Zhang J, Wang L. Microglia Promote Lymphangiogenesis Around the Spinal Cord Through VEGF-C/VEGFR3-Dependent Autophagy and Polarization After Acute Spinal Cord Injury. Mol Neurobiol 2024:10.1007/s12035-024-04437-5. [PMID: 39158788 DOI: 10.1007/s12035-024-04437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Reducing secondary injury is a key focus in the field of spinal cord injury (SCI). Recent studies have revealed the role of lymphangiogenesis in reducing secondary damage to central nerve. However, the mechanism of lymphangiogenesis is not yet clear. Macrophages have been shown to play an important role in peripheral tissue lymphangiogenesis. Microglia is believed to play a role similar to macrophages in the central nervous system (CNS); we hypothesized that there was a close relationship between microglia and central nerve system lymphangiogenesis. Herein, we used an in vivo model of SCI to explored the relationship between microglia and spinal cord lymphangiogenesis and further investigated the polarization of microglia and its role in promoting spinal cord lymphangiogenesis by a series of in vitro experiments. The current study elucidated for the first time the relationship between microglia and lymphangiogenesis around the spinal cord after SCI. Classical activated (M1) microglia can promote lymphangiogenesis by secreting VEGF-C which further increases polarization and secretion of lymphatic growth factor by activating VEGFR3. The VEGF-C/VEGFR3 pathway activation downregulates microglia autophagy, thereby regulating the microglia phenotype. These results indicate that M1 microglia promote lymphangiogenesis after SCI, and activated VEGF-C/VEGFR3 signaling promotes M1 microglia polarization by inhibiting autophagy, thereby facilitates lymphangiogenesis.
Collapse
Grants
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 202102020768 Science and Technology Program of Guangzhou, China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 82072433 National Natural Science Foundation of China
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
- 2214050002081 Natural Science Foundation of Guangdong Province
Collapse
Affiliation(s)
- Yeyang Xian
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Jie Liu
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Mengxuan Dai
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Wensheng Zhang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Minye He
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Zhengnong Wei
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Yutao Jiang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Shiyong Le
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Zhuoang Lin
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Shuai Tang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Yunfei Zhou
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Liming Dong
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Jinzheng Liang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China
| | - Jie Zhang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China.
| | - Liang Wang
- Tianhe District, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Zhongshandadao West 183, Guangzhou City, 510000, China.
| |
Collapse
|
10
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
11
|
Navaneethabalakrishnan S, Goodlett B, Smith H, Montalvo R, Cardenas A, Mitchell B. Differential changes in end organ immune cells and inflammation in salt-sensitive hypertension: effects of increasing M2 macrophages. Clin Sci (Lond) 2024; 138:921-940. [PMID: 38949840 PMCID: PMC11250104 DOI: 10.1042/cs20240699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Salt-sensitive hypertension (SSHTN) is associated with M1 macrophage polarization and inflammatory responses, leading to inflammation-associated lymphangiogenesis and functional impairment across multiple organs, including kidneys and gonads. However, it remains unclear whether promoting M2 macrophage polarization can alleviate the hypertension, inflammation, and end organ damage in mice with salt sensitive hypertension (SSHTN). Male and female mice were made hypertensive by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/ml) for 2 weeks in the drinking water, followed by a 2-week interval without any treatments, and a subsequent high salt diet for 3 weeks (SSHTN). AVE0991 (AVE) was intraperitoneally administered concurrently with the high salt diet. Control mice were provided standard diet and tap water. AVE treatment significantly attenuated BP and inflammation in mice with SSHTN. Notably, AVE promoted M2 macrophage polarization, decreased pro-inflammatory immune cell populations, and improved function in renal and gonadal tissues of mice with SSHTN. Additionally, AVE decreased lymphangiogenesis in the kidneys and testes of male SSHTN mice and the ovaries of female SSHTN mice. These findings highlight the effectiveness of AVE in mitigating SSHTN-induced elevated BP, inflammation, and end organ damage by promoting M2 macrophage polarization and suppressing pro-inflammatory immune responses. Targeting macrophage polarization emerges as a promising therapeutic approach for alleviating inflammation and organ damage in SSHTN. Further studies are warranted to elucidate the precise mechanisms underlying AVE-mediated effects and to assess its clinical potential in managing SSHTN.
Collapse
Affiliation(s)
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Hannah L. Smith
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Robert A. Montalvo
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Alyssa Cardenas
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, U.S.A
| |
Collapse
|
12
|
Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol 2024; 12:1363811. [PMID: 39045461 PMCID: PMC11264244 DOI: 10.3389/fcell.2024.1363811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Lymphedema occurs as a result of lymphatic vessel damage or obstruction, leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis, and adipose tissue deposition with adipocyte hypertrophy. The treatment of lymphedema is divided into conservative and surgical approaches. Among surgical treatments, methods like lymphaticovenular anastomosis and vascularized lymph node transfer are gaining attention as they focus on restoring lymphatic flow, constituting a physiologic treatment approach. Lymphatic endothelial cells form the structure of lymphatic vessels. These cells possess button-like junctions that facilitate the influx of fluid and leukocytes. Approximately 10% of interstitial fluid is connected to venous return through lymphatic capillaries. Damage to lymphatic vessels leads to lymphatic fluid stasis, resulting in the clinical condition of lymphedema through three mechanisms: Inflammation involving CD4+ T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis; adipocyte hypertrophy and adipose tissue deposition regulated by the interaction of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ; and tissue fibrosis initiated by the overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such as IL-4, IL-13, and the growth factor TGF-β1. Surgical treatments aimed at reconstructing the lymphatic system help facilitate lymphatic fluid drainage, but their effectiveness in treating already damaged lymphatic vessels is limited. Therefore, reviewing the pathophysiology and molecular mechanisms of lymphedema is crucial to complement surgical treatments and explore novel therapeutic approaches.
Collapse
|
13
|
Liu Q, Wu C, Ding Q, Liu XY, Zhang N, Shen JH, Ou ZT, Lin T, Zhu HX, Lan Y, Xu GQ. Age-related changes in meningeal lymphatic function are closely associated with vascular endothelial growth factor-C expression. Brain Res 2024; 1833:148868. [PMID: 38519008 DOI: 10.1016/j.brainres.2024.148868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/19/2023] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Meningeal lymphatic vessels (MLVs) have crucial roles in removing metabolic waste and toxic proteins from the brain and transporting them to the periphery. Aged mice show impaired meningeal lymphatic function. Nevertheless, as the disease progresses, and significant pathological changes manifest in the brain, treating the condition becomes increasingly challenging. Therefore, investigating the alterations in the structure and function of MLVs in the early stages of aging is critical for preventing age-related central nervous system degenerative diseases. We detected the structure and function of MLVs in young, middle-aged, and aged mice. Middle-aged mice, compared with young and aged mice, showed enhanced meningeal lymphatic function along with MLV expansion and performed better in the Y maze test. Moreover, age-related changes in meningeal lymphatic function were closely associated with vascular endothelial growth factor-C (VEGF-C) expression in the brain cortex. Our data suggested that the cerebral cortex may serve as a target for VEGF-C supplementation to ameliorate meningeal lymphatic dysfunction, thus providing a new strategy for preventing age-related central nervous system diseases.
Collapse
Affiliation(s)
- Qi Liu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China; Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Xiang-Yu Liu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Ni Zhang
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Jun-Hui Shen
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Zi-Tong Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xiang Zhu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China
| | - Yue Lan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou 510080, China.
| |
Collapse
|
14
|
Spörlein A, Hirche C, Berner JE, Kneser U, Will PA. Characterization of Immune Cell Infiltration and Collagen Type III Disorganization in Human Secondary Lymphedema: A Case-control Study. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5906. [PMID: 38911579 PMCID: PMC11191027 DOI: 10.1097/gox.0000000000005906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/17/2024] [Indexed: 06/25/2024]
Abstract
Background Secondary lymphedema (SL) affects 120 million people globally, posing a lifelong burden for up to 37% of cancer survivors. Chronic inflammation and progressive fibrosis are key drivers of SL, yet detailed characterization of immune cell subpopulations across lymphedema stages is lacking. This study aimed to investigate the immunologic profile of lymphedematous skin and its association with extracellular matrix changes, which could serve as clinical biomarkers or therapeutic targets. Methods This case-control study analyzed the skin from 36 patients with and without SL, using immunofluorescence to quantify T cells, B cells, macrophages, and their subpopulations. Collagen quantity and composition were examined using picrosirius red staining, and mast cell infiltration was assessed with toluidine blue staining. Early and late SL stages were compared to identify histomorphological and immunologic correlates of stage progression. Results We found a predominance of CD4+ T cells and mast cells in SL skin (1.4/mm² versus 1.0/mm², P < 0.01; 1.2/mm² versus 0.2/mm², P < 0.0001) and a higher ratio of collagen III to collagen I fibers (51.6% versus 75.0%, P < 0.001). M2 macrophages were more abundant in late-stage than in early-stage lymphedema (1.7/mm² versus 1.0/mm², P = 0.02). Conclusions This study demonstrated a shift toward CD4+ T cell and mast cell infiltration in SL skin, correlating with extracellular matrix disorganization and an altered collagen III/I ratio. These findings enhance our understanding of the cellular and morphological changes in SL, potentially guiding future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Spörlein
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Otorhinolaryngology—Head and Neck Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Hirche
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Plastic, Hand, and Reconstructive Microsurgery, BG Unfallklinik Frankfurt am Main, Affiliated Hospital of Goethe-University, Frankfurt am Main, Germany
| | - Juan Enrique Berner
- Department of Plastic Surgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Kellogg College, University of Oxford, Oxford, United Kingdom
| | - Ulrich Kneser
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
| | - Patrick A. Will
- From the Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG Unfallklinik Ludwigshafen, University of Heidelberg, Ludwigshafen am Rhein, Germany
- Department of Plastic and Hand Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU University Dresden, Dresden, Germany
| |
Collapse
|
15
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
16
|
Hopkins JW, Sulka KB, Sawden M, Carroll KA, Brown RD, Bunnell SC, Poltorak A, Tai A, Reed ER, Sharma S. STING promotes homeostatic maintenance of tissues and confers longevity with aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588107. [PMID: 38645182 PMCID: PMC11030237 DOI: 10.1101/2024.04.04.588107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Local immune processes within aging tissues are a significant driver of aging associated dysfunction, but tissue-autonomous pathways and cell types that modulate these responses remain poorly characterized. The cytosolic DNA sensing pathway, acting through cyclic GMP-AMP synthase (cGAS) and Stimulator of Interferon Genes (STING), is broadly expressed in tissues, and is poised to regulate local type I interferon (IFN-I)-dependent and independent inflammatory processes within tissues. Recent studies suggest that the cGAS/STING pathway may drive pathology in various in vitro and in vivo models of accelerated aging. To date, however, the role of the cGAS/STING pathway in physiological aging processes, in the absence of genetic drivers, has remained unexplored. This remains a relevant gap, as STING is ubiquitously expressed, implicated in multitudinous disorders, and loss of function polymorphisms of STING are highly prevalent in the human population (>50%). Here we reveal that, during physiological aging, STING-deficiency leads to a significant shortening of murine lifespan, increased pro-inflammatory serum cytokines and tissue infiltrates, as well as salient changes in histological composition and organization. We note that aging hearts, livers, and kidneys express distinct subsets of inflammatory, interferon-stimulated gene (ISG), and senescence genes, collectively comprising an immune fingerprint for each tissue. These distinctive patterns are largely imprinted by tissue-specific stromal and myeloid cells. Using cellular interaction network analyses, immunofluorescence, and histopathology data, we show that these immune fingerprints shape the tissue architecture and the landscape of cell-cell interactions in aging tissues. These age-associated immune fingerprints are grossly dysregulated with STING-deficiency, with key genes that define aging STING-sufficient tissues greatly diminished in the absence of STING. Changes in immune signatures are concomitant with a restructuring of the stromal and myeloid fractions, whereby cell:cell interactions are grossly altered and resulting in disorganization of tissue architecture in STING-deficient organs. This altered homeostasis in aging STING-deficient tissues is associated with a cross-tissue loss of homeostatic tissue-resident macrophage (TRM) populations in these tissues. Ex vivo analyses reveal that basal STING-signaling limits the susceptibility of TRMs to death-inducing stimuli and determines their in situ localization in tissue niches, thereby promoting tissue homeostasis. Collectively, these data upend the paradigm that cGAS/STING signaling is primarily pathological in aging and instead indicate that basal STING signaling sustains tissue function and supports organismal longevity. Critically, our study urges caution in the indiscriminate targeting of these pathways, which may result in unpredictable and pathological consequences for health during aging.
Collapse
Affiliation(s)
- Jacob W. Hopkins
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Katherine B. Sulka
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Machlan Sawden
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Kimberly A. Carroll
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Ronald D. Brown
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 12853
| | | | | | - Albert Tai
- Department of Immunology, Tufts University, Boston, MA 02111
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Eric R. Reed
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Shruti Sharma
- Department of Immunology, Tufts University, Boston, MA 02111
| |
Collapse
|
17
|
Liu Z, Liu K, Shi S, Chen X, Gu X, Wang W, Mao K, Yibulayi R, Wu W, Zeng L, Zhou W, Lin X, Zhang F, Lou B. Alkali injury-induced pathological lymphangiogenesis in the iris facilitates the infiltration of T cells and ocular inflammation. JCI Insight 2024; 9:e175479. [PMID: 38587075 PMCID: PMC11128208 DOI: 10.1172/jci.insight.175479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Inflammatory lymphangiogenesis is intimately linked to immune regulation and tissue homeostasis. However, current evidence has suggested that classic lymphatic vessels are physiologically absent in intraocular structures. Here, we show that neolymphatic vessels were induced in the iris after corneal alkali injury (CAI) in a VEGFR3-dependent manner. Cre-loxP-based lineage tracing revealed that these lymphatic endothelial cells (LECs) originate from existing Prox1+ lymphatic vessels. Notably, the ablation of iridial lymphangiogenesis via conditional deletion of VEGFR3 alleviated the ocular inflammatory response and pathological T cell infiltration. Our findings demonstrate that iridial neolymphatics actively participate in pathological immune responses following injury and suggest intraocular lymphangiogenesis as a valuable therapeutic target for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shunhua Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weifa Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rukeye Yibulayi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wanwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
18
|
Aradi P, Kovács G, Kemecsei É, Molnár K, Sági SM, Horváth Z, Mehrara BJ, Kataru RP, Jakus Z. Lymphatic-Dependent Modulation of the Sensitization and Elicitation Phases of Contact Hypersensitivity. J Invest Dermatol 2024:S0022-202X(24)00261-6. [PMID: 38548256 DOI: 10.1016/j.jid.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024]
Abstract
Allergic contact dermatitis is a common inflammatory skin disease comprising 2 phases. During sensitization, immune cells are activated by exposure to various allergens, whereas repeated antigen exposure induces local inflammation during elicitation. In this study, we utilized mouse models lacking lymphatics in different skin regions to characterize the role of lymphatics separately in the 2 phases, using contact hypersensitivity as a model of human allergic inflammatory skin diseases. Lymphatic-deficient mice exhibited no major difference to single antigen exposure compared to controls. However, mice lacking lymphatics in both phases displayed reduced inflammation after repeated antigen exposure. Similarly, diminished immune response was observed in mice lacking lymphatics only in sensitization, whereas the absence of lymphatics only in the elicitation phase resulted in a more pronounced inflammatory immune response. This exaggerated inflammation is driven by neutrophils impacting regulatory T cell number. Collectively, our results demonstrate that skin lymphatics play an important but distinct role in the 2 phases of contact hypersensitivity. During sensitization, lymphatics contribute to the development of the antigen-specific immunization, whereas in elicitation, they moderate the inflammatory response and leukocyte infiltration in a neutrophil-dependent manner. These findings underscore the need for novel therapeutic strategies targeting the lymphatics in the context of allergic skin diseases.
Collapse
Affiliation(s)
- Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Gábor Kovács
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Éva Kemecsei
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Kornél Molnár
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Stella Márta Sági
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Zalán Horváth
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.
| |
Collapse
|
19
|
Lou K, Luo H, Jiang X, Feng S. Applications of emerging extracellular vesicles technologies in the treatment of inflammatory diseases. Front Immunol 2024; 15:1364401. [PMID: 38545101 PMCID: PMC10965547 DOI: 10.3389/fimmu.2024.1364401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghua Jiang
- Department of Urology, Jingdezhen Second People’s Hospital, Jingdezhen, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
20
|
Itai N, Gantumur E, Tsujita-Inoue K, Mitsukawa N, Akita S, Kajiya K. Lymphangiogenesis and Lymphatic Zippering in Skin Associated with the Progression of Lymphedema. J Invest Dermatol 2024; 144:659-668.e7. [PMID: 37660779 DOI: 10.1016/j.jid.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Secondary lymphedema often develops after lymph node dissection or radiation therapy for cancer treatment, resulting in marked skin fibrosis and increased stiffness owing to insufficiency of the lymphatic system caused by abnormal structure and compromised function. However, little is known about the associated changes of the dermal lymphatic vessels. In this study, using the lower limb skin samples of patients with secondary lymphedema, classified as types 1-4 by lymphoscintigraphy, we first confirmed the presence of epidermal thickening and collagen accumulation in the dermis, closely associated with the progression of lymphedema. Three-dimensional characterization of lymphatic capillaries in skin revealed prominent lymphangiogenesis in types 1 and 2 lymphedema. In contrast, increased recruitment of smooth muscle cells accompanied by development of the basement membrane in lymphatic capillaries was observed in types 3 and 4 lymphedema. Remarkably, the junctions of dermal lymphatic capillaries were dramatically remodeled from a discontinuous button-like structure to a continuous zipper-like structure. This finding is consistent with previous findings in an infection-induced mouse model. Such junction tightening (zippering) could reduce fluid transport and cutaneous viral sequestration during the progression of lymphedema and might explain the aggravation of secondary lymphedema. These findings may be helpful in developing stage-dependent treatment of patients with lymphedema.
Collapse
Affiliation(s)
- Nao Itai
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | | | | | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University, Chiba, Japan
| | - Kentaro Kajiya
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan.
| |
Collapse
|
21
|
Jiang Y, Perez-Moreno M. Translational frontiers: insight from lymphatics in skin regeneration. Front Physiol 2024; 15:1347558. [PMID: 38487264 PMCID: PMC10937408 DOI: 10.3389/fphys.2024.1347558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The remarkable regenerative ability of the skin, governed by complex molecular mechanisms, offers profound insights into the skin repair processes and the pathogenesis of various dermatological conditions. This understanding, derived from studies in human skin and various model systems, has not only deepened our knowledge of skin regeneration but also facilitated the development of skin substitutes in clinical practice. Recent research highlights the crucial role of lymphatic vessels in skin regeneration. Traditionally associated with fluid dynamics and immune modulation, these vessels are now recognized for interacting with skin stem cells and coordinating regeneration. This Mini Review provides an overview of recent advancements in basic and translational research related to skin regeneration, focusing on the dynamic interplay between lymphatic vessels and skin biology. Key highlights include the critical role of stem cell-lymphatic vessel crosstalk in orchestrating skin regeneration, emerging translational approaches, and their implications for skin diseases. Additionally, the review identifies research gaps and proposes potential future directions, underscoring the significance of this rapidly evolving research arena.
Collapse
Affiliation(s)
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Chu L, Wang C, Zhou H. Inflammation mechanism and anti-inflammatory therapy of dry eye. Front Med (Lausanne) 2024; 11:1307682. [PMID: 38420354 PMCID: PMC10899709 DOI: 10.3389/fmed.2024.1307682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Dry eye is a widespread chronic inflammatory disease that causes fatigue, tingling, burning, and other symptoms. Dry eye is attributed to rheumatic diseases, diabetes, hormone disorders, and contact lenses, which activate inflammatory pathways: mitogen-activated protein kinases (MAPK) and nuclear factor-B (NF-κB), promote macrophage inflammatory cell and T cell activation, and inflammation factors. Clinicians use a combination of anti-inflammatory drugs to manage different symptoms of dry eye; some of these anti-inflammatory drugs are being developed. This review introduces the dry eye inflammation mechanisms and the involved inflammatory factors. We also elucidate the anti-inflammatory drug mechanism and the detection limits.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Caiming Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Dong H, Dai X, Zhou Y, Shi C, Bhuiyan P, Sun Z, Li N, Jin W. Enhanced meningeal lymphatic drainage ameliorates lipopolysaccharide-induced brain injury in aged mice. J Neuroinflammation 2024; 21:36. [PMID: 38287311 PMCID: PMC10826026 DOI: 10.1186/s12974-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction caused by sepsis. Neuroinflammation induced by sepsis is considered a potential mechanism of SAE; however, very little is known about the role of the meningeal lymphatic system in SAE. METHODS Sepsis was established in male C57BL/6J mice by intraperitoneal injection of 5 mg/kg lipopolysaccharide, and the function of meningeal lymphatic drainage was assessed. Adeno-associated virus 1-vascular endothelial growth factor C (AAV1-VEGF-C) was injected into the cisterna magna to induce meningeal lymphangiogenesis. Ligation of deep cervical lymph nodes (dCLNs) was performed to induce pre-existing meningeal lymphatic dysfunction. Cognitive function was evaluated by a fear conditioning test, and inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS The aged mice with SAE showed a significant decrease in the drainage of OVA-647 into the dCLNs and the coverage of the Lyve-1 in the meningeal lymphatic, indicating that sepsis impaired meningeal lymphatic drainage and morphology. The meningeal lymphatic function of aged mice was more vulnerable to sepsis in comparison to young mice. Sepsis also decreased the protein levels of caspase-3 and PSD95, which was accompanied by reductions in the activity of hippocampal neurons. Microglia were significantly activated in the hippocampus of SAE mice, which was accompanied by an increase in neuroinflammation, as indicated by increases in interleukin-1 beta, interleukin-6 and Iba1 expression. Cognitive function was impaired in aged mice with SAE. However, the injection of AAV1-VEGF-C significantly increased coverage in the lymphatic system and tracer dye uptake in dCLNs, suggesting that AAV1-VEGF-C promotes meningeal lymphangiogenesis and drainage. Furthermore, AAV1-VEGF-C reduced microglial activation and neuroinflammation and improved cognitive dysfunction. Improvement of meningeal lymphatics also reduced sepsis-induced expression of disease-associated genes in aged mice. Pre-existing lymphatic dysfunction by ligating bilateral dCLNs aggravated sepsis-induced neuroinflammation and cognitive impairment. CONCLUSION The meningeal lymphatic drainage is damaged in sepsis, and pre-existing defects in this drainage system exacerbate SAE-induced neuroinflammation and cognitive dysfunction. Promoting meningeal lymphatic drainage improves SAE. Manipulation of meningeal lymphangiogenesis could be a new strategy for the treatment of SAE.
Collapse
Affiliation(s)
- Hongquan Dong
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaonan Dai
- Department of Obstetrics, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yin Zhou
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chonglong Shi
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Piplu Bhuiyan
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhaochu Sun
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nana Li
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjie Jin
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
24
|
Zhang PH, Zhang WW, Wang SS, Wu CH, Ding YD, Wu XY, Smith FG, Hao Y, Jin SW. Efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. JCI Insight 2024; 9:e173440. [PMID: 37971881 PMCID: PMC10906459 DOI: 10.1172/jci.insight.173440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
The lymphatic vasculature is the natural pathway for the resolution of inflammation, yet the role of pulmonary lymphatic drainage function in sepsis-induced acute respiratory distress syndrome (ARDS) remains poorly characterized. In this study, indocyanine green-near infrared lymphatic living imaging was performed to examine pulmonary lymphatic drainage function in septic mouse models. We found that the pulmonary lymphatic drainage was impaired owing to the damaged lymphatic structure in sepsis-induced ARDS. Moreover, prior lymphatic defects by blocking vascular endothelial growth factor receptor-3 (VEGFR-3) worsened sepsis-induced lymphatic dysfunction and inflammation. Posttreatment with vascular endothelial growth factor-C (Cys156Ser) (VEGF-C156S), a ligand of VEGFR-3, ameliorated lymphatic drainage by rejuvenating lymphatics to reduce the pulmonary edema and promote draining of pulmonary macrophages and neutrophils to pretracheal lymph nodes. Meanwhile, VEGF-C156S posttreatment reversed sepsis-inhibited CC chemokine ligand 21 (CCL21), which colocalizes with pulmonary lymphatic vessels. Furthermore, the advantages of VEGF-C156S on the drainage of inflammatory cells and edema fluid were abolished by blocking VEGFR-3 or CCL21. These results suggest that efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. Our findings offer a therapeutic approach to sepsis-induced ARDS by promoting lymphatic drainage function.
Collapse
Affiliation(s)
- Pu-hong Zhang
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wen-wu Zhang
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shun-shun Wang
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng-hua Wu
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yang-dong Ding
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin-yi Wu
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Academic Department of Anesthesia, Critical Care, Resuscitation and Pain, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Yu Hao
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Sheng-wei Jin
- Department of Anaesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
25
|
Pham AT, Oliveira AC, Albanna M, Alvarez-Castanon J, Dupee Z, Patel D, Fu C, Mukhsinova L, Nguyen A, Jin L, Bryant AJ. Non-Interferon-Dependent Role of STING Signaling in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:124-142. [PMID: 37942608 PMCID: PMC10872846 DOI: 10.1161/atvbaha.123.320121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Patients with constitutive activation of DNA-sensing pathway through stimulator of IFN (interferon) genes (STING), such as those with STING-associated vasculopathy with onset in infancy, develop pulmonary hypertension (PH). However, the role of STING signaling in general PH patients is heretofore undescribed. Here, we seek to investigate the role of STING in PH development. METHODS STING expression in patient lung samples was examined. PH was induced in global STING-deficient mice and global type I IFN receptor 1-deficient mice using bleomycin or chronic hypoxia exposure. PH development was evaluated by right ventricular systolic pressure and Fulton index, with additional histological and flow cytometric analysis. VEGF (vascular endothelial growth factor) expression on murine immune cells was quantified and evaluated with multiplex and flow cytometry. Human myeloid-derived cells were differentiated from peripheral blood mononuclear cells and treated with either STING agonist or STING antagonist for evaluation of VEGF secretion. RESULTS Global STING deficiency protects mice from PH development, and STING-associated PH seems independent of type I IFN signaling. Furthermore, a role for STING-VEGF signaling pathway in PH development was demonstrated, with altered VEGF secretion in murine pulmonary infiltrated myeloid cells in a STING-dependent manner. In addition, pharmacological manipulation of STING in human myeloid-derived cells supports in vivo findings. Finally, a potential role of STING-VEGF-mediated apoptosis in disease development and progression was illustrated, providing a roadmap toward potential therapeutic applications. CONCLUSIONS Overall, these data provide concrete evidence of STING involvement in PH, establishing biological plausibility for STING-related therapies in PH treatment.
Collapse
Affiliation(s)
- Ann T Pham
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Aline C Oliveira
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Muhammad Albanna
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | | | - Zadia Dupee
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Diya Patel
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Chunhua Fu
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Laylo Mukhsinova
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Amy Nguyen
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Lei Jin
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Andrew J Bryant
- Department of Medicine, University of Florida College of Medicine, Gainesville
| |
Collapse
|
26
|
Subileau M, Vittet D. Ontogenesis of the Mouse Ocular Surface Lymphatic Vascular Network. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 38054922 DOI: 10.1167/iovs.64.15.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Ocular lymphatic vessels play major physiological role in eye homeostasis and their dysfunction can contribute to the progression of several eye diseases. In this study, we characterized their spatiotemporal development and the cellular mechanisms occurring during their ontogenesis in the mouse eye. Methods Whole mount immunofluorescent staining and imaging by standard or lightsheet fluorescence microscopy were performed on late embryonic and early postnatal eye mouse samples. Results We observed that the ocular surface lymphatic vascular network develops at the early postnatal stages (between P0 and P5) from two nascent trunks arising at the nasal side on both sides of the nictitating membrane. These nascent vessels further branch and encircle the whole eye surface by sprouting lymphangiogenesis. In addition, we got evidence for the existence of a transient lymphvasculogenesis process generating lymphatic vessel fragments that will mostly formed the corneolimbal lymphatic vasculature which further connect to the conjunctival lymphatic network. Our results also support that CD206-positive macrophages can transdifferentiate and then integrate into the lymphatic neovessels. Conclusions Several complementary cellular processes participate in the development of the lymphatic ocular surface vasculature. This knowledge paves the way for the design of new therapeutic strategies to interfere with ocular lymphatic vessel formation when needed.
Collapse
Affiliation(s)
- Mariela Subileau
- University Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Grenoble, France
| | - Daniel Vittet
- University Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Grenoble, France
| |
Collapse
|
27
|
Tanaka M, Jeong J, Thomas C, Zhang X, Zhang P, Saruwatari J, Kondo R, McConnell MJ, Utsumi T, Iwakiri Y. The Sympathetic Nervous System Promotes Hepatic Lymphangiogenesis, which Is Protective Against Liver Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2182-2202. [PMID: 37673329 PMCID: PMC10699132 DOI: 10.1016/j.ajpath.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Liver is the largest lymph-producing organ. In cirrhotic patients, lymph production significantly increases concomitant with lymphangiogenesis. The aim of this study was to determine the mechanism of lymphangiogenesis in liver and its implication in liver fibrosis. Liver biopsies from portal hypertensive patients with portal-sinusoidal vascular disease (n = 22) and liver cirrhosis (n = 5) were evaluated for lymphangiogenesis and compared with controls (n = 9 and n = 6, respectively). For mechanistic studies, rats with partial portal vein ligation (PPVL) and bile duct ligation (BDL) were used. A gene profile data set (GSE77627), including 14 histologically normal liver, 18 idiopathic noncirrhotic portal hypertension, and 22 cirrhotic patients, was analyzed. Lymphangiogenesis was significantly increased in livers from patients with portal-sinusoidal vascular disease, cirrhotic patients, as well as PPVL and BDL rats. Importantly, Schwann cells of sympathetic nerves highly expressed vascular endothelial growth factor-C in PPVL rats. Vascular endothelial growth factor-C neutralizing antibody or sympathetic denervation significantly decreased lymphangiogenesis in livers of PPVL and BDL rats, which resulted in progression of liver fibrosis. Liver specimens from cirrhotic patients showed a positive correlation between sympathetic nerve/Schwann cell-positive areas and lymphatic vessel numbers, which was supported by gene set analysis from patients with noncirrhotic portal hypertension and cirrhotic patients. Sympathetic nerves promote hepatic lymphangiogenesis in noncirrhotic and cirrhotic livers. Increased hepatic lymphangiogenesis can be protective against liver fibrosis.
Collapse
Affiliation(s)
- Masatake Tanaka
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jain Jeong
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Courtney Thomas
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pengpeng Zhang
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; The Organ Transplant Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junji Saruwatari
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Matthew J McConnell
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Teruo Utsumi
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
28
|
Bergmann-Leitner ES, Millar EV, Duncan EH, Tribble DR, Carey PM, Ellis MW, Mende K, Bennett JW, Chaudhury S. Profiling of serum factors associated with Staphylococcus aureus skin and soft tissue infections as a foundation for biomarker identification. Front Immunol 2023; 14:1286618. [PMID: 38054000 PMCID: PMC10694289 DOI: 10.3389/fimmu.2023.1286618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Background People living in close quarters, such as military trainees, are at increased risk for skin and soft tissue infections (SSTI), especially those caused by methicillin-resistant Staphylococcus aureus (MRSA). The serum immune factors associated with the onset of SSTI are not well understood. Methods We conducted a longitudinal study of SSTIs, enrolling US Army trainees before starting military training and following up for 14 weeks. Samples were collected on Day 0, 56, and 90. Serum chemokines and cytokines among 16 SSTI cases and 51 healthy controls were evaluated using an electro-chemiluminescence based multiplex assay platform. Results Of 54 tested cytokines, 12 were significantly higher among SSTI cases as compared to controls. Among the cases, there were correlations between factors associated with vascular injury (i.e., VCAM-1, ICAM-1, and Flt1), the angiogenetic factor VEGF, and IL-10. Unsupervised machine learning (Principal Component Analysis) revealed that IL10, IL17A, C-reactive protein, ICAM1, VCAM1, SAA, Flt1, and VGEF were indicative of SSTI. Conclusion The study demonstrates the power of immunoprofiling for identifying factors predictive of pre-illness state of SSTI thereby identifying early stages of an infection and individuals susceptible to SSTI.
Collapse
Affiliation(s)
- Elke S. Bergmann-Leitner
- Immunology Core, Biologics Research and Development, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Eugene V. Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Elizabeth H. Duncan
- Immunology Core, Biologics Research and Development, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Michael W. Ellis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Katrin Mende
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Brooke Army Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, United States
| | - Jason W. Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sidhartha Chaudhury
- Center Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
29
|
Dargent A, Dumargne H, Labruyère M, Brezillon S, Brassart-Pasco S, Blot M, Charles PE, Fournel I, Quenot JP, Jacquier M. Role of the interstitium during septic shock: a key to the understanding of fluid dynamics? J Intensive Care 2023; 11:44. [PMID: 37817235 PMCID: PMC10565984 DOI: 10.1186/s40560-023-00694-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND While not traditionally included in the conceptual understanding of circulation, the interstitium plays a critical role in maintaining fluid homeostasis. Fluid balance regulation is a critical aspect of septic shock, with a well-known association between fluid balance and outcome. The regulation of transcapillary flow is the first key to understand fluid homeostasis during sepsis. MAIN TEXT Capillary permeability is increased during sepsis, and was classically considered to be necessary and sufficient to explain the increase of capillary filtration during inflammation. However, on the other side of the endothelial wall, the interstitium may play an even greater role to drive capillary leak. Indeed, the interstitial extracellular matrix forms a complex gel-like structure embedded in a collagen skeleton, and has the ability to directly attract intravascular fluid by decreasing its hydrostatic pressure. Thus, interstitium is not a mere passive reservoir, as was long thought, but is probably major determinant of fluid balance regulation during sepsis. Up to this date though, the role of the interstitium during sepsis and septic shock has been largely overlooked. A comprehensive vision of the interstitium may enlight our understanding of septic shock pathophysiology. Overall, we have identified five potential intersections between septic shock pathophysiology and the interstitium: 1. increase of oedema formation, interacting with organ function and metabolites diffusion; 2. interstitial pressure regulation, increasing transcapillary flow; 3. alteration of the extracellular matrix; 4. interstitial secretion of inflammatory mediators; 5. decrease of lymphatic outflow. CONCLUSIONS We aimed at reviewing the literature and summarizing the current knowledge along these specific axes, as well as methodological aspects related to interstitium exploration.
Collapse
Affiliation(s)
- Auguste Dargent
- Service d'Anesthésie Médecine Intensive-Réanimation, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, 69495, Lyon, France.
- APCSe VetAgro Sup UPSP 2016.A101, 1 Avenue Bourgelat, 69280, Marcy l'Etoile, France.
| | - Hugo Dumargne
- Service d'Anesthésie Médecine Intensive-Réanimation, Hospices Civils de Lyon, Hôpital Lyon Sud, 165 Chemin du Grand Revoyet, Pierre-Bénite, 69495, Lyon, France
| | - Marie Labruyère
- Médecine Intensive et Réanimation, CHU François Mitterrand, 14 Rue Paul Gaffarel, 21000, Dijon, France
| | | | | | - Mathieu Blot
- Maladies Infectieuses et Tropicales, CHU François Mitterrand, 14 Rue Paul Gaffarel, 21000, Dijon, France
- Lipness Team, INSERM LNC-UMR1231 et LabEx LipSTIC, Université de Bourgogne, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Pierre-Emmanuel Charles
- Médecine Intensive et Réanimation, CHU François Mitterrand, 14 Rue Paul Gaffarel, 21000, Dijon, France
- Lipness Team, INSERM LNC-UMR1231 et LabEx LipSTIC, Université de Bourgogne, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Isabelle Fournel
- Module Épidémiologie Clinique, Inserm, CHU Dijon, Bourgogne, Université de Bourgogne, CIC1432, 14 Rue Paul Gaffarel, 21000, Dijon, France
| | - Jean-Pierre Quenot
- Médecine Intensive et Réanimation, CHU François Mitterrand, 14 Rue Paul Gaffarel, 21000, Dijon, France
- Lipness Team, INSERM LNC-UMR1231 et LabEx LipSTIC, Université de Bourgogne, 7 Bd Jeanne d'Arc, 21000, Dijon, France
- Module Épidémiologie Clinique, Inserm, CHU Dijon, Bourgogne, Université de Bourgogne, CIC1432, 14 Rue Paul Gaffarel, 21000, Dijon, France
| | - Marine Jacquier
- Médecine Intensive et Réanimation, CHU François Mitterrand, 14 Rue Paul Gaffarel, 21000, Dijon, France
- Lipness Team, INSERM LNC-UMR1231 et LabEx LipSTIC, Université de Bourgogne, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| |
Collapse
|
30
|
Mishima T, Hosono K, Tanabe M, Ito Y, Majima M, Narumiya S, Miyaji K, Amano H. Thromboxane prostanoid signaling in macrophages attenuates lymphedema and facilitates lymphangiogenesis in mice : TP signaling and lymphangiogenesis. Mol Biol Rep 2023; 50:7981-7993. [PMID: 37540456 PMCID: PMC10520203 DOI: 10.1007/s11033-023-08620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Accumulating evidence suggests that prostaglandin E2, an arachidonic acid (AA) metabolite, enhances lymphangiogenesis in response to inflammation. However, thromboxane A2 (TXA2), another AA metabolite, is not well known. Thus, this study aimed to determine the role of thromboxane prostanoid (TP) signaling in lymphangiogenesis in secondary lymphedema. METHODS AND RESULTS Lymphedema was induced by the ablation of lymphatic vessels in mouse tails. Compared with wild-type mice, tail lymphedema in Tp-deficient mice was enhanced, which was associated with suppressed lymphangiogenesis as indicated by decreased lymphatic vessel area and pro-lymphangiogenesis-stimulating factors. Numerous macrophages were found in the tail tissues of Tp-deficient mice. Furthermore, the deletion of TP in macrophages increased tail edema and decreased lymphangiogenesis and pro-lymphangiogenic cytokines, which was accompanied by increased numbers of macrophages and gene expression related to a pro-inflammatory macrophage phenotype in tail tissues. In vivo microscopic studies revealed fluorescent dye leakage in the lymphatic vessels in the wounded tissues. CONCLUSIONS The results suggest that TP signaling in macrophages promotes lymphangiogenesis and prevents tail lymphedema. TP signaling may be a therapeutic target for improving lymphedema-related symptoms by enhancing lymphangiogenesis.
Collapse
Affiliation(s)
- Toshiaki Mishima
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanako Hosono
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Mina Tanabe
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshiya Ito
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan.
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Shuh Narumiya
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Kagami Miyaji
- Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hideki Amano
- Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
31
|
Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1400-1414. [PMID: 37355037 DOI: 10.1016/j.ajpath.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Vanessa Chandler
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
32
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
33
|
Nguyen HO, Tiberio L, Facchinetti F, Ripari G, Violi V, Villetti G, Salvi V, Bosisio D. Modulation of Human Dendritic Cell Functions by Phosphodiesterase-4 Inhibitors: Potential Relevance for the Treatment of Respiratory Diseases. Pharmaceutics 2023; 15:2254. [PMID: 37765223 PMCID: PMC10535230 DOI: 10.3390/pharmaceutics15092254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Inhibitors of phosphodiesterase-4 (PDE4) are small-molecule drugs that, by increasing the intracellular levels of cAMP in immune cells, elicit a broad spectrum of anti-inflammatory effects. As such, PDE4 inhibitors are actively studied as therapeutic options in a variety of human diseases characterized by an underlying inflammatory pathogenesis. Dendritic cells (DCs) are checkpoints of the inflammatory and immune responses, being responsible for both activation and dampening depending on their activation status. This review shows evidence that PDE4 inhibitors modulate inflammatory DC activation by decreasing the secretion of inflammatory and Th1/Th17-polarizing cytokines, although preserving the expression of costimulatory molecules and the CD4+ T cell-activating potential. In addition, DCs activated in the presence of PDE4 inhibitors induce a preferential Th2 skewing of effector T cells, retain the secretion of Th2-attracting chemokines and increase the production of T cell regulatory mediators, such as IDO1, TSP-1, VEGF-A and Amphiregulin. Finally, PDE4 inhibitors selectively induce the expression of the surface molecule CD141/Thrombomodulin/BDCA-3. The result of such fine-tuning is immunomodulatory DCs that are distinct from those induced by classical anti-inflammatory drugs, such as corticosteroids. The possible implications for the treatment of respiratory disorders (such as COPD, asthma and COVID-19) by PDE4 inhibitors will be discussed.
Collapse
Affiliation(s)
- Hoang Oanh Nguyen
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, 33000 Bordeaux, France;
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy; (F.F.); (G.V.)
| | - Giulia Ripari
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Valentina Violi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Gino Villetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy; (F.F.); (G.V.)
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (L.T.); (G.R.); (V.V.)
| |
Collapse
|
34
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
35
|
Molon S, Brun P, Scarpa M, Bizzotto D, Zuccolotto G, Scarpa M, Fassan M, Angriman I, Rosato A, Braghetta P, Castagliuolo I, Bonaldo P. Collagen VI promotes recovery from colitis by inducing lymphangiogenesis and drainage of inflammatory cells. J Pathol 2023; 260:417-430. [PMID: 37272555 DOI: 10.1002/path.6092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
Despite a number of studies providing evidence that the extracellular matrix (ECM) is an active player in the pathogenesis of intestinal inflammation, knowledge on the actual contribution of specific ECM molecules in the progression of inflammatory bowel disease (IBD) remains scant. Here, we investigated the role of a major ECM protein, collagen VI (ColVI), in gut homeostasis and elucidated the impact of its deregulation on the pathophysiology of IBD. To this end, we combined in vivo and ex vivo studies on wild type and ColVI-deficient (Col6a1-/- ) mice both under physiological conditions and during experimentally induced acute colitis and its subsequent recovery, by means of gut histology and immunostaining, gene expression, bone marrow transplantation, flow cytometry of immune cell subpopulations, and lymph flow assessment. We found that ColVI displayed dynamic expression and ECM deposition during the acute inflammatory and recovery phases of experimentally induced colitis, whereas the genetic ablation of ColVI in Col6a1 null mice impaired the functionality of lymphatic vessels, which in turn affected the resolution of inflammation during colitis. Based on these findings, we investigated ColVI expression and deposition in ileal specimens from two cohorts of patients affected by Crohn's disease (CD) and correlated ColVI abundance to clinical outcome. Our results show that high ColVI immunoreactivity in ileal biopsies of CD patients at diagnosis correlates with increased risk of surgery and that ColVI expression in biopsies taken at the resection margin during surgery, and showing inactive disease, predict disease recurrence. Our data unveil a key role for ColVI in the intestinal microenvironment, where it is involved in lymphangiogenesis and intestinal inflammation. Altogether, these findings point at the dysregulation of ColVI expression as a novel factor contributing to the onset and maintenance of inflammation in CD via mechanisms impinging on the modulation of inflammatory cell recruitment and function. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sibilla Molon
- Matrix Biology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paola Brun
- Microbiology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Dario Bizzotto
- Matrix Biology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Antonio Rosato
- Istituto Oncologico Veneto (IOV) - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Paola Braghetta
- Matrix Biology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ignazio Castagliuolo
- Microbiology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paolo Bonaldo
- Matrix Biology Unit, Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
37
|
Matar DY, Ng B, Darwish O, Wu M, Orgill DP, Panayi AC. Skin Inflammation with a Focus on Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:269-287. [PMID: 35287486 PMCID: PMC9969897 DOI: 10.1089/wound.2021.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Significance: The skin is the crucial first-line barrier against foreign pathogens. Compromise of this barrier presents in the context of inflammatory skin conditions and in chronic wounds. Skin conditions arising from dysfunctional inflammatory pathways severely compromise the quality of life of patients and have a high economic impact on the U.S. health care system. The development of a thorough understanding of the mechanisms that can disrupt skin inflammation is imperative to successfully modulate this inflammation with therapies. Recent Advances: Many advances in the understanding of skin inflammation have occurred during the past decade, including the development of multiple new pharmaceuticals. Mechanical force application has been greatly advanced clinically. Bioscaffolds also promote healing, while reducing scarring. Critical Issues: Various skin inflammatory conditions provide a framework for analysis of our understanding of the phases of successful wound healing. The large burden of chronic wounds on our society continues to focus attention on the chronic inflammatory state induced in many of these skin conditions. Future Directions: Better preclinical models of disease states such as chronic wounds, coupled with enhanced diagnostic abilities of human skin, will allow a better understanding of the mechanism of action. This will lead to improved treatments with biologics and other modalities such as the strategic application of mechanical forces and scaffolds, which ultimately results in better outcomes for our patients.
Collapse
Affiliation(s)
- Dany Y. Matar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Ng
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oliver Darwish
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana C. Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
39
|
Abstract
The epithelial tissues that line our body, such as the skin and gut, have remarkable regenerative prowess and continually renew throughout our lifetimes. Owing to their barrier function, these tissues have also evolved sophisticated repair mechanisms to swiftly heal and limit the penetration of harmful agents following injury. Researchers now appreciate that epithelial regeneration and repair are not autonomous processes but rely on a dynamic cross talk with immunity. A wealth of clinical and experimental data point to the functional coupling of reparative and inflammatory responses as two sides of the same coin. Here we bring to the fore the immunological signals that underlie homeostatic epithelial regeneration and restitution following damage. We review our current understanding of how immune cells contribute to distinct phases of repair. When unchecked, immune-mediated repair programs are co-opted to fuel epithelial pathologies such as cancer, psoriasis, and inflammatory bowel diseases. Thus, understanding the reparative functions of immunity may advance therapeutic innovation in regenerative medicine and epithelial inflammatory diseases.
Collapse
Affiliation(s)
- Laure Guenin-Mace
- Department of Pathology, NYU Langone Health, New York, NY, USA;
- Immunobiology and Therapy Unit, INSERM U1224, Institut Pasteur, Paris, France
| | - Piotr Konieczny
- Department of Pathology, NYU Langone Health, New York, NY, USA;
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY, USA;
- Department of Medicine, Ronald O. Perelman Department of Dermatology, and Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
40
|
Petkova M, Kraft M, Stritt S, Martinez-Corral I, Ortsäter H, Vanlandewijck M, Jakic B, Baselga E, Castillo SD, Graupera M, Betsholtz C, Mäkinen T. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation. J Exp Med 2023; 220:e20220741. [PMID: 36688917 PMCID: PMC9884640 DOI: 10.1084/jem.20220741] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marle Kraft
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Bojana Jakic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eulàlia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sandra D. Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Nakai A, Minematsu T, Nitta S, Hsu WJ, Tobe H, Sanada H. Development of a method to identify persistent and blanchable redness by skin blotting in mice. Int Wound J 2023; 20:1168-1182. [PMID: 36367160 PMCID: PMC10031224 DOI: 10.1111/iwj.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent and blanchable redness (PBR) is not currently included in category I pressure injury (PI), which is defined as non-blanchable redness (NBR). However, PBR progresses to PI in a clinical setting. Therefore, it should be clinically managed as category I PI, and a method to distinctly identify PBR is needed. This study aimed to examine whether PI-related biomarkers can distinguish PRB from transient redness (TR) and NBR using skin blotting. TR, PBR, and NBR models were established by the different conditions of dorsal skin compression. Redness observation and skin blotting were performed, and the skin tissue samples were subjected to histological and molecular biological analyses. The vascular endothelial growth factor (Vegf) b, heat shock protein (Hsp) 90aa1, tumour necrosis factor, interleukin (Il) 1b, and Il6 messenger ribonucleic acid levels were significantly different between the three models. The VEGF-A, VEGF-B, IL-1β, and IL-6 protein levels were different between the three models. Although the results of skin blot examinations were inconsistent with those of the expression analysis of tissue, HSP90α and IL-1β are suggested to be potential markers to distinguish PBR from TR and NBR.
Collapse
Affiliation(s)
- Ayano Nakai
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Faculty of Nursing, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shiori Nitta
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wei-Jhen Hsu
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Tobe
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Division of Health Science and Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Zhang Q, Liu S, Wang H, Xiao K, Lu J, Chen S, Huang M, Xie R, Lin T, Chen X. ETV4 Mediated Tumor-Associated Neutrophil Infiltration Facilitates Lymphangiogenesis and Lymphatic Metastasis of Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205613. [PMID: 36670069 PMCID: PMC10104629 DOI: 10.1002/advs.202205613] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Indexed: 05/08/2023]
Abstract
As a key step of tumor lymphatic metastasis, lymphangiogenesis is regulated by VEGFC-VEGFR3 signaling pathway mediated by immune cells, mainly macrophages, in the tumor microenvironment. However, little is known whether tumor associated neutrophils are involved in lymphangiogenesis. Here, it is found that TANs infiltration is increased in LN-metastatic BCa and is associated with poor prognosis. Neutrophil depletion results in significant reduction in popliteal LN metastasis and lymphangiogenesis. Mechanistically, transcription factor ETV4 enhances BCa cells-derived CXCL1/8 to recruit TANs, leading to the increase of VEGFA and MMP9 from TANs, and then facilitating lymphangiogenesis and LN metastasis of BCa. Moreover, phosphorylation of ETV4 at tyrosine 392 by tyrosine kinase PTK6 increases nuclear translocation of ETV4 and is essential for its function in BCa. Overall, the findings reveal a novel mechanism of how tumor cells regulate TANs-induced lymphangiogenesis and LN metastasis and identify ETV4 as a therapeutic target of LN metastasis in BCa.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Hongjin Wang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Kanghua Xiao
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Siting Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510000P. R. China
- Guangdong Provincial Clinical Research Center for Urological DiseasesGuangzhouGuangdong510000P. R. China
| |
Collapse
|
43
|
Ruliffson BNK, Whittington CF. Regulating Lymphatic Vasculature in Fibrosis: Understanding the Biology to Improve the Modeling. Adv Biol (Weinh) 2023; 7:e2200158. [PMID: 36792967 DOI: 10.1002/adbi.202200158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/19/2022] [Indexed: 02/17/2023]
Abstract
Fibrosis occurs in many chronic diseases with lymphatic vascular insufficiency (e.g., kidney disease, tumors, and lymphedema). New lymphatic capillary growth can be triggered by fibrosis-related tissue stiffening and soluble factors, but questions remain for how related biomechanical, biophysical, and biochemical cues affect lymphatic vascular growth and function. The current preclinical standard for studying lymphatics is animal modeling, but in vitro and in vivo outcomes often do not align. In vitro models can also be limited in their ability to separate vascular growth and function as individual outcomes, and fibrosis is not traditionally included in model design. Tissue engineering provides an opportunity to address in vitro limitations and mimic microenvironmental features that impact lymphatic vasculature. This review discusses fibrosis-related lymphatic vascular growth and function in disease and the current state of in vitro lymphatic vascular models while highlighting relevant knowledge gaps. Additional insights into the future of in vitro lymphatic vascular models demonstrate how prioritizing fibrosis alongside lymphatics will help capture the complexity and dynamics of lymphatics in disease. Overall, this review aims to emphasize that an advanced understanding of lymphatics within a fibrotic disease-enabled through more accurate preclinical modeling-will significantly impact therapeutic development toward restoring lymphatic vessel growth and function in patients.
Collapse
Affiliation(s)
- Brian N K Ruliffson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| | - Catherine F Whittington
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| |
Collapse
|
44
|
Ozdemir K, Citaker S, Diker S, Keser I, Kurukahvecioglu O, Uyar Gocun P, Gulbahar O. Does Venipuncture Increase Lymphedema by Triggering Inflammation or Infection? An Experimental Rabbit Ear Lymphedema Model Study. Lymphat Res Biol 2023; 21:34-41. [PMID: 35687408 DOI: 10.1089/lrb.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Recent guidelines recommend avoiding venipuncture to prevent lymphedema for breast cancer patients. This study investigated whether single or multiple sterile venipuncture procedures develop a systemic inflammation or infection and increase lymphedema in the rabbit ear lymphedema model. Methods and Results: Eighteen New Zealand white female rabbits were included. The right ear lymphedema model was created by surgical procedure; then, rabbits were divided into three randomized groups. Single and multiple venipuncture procedures were applied at least the 60th day after surgery for Group I and II, respectively. Group III was a control group. C-reactive protein (CRP) and procalcitonin (PCT) levels were analyzed to determine inflammation and infection. Ear thickness measurements were applied using a vernier caliper to assess the differences in lymphedema between the ears. All rabbits were euthanized on the 90th day after surgery. Histopathological analysis was performed to evaluate lymphedema by measuring tissue thicknesses. Ear thickness measurements showed that ear lymphedema was developed and maintained with surgical operation in all groups (p < 0.05). There was no difference in the ear thickness measurements between and within-groups results (p > 0.05). CRP and PCT levels were below the lower detection levels in all groups. According to the differences of histopathological ear distances, there were significant differences within-groups for all groups (p < 0.05), and no differences were identified between groups (p > 0.05). Conclusion: This experimental study demonstrated that single or multiple sterile venipuncture procedures did not trigger infection or inflammation and did not exacerbate ear lymphedema in the rabbit ear lymphedema model.
Collapse
Affiliation(s)
- Kadirhan Ozdemir
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Izmir Bakircay University, Izmir, Turkey
| | - Seyit Citaker
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Seyda Diker
- Laboratory Animal Breeding and Experimental Research Center, Gazi University, Ankara, Turkey
| | - Ilke Keser
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | | | - Pinar Uyar Gocun
- Department of Medical Pathology, and Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
45
|
Wu M, Matar DY, Yu Z, Chen Z, Knoedler S, Ng B, Darwish O, Haug V, Friedman L, Orgill DP, Panayi AC. Modulation of Lymphangiogenesis in Incisional Murine Diabetic Wound Healing Using Negative Pressure Wound Therapy. Adv Wound Care (New Rochelle) 2023. [PMID: 36424821 DOI: 10.1089/wound.2022.0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Despite the significant function of lymphatics in wound healing, and frequent clinical use of Negative Pressure Wound Therapy (NPWT), the effect of mechanical force application on lymphangiogenesis remains to be elucidated. We utilize a murine incisional wound healing model to assess the mechanisms of lymphangiogenesis following NPWT. Approach: Dorsal incisional skin wounds were created on diabetic mice (genetically obese leptin receptor-deficient mice [db/db]; n = 30) and covered with an occlusive dressing (Control, n = 15) or NPWT (-125 mmHg, continuous, 24 h for 7 days; NPWT, n = 15). The wounds were macroscopically assessed for 28 days. Tissue was harvested on day 10 for analysis. Qualitative functional analysis of lymphatic drainage was performed on day 28 using Evans Blue staining (n = 2). Results: NPWT increased lymphatic vessel density (40 ± 20 vs. 12 ± 6 podoplanin [PDPN]+ and 25 ± 9 vs. 14 ± 8 lymphatic vessel endothelial receptor 1 [LYVE-1]+) and vessel diameter (28 ± 9 vs. 12 ± 2 μm). Western blotting verified the upregulation of LYVE-1 with NPWT. Leukocyte presence was higher with NPWT (22% ± 3.7% vs. 9.1% ± 4.1% lymphocyte common antigen [CD45]+) and the leukocytes were predominately B cells clustered within vessels (8.8% ± 2.5% vs. 18% ± 3.6% B-lymphocyte antigen CD20 [CD20]+). Macrophage presence was lower in the NPWT group. Lymphatic drainage was increased in the NPWT group, which exhibited greater Evans Blue positivity. Innovation: The lymphangiogenic effects take place independent of macrophage infiltration, appearing to correlate with B cell presence. Conclusion: NPWT promotes lymphangiogenesis in incisional wounds, significantly increasing the lymph vessel density and diameter. This study highlights the potential of NPWT to stimulate lymphatic drainage and wound healing of surgical incisions.
Collapse
Affiliation(s)
- Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dany Y Matar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhen Yu
- Opthalmology Department, Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, Jinan University, Shenzhen, China.,Angiogenesis Laboratory, Ophthalmology Department, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyu Chen
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Brian Ng
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Oliver Darwish
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Valentin Haug
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Leigh Friedman
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Lehigh University, Bethlehem, Pennsylvania, USA.,Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| |
Collapse
|
46
|
Wang YC, Meng WT, Zhang HF, Zhu J, Wang QL, Mou FF, Guo HD. Lymphangiogenesis, a potential treatment target for myocardial injury. Microvasc Res 2023; 145:104442. [PMID: 36206847 DOI: 10.1016/j.mvr.2022.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
The lymphatic vascular system is crucial for the regulation of tissue fluid homeostasis, lipid metabolism, and immune function. Cardiac injury quickly leads to myocardial edema, cardiac lymphatic dysfunction, which ultimately results in myocardial fluid imbalance and cardiac dysfunction. Therefore, lymphangiogenesis-targeted therapy may improve the recovery of myocardial function post cardiac ischemia as observed in myocardial infarction (MI). Indeed, a promising strategy for the clinical treatment of MI relies on vascular endothelial growth factor-C (VEGF-C)-targeted therapy, which promotes lymphangiogenesis. However, much effort is needed to identify the mechanisms of lymphatic transport in response to heart disease. This article reviews regulatory factors of lymphangiogenesis, and discusses the effects of lymphangiogenesis on cardiac function after cardiac injury and its regulatory mechanisms. The involvement of stem cells on lymphangiogenesis was also discussed as stem cells could differentiate into lymphatic endothelial cells (LECs) and stimulate phenotype of LECs.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wan-Ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai-Feng Zhang
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang-Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
47
|
Harris NR, Bálint L, Dy DM, Nielsen NR, Méndez HG, Aghajanian A, Caron KM. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol Rev 2023; 103:391-432. [PMID: 35953269 PMCID: PMC9576179 DOI: 10.1152/physrev.00052.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.
Collapse
Affiliation(s)
- Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle M Dy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amir Aghajanian
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
48
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
49
|
Hou L, Peng X, Wang R, Wang Y, Li H, Zhang H, Zhang Y, Zhang Z. Oral nano-formulation improves pancreatic islets dysfunction via lymphatic transport for antidiabetic treatment. Acta Pharm Sin B 2022. [PMID: 37521855 PMCID: PMC10373096 DOI: 10.1016/j.apsb.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) therapy is facing the challenges of long-term medication and gradual destruction of pancreatic islet β-cells. Therefore, it is timely to develop oral prolonged action formulations to improve compliance, while restoring β-cells survival and function. Herein, we designed a simple nanoparticle with enhanced oral absorption and pancreas accumulation property, which combined apical sodium-dependent bile acid transporter-mediated intestinal uptake and lymphatic transportation. In this system, taurocholic acid (TCA) modified poly(lactic-co-glycolic acid) (PLGA) was employed to achieve pancreas location, hydroxychloroquine (HCQ) was loaded to execute therapeutic efficacy, and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) was introduced as stabilizer together with synergist (PLGA-TCA/DLPC/HCQ). In vitro and in vivo results have proven that PLGA-TCA/DLPC/HCQ reversed the pancreatic islets damage and dysfunction, thus impeding hyperglycemia progression and restoring systemic glucose homeostasis via only once administration every day. In terms of mechanism PLGA-TCA/DLPC/HCQ ameliorated oxidative stress, remodeled the inflammatory pancreas microenvironment, and activated PI3K/AKT signaling pathway without obvious toxicity. This strategy not only provides an oral delivery platform for increasing absorption and pancreas targetability but also opens a new avenue for thorough T2DM treatment.
Collapse
|
50
|
Dogan NO, Ceylan H, Suadiye E, Sheehan D, Aydin A, Yasa IC, Wild AM, Richter G, Sitti M. Remotely Guided Immunobots Engaged in Anti-Tumorigenic Phenotypes for Targeted Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204016. [PMID: 36202751 DOI: 10.1002/smll.202204016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Building medical microrobots from the body's own cells may circumvent the biocompatibility concern and hence presents more potential in clinical applications to improve the possibility of escaping from the host defense mechanism. More importantly, live cells can enable therapeutically relevant functions with significantly higher efficiency than synthetic systems. Here, live immune cell-derived microrobots from macrophages, i.e., immunobots, which can be remotely steered with externally applied magnetic fields and directed toward anti-tumorigenic (M1) phenotypes, are presented. Macrophages engulf the engineered magnetic decoy bacteria, composed of 0.5 µm diameter silica Janus particles with one side coated with anisotropic FePt magnetic nanofilm and the other side coated with bacterial lipopolysaccharide (LPS). This study demonstrates the torque-based surface rolling locomotion of the immunobots along assigned trajectories inside blood plasma, over a layer of endothelial cells, and under physiologically relevant flow rates. The immunobots secrete signature M1 cytokines, IL-12 p40, TNF-α, and IL-6, and M1 cell markers, CD80 and iNOS, via toll-like receptor 4 (TLR4)-mediated stimulation with bacterial LPS. The immunobots exhibit anticancer activity against urinary bladder cancer cells. This study further demonstrates such immunobots from freshly isolated primary bone marrow-derived macrophages since patient-derivable macrophages may have a strong clinical potential for future cell therapies in cancer.
Collapse
Affiliation(s)
- Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Eylül Suadiye
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Devin Sheehan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Asli Aydin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Immihan Ceren Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Gunther Richter
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|