1
|
Maksić M, Corović I, Stanisavljević I, Radojević D, Veljković T, Todorović Ž, Jovanović M, Zdravković N, Stojanović B, Marković BS, Jovanović I. Heyde Syndrome Unveiled: A Case Report with Current Literature Review and Molecular Insights. Int J Mol Sci 2024; 25:11041. [PMID: 39456826 PMCID: PMC11507012 DOI: 10.3390/ijms252011041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Heyde syndrome, marked by aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome, is often underreported. Shear stress from a narrowed aortic valve degrades von Willebrand factor multimers, leading to angiodysplasia formation and von Willebrand factor deficiency. This case report aims to raise clinician awareness of Heyde syndrome, its complexity, and the need for a multidisciplinary approach. We present a 75-year-old man with aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome type 2A. The patient was successfully treated with argon plasma coagulation and blood transfusions. He declined further treatment for aortic stenosis but was in good overall health with improved laboratory results during follow-up. Additionally, we provide a comprehensive review of the molecular mechanisms involved in the development of this syndrome, discuss current diagnostic and treatment approaches, and offer future perspectives for further research on this topic.
Collapse
Affiliation(s)
- Mladen Maksić
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Irfan Corović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Isidora Stanisavljević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Dušan Radojević
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Tijana Veljković
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Željko Todorović
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Marina Jovanović
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Nataša Zdravković
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Bojan Stojanović
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Ivan Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| |
Collapse
|
2
|
Moser MM, Schoergenhofer C, Jilma B. Progress in von Willebrand Disease Treatment: Evolution towards Newer Therapies. Semin Thromb Hemost 2024; 50:720-732. [PMID: 38331000 DOI: 10.1055/s-0044-1779485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
von Willebrand disease (VWD) is a very heterogenous disease, resulting in different phenotypes and different degrees of bleeding severity. Established therapies (i.e., desmopressin, antifibrinolytic agents, hormone therapy for heavy menstrual bleeding, and von Willebrand factor [VWF] concentrates) may work in some subtypes, but not in all patients. In recent years, progress has been made in improving the diagnosis of VWD subtypes, allowing for more specific therapy. The impact of VWD on women's daily lives has also come to the fore in recent years, with hormone therapy, tranexamic acid, or recombinant VWF as treatment options. New treatment approaches, including the replacement of lacking factor VIII (FVIII) function, may work in those subgroups affected by severe FVIII deficiency. Reducing the clearance of VWF is an alternative treatment pathway; for example, rondaptivon pegol is a VWFA1 domain-binding aptamer which not only improves plasma VWF/FVIII levels, but also corrects platelet counts in thrombocytopenic type 2B VWD patients. These approaches are currently in clinical development, which will be the focus of this review. In addition, half-life extension methods are also important for the improvement of patients' quality of life. Targeting specific mutations may further lead to personalized treatments in the future. Finally, a few randomized controlled trials, although relatively small, have been published in recent years, aiming to achieve a higher level of evidence in future guidelines.
Collapse
Affiliation(s)
- Miriam M Moser
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zheng XL. Novel mechanisms of action of emerging therapies of hereditary thrombotic thrombocytopenic purpura. Expert Rev Hematol 2024; 17:341-351. [PMID: 38752747 PMCID: PMC11209763 DOI: 10.1080/17474086.2024.2356763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Hereditary thrombotic thrombocytopenic purpura (hTTP) is caused by deficiency of plasma ADAMTS13 activity, resulting from ADAMTS13 mutations. ADAMTS13 cleaves ultra large von Willebrand factor (VWF), thus reducing its multimer sizes. Hereditary deficiency of plasma ADAMTS13 activity leads to the formation of excessive platelet-VWF aggregates in small arterioles and capillaries, resulting in hTTP. AREAS COVERED PubMed search from 1956 to 2024 using thrombotic thrombocytopenic purpura and therapy identified 3,675 articles. Only the articles relevant to the topic were selected for discussion, which focuses on pathophysiology, clinical presentations, and mechanisms of action of emerging therapeutics for hTTP. Current therapies include infusion of plasma, or coagulation factor VIII, or recombinant ADAMTS13. Emerging therapies include anti-VWF A1 aptamers or nanobody and gene therapies with adeno-associated viral vector or self-inactivated lentiviral vector or a sleeping beauty transposon system for a long-term expression of a functional ADAMTS13 enzyme. EXPERT OPINION Frequent plasma infusion remains to be the standard of care in most parts of the world, while recombinant ADAMTS13 has become the treatment of choice for hTTP in some of the Western countries. The success of gene therapies in preclinical models may hold a promise for future development of these novel approaches for a cure of hTTP.
Collapse
Affiliation(s)
- X. Long Zheng
- Department of Pathology and Laboratory Medicine and Institute of Reproductive Medicine and Developmental Sciences, the University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
4
|
von Willebrand disease: what does the future hold? Blood 2021; 137:2299-2306. [PMID: 33662989 DOI: 10.1182/blood.2020008501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
von Willebrand disease (VWD) is characterized by its heterogeneous clinical manifestation, which complicates its diagnosis and management. The clinical management of VWD has remained essentially unchanged over the last 30 years or so, using von Willebrand factor (VWF) concentrates, desmopressin, and anti-fibrinolytic agents as main tools to control bleeding. This is in contrast to hemophilia A, for which a continuous innovative path has led to novel treatment modalities. Despite current VWD management being considered effective, quality-of-life studies consistently reveal a higher than anticipated burden of VWD on patients, which is particularly true for women. Apparently, despite our perceived notion of current therapeutic efficiency, there is space for innovation with the goal of reaching superior efficacy. Developing innovative treatments for VWD is complex, especially given the heterogeneity of the disease and the multifunctional nature of VWF. In this perspective article, we describe several potential strategies that could provide the basis for future VWD treatments. These include genetic approaches, such as gene therapy using dual-vector adenoassociated virus and transcriptional silencing of mutant alleles. Furthermore, protein-based approaches to increase factor FVIII levels in VWD-type 3 or 2N patients are discussed. Finally, antibody-based options to interfere with VWF degradation (for congenital VWD-type 2A or acquired von Willebrand syndrome-type 2A) or increase endogenous VWF levels (for VWD-type 1) are presented. By highlighting these potential strategies, we hope to initiate an innovative path, which ultimately would allow us to better serve VWD patients and their specific needs.
Collapse
|
5
|
Campioni M, Legendre P, Loubiere C, Lunghi B, Pinotti M, Christophe OD, Lenting PJ, Denis CV, Bernardi F, Casari C. In vivo modulation of a dominant-negative variant in mouse models of von Willebrand disease type 2A. J Thromb Haemost 2021; 19:139-146. [PMID: 33047469 DOI: 10.1111/jth.15131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Essentials Treatment options for von Willebrand disease (VWD) patients are limited. The p.P1127_C1948delinsR deletion/variant is a useful model to study VWD in vitro and in vivo. Counteracting dominant-negative effects restores von Willebrand factor multimerization in mice. This is the first siRNA-based treatment applied to a mouse model of VWD-type 2A. ABSTRACT: Background Treatment options for patients suffering from von Willebrand disease (VWD) are limited. Von Willebrand factor (VWF) is a polymeric protein that undergoes regulated dimerization and subsequent multimerization during its biosynthesis. Numerous heterozygous variants within the VWF gene display a dominant-negative effect and result in severe VWD. Previous studies have suggested that preventing the assembly of wild-type and mutant heteropolymers using siRNAs may have beneficial effects on VWF phenotypes in vitro. Objectives To study heterozygous dominant-negative variants in vivo, we developed a mouse model of VWD-type 2A and tested two independent strategies to modulate its detrimental effect. Methods The p.P1127_C1948delinsR deletion/variant, causing defective VWF multimerization, was expressed in mice as a model of VWD-type 2A variant. Two corrective strategies were applied. For the first time in a mouse model of VWD, we applied siRNAs selectively inhibiting translation of the mutant transcripts and we combined the VWD-type 2A deletion with the Cys to Arg substitution at position 2773, which is known to prevent dimerization. Results The RNA silencing approach induced a modest but consistent improvement of the VWF multimer profile. However, due to incomplete efficiency, the dominant-negative effect of the original variant could not be completely prevented. In contrast, the DNA approach resulted in increased antigen levels and restoration of a normal multimer profile. Conclusions Our data showed that preventing the detrimental impact of dominant-negative VWF variants by independent molecular mechanisms has beneficial consequences in vivo, in mouse models of dominant VWD.
Collapse
Affiliation(s)
- Matteo Campioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paulette Legendre
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cécile Loubiere
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Barbara Lunghi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Olivier D Christophe
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Francesco Bernardi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Caterina Casari
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Jeraiby MA, Sophie S, Caron C, Campos L, Brigitte T. Von Willebrand disease type 2B with a novel mutation in the VWF gene. Ann Saudi Med 2021; 41:59-61. [PMID: 33550910 PMCID: PMC7868623 DOI: 10.5144/0256-4947.2021.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 11/22/2022] Open
Abstract
We report a 38-year-old woman who presented with a subdural hematoma after minor facial trauma in a stressful situation. The laboratory data showed a subnormal platelet count (166×109/L), VWF:RCo activity was 45% and VWF:Ag was 53% with a VWF:RCo/VWF Ag ratio of 0.79. Hemostasis results and gene analysis revealed von Willebrand disease (VWD) type 2B with normal multimers and a novel mutation c.4136 G>T (R1379L), which appears to be a novel mutation of VWD type 2B that is mainly diagnosed with hypersensitivity to ristocetin and an hyperfixation of platelet Willebrand to a recombinant Gp1b. SIMILAR CASES PUBLISHED: None.
Collapse
Affiliation(s)
- Mohammed Abdullah Jeraiby
- From the Department of Pathology, Faculty of Medicine, Jazan University, Prince Muhammed Bin Naser Hospital, Jazan, Saudi Arabia
| | - Susen Sophie
- From the Department of Hematology, Regional and University Hospital Centre Lille, Lille, Hauts-de-France
| | - Claudine Caron
- From the Department of Hematology, Regional and University Hospital Centre Lille, Lille, Hauts-de-France
| | - Lydia Campos
- From the Department of hematology, CHU Saint-Etienne, Sant Etienne, Rhone-Alpes, France
| | - Tardy Brigitte
- From the Department of hematology, CHU Saint-Etienne, Sant Etienne, Rhone-Alpes, France
| |
Collapse
|
7
|
Von Willebrand Disease: From In Vivo to In Vitro Disease Models. Hemasphere 2020; 3:e297. [PMID: 31942548 PMCID: PMC6919471 DOI: 10.1097/hs9.0000000000000297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023] Open
Abstract
Von Willebrand factor (VWF) plays an essential role in primary hemostasis and is exclusively synthesized and stored in endothelial cells and megakaryocytes. Upon vascular injury, VWF is released into the circulation where this multimeric protein is required for platelet adhesion. Defects of VWF lead to the most common inherited bleeding disorder von Willebrand disease (VWD). Three different types of VWD exist, presenting with varying degrees of bleeding tendencies. The pathophysiology of VWD can be investigated by examining the synthesis, storage and secretion in VWF producing cells. These cells can either be primary VWF producing cells or transfected heterologous cell models. For many years transfected heterologous cells have been used successfully to elucidate many aspects of VWF synthesis. However, those cells do not fully reflect the characteristics of primary cells. Obtaining primary endothelial cells or megakaryocytes with a VWD phenotype, requires invasive procedures, such as vessel collection or a bone marrow biopsy. A more recent and promising development is the isolation of endothelial colony forming cells (ECFCs) from peripheral blood as a true-to-nature cell model. Alternatively, various animal models are available but limiting, therefore, new approaches are needed to study VWD and other bleeding disorders. A potential versatile source of endothelial cells and megakaryocytes could be induced pluripotent stem cells (iPSCs). This review gives an overview of models that are available to study VWD and VWF and will discuss novel approaches that can be considered to improve the understanding of the structural and functional mechanisms underlying this disease.
Collapse
|
8
|
Yu Y, Yu M, Liu J, Ding N, Huang J, Wan D, Zhao Y, Ma Z. In vivo monitoring of thrombosis in mice by optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201900105. [PMID: 31339664 DOI: 10.1002/jbio.201900105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study is to establish a novel method for continuously monitoring thrombus progression with various outcome measures and to assess the efficacy of antithrombotic drugs in murine thrombosis model in mice. In the study, thrombus was induced in the femoral vein of mice by FeCl3 and monitored over time by spectral-domain optical coherence tomography (OCT). Three-dimensional images of thrombi with or without heparin as an antithrombotic agent were obtained from OCT angiography. In addition, several parameters of thrombi were analyzed and compared between control and anticoagulant groups. By using OCT, we were able to trace thrombus generation in the same mouse in real time. We found that in our model heparin reduced thrombus size by ~60% and thrombus cross-sectional area by 50%. OCT results also show that both time to thrombus size (>0.02mm3 ) and time to occlusion (>30%) were significantly reduced after heparin addition. This study demonstrates that OCT reliably monitors thrombus generation and progression from various aspects including thrombus size. This enables us to measure the kinetic of thrombosis more accurately, and effectively evaluate the efficacy and activities of antithrombotic drugs. This model may represent a useful tool in antithrombotic drug discoveries in preclinical studies.
Collapse
Affiliation(s)
- Yao Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Menghan Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Jian Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Ning Ding
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Jiangmei Huang
- Department of Pathology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Dong Wan
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhenhe Ma
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
9
|
Rauch A, Susen S, Zieger B. Acquired von Willebrand Syndrome in Patients With Ventricular Assist Device. Front Med (Lausanne) 2019; 6:7. [PMID: 30805339 PMCID: PMC6371037 DOI: 10.3389/fmed.2019.00007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/11/2019] [Indexed: 01/27/2023] Open
Abstract
During the last decade the use of ventricular assist devices (VADs) for patients with severe heart failure has increased tremendously. However, flow disturbances, mainly high shear induced by the device is associated with bleeding complications. Shear stress-induced changes in VWF conformation are associated with a loss of high molecular weight multimers (HMW) of VWF and an increased risk of bleeding. This phenomenon and its cause will be elaborated and reviewed in the following.
Collapse
Affiliation(s)
- Antoine Rauch
- INSERM, U1011, Univ. Lille, U1011-EGID, Institut Pasteur de Lille, Lille, France.,CHU Lille, Hematology and Transfusion, Lille, France
| | - Sophie Susen
- INSERM, U1011, Univ. Lille, U1011-EGID, Institut Pasteur de Lille, Lille, France.,CHU Lille, Hematology and Transfusion, Lille, France
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Laurent PA, Hechler B, Solinhac R, Ragab A, Cabou C, Anquetil T, Severin S, Denis CV, Mangin PH, Vanhaesebroeck B, Payrastre B, Gratacap MP. Impact of PI3Kα (Phosphoinositide 3-Kinase Alpha) Inhibition on Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:2041-2053. [PMID: 30354258 DOI: 10.1161/atvbaha.118.311410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PI3Kα (phosphoinositide 3-kinase alpha) is a therapeutic target in oncology, but its role in platelets and thrombosis remains ill characterized. In this study, we have analyzed the role of PI3Kα in vitro, ex vivo, and in vivo in 2 models of arterial thrombosis. Approach and Results- Using mice selectively deficient in p110α in the megakaryocyte lineage and isoform-selective inhibitors, we confirm that PI3Kα is not mandatory but participates to thrombus growth over a collagen matrix at arterial shear rate. Our data uncover a role for PI3Kα in low-level activation of the GP (glycoprotein) VI-collagen receptor by contributing to ADP secretion and in turn full activation of PI3Kβ and Akt/PKB (protein kinase B). This effect was no longer observed at high level of GP VI agonist concentration. Our study also reveals that over a vWF (von Willebrand factor) matrix, PI3Kα regulates platelet stationary adhesion contacts under arterial flow through its involvement in the outside-in signaling of vWF-engaged αIIbβ3 integrin. In vivo, absence or inhibition of PI3Kα resulted in a modest but significant decrease in thrombus size after superficial injuries of mouse mesenteric arteries and an increased time to arterial occlusion after carotid lesion, without modification in the tail bleeding time. Considering the more discrete and nonredundant role of PI3Kα compared with PI3Kβ, selective PI3Kα inhibitors are unlikely to increase the bleeding risk at least in the absence of combination with antiplatelet drugs or thrombopenia. Conclusions- This study provides mechanistic insight into the role of PI3Kα in platelet activation and arterial thrombosis.
Collapse
Affiliation(s)
- Pierre-Alexandre Laurent
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Béatrice Hechler
- INSERM, EFS Grand Est, BPPS UMR-S 949, FMTS, Université de Strasbourg, France (B.H., P.H.M.)
| | - Romain Solinhac
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Ashraf Ragab
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Cendrine Cabou
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Typhaine Anquetil
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Sonia Severin
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| | - Cécile V Denis
- INSERM, UMR-S 1176, University of Paris-Sud, Université Paris-Saclay, France (C.V.D.)
| | - Pierre H Mangin
- INSERM, EFS Grand Est, BPPS UMR-S 949, FMTS, Université de Strasbourg, France (B.H., P.H.M.)
| | - Bart Vanhaesebroeck
- Cell Signaling, UCL Cancer Institute, University College London, United Kingdom (B.V.)
| | - Bernard Payrastre
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
- CHU de Toulouse, Laboratoire d'Hématologie, France (B.P.)
| | - Marie-Pierre Gratacap
- From the INSERM, UMR-S1048, Université Toulouse III, France (P.-A.L., R.S., A.R., C.C., T.A., S.S., B.P., M.-P.G.)
| |
Collapse
|
11
|
Protein kinase C signaling dysfunction in von Willebrand disease (p.V1316M) type 2B platelets. Blood Adv 2018; 2:1417-1428. [PMID: 29925524 DOI: 10.1182/bloodadvances.2017014290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/17/2018] [Indexed: 01/22/2023] Open
Abstract
von Willebrand disease (VWD) type 2B is characterized by gain-of-function mutations in von Willebrand factor (VWF), enhancing its binding affinity for the platelet receptor glycoprotein (GP)Ibα. VWD type 2B patients display a bleeding tendency associated with loss of high-molecular-weight VWF multimers and variable thrombocytopenia. We recently demonstrated that a marked defect in agonist-induced activation of the small GTPase, Rap1, and integrin αIIbβ3 in VWD (p.V1316M) type 2B platelets also contributes to the bleeding tendency. Here, we investigated the molecular mechanisms underlying impaired platelet Rap1 signaling in this disease. Two distinct pathways contribute to Rap1 activation in platelets: rapid activation mediated by the calcium-sensing guanine nucleotide exchange factor CalDAG-GEF-I (CDGI) and sustained activation that is dependent on signaling by protein kinase C (PKC) and the adenosine 5'-diphosphate receptor P2Y12. To investigate which Rap1 signaling pathway is affected, we expressed VWF/p.V1316M by hydrodynamic gene transfer in wild-type and Caldaggef1-/- mice. Using αIIbβ3 integrin activation as a read-out, we demonstrate that platelet dysfunction in VWD (p.V1316M) type 2B affects PKC-mediated, but not CDGI-mediated, activation of Rap1. Consistently, we observed decreased PKC substrate phosphorylation and impaired granule release in stimulated VWD type 2B platelets. Interestingly, the defect in PKC signaling was caused by a significant increase in baseline PKC substrate phosphorylation in circulating VWD (p.V1316M) type 2B platelets, suggesting that the VWF-GPIbα interaction leads to preactivation and exhaustion of the PKC pathway. Consistent with PKC preactivation, VWD (p.V1316M) type 2B mice also exhibited marked shedding of platelet GPIbα. In summary, our studies identify altered PKC signaling as the underlying cause of platelet hypofunction in p.V1316M-associated VWD type 2B.
Collapse
|
12
|
Lavenu-Bombled C, Guitton C, Dupuis A, Baas MJ, Desconclois C, Dreyfus M, Li R, Caron C, Gachet C, Fressinaud E, Lanza F. A novel platelet-type von Willebrand disease mutation (GP1BA p.Met255Ile) associated with type 2B “Malmö/New York” von Willebrand disease. Thromb Haemost 2018; 116:1070-1078. [DOI: 10.1160/th16-06-0438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/07/2016] [Indexed: 11/05/2022]
Abstract
SummaryInteraction between von Willebrand factor (VWF) and platelet GPIbα is required for primary haemostasis. Lack or loss-of-function in the ligand-receptor pair results in bleeding complications. Paradoxically, gain-of-function mutations in VWF or GPIbα also result in bleeding complications as observed in type 2B von Willebrand disease (VWD) and platelet-type- (PT-) VWD, respectively. A similar phenotype is observed with increased ristocetin-induced platelet agglutination and disappearance of the highest molecular weight multimers of VWF. We evaluated a patient with a bleeding disorder and a biological presentation compatible with type 2B VWD. VWF and platelet functional assays, sequencing of the VWF and GP1BA genes, and expression studies in HEK cells were performed. Sequencing of the VWF gene in the propositus revealed a heterozygous p.Pro1266Leu mutation previously found in type 2B VWD Malmö/New York. These variants are characterised by a mild phenotype and a normal VWF multimer composition suggesting the presence of a second mutation in our propositus. Sequencing of the GP1BA gene revealed a heterozygous c.765G>A substitution changing Met at position 255 of GPIbα to Ile. This new mutation is located in the β-switch domain where five other gain-of-function mutations have been reported in PT-VWD. Expression of GPIbα Ile255 in HEK GPIb-IX cells resulted in enhanced VWF binding compared to wild-type, similar to known PT-VWD mutations (p.Val249, p.Ser249 and p.Val255) indicating that it contributes to the propositus defects. This first report associating PT-with type 2B VWD illustrates the importance of combining biological assays with genetic testing to better understand the clinical phenotype.
Collapse
|
13
|
Zhang C, Kelkar A, Nasirikenari M, Lau JT, Sveinsson M, Sharma UC, Pokharel S, Neelamegham S. The physical spacing between the von Willebrand factor D'D3 and A1 domains regulates platelet adhesion in vitro and in vivo. J Thromb Haemost 2018; 16:571-582. [PMID: 29251812 PMCID: PMC5826847 DOI: 10.1111/jth.13927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/26/2023]
Abstract
Essentials The role of von Willebrand factor (VWF) domains in regulating platelet adhesion was studied in vivo. Multimeric VWF with spacers at the N- and C-terminus of VWF-A1 were systematically tested. N-terminal modified VWF avidly bound platelet GpIbα, causing VWD Type2B like phenotype in mice. Novel anti-D'D3 mAbs suggest that changes at the D'D3-A1 interface may be biologically relevant. SUMMARY Background Previous ex vivo studies using truncated VWF (von Willebrand factor) suggest that domain-level molecular architecture may control platelet-GpIbα binding function. Objective We determined if this is the case with multimeric VWF in vivo. Methods Full-length human VWF ('hV') was modified with a 22-amino acid mucinous stretch at either the N-terminus of VWF-A1 to create 'hNV' or C-terminus to yield 'hCV'. This extends the physical distance between VWF-A1 and the adjacent domains by ~6 nm. Similar mucin inserts were also introduced into a human-murine chimera ('h[mA1]V') where murine-A1 replaced human-A1 in hV. This yielded 'h[mA1]NV' and 'h[mA1]CV', with N- and C-terminal inserts. The constructs were tested ex vivo and in vivo. Results Mucin insertion at the N-terminus, but not C-terminus, in both types of constructs resulted in >50-fold increase in binding to immobilized GpIbα. N-terminal insertion also resulted in greater shear-induced platelet activation, more thrombus formation on collagen, enhanced platelet accumulation and slower platelet translocation on immobilized VWF in microfluidics assays. Hydrodynamic injection-based expression of h[mA1]NV, but not h[mA1]V or h[mA1]CV, in VWF-/- mice caused profound thrombocytopenia, reduced plasma VWF concentrations, lower multimer distribution, and incessant tail bleeding that is reminiscent of von Willebrand disease type 2B. Platelet plugs were noted in the portal veins and hepatic arteries. An anti-D'D3 mAb DD3.3 that displays enhanced binding to VWF containing the N-terminal mucin insert also exhibited increased binding to wild-type VWF under shear and upon ristocetin addition. Conclusion Conformation changes at the VWF D'D3-A1 interface may be a key regulator of thrombosis in vivo. Structural features at the A1-A2 interface are likely of less significance.
Collapse
Affiliation(s)
- Changjie Zhang
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260
- Clinical and Translational Research Center, State University of New York, Buffalo, NY 14260
| | - Anju Kelkar
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260
- Clinical and Translational Research Center, State University of New York, Buffalo, NY 14260
| | - Mehrab Nasirikenari
- Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joseph T.Y. Lau
- Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Michele Sveinsson
- Clinical and Translational Research Center, State University of New York, Buffalo, NY 14260
| | - Umesh C. Sharma
- Clinical and Translational Research Center, State University of New York, Buffalo, NY 14260
| | - Saraswati Pokharel
- Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sriram Neelamegham
- Chemical & Biological Engineering, State University of New York, Buffalo, NY 14260
- Clinical and Translational Research Center, State University of New York, Buffalo, NY 14260
| |
Collapse
|
14
|
Wohner N, Muczynski V, Mohamadi A, Legendre P, Proulle V, Aymé G, Christophe OD, Lenting PJ, Denis CV, Casari C. Macrophage scavenger receptor SR-AI contributes to the clearance of von Willebrand factor. Haematologica 2018; 103:728-737. [PMID: 29326120 PMCID: PMC5865439 DOI: 10.3324/haematol.2017.175216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we found that LDL-receptor related protein-1 on macrophages mediated shear stress-dependent clearance of von Willebrand factor. In control experiments, however, we observed that von Willebrand factor also binds to macrophages independently of this receptor under static conditions, suggesting the existence of additional clearance-receptors. In search for such receptors, we focused on the macrophage-specific scavenger-receptor SR-AI. von Willebrand factor displays efficient binding to SR-AI (half-maximum binding 14±5 nM). Binding is calcium-dependent and is inhibited by 72±4% in the combined presence of antibodies against the A1- and D4-domains. Association with SR-AI was confirmed in cell-binding experiments. In addition, binding to bone marrow-derived murine SR-AI-deficient macrophages was strongly reduced compared to binding to wild-type murine macrophages. Following expression via hydrodynamic gene transfer, we determined ratios for von Willebrand factor-propeptide over von Willebrand factor-antigen, a marker of von Willebrand factor clearance. Propeptide/antigen ratios were significantly reduced in SR-AI-deficient mice compared to wild-type mice (0.6±0.2 versus 1.3±0.3; P<0.0001), compatible with a slower clearance of von Willebrand factor in SR-AI-deficient mice. Interestingly, mutants associated with increased clearance (von Willebrand factor/p.R1205H and von Willebrand factor/p.S2179F) had significantly increased binding to purified SR-AI and SR-AI expressed on macrophages. Accordingly, propeptide/antigen ratios for these mutants were reduced in SR-AI-deficient mice. In conclusion, we have identified SR-AI as a novel macrophage-specific receptor for von Willebrand factor. Enhanced binding of von Willebrand factor mutants to SR-AI may contribute to the increased clearance of these mutants.
Collapse
Affiliation(s)
- Nikolett Wohner
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Vincent Muczynski
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Amel Mohamadi
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Paulette Legendre
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Valérie Proulle
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,Service d'Hématologie Biologique, Centre Hospitalier Universitaire Bicêtre, Assistance Publique-Hôpitaux de Paris, 94276 Le Kremlin-Bicêtre, France
| | - Gabriel Aymé
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Caterina Casari
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
15
|
Hou Y, Zhou H, Wang Y, Marshall A, Liang C, Dai X, Li BX, Vanhoorelbeke K, Lei X, Reheman A, Ni H. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb Haemost 2017; 111:279-89. [DOI: 10.1160/th13-06-0490] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/25/2013] [Indexed: 01/01/2023]
Abstract
SummaryPlatelet adhesion and aggregation at the sites of vascular injury are key events for thrombosis and haemostasis. It has been well demonstrated that interaction between glycoprotein (GP) Ib and von Willebrand factor (VWF) initiates platelet adhesion and contributes to platelet aggregation, particularly at high shear. GPIb has long been suggested as a desirable antithrombotic target, but anti-GPIb therapy has never been successfully developed. Here, we evaluated the antithrombotic potential of Anfibatide, a novel snake venom-derived GPIb antagonist. We found Anfibatide inhibited washed murine platelet aggregation induced by ristocetin and recombinant murine VWF. It also blocked botrocetin-induced binding of murine plasma VWF to recombinant human GPIb . Interestingly, Anfibatide did not inhibit botrocetin- induced aggregation of platelet-rich plasma, indicating that its binding site may differ from other snake venom-derived GPIb antagonists. Anfibatide strongly inhibited platelet adhesion, aggregation, and thrombus formation in perfusion chambers at high shear conditions and efficiently dissolved preformed thrombi. Anfibatide also inhibited thrombus growth at low shear conditions, though less than at high shear. Using intravital microscopy, we found that Anfibatide markedly inhibited thrombosis in laser-injured cremaster vessels and prevented vessel occlusion in FeCl3-injured mesenteric vessels. Importantly, Anfibatide further inhibited residual thrombosis in VWF-deficient mice, suggesting that Anfibatide has additional antithrombotic effect beyond its inhibitory role in GPIb-VWF interaction. Anfibatide did not significantly cause platelet activation, prolong tail bleeding time, or cause bleeding diathesis in mice. Thus, consistent with the data from an ongoing clinical trial, the data from this study suggests that Anfibatide is a potent and safe antithrombotic agent.
Collapse
|
16
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
17
|
Abstract
In contrast to congenital platelet disorders, which are rare, acquired platelet dysfunctions are more common in clinical practice. Their main causes are medications and systemic/hematologic diseases. Typical clinical manifestations are mucosal bleeding, epistaxis, or superficial epidermal bleeding normally of modest entity. In most cases, the molecular mechanisms underlying impaired platelet function are not fully established, making it difficult to optimize patient care. We here provide a short overview of the various forms of acquired platelet disorders, with a particular focus on recent mechanistic studies on platelet dysfunction in von Willebrand disease.
Collapse
Affiliation(s)
- Caterina Casari
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Calippe B, Augustin S, Beguier F, Charles-Messance H, Poupel L, Conart JB, Hu SJ, Lavalette S, Fauvet A, Rayes J, Levy O, Raoul W, Fitting C, Denèfle T, Pickering MC, Harris C, Jorieux S, Sullivan PM, Sahel JA, Karoyan P, Sapieha P, Guillonneau X, Gautier EL, Sennlaub F. Complement Factor H Inhibits CD47-Mediated Resolution of Inflammation. Immunity 2017; 46:261-272. [DOI: 10.1016/j.immuni.2017.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/20/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
|
19
|
N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance. Blood 2016; 128:1959-1968. [PMID: 27554083 DOI: 10.1182/blood-2016-04-709436] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Enhanced von Willebrand factor (VWF) clearance is important in the etiology of von Willebrand disease. However, the molecular mechanisms underlying VWF clearance remain poorly understood. In this study, we investigated the role of VWF domains and specific glycan moieties in regulating in vivo clearance. Our findings demonstrate that the A1 domain of VWF contains a receptor-recognition site that plays a key role in regulating the interaction of VWF with macrophages. In A1-A2-A3 and full-length VWF, this macrophage-binding site is cryptic but becomes exposed following exposure to shear or ristocetin. Previous studies have demonstrated that the N-linked glycans within the A2 domain play an important role in modulating susceptibility to ADAMTS13 proteolysis. We further demonstrate that these glycans presented at N1515 and N1574 also play a critical role in protecting VWF against macrophage binding and clearance. Indeed, loss of the N-glycan at N1515 resulted in markedly enhanced VWF clearance that was significantly faster than that observed with any previously described VWF mutations. In addition, A1-A2-A3 fragments containing the N1515Q or N1574Q substitutions also demonstrated significantly enhanced clearance. Importantly, clodronate-induced macrophage depletion significantly attenuated the increased clearance observed with N1515Q and N1574Q in both full-length VWF and A1-A2-A3. Finally, we further demonstrate that loss of these N-linked glycans does not enhance clearance in VWF in the presence of a structurally constrained A2 domain. Collectively, these novel findings support the hypothesis that conformation of the VWF A domains plays a critical role in modulating macrophage-mediated clearance of VWF in vivo.
Collapse
|
20
|
A genetically-engineered von Willebrand disease type 2B mouse model displays defects in hemostasis and inflammation. Sci Rep 2016; 6:26306. [PMID: 27212476 PMCID: PMC4876317 DOI: 10.1038/srep26306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022] Open
Abstract
von Willebrand disease (VWD)-type 2B is characterized by gain-of-function mutations in the von Willebrand factor (VWF) A1-domain, leading to increased affinity for its platelet-receptor, glycoprotein Ibα. We engineered the first knock-in (KI) murine model for VWD-type 2B by introducing the p.V1316M mutation in murine VWF. Homozygous KI-mice replicated human VWD-type 2B with macrothrombocytopenia (platelet counts reduced by 55%, platelet volume increased by 44%), circulating platelet-aggregates and a severe bleeding tendency. Also, vessel occlusion was deficient in the FeCl3-induced thrombosis model. Platelet aggregation induced by thrombin or collagen was defective for KI-mice at all doses. KI-mice manifested a loss of high molecular weight multimers and increased multimer degradation. In a model of VWF-string formation, the number of platelets/string and string-lifetime were surprisingly enhanced in KI-mice, suggesting that proteolysis of VWF/p.V1316M is differentially regulated in the circulation versus the endothelial surface. Furthermore, we observed increased leukocyte recruitment during an inflammatory response induced by the reverse passive Arthus reaction. This points to an active role of VWF/p.V1316M in the exfiltration of leukocytes under inflammatory conditions. In conclusion, our genetically-engineered VWD-type 2B mice represent an original model to study the consequences of spontaneous VWF-platelet interactions and the physiopathology of this human disease.
Collapse
|
21
|
Rauch A, Caron C, Vincent F, Jeanpierre E, Ternisien C, Boisseau P, Zawadzki C, Fressinaud E, Borel-Derlon A, Hermoire S, Paris C, Lavenu-Bombled C, Veyradier A, Ung A, Vincentelli A, van Belle E, Lenting PJ, Goudemand J, Susen S. A novel ELISA-based diagnosis of acquired von Willebrand disease with increased VWF proteolysis. Thromb Haemost 2016; 115:950-9. [PMID: 26791163 DOI: 10.1160/th15-08-0638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
Von Willebrand disease-type 2A (VWD-2A) and acquired von Willebrand syndrome (AVWS) due to aortic stenosis (AS) or left ventricular assist device (LVAD) are associated with an increased proteolysis of von Willebrand factor (VWF). Analysis of VWF multimeric profile is the most sensitive way to assess such increased VWF-proteolysis. However, several technical aspects hamper a large diffusion among routine diagnosis laboratories. This makes early diagnosis and early appropriate care of increased proteolysis challenging. In this context of unmet medical need, we developed a new ELISA aiming a quick, easy and reliable assessment of VWF-proteolysis. This ELISA was assessed successively in a LVAD-model, healthy subjects (n=39), acquired TTP-patients (n=4), VWD-patients (including VWD-2A(IIA), n=22; VWD-2B, n=26; VWD-2A(IIE), n=21; and VWD-1C, n=8) and in AVWS-patients (AS, n=9; LVAD, n=9; and MGUS, n=8). A standard of VWF-proteolysis was specifically developed. Extent of VWF-proteolysis was expressed as relative percentage and as VWF proteolysis/VWF:Ag ratio. A speed-dependent increase in VWF-proteolysis was assessed in the LVAD model whereas no proteolysis was observed in TTP-patients. In VWD-patients, VWF-proteolysis was significantly increased in VWD-2A(IIA) and VWD-2B and significantly decreased in VWD-2A(IIE) versus controls (p< 0.0001). In AVWS-patients, VWF-proteolysis was significantly increased in AS- and LVAD-patients compared to controls (p< 0.0001) and not detectable in MGUS-patients. A significant increase in VWF-proteolysis was detected as soon as three hours after LVAD implantation (p< 0.01). In conclusion, we describe a new ELISA allowing a rapid and accurate diagnosis of VWF-proteolysis validated in three different clinical situations. This assay represents a helpful alternative to electrophoresis-based assay in the diagnosis and management of AVWS with increased VWF-proteolysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sophie Susen
- Sophie Susen, Centre de Biologie Pathologie, Centre Hospitalier Régional, 59037 Lille Cedex, France, Tel.: +33 3 20 44 59 37, Fax:+33 3 20 44 69 89, E-mail:
| |
Collapse
|
22
|
Apoptotic Platelet Events Are Not Observed in Severe von Willebrand Disease-Type 2B Mutation p.V1316M. PLoS One 2015; 10:e0143896. [PMID: 26645283 PMCID: PMC4672890 DOI: 10.1371/journal.pone.0143896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Thrombocytopenia and increased platelet clearance observed in von Willebrand disease-type 2B (VWD-2B) may be explained by platelet apoptosis triggered by the constitutive binding of VWF to its receptor, glycoprotein Ib (GPIb). Apoptosis was assessed in platelets from two patients with a severe VWD-2B mutation VWF/p.V1316M and from mice transiently expressing VWF/p.V1316M. We now report that the VWD-2B mutation VWF/p.V1316M which binds spontaneously to its receptor GPIbα does not induce apoptosis. In 2 unrelated patients (P1 and P2) exhibiting different VWF plasma levels (70% and 36%, respectively, compared with normal pooled human plasma given as 100%), inner transmembrane depolarization of mitochondria, characteristic of apoptotic events was undetectable in platelets, whether washed or in whole blood. No or a moderate phosphatidyl serine (PS) exposure as measured by annexin-V staining was observed for P1 and P2, respectively. Expression of pro-apoptotic proteins Bak and Bax, and caspase-3 activity were similar to control platelets. In the VWD-2B mouse model expressing high levels of mVWF/p.V1316M (423%), similar to what is found in inflammatory pathologies, no significant difference was observed between mice expressing mVWF/WT and mVWF/p.V1316M. These results strongly argue against apoptosis as a mechanism for the thrombocytopenia of severe VWD-2B exhibiting the VWF/p.V1316M mutation.
Collapse
|
23
|
Yin J, Ruan C. [The research progress of Von Willebrand disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:616-9. [PMID: 26304092 PMCID: PMC7342647 DOI: 10.3760/cma.j.issn.0253-2727.2015.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/04/2022]
Affiliation(s)
- Jie Yin
- Jiangsu Institute of Hematology, Key Lab of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Lab of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| |
Collapse
|
24
|
Bonnard T, Hagemeyer CE. Ferric Chloride-induced Thrombosis Mouse Model on Carotid Artery and Mesentery Vessel. J Vis Exp 2015:e52838. [PMID: 26167713 DOI: 10.3791/52838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Severe thrombosis and its ischemic consequences such as myocardial infarction, pulmonary embolism and stroke are major worldwide health issues. The ferric chloride injury is now a well-established technique to rapidly and accurately induce the formation of thrombi in exposed veins or artery of small and large diameter. This model has played a key role in the study of the pathophysiology of thrombosis, in the discovery and validation of novel antithrombotic drugs and in the understanding of the mechanism of action of these new agents. Here, the implementation of this technique on a mesenteric vessel and carotid artery in mice is presented. The method describes how to label circulating leukocytes and platelets with a fluorescent dye and to observe, by intravital microscopy on the exposed mesentery, their accumulation at the injured vessel wall which leads to the formation of a thrombus. On the carotid artery, the occlusion caused by the clot formation is measured by monitoring the blood flow with a Doppler probe.
Collapse
Affiliation(s)
- Thomas Bonnard
- Vascular Biotechnology Laboratory, Baker IDI Heart and Diabetes Institute
| | | |
Collapse
|
25
|
Wohner N, Legendre P, Casari C, Christophe OD, Lenting PJ, Denis CV. Shear stress-independent binding of von Willebrand factor-type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance. J Thromb Haemost 2015; 13:815-20. [PMID: 25728415 DOI: 10.1111/jth.12885] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/14/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND von Willebrand factor (VWF) is cleared in a shear stress- and macrophage-dependent manner by LRP1. von Willebrand disease (VWD)-type 2B mutants are endocytosed more efficiently than wild-type (wt)-VWF by macrophages. OBJECTIVE To investigate if VWD-type 2B mutations in the VWF A1-domain affect LRP1 binding and LRP1-dependent clearance. METHODS Recombinant Fc-tagged A1 domain (A1-Fc, A2-Fc, A3-Fc) and full-length VWF (wt or mutants thereof) were tested for binding to LRP1 or a recombinant fragment thereof in a static immunosorbent assay. Mutant and wt-VWF were also compared for clearance in mice lacking macrophage LRP1 (macLRP1(-) ) and control mice (macLRP1(+) ). RESULTS We found that A1-Fc but not A2-Fc or A3-Fc binds dose-dependently to LRP1. Binding of A1-Fc to LRP1 was markedly enhanced by the VWD-type 2B mutation p.V1316M. As expected, full-length wt-VWF was unable to bind LRP1 under static conditions unless ristocetin was added. In contrast, the presence of the p.V1316M or p.R1306Q mutation induced spontaneous binding to LRP1 without the need for ristocetin or shear stress. Both mutants were cleared more rapidly than wt-VWF in control macLRP1(+) mice. Surprisingly, deletion of macrophage LRP1 abrogated the increased clearance of the VWF/p.R1306Q and VWF/p.V1316M mutant. CONCLUSION The VWF A1-domain contains a binding site for LRP1. Certain VWD-type 2B mutations relieve the need for shear stress to induce LRP1 binding. Enhanced LRP1 binding coincides with a reduced survival of VWF/p.R1306Q and VWF/p.V1316M. Our data provide a rationale for reduced VWF levels in at least some VWD-type 2B patients.
Collapse
Affiliation(s)
- N Wohner
- INSERM Unit 1176, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
26
|
Bryckaert M, Rosa JP, Denis CV, Lenting PJ. Of von Willebrand factor and platelets. Cell Mol Life Sci 2014; 72:307-26. [PMID: 25297919 PMCID: PMC4284388 DOI: 10.1007/s00018-014-1743-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022]
Abstract
Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.
Collapse
Affiliation(s)
- Marijke Bryckaert
- INSERM U770, Hôpital Bicêtre, 80 rue du Général Leclerc, 94276, Le Kremlin Bicêtre Cedex, France,
| | | | | | | |
Collapse
|
27
|
Expression of a structurally constrained von Willebrand factor variant triggers acute thrombotic thrombocytopenic purpura in mice. Blood 2014; 123:3344-53. [PMID: 24713928 DOI: 10.1182/blood-2013-10-531392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease that presents with thrombocytopenia, disseminated thrombosis, hemolytic anemia, and organ dysfunction. The etiology of TTP has revealed that patients share a deficiency in plasma protease a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), the enzyme responsible for cleaving ultra-large von Willebrand factor (VWF) multimers into nonthrombogenic fragments. Therefore, existing TTP mouse models were developed by targeted disruption of the ADAMTS13 gene. ADAMTS13(-/-) mice are mostly asymptomatic in the absence of a trigger, as redundant proteases appear to take on VWF processing. As an alternative approach to creating one such model, we devised a strategy based on the expression of a cleavage-resistant VWF mutant in mice. The creation of a disulfide bond within the A2 domain of VWF was found to render VWF multimers resistant to proteolysis by plasma proteases under flow. Furthermore, mice expressing the murine VWF/p.S1494C-p.A1534C mutant present with symptoms characteristics of acute TTP such as thrombocytopenia, red cell shredding, accumulation of VWF-rich thrombi in the microvasculature, and advanced TTP symptoms such as renal dysfunction and splenomegaly. Because this model appears to faithfully emulate the pathophysiology of TTP, it should prove most useful in the study of microangiopathic diseases and their treatment.
Collapse
|
28
|
Abstract
Abstract
von Willebrand disease (VWD) is the most common autosomally inherited bleeding disorder. The disease represents a range of quantitative and qualitative pathologies of the adhesive glycoprotein von Willebrand factor (VWF). The pathogenic mechanisms responsible for the type 2 qualitative variants of VWF are now well characterized, with most mutations representing missense substitutions influencing VWF multimer structure and interactions with platelet GPIbα and collagen and with factor VIII. The molecular pathology of type 3 VWD has been similarly well characterized, with an array of different mutation types producing either a null phenotype or the production of VWF that is not secreted. In contrast, the pathogenetic mechanisms responsible for type 1 VWD remain only partially resolved. In the hemostasis laboratory, the measurement of VWF:Ag and VWF:RCo are key components in the diagnostic algorithm for VWD, although the introduction of direct GPIbα-binding assays may become the functional assay of choice. Molecular genetic testing can provide additional benefit, but its utility is currently limited to type 2 and 3 VWD. The treatment of bleeding in VWD involves the use of desmopressin and plasma-derived VWF concentrates and a variety of adjunctive agents. Finally, a new recombinant VWF concentrate has just completed clinical trial evaluation and has demonstrated excellent hemostatic efficacy and safety.
Collapse
|
29
|
Nurden AT, Nurden P. Congenital platelet disorders and understanding of platelet function. Br J Haematol 2013; 165:165-78. [DOI: 10.1111/bjh.12662] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alan T. Nurden
- L'Institut de Rhythmologie et Modélisation Cardiaque (LIRYC); Plateforme Technologique et d'Innovation Biomédicale; Hôpital Xavier Arnozan; Pessac France
| | - Paquita Nurden
- L'Institut de Rhythmologie et Modélisation Cardiaque (LIRYC); Plateforme Technologique et d'Innovation Biomédicale; Hôpital Xavier Arnozan; Pessac France
| |
Collapse
|
30
|
Casari C, Berrou E, Lebret M, Adam F, Kauskot A, Bobe R, Desconclois C, Fressinaud E, Christophe OD, Lenting PJ, Rosa JP, Denis CV, Bryckaert M. von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin αIIbβ3. J Clin Invest 2013; 123:5071-81. [PMID: 24270421 DOI: 10.1172/jci69458] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
von Willebrand disease type 2B (vWD-type 2B) is characterized by gain-of-function mutations in von Willebrand factor (vWF) that enhance its binding to the glycoprotein Ib-IX-V complex on platelets. Patients with vWD-type 2B have a bleeding tendency that is linked to loss of vWF multimers and/or thrombocytopenia. In this study, we uncovered evidence that platelet dysfunction is a third possible mechanism for bleeding tendency. We found that platelet aggregation, secretion, and spreading were diminished due to inhibition of integrin αIIbβ3 in platelets from mice expressing a vWD-type 2B-associated vWF (vWF/p.V1316M), platelets from a patient with the same mutation, and control platelets pretreated with recombinant vWF/p.V1316M. Impaired platelet function coincided with reduced thrombus growth. Further, αIIbβ3 activation and activation of the small GTPase Rap1 were impaired by vWF/p.V1316M following exposure to platelet agonists (thrombin, ADP, or convulxin). Conversely, thrombin- or ADP-induced Ca2+ store release, which is required for αIIbβ3 activation, was normal, indicating that vWF/p.V1316M acts downstream of Ca2+ release and upstream of Rap1. We found normal Syk phosphorylation and PLCγ2 activation following collagen receptor signaling, further implying that vWF/p.V1316M acts directly on or downstream of Ca2+ release. These data indicate that the vWD-type 2B mutation p.V1316M is associated with severe thrombocytopathy, which likely contributes to the bleeding tendency in vWD-type 2B.
Collapse
|
31
|
Tischer A, Madde P, Blancas-Mejia LM, Auton M. A molten globule intermediate of the von Willebrand factor A1 domain firmly tethers platelets under shear flow. Proteins 2013; 82:867-78. [PMID: 24265179 DOI: 10.1002/prot.24464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 02/02/2023]
Abstract
Clinical mutations in patients diagnosed with Type 2A von Willebrand disease (VWD) have been identified that break the single disulfide bond linking N- and C-termini in the vWF A1 domain. We have modeled the effect of these mutations on the disulfide-bonded structure of A1 by reducing and carboxy-amidating these cysteines. Solution biophysical studies show that loss of this disulfide bond induces a molten globule conformational state lacking global tertiary structure but retaining residual secondary structure. The conformational dependence of platelet adhesion to these native and molten globule states of A1 is quantitatively compared using real-time high-speed video microscopy analysis of platelet translocation dynamics under shear flow in a parallel plate microfluidic flow chamber. While normal platelets translocating on surface-captured native A1 domain retain the catch-bond character of pause times that increase as a function of shear rate at low shear and decrease as a function of shear rate at high shear, platelets that interact with A1 lacking the disulfide bond remain stably attached and do not translocate. Based on these findings, we propose that the shear stress-sensitive regulation of the A1-GPIb interaction is due to folding the tertiary structure of this domain. Removal of the tertiary structure by disrupting the disulfide bond destroys this regulatory mechanism resulting in high-strength interactions between platelets and vWF A1 that are dependent only on residual secondary structure elements present in the molten globule conformation.
Collapse
Affiliation(s)
- Alexander Tischer
- Departments of Internal Medicine Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
32
|
von Willebrand disease: advances in pathogenetic understanding, diagnosis, and therapy. Blood 2013; 122:3735-40. [PMID: 24065240 DOI: 10.1182/blood-2013-06-498303] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
von Willebrand disease (VWD) is the most common autosomally inherited bleeding disorder. The disease represents a range of quantitative and qualitative pathologies of the adhesive glycoprotein von Willebrand factor (VWF). The pathogenic mechanisms responsible for the type 2 qualitative variants of VWF are now well characterized, with most mutations representing missense substitutions influencing VWF multimer structure and interactions with platelet GPIbα and collagen and with factor VIII. The molecular pathology of type 3 VWD has been similarly well characterized, with an array of different mutation types producing either a null phenotype or the production of VWF that is not secreted. In contrast, the pathogenetic mechanisms responsible for type 1 VWD remain only partially resolved. In the hemostasis laboratory, the measurement of VWF:Ag and VWF:RCo are key components in the diagnostic algorithm for VWD, although the introduction of direct GPIbα-binding assays may become the functional assay of choice. Molecular genetic testing can provide additional benefit, but its utility is currently limited to type 2 and 3 VWD. The treatment of bleeding in VWD involves the use of desmopressin and plasma-derived VWF concentrates and a variety of adjunctive agents. Finally, a new recombinant VWF concentrate has just completed clinical trial evaluation and has demonstrated excellent hemostatic efficacy and safety.
Collapse
|
33
|
Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B-associated thrombocytopenia. Blood 2013; 122:2893-902. [PMID: 23945153 DOI: 10.1182/blood-2013-03-493312] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Von Willebrand disease (VWD) type 2B is characterized by mutations causing enhanced binding of von Willebrand factor (VWF) to platelets. Bleeding tendency is associated with heterogeneous clinical manifestations, including moderate to severe thrombocytopenia. The underlying mechanism of the thrombocytopenia has remained unclear. Here, a mouse model of VWD type 2B was used to investigate pathways contributing to thrombocytopenia. Immunohistochemical analysis of blood smears revealed that mutant VWF was exclusively detected on platelets of thrombocytopenic VWD type 2B mice, suggesting that thrombocytopenic VWD type 2B mice were elevated two- to threefold upon chemical macrophage depletion. Colocalization of platelets with CD68-positive Kupffer cells and CD168-positive marginal macrophages in liver and spleen, respectively, confirmed the involvement of macrophages in the removal of VWF/platelet complexes. Significantly more platelets were found in liver and spleen of VWD type 2B mice compared with control mice. Finally, platelet survival was significantly shorter in VWD type 2B mice compared with control mice, providing a rationale for lower platelet counts in VWD type 2B mice. In conclusion, our data indicate that VWF type 2B binds to platelets and that this is a signal for clearance by macrophages, which could contribute to the thrombocytopenia in patients with VWD type 2B.
Collapse
|
34
|
Von Willebrand Factor Abnormalities Studied in the Mouse Model: What We Learned about VWF Functions. Mediterr J Hematol Infect Dis 2013; 5:e2013047. [PMID: 23936618 PMCID: PMC3736878 DOI: 10.4084/mjhid.2013.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 11/30/2022] Open
Abstract
Up until recently, von Willebrand Factor (VWF) structure-function relationships have only been studied through in vitro approaches. A powerful technique known as hydrodynamic gene transfer, which allows transient expression of a transgene by mouse hepatocytes, has led to an important shift in VWF research. Indeed this approach has now enabled us to transiently express a number of VWF mutants in VWF-deficient mice in order to test the relative importance of specific residues in different aspects of VWF biology and functions in an in vivo setting. As a result, mice reproducing various types of von Willebrand disease have been generated, models that will be useful to test new therapies. This approach also allowed a more precise identification of the importance of VWF interaction with subendothelial collagens and with platelets receptors in hemostasis and thrombosis. The recent advances gathered from these studies as well as the pros and cons of the technique will be reviewed here.
Collapse
|
35
|
Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV. Clearance of von Willebrand factor. J Thromb Haemost 2013; 11 Suppl 1:202-11. [PMID: 23809124 DOI: 10.1111/jth.12226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative deficiencies in von Willebrand factor (VWF) are associated with abnormal hemostasis that can manifest in bleeding or thrombotic complications. Consequently, many studies have endeavored to elucidate the mechanisms underlying the regulation of VWF plasma levels. This review focuses on the role of VWF clearance pathways. A summary of recent developments are provided, including results from genetic studies, the relationship between glycosylation and VWF clearance, the contribution of increased VWF clearance to the pathogenesis of von Willebrand disease and the identification of VWF clearance receptors. These different studies converge in their conclusion that VWF clearance is a complex phenomenon that involves multiple mechanisms. Deciphering how such different mechanisms coordinate their role in this process is but one of the remaining challenges. Nevertheless, a better insight into the complex clearance pathways of VWF may help us to better understand the clinical implications of aberrant clearance in the pathogenesis of von Willebrand disease and perhaps other disorders as well as aid in developing alternative therapeutic approaches.
Collapse
Affiliation(s)
- C Casari
- Unit 770, INSERM, Le Kremlin-Bicêtre, France; UMR_S 770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
36
|
Poirault-Chassac S, Nguyen KA, Pietrzyk A, Casari C, Veyradier A, Denis CV, Baruch D. Terminal platelet production is regulated by von Willebrand factor. PLoS One 2013; 8:e63810. [PMID: 23737952 PMCID: PMC3667798 DOI: 10.1371/journal.pone.0063810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/07/2013] [Indexed: 12/21/2022] Open
Abstract
It is established that proplatelets are formed from mature megakaryocytes (MK) as intermediates before platelet production. Recently, the presence of proplatelets was described in blood incubated in static conditions. We have previously demonstrated that platelet and proplatelet formation is upregulated by MK exposure to high shear rates (1800 s−1) on immobilized von Willebrand factor (VWF). The purpose of the present study was to investigate whether VWF is involved in the regulation of terminal platelet production in blood. To this end, Vwf −/− mice, a model of severe von Willebrand disease, were used to create a situation in which blood cells circulate in a vascular tree that is completely devoid of VWF. Murine platelets were isolated from Vwf −/− and Vwf +/+ blood, exposed to VWF at 1800 s−1 in a microfluidic platform, and examined by means of videomicroscopy, as well as fluorescence and activation studies. Proplatelets became visible within 5 minutes, representing 38% of all platelets after 12 minutes and 46% after 28 min. The proportion of proplatelets was 1.8-fold higher in blood from Vwf−/− mice than from Vwf+/+ mice, suggesting a role of VWF in vivo. Fragmentation of these proplatelets into smaller discoid platelets was also observed in real-time. Platelets remained fully activatable by thrombin. Compensation of plasmatic VWF following hydrodynamic gene transfer in Vwf−/− mice reduced the percentage of proplatelets to wild-type levels. A thrombocytopenic mouse model was studied in the flow system, 7 days after a single 5-FU injection. Compared to untreated mouse blood, a 2-fold increase in the percentage of proplatelets was detected following exposure to 1800 s−1 on VWF of samples from mice treated with 5-FU. In conclusion, VWF and shear stress together appear to upregulate proplatelet reorganization and platelet formation. This suggests a new function for VWF in vivo as regulator of bloodstream thrombopoiesis.
Collapse
Affiliation(s)
- Sonia Poirault-Chassac
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kim Anh Nguyen
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Pietrzyk
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Caterina Casari
- INSERM UMR 770, Le Kremlin-Bicetre, France
- Univ Sud Paris, Le Kremlin-Bicetre, France
| | - Agnes Veyradier
- INSERM UMR 770, Le Kremlin-Bicetre, France
- Univ Sud Paris, Le Kremlin-Bicetre, France
- Antoine Béclère Hospital and National Reference Center for von Willebrand disease, Clamart, France
| | - Cecile V. Denis
- INSERM UMR 770, Le Kremlin-Bicetre, France
- Univ Sud Paris, Le Kremlin-Bicetre, France
| | - Dominique Baruch
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Abstract
Atypical hemolytic uremic syndrome (aHUS) is characterized by genetic and acquired abnormalities of the complement system leading to alternative pathway (AP) overactivation and by glomerular endothelial damage, thrombosis, and mechanical hemolysis. Mutations per se are not sufficient to induce aHUS, and nonspecific primary triggers are required for disease manifestation. We investigated whether hemolysis-derived heme contributes to aHUS pathogenesis. We confirmed that heme activates complement AP in normal human serum, releasing C3a, C5a, and sC5b9. We demonstrated that heme-exposed endothelial cells also activate the AP, resulting in cell-bound C3 and C5b9. This was exacerbated in aHUS by genetic abnormalities associated with AP overactivation. Heme interacted with C3 close to the thioester bond, induced homophilic C3 complexes, and promoted formation of an overactive C3/C5 convertase. Heme induced decreased membrane cofactor protein (MCP) and decay-accelerating factor (DAF) expression on endothelial cells, giving Factor H (FH) a major role in complement regulation. Finally, heme promoted a rapid exocytosis of Weibel-Palade bodies, with membrane expression of P-selectin known to bind C3b and trigger the AP, and the release of the prothrombotic von Willebrand factor. These results strongly suggest that hemolysis-derived heme represents a common secondary hit amplifying endothelial damage and thrombosis in aHUS.
Collapse
|
38
|
Mutations in the A3 domain of von Willebrand factor inducing combined qualitative and quantitative defects in the protein. Blood 2013; 121:2135-43. [PMID: 23335371 DOI: 10.1182/blood-2012-09-456038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two unrelated families were recruited in the French Reference Center for von Willebrand Disease with moderate bleeding symptoms associated with low von Willebrand factor (VWF) antigen levels, decreased collagen binding assay, and no or partial response to desmopressin. Genetic analysis showed the presence of heterozygous mutations in the A3 domain away from the collagen-binding surface: 1 never reported previously (p.L1696R) and another (p.P1824H) described in a Spanish family. The mutations were reproduced by site-directed mutagenesis and mutant VWF was expressed in different expression systems, COS-7 cells, baby hamster kidney cells, and in VWF-deficient mice through hydrodynamic injection. p.L1696R and p.P1824H were associated with very low expression levels both in vitro and in vivo, with intracellular retention for p.P1824H. Both homozygous mutants displayed decreased binding to collagen types I and III but also decreased binding to platelet glycoproteins Ib and IIbIIIa. Co-transfections with wild-type VWF partially corrected these defects, except that collagen binding remained abnormal. The in vivo thrombosis response was severely reduced for both heterozygous mutants. In conclusion, we report 2 VWF A3 domain mutations that induce a combined qualitative and quantitative defect.
Collapse
|
39
|
Berber E. The molecular genetics of von Willebrand disease. Turk J Haematol 2012; 29:313-24. [PMID: 24385719 PMCID: PMC3781629 DOI: 10.5505/tjh.2012.39205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/24/2012] [Indexed: 01/25/2023] Open
Abstract
Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. Conflict of interest:None declared.
Collapse
Affiliation(s)
- Ergül Berber
- İstanbul Arel University, Department of Molecular Biology and Genetics, İstanbul, Turkey
| |
Collapse
|
40
|
Lenting PJ, Casari C, Christophe OD, Denis CV. von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 2012; 10:2428-37. [PMID: 23020315 DOI: 10.1111/jth.12008] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
von Willebrand factor (VWF) is a protein best known from its critical role in hemostasis. Indeed, any dysfunction of VWF is associated with a severe bleeding tendency known as von Willebrand disease (VWD). Since the first description of the disease by Erich von Willebrand in 1926, remarkable progress has been made with regard to our understanding of the pathogenesis of this disease. The cloning of the gene encoding VWF has allowed numerous breakthroughs, and our knowledge of the epidemiology, genetics and molecular basis of VWD has been rapidly expanding since then. These studies have taught us that VWF is rather unique in terms of its multimeric structure and the unusual mechanisms regulating its participation in the hemostatic process. Moreover, it has become increasingly clear that VWF is a more all-round protein than originally thought, given its involvement in several pathologic processes beyond hemostasis. These include angiogenesis, cell proliferation, inflammation, and tumor cell survival. In the present article, an overview of advances concerning the various structural and functional aspects of VWF will be provided.
Collapse
Affiliation(s)
- P J Lenting
- Inserm U770, 94276 Le Kremlin-Bicêtre, France.
| | | | | | | |
Collapse
|
41
|
Blombäck M, Eikenboom J, Lane D, Denis C, Lillicrap D. von Willebrand disease biology. Haemophilia 2012; 18 Suppl 4:141-7. [PMID: 22726098 DOI: 10.1111/j.1365-2516.2012.02840.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M Blombäck
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
A murine model to characterize the antithrombotic effect of molecules targeting human von Willebrand factor. Blood 2012; 120:2723-32. [PMID: 22915646 DOI: 10.1182/blood-2012-03-420042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is a promising target for developing antithrombotic drugs. The absence of accessible animal models impedes the study of specific human VWF (huVWF) targeting molecules in thrombosis. huVWF is not functional in the mouse because of a lack of interaction between huVWF and murine glycoprotein Ib. Using site-directed mutagenesis, we have replaced single or multiple amino acids in huVWF with their murine counterparts to eliminate species incompatibility. Using hydrodynamic injection, we have expressed the different chimeric VWF constructs into VWF(-/-) mice. Only huVWF with a complete murine A1 domain insertion was able to correct bleeding in vivo and form occlusive thrombi in mesenteric vessels after FeCl(3) treatment. Using this model, we tested the antithrombotic effect of monoclonal antibodies against huVWF, blocking its interaction with collagens (mAbs 203 and 505) or with glycoprotein IIbIIIa (mAb 9). The 3 mAbs inhibited the thrombotic process in arterioles of VWF(-/-) mice expressing huVWFmuA1. Inhibiting VWF-interaction with collagens was more potent, emphasizing the potential of such a target as an antithrombotic tool. Our results validate our murine model as a simple in vivo tool to evaluate anti-huVWF agents.
Collapse
|
43
|
Badirou I, Kurdi M, Legendre P, Rayes J, Bryckaert M, Casari C, Lenting PJ, Christophe OD, Denis CV. In vivo analysis of the role of O-glycosylations of von Willebrand factor. PLoS One 2012; 7:e37508. [PMID: 22616016 PMCID: PMC3355127 DOI: 10.1371/journal.pone.0037508] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
The objective of this project was to study the function of O-glycosylations in von Willebrand factor (VWF) life cycle. In total, 14 different murine Vwf cDNAs mutated on one or several O-glycosylations sites were generated: 9 individual mutants, 2 doublets, 2 clusters and 1 mutant with all 9 murine glycosylation sites mutated (Del-O-Gly). We expressed each mutated cDNA in VWF deficient-mice by hydrodynamic injection. An immunosorbent assay with Peanut Agglutinin (PNA) was used to verify the O-glycosylation status. Wild-type (WT) VWF expressed by hepatocytes after hydrodynamic injection was able to bind PNA with slightly higher affinity than endothelial-derived VWF. In contrast, the Del-O-Gly VWF mutant did not bind PNA, demonstrating removal of O-linked glycans. All mutants displayed a normal multimeric pattern. Two mutants, Del-O-Gly and T1255A/T1256A, led to expression levels 50% lower than those induced by WT VWF and their half-life in vivo was significantly reduced. When testing the capacity of each mutant to correct the bleeding time of VWF-deficient mice, we found that S1486A, T1255A, T1256A and the doublet T1255A/T1256A were unable to do so. In conclusion we have shown that O-glycosylations are dispensable for normal VWF multimerization and biosynthesis. It also appears that some O-glycosylation sites, particularly the T1255 and T1256 residues, are involved in the maintenance of VWF plasma levels and are essential for normal haemostasis. As for the S1486 residue, it seems to be important for platelet binding as demonstrated in vitro using perfusion experiments.
Collapse
Affiliation(s)
- Idinath Badirou
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
| | - Mohamad Kurdi
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
| | - Paulette Legendre
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris Sud, Le Kremlin-Bicêtre, France
| | - Julie Rayes
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
| | - Marijke Bryckaert
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris Sud, Le Kremlin-Bicêtre, France
| | - Caterina Casari
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
| | - Peter J. Lenting
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris Sud, Le Kremlin-Bicêtre, France
| | - Olivier D. Christophe
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris Sud, Le Kremlin-Bicêtre, France
| | - Cecile V. Denis
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
44
|
Pruss CM, Golder M, Bryant A, Hegadorn C, Haberichter S, Lillicrap D. Use of a mouse model to elucidate the phenotypic effects of the von Willebrand factor cleavage mutants, Y1605A/M1606A and R1597W. J Thromb Haemost 2012; 10:940-50. [PMID: 22372972 PMCID: PMC5962034 DOI: 10.1111/j.1538-7836.2012.04675.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND von Willebrand Factor (VWF) is tightly regulated by the metalloproteinase ADAMTS13, which cleaves VWF to reduce VWF multimer size and binding affinity for collagen and platelets. OBJECTIVE This study examines two VWF mutations, R1597W (enhanced cleavage) and Y1605A-M1606A (decreased cleavage), to determine their impact on VWF, in addition to ADAMTS13-mediated cleavage. METHODS In vitro mouse ADAMTS13 digestions were performed on recombinant proteins. VWF knockout mice received hydrodynamic injections of mouse Vwf cDNA, following which VWF antigen, multimer profile and VWF propeptide levels were determined. A ferric chloride injury model of thrombosis was also evaluated. RESULTS In vitro ADAMTS13 digestion of full-length mouse VWF required > 97-fold higher ADAMTS13 levels for Y1605A/M1606A, and 68% lower ADAMTS13 levels for R1597W compared with wild type. In vivo, R1597W had reduced VWF:Ag and both mutations exhibited increased VWF propeptide/VWF:Ag ratios. R1597W multimers show a lower molecular weight profile compared with wild type and Y1605A/M1606A mice. When co-injected with Adamts13 cDNA, Y1605A/M1606A multimers were larger compared with wild type, and R1597W showed only a single multimer band and decreased clearance via VWFpp/VWF:Ag ratio. R1597W was associated with reduced thrombus formation but normal platelet accumulation in a ferric chloride injury model while Y1605A/M1606A had a loss of occlusive thrombi but increased platelet accumulation compared with wild type. CONCLUSIONS This study demonstrates that mutations that alter ADAMTS13 cleavage also can affect VWF clearance, VWF antigen level, multimer structure and thrombotic potential in the VWF knockout hydrodynamic injection model.
Collapse
Affiliation(s)
- C M Pruss
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Denis CV, Lenting PJ. von Willebrand factor: at the crossroads of bleeding and thrombosis. Int J Hematol 2012; 95:353-61. [PMID: 22477538 PMCID: PMC3677142 DOI: 10.1007/s12185-012-1041-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 02/06/2023]
Abstract
Hemostasis and thrombosis represent two sides of the same coin. Hemostasis maintains blood fluidity in the vascular system while allowing for rapid thrombus formation to prevent excessive hemorrhage after blood vessel injury. Thrombosis is a pathologic extension of the normal hemostatic mechanism, occurring when unwanted clot formation develops in certain pathological situations. The molecular mechanisms underlying both phenomena are fundamentally identical. One of the key players in both processes is the plasma glycoprotein von Willebrand factor, which perfectly illustrates this duality between hemostatic and thrombotic mechanisms. The purpose of this review is to discuss novel findings on the role of von Willebrand factor at this interface, and how some of these findings may help develop new therapeutic strategies.
Collapse
Affiliation(s)
- Cécile V Denis
- INSERM U770, 80 rue du General Leclerc, 94276 Le Kremlin-Bicêtre, France.
| | | |
Collapse
|
46
|
Abstract
The relationship between low-density lipoprotein receptor-related protein-1 (LRP1) and von Willebrand factor (VWF) has remained elusive for years. Indeed, despite a reported absence of interaction between both proteins, liver-specific deletion of LRP1 results in increased VWF levels. To investigate this discrepancy, we used mice with a macrophage-specific deficiency of LRP1 (macLRP1(-)) because we previously found that macrophages dominate VWF clearance. Basal VWF levels were increased in macLRP1(-) mice compared with control mice (1.6 ± 0.4 vs 1.0 ± 0.4 U/mL). Clearance experiments revealed that half-life of human VWF was significantly increased in macLRP1(-) mice. Ubiquitous blocking of LRP1 or additional lipoprotein receptors by overexpressing receptor-associated protein in macLRP1(-) mice did not result in further rise of VWF levels (0.1 ± 0.2 U/mL), in contrast to macLRP1(+) mice (rise in VWF, 0.8 ± 0.4 U/mL). This points to macLRP1 being the only lipoprotein receptor regulating VWF levels. When testing the mechanism(s) involved, we observed that VWF-coated beads adhered efficiently to LRP1 but only when exposed to shear forces exceeding 2.5 dyne/cm(2), implying the existence of shear stress-dependent interactions. Furthermore, a mechanism involving β2-integrins that binds both VWF and LRP1 also is implicated because inhibition of β2-integrins led to increased VWF levels in control (rise, 0.19 ± 0.16 U/mL) but not in macLRP1(-) mice (0.08 ± 0.15 U/mL).
Collapse
|
47
|
Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011; 9 Suppl 1:76-91. [PMID: 21781244 DOI: 10.1111/j.1538-7836.2011.04274.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic defects of platelet function give rise to mucocutaneous bleeding of varying severity because platelets fail to fulfil their haemostatic role after vessel injury. Abnormalities of pathways involving glycoprotein (GP) mediators of adhesion (Bernard-Soulier syndrome, platelet-type von Willebrand disease) and aggregation (Glanzmann thrombasthenia) are the most studied and affect the GPIb-IX-V complex and integrin αIIbβ3, respectively. Leukocyte adhesion deficiency-III combines Glanzmann thrombasthenia with infections and defects of kindlin-3, a mediator of integrin activation. Agonist-specific deficiencies in platelet aggregation relate to mutations of primary receptors for ADP (P2Y(12)), thromboxane A(2) (TXA2R) and collagen (GPVI); however, selective abnormalities of intracellular signalling pathways remain better understood in mouse models. Defects of secretion from δ-granules are accompanied by pigment defects in the Hermansky-Pudlak and Chediak-Higashi syndromes; they concern multiple genes and protein complexes involved in secretory organelle biogenesis and function. Quebec syndrome is linked to a tandem duplication of the urokinase plasminogen activator (PLAU) gene while locus assignment to chromosome 3p has advanced the search for the gene(s) responsible for α-granule deficiency in the gray platelet syndrome. Defects of α-granule biosynthesis also involve germline VPS33B mutations in the ARC (arthrogryposis, renal dysfunction and cholestasis) syndrome. A mutation in transmembrane protein 16F (TMEM16F) has been linked to a defective procoagulant activity and phosphatidylserine expression in the Scott syndrome. Cytoskeletal dysfunction (with platelet anisotrophy) occurs not only in the Wiskott-Aldrich syndrome but also in filamin A deficiency or MYH9-related disease while GATA1 mutations or RUNX1 haploinsufficiency can affect expression of multiple platelet proteins.
Collapse
Affiliation(s)
- A Nurden
- Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | |
Collapse
|
48
|
Firbas C, Siller-Matula JM, Jilma B. Targeting von Willebrand factor and platelet glycoprotein Ib receptor. Expert Rev Cardiovasc Ther 2011; 8:1689-701. [PMID: 21108551 DOI: 10.1586/erc.10.154] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherothrombotic events, such as acute coronary syndrome or stroke, are the result of platelet activation. Von Willebrand factor (vWF), a multimeric glycoprotein, plays a key role in aggregation of platelets, especially under high-shear conditions. Acting as bridging element or ligand between damaged endothelial sites and the glycoprotein Ib (GPIb) receptor on platelets, vWF is responsible for platelet adhesion and aggregation. This vWF activation and further platelet aggregation mainly occurs under high shear stress present in small arterioles or during deficiency of the vWF-cleaving protease ADAMTS13. There are several substances targeting vWF itself or its binding receptor GPIb on platelets. Two antibodies are directed against vWF: AJW200, an IgG4 humanized monoclonal antibody, and 82D6A3, a monoclonal antibody of the collagen-binding A-3 domain of vWF. ALX-0081 and ALX-0681 are bivalent humanized nanobodies targeting the GPIb binding site of vWF. Aptamers are oligonucleotides with drug-like properties that share some of the attributes of monoclonal antibodies. ARC1779 is a second-generation, nuclease-resistant aptamer, binding to the activated vWF A1 domain and ARC15105 is a chemically advanced follower with an assumed higher affinity to vWF. Antibodies targeting GPIbα are h6B4-Fab, a murine monoclonal antibody; GPG-290, a recombinant, chimeric protein containing the amino-terminal 290 amino acids of GPIbα linked to human IgG1 Fc; and the monoclonal antibody SZ2. There are a number of promising preclinical results and development of some agents (AJW 200, ARC1779 and ALX-0081) has already reached Phase II trials.
Collapse
Affiliation(s)
- Christa Firbas
- Medical University of Vienna, Department of Clinical Pharmacology, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | |
Collapse
|
49
|
Pathologic mechanisms of type 1 VWD mutations R1205H and Y1584C through in vitro and in vivo mouse models. Blood 2011; 117:4358-66. [PMID: 21346256 DOI: 10.1182/blood-2010-08-303727] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 1 VWD is the mild to moderate reduction of VWF levels. This study examined the mechanisms underlying 2 common type 1 VWD mutations, the severe R1205H and more moderate Y1584C. In vitro biosynthesis was reduced for both mutations in human and mouse VWF, with the effect being more severe in R1205H. VWF knockout mice received hydrodynamic injections of mouse Vwf cDNA. Lower VWF antigen levels were demonstrated in both homozygous and heterozygous forms for both type 1 mutations from days 14-42. Recombinant protein infusions and hydrodynamic-expressed VWF propeptide to antigen ratios demonstrate that R1205H mouse VWF has an increased clearance rate, while Y1584C is normal. Recombinant ADAMTS13 digestions of Y1584C demonstrated enhanced cleavage of both human and mouse VWF115 substrates. Hydrodynamic-expressed VWF shows a loss of high molecular weight multimers for Y1584C compared with wild-type and R1205H. At normal physiologic levels of VWF, Y1584C showed reduced thrombus formation in a ferric chloride injury model while R1205H demonstrated similar thrombogenic activity to wild-type VWF. This study has elucidated several novel mechanisms for these mutations and highlights that the type 1 VWD phenotype can be recapitulated in the VWF knockout hydrodynamic injection model.
Collapse
|
50
|
Nichols TC, Bellinger DA, Merricks EP, Raymer RA, Kloos MT, DeFriess N, Ragni MV, Griggs TR. Porcine and canine von Willebrand factor and von Willebrand disease: hemostasis, thrombosis, and atherosclerosis studies. THROMBOSIS 2011; 2010:461238. [PMID: 22091368 PMCID: PMC3211078 DOI: 10.1155/2010/461238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/29/2010] [Indexed: 02/04/2023]
Abstract
Use of animal models of inherited and induced von Willebrand factor (VWF) deficiency continues to advance the knowledge of VWF-related diseases: von Willebrand disease (VWD), thrombotic thrombocytopenic purpura (TTP), and coronary artery thrombosis. First, in humans, pigs, and dogs, VWF is essential for normal hemostasis; without VWF bleeding events are severe and can be fatal. Second, the ADAMTS13 cleavage site is preserved in all three species suggesting all use this mechanism for normal VWF multimer processing and that all are susceptible to TTP when ADAMTS13 function is reduced. Third, while the role of VWF in atherogenesis is debated, arterial thrombosis complicating atherosclerosis appears to be VWF-dependent. The differences in the VWF gene and protein between humans, pigs, and dogs are relatively few but important to consider in the design of VWF-focused experiments. These homologies and differences are reviewed in detail and their implications for research projects are discussed. The current status of porcine and canine VWD are also reviewed as well as their potential role in future studies of VWF-related disorders of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Timothy C. Nichols
- Department of Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Dwight A. Bellinger
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
- Division of Laboratory Animal Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Elizabeth P. Merricks
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Robin A. Raymer
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Mark T. Kloos
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Natalie DeFriess
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Margaret V. Ragni
- Medicine/Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Hemophilia Center of Western PA, Pittsburgh, PA 15213, USA
| | - Thomas R. Griggs
- Department of Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| |
Collapse
|