1
|
Newton LM, Fowler VM, Humbert PO. Erythroblast enucleation at a glance. J Cell Sci 2024; 137:jcs261673. [PMID: 39397781 PMCID: PMC11529606 DOI: 10.1242/jcs.261673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Erythroid enucleation, the penultimate step in mammalian erythroid terminal differentiation, is a unique cellular process by which red blood cells (erythrocytes) remove their nucleus and accompanying nuclear material. This complex, multi-stage event begins with chromatin compaction and cell cycle arrest and ends with generation of two daughter cells: a pyrenocyte, which contains the expelled nucleus, and an anucleate reticulocyte, which matures into an erythrocyte. Although enucleation has been compared to asymmetric cell division (ACD), many mechanistic hallmarks of ACD appear to be absent. Instead, enucleation appears to rely on mechanisms borrowed from cell migration, endosomal trafficking and apoptosis, as well as unique cellular interactions within the microenvironment. In this Cell Science at a Glance article and the accompanying poster, we summarise current insights into the morphological features and genetic drivers regulating the key intracellular events that culminate in erythroid enucleation and engulfment of pyrenocytes by macrophages within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Lucas M. Newton
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3073, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3073, Australia
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3073, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3073, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Cloos AS, Pollet H, Stommen A, Maja M, Lingurski M, Brichard B, Lambert C, Henriet P, Pierreux C, Pyr dit Ruys S, Van Der Smissen P, Vikkula M, Gatto L, Martin M, Brouillard P, Vertommen D, Tyteca D. Splenectomy improves erythrocyte functionality in spherocytosis based on septin abundance, but not maturation defects. Blood Adv 2023; 7:4705-4720. [PMID: 36753606 PMCID: PMC10468371 DOI: 10.1182/bloodadvances.2022009114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Splenectomy improves the clinical parameters of patients with hereditary spherocytosis, but its potential benefit to red blood cell (RBC) functionality and the mechanism behind this benefit remain largely overlooked. Here, we compared 7 nonsplenectomized and 13 splenectomized patients with mutations in the β-spectrin or the ankyrin gene. We showed that hematological parameters, spherocyte abundance, osmotic fragility, intracellular calcium, and extracellular vesicle release were largely but not completely restored by splenectomy, whereas cryohemolysis was not. Affected RBCs exhibited decreases in β-spectrin and/or ankyrin contents and slight alterations in spectrin membrane distribution, depending on the mutation. These modifications were found in both splenectomized and nonsplenectomized patients and poorly correlated with RBC functionality alteration, suggesting additional impairments. Accordingly, we found an increased abundance of septins, small guanosine triphosphate-binding cytoskeletal proteins. Septins-2, -7, and -8 but not -11 were less abundant upon splenectomy and correlated with the disease severity. Septin-2 membrane association was confirmed by immunolabeling. Except for cryohemolysis, all parameters of RBC morphology and functionality correlated with septin abundance. The increased septin content might result from RBC maturation defects, as evidenced by (1) the decreased protein 4.2 and Rh-associated glycoprotein content in all patient RBCs, (2) increased endoplasmic reticulum remnants and endocytosis proteins in nonsplenectomized patients, and (3) increased lysosomal and mitochondrial remnants in splenectomized patients. Our study paves the way for a better understanding of the involvement of septins in RBC membrane biophysical properties. In addition, the lack of restoration of septin-independent cryohemolysis by splenectomy may call into question its recommendation in specific cases.
Collapse
Affiliation(s)
- Anne-Sophie Cloos
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Hélène Pollet
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Amaury Stommen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Mauriane Maja
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Maxime Lingurski
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Bénédicte Brichard
- Pediatric Hematology & Oncology Unit, Saint-Luc Hospital, UCLouvain, Brussels, Belgium
| | | | - Patrick Henriet
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Christophe Pierreux
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Sébastien Pyr dit Ruys
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Miikka Vikkula
- Human Molecular Genetics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Manon Martin
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Didier Vertommen
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev 2021; 46:100740. [PMID: 32798012 DOI: 10.1016/j.blre.2020.100740] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
A characteristic feature of terminal erythropoiesis in mammals is extrusion of the highly condensed nucleus out of the cytoplasm. Other vertebrates, including fish, reptiles, amphibians, and birds, undergo nuclear condensation but do not enucleate. Enucleation provides mammals evolutionary advantages by gaining extra space for hemoglobin and being more flexible to migrate through capillaries. Nascent reticulocytes further mature into red blood cells through membrane and proteome remodeling and organelle clearance. Over the past decade, novel molecular mechanisms and signaling pathways have been uncovered that play important roles in chromatin condensation, enucleation, and reticulocyte maturation. These advances not only increase understanding of the physiology of erythropoiesis, but also facilitate efforts in generating in vitro red blood cells for various translational application. In the present review, recent studies in epigenetic modification and release of histones during chromatin condensation are highlighted. New insights in enucleation, including protein sorting, vesicle trafficking, transcriptional regulation, noncoding RNA, cytoskeleton remodeling, erythroblastic islands, and cytokinesis, are summarized. Moreover, organelle clearance and proteolysis mediated by ubiquitin-proteasome degradation during reticulocytes maturation is also examined. Perspectives for future directions in this rapidly evolving research area are also provided.
Collapse
Affiliation(s)
- Yang Mei
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Yijie Liu
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Pollet H, Cloos AS, Stommen A, Vanderroost J, Conrard L, Paquot A, Ghodsi M, Carquin M, Léonard C, Guthmann M, Lingurski M, Vermylen C, Killian T, Gatto L, Rider M, Pyr dit Ruys S, Vertommen D, Vikkula M, Brouillard P, Van Der Smissen P, Muccioli GG, Tyteca D. Aberrant Membrane Composition and Biophysical Properties Impair Erythrocyte Morphology and Functionality in Elliptocytosis. Biomolecules 2020; 10:biom10081120. [PMID: 32751168 PMCID: PMC7465299 DOI: 10.3390/biom10081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Red blood cell (RBC) deformability is altered in inherited RBC disorders but the mechanism behind this is poorly understood. Here, we explored the molecular, biophysical, morphological, and functional consequences of α-spectrin mutations in a patient with hereditary elliptocytosis (pEl) almost exclusively expressing the Pro260 variant of SPTA1 and her mother (pElm), heterozygous for this mutation. At the molecular level, the pEI RBC proteome was globally preserved but spectrin density at cell edges was increased. Decreased phosphatidylserine vs. increased lysophosphatidylserine species, and enhanced lipid peroxidation, methemoglobin, and plasma acid sphingomyelinase (aSMase) activity were observed. At the biophysical level, although membrane transversal asymmetry was preserved, curvature at RBC edges and rigidity were increased. Lipid domains were altered for membrane:cytoskeleton anchorage, cholesterol content and response to Ca2+ exchange stimulation. At the morphological and functional levels, pEl RBCs exhibited reduced size and circularity, increased fragility and impaired membrane Ca2+ exchanges. The contribution of increased membrane curvature to the pEl phenotype was shown by mechanistic experiments in healthy RBCs upon lysophosphatidylserine membrane insertion. The role of lipid domain defects was proved by cholesterol depletion and aSMase inhibition in pEl. The data indicate that aberrant membrane content and biophysical properties alter pEl RBC morphology and functionality.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Anne-Sophie Cloos
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Amaury Stommen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Juliette Vanderroost
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Louise Conrard
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (A.P.); (G.G.M.)
| | - Marine Ghodsi
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Mélanie Carquin
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Catherine Léonard
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Manuel Guthmann
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Maxime Lingurski
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Christiane Vermylen
- PEDI Unit, Institut de Recherche Expérimentale et Clinique & Saint-Luc Hospital, UCLouvain, 1200 Brussels, Belgium;
| | - Theodore Killian
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (T.K.); (L.G.)
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (T.K.); (L.G.)
| | - Mark Rider
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Sébastien Pyr dit Ruys
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Didier Vertommen
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.V.); (P.B.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.V.); (P.B.)
| | - Patrick Van Der Smissen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (A.P.); (G.G.M.)
| | - Donatienne Tyteca
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
- Correspondence:
| |
Collapse
|
5
|
Flatt JF, Stevens-Hernandez CJ, Cogan NM, Eggleston DJ, Haines NM, Heesom KJ, Picard V, Thomas C, Bruce LJ. Expression of South East Asian Ovalocytic Band 3 Disrupts Erythroblast Cytokinesis and Reticulocyte Maturation. Front Physiol 2020; 11:357. [PMID: 32411010 PMCID: PMC7199003 DOI: 10.3389/fphys.2020.00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Southeast Asian Ovalocytosis results from a heterozygous deletion of 9 amino acids in the erythrocyte anion exchange protein AE1 (band 3). The report of the first successful birth of an individual homozygous for this mutation showed an association with severe dyserythropoietic anemia. Imaging of the proband’s erythrocytes revealed the presence of band 3 at their surface, a reduction in Wr(b) antigen expression, and increases in glycophorin C, CD44, and CD147 immunoreactivity. Immunoblotting of membranes from heterozygous Southeast Asian Ovalocytosis red cells showed a quantitative increase in CD44, CD147, and calreticulin suggesting a defect in reticulocyte maturation, as well as an increase in phosphorylation at residue Tyr359 of band 3, and peroxiredoxin-2 at the membrane, suggesting altered band 3 trafficking and oxidative stress, respectively. In vitro culture of homozygous and heterozygous Southeast Asian Ovalocytosis erythroid progenitor cells produced bi- and multi-nucleated cells. Enucleation was severely impaired in the homozygous cells and reduced in the heterozygous cells. Large internal vesicular accumulations of band 3 formed, which co-localized with other plasma membrane proteins and with the autophagosome marker, LC3, but not with ER, Golgi or recycling endosome markers. Immunoprecipitation of band 3 from erythroblast cell lysates at the orthochromatic stage showed increased interaction of the mutant band 3 with heat shock proteins, ubiquitin and cytoskeleton proteins, ankyrin, spectrin and actin. We also found that the mutant band 3 forms a strong interaction with non-muscle myosins IIA and IIB, while this interaction could not be detected in wild type erythroblasts. Consistent with this, the localization of non-muscle myosin IIA and actin was perturbed in some Southeast Asian Ovalocytosis erythroblasts. These findings provide new insights toward understanding in vivo dyserythropoiesis caused by the expression of mutant membrane proteins.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Nicola M Cogan
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Daniel J Eggleston
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Nicole M Haines
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Veronique Picard
- Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpital Bicêtre, Paris, France.,Faculté de Pharmacie, Université Paris-Saclay, Chatenay Malabry, France
| | - Caroline Thomas
- Hématologie et Immunologie Pédiatrique, Hôpital Mère Enfants, Nantes, France
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
6
|
Yeo JH, Lam YW, Fraser ST. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys Rev 2019; 11:873-894. [PMID: 31418139 PMCID: PMC6874942 DOI: 10.1007/s12551-019-00579-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Red blood cells, or erythrocytes, make up approximately a quarter of all cells in the human body with over 2 billion new erythrocytes made each day in a healthy adult human. This massive cellular production system is coupled with a set of cell biological processes unique to mammals, in particular, the elimination of all organelles, and the expulsion and destruction of the condensed erythroid nucleus. Erythrocytes from birds, reptiles, amphibians and fish possess nuclei, mitochondria and other organelles: erythrocytes from mammals lack all of these intracellular components. This review will focus on the dynamic changes that take place in developing erythroid cells that are interacting with specialized macrophages in multicellular clusters termed erythroblastic islands. Proerythroblasts enter the erythroblastic niche as large cells with active nuclei, mitochondria producing heme and energy, and attach to the central macrophage via a range of adhesion molecules. Proerythroblasts then mature into erythroblasts and, following enucleation, in reticulocytes. When reticulocytes exit the erythroblastic island, they are smaller cells, without nuclei and with few mitochondria, possess some polyribosomes and have a profoundly different surface molecule phenotype. Here, we will review, step-by-step, the biophysical mechanisms that regulate the remarkable process of erythropoiesis with a particular focus on the events taking place in the erythroblastic island niche. This is presented from the biological perspective to offer insight into the elements of red blood cell development in the erythroblastic island niche which could be further explored with biophysical modelling systems.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- School of Chemistry, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Stuart T Fraser
- Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Discipline of Physiology, School of Medical Sciences, University of Sydney, Sydney, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia.
- University of Sydney Nano Institute, Sydney, Australia.
| |
Collapse
|
7
|
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E. The Shape Shifting Story of Reticulocyte Maturation. Front Physiol 2018; 9:829. [PMID: 30050448 PMCID: PMC6050374 DOI: 10.3389/fphys.2018.00829] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.
Collapse
Affiliation(s)
- Elina Ovchynnikova
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Abstract
Enucleation is the final step in mammalian erythropoiesis. In this process, the nucleus is extruded by budding off from the erythroblast, forming the reticulocyte. Herein, we describe the flow cytometry-based assays for enucleation assessment. The separation of nucleated erythroblasts, reticulocytes, and extruded nuclei by flow cytometry is based on DNA staining, surface expression of erythrocyte specific markers, or forward scatter (FSC). The enucleation of murine erythroblasts is assessed by the surface expression of murine erythrocyte marker Ter119 and DNA staining. Three discrete populations that represent nucleated erythroblasts, reticulocytes, and extruded nuclei are defined as HoechstmedTER119high, HoechstlowTER119high, and HoechsthighTER119med, respectively. Another nuclei acid staining dye, SYTO16, is used for the assessment of human enucleation in combination with FSC. For human cells, the three populations that represent nucleated erythroblasts, reticulocyte, and extruded nuclei are identified as FSChigh SYTO16+, FSChigh SYTO16-, FSClowSYTO16+, respectively.
Collapse
|
9
|
Glycophorin-C sialylation regulates Lu/BCAM adhesive capacity during erythrocyte aging. Blood Adv 2018; 2:14-24. [PMID: 29344581 DOI: 10.1182/bloodadvances.2017013094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022] Open
Abstract
Lutheran/basal cell adhesion molecule (Lu/BCAM) is a transmembrane adhesion molecule expressed by erythrocytes and endothelial cells that can interact with the extracellular matrix protein laminin-α5. In sickle cell disease, Lu/BCAM is thought to contribute to adhesion of sickle erythrocytes to the vascular wall, especially during vaso-occlusive crises. On healthy erythrocytes however, its function is unclear. Here we report that Lu/BCAM is activated during erythrocyte aging. We show that Lu/BCAM-mediated binding to laminin-α5 is restricted by interacting, in cis, with glycophorin-C-derived sialic acid residues. Following loss of sialic acid during erythrocyte aging, Lu/BCAM is released from glycophorin-C and allowed to interact with sialic acid residues on laminin-α5. Decreased glycophorin-C sialylation, as observed in individuals lacking exon 3 of glycophorin-C, the so-called Gerbich phenotype, was found to correlate with increased Lu/BCAM-dependent binding to laminin-α5. In addition, we identified the sialic acid-binding site within the third immunoglobulin-like domain within Lu/BCAM that accounts for the interaction with glycophorin-C and laminin-α5. Last, we present evidence that neuraminidase-expressing pathogens, such as Streptococcus pneumoniae, can similarly induce Lu/BCAM-mediated binding to laminin-α5, by cleaving terminal sialic acid residues from the erythrocyte membrane. These results shed new light on the mechanisms contributing to increased adhesiveness of erythrocytes at the end of their lifespan, possibly facilitating their clearance. Furthermore, this work may contribute to understanding the pathology induced by neuraminidase-positive bacteria, because they are especially harmful to patients suffering from sickle cell disease and are associated with the occurrence of vaso-occlusive crises.
Collapse
|
10
|
Fermo E, Bogdanova A, Petkova-Kirova P, Zaninoni A, Marcello AP, Makhro A, Hänggi P, Hertz L, Danielczok J, Vercellati C, Mirra N, Zanella A, Cortelezzi A, Barcellini W, Kaestner L, Bianchi P. 'Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation. Sci Rep 2017; 7:1744. [PMID: 28496185 PMCID: PMC5431847 DOI: 10.1038/s41598-017-01591-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients’ RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient’s RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the ‘Gardos channelopathy’ is a complex pathology, to some extent different from the common hereditary xerocytosis.
Collapse
Affiliation(s)
- Elisa Fermo
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Bogdanova
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Polina Petkova-Kirova
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Anna Zaninoni
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Paola Marcello
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Asya Makhro
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Hänggi
- Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Laura Hertz
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Jens Danielczok
- Research Center for Molecular Imaging and Screening, Medical School, Institute for Molecular Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Cristina Vercellati
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nadia Mirra
- UOC Pronto soccorso, Pediatria ambulatoriale e DH/MAC. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Zanella
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Agostino Cortelezzi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Universita' degli Studi di Milano, Milano, Italy
| | - Wilma Barcellini
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg/Saar, Germany
| | - Paola Bianchi
- UOC Oncoematologia, UOS. Fisiopatologia delle Anemie Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
11
|
Hereditary Xerocytosis due to Mutations in PIEZO1 Gene Associated with Heterozygous Pyruvate Kinase Deficiency and Beta-Thalassemia Trait in Two Unrelated Families. Case Rep Hematol 2017; 2017:2769570. [PMID: 28367341 PMCID: PMC5358460 DOI: 10.1155/2017/2769570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022] Open
Abstract
Hereditary xerocytosis (HX) is a rare disorder caused by defects of RBC permeability, associated with haemolytic anaemia of variable degree and iron overload. It is sometimes misdiagnosed as hereditary spherocytosis or other congenital haemolytic anaemia. Splenectomy is contraindicated due to increased risk of thromboembolic complications. We report the clinical, haematological, and molecular characteristics of four patients from two unrelated Italian families affected by HX, associated with beta-thalassemia trait and heterozygous pyruvate kinase deficiency, respectively. Two patients had been splenectomised and displayed thrombotic episodes. All patients had iron overload in the absence of transfusion, two of them requiring iron chelation. The diagnosis of HX was confirmed by LoRRca Osmoscan analysis showing a left-shifted curve. PIEZO1 gene sequencing revealed the presence of mutation p.E2496ELE, showing that this is one of the most frequent mutations in this disease. The concomitant defects did not aggravate the clinical phenotype; however, in one patient, the initial diagnosis of pyruvate kinase deficiency delayed the correct diagnosis of HX for many years and resulted in splenectomy followed by thrombotic complications. The study underlines the importance of a precise diagnosis in HX, particularly in view of splenectomy, and the need of a molecular confirmation of suspected RBC enzymopathy.
Collapse
|
12
|
Kager L, Bruce LJ, Zeitlhofer P, Flatt JF, Maia TM, Ribeiro ML, Fahrner B, Fritsch G, Boztug K, Haas OA. Band 3 null VIENNA , a novel homozygous SLC4A1 p.Ser477X variant causing severe hemolytic anemia, dyserythropoiesis and complete distal renal tubular acidosis. Pediatr Blood Cancer 2017; 64. [PMID: 27718309 DOI: 10.1002/pbc.26227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023]
Abstract
We describe the second patient with anionic exchanger 1/band 3 null phenotype (band 3 nullVIENNA ), which was caused by a novel nonsense mutation c.1430C>A (p.Ser477X) in exon 12 of SLC4A1. We also update on the previous band 3 nullCOIMBRA patient, thereby elucidating the physiological implications of total loss of AE1/band 3. Besides transfusion-dependent severe hemolytic anemia and complete distal renal tubular acidosis, dyserythropoiesis was identified in the band 3 nullVIENNA patient, suggesting a role for band 3 in erythropoiesis. Moreover, we also, for the first time, report that long-term survival is possible in band 3 null patients.
Collapse
Affiliation(s)
- Leo Kager
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,Children's Cancer Research Institute Vienna, Vienna, Austria
| | - Lesley J Bruce
- NHS Blood and Transplant, Bristol Institute for Transfusion Sciences, Bristol, UK
| | | | - Joanna F Flatt
- NHS Blood and Transplant, Bristol Institute for Transfusion Sciences, Bristol, UK
| | - Tabita M Maia
- Serviço de Hematologia, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - M Leticia Ribeiro
- Serviço de Hematologia, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Bernhard Fahrner
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
| | - Gerhard Fritsch
- Children's Cancer Research Institute Vienna, Vienna, Austria
| | - Kaan Boztug
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Oskar A Haas
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,Children's Cancer Research Institute Vienna, Vienna, Austria
| |
Collapse
|
13
|
Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 2017; 8:73. [PMID: 28210260 PMCID: PMC5288342 DOI: 10.3389/fimmu.2017.00073] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
14
|
Chen J, Zhou Y, Gao Y, Cao W, Sun H, Liu Y, Wang C. A genetic features and gene interaction study for identifying the genes that cause hereditary spherocytosis. ACTA ACUST UNITED AC 2016; 22:240-247. [PMID: 27696975 DOI: 10.1080/10245332.2016.1235673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Hereditary spherocytosis (HS) is a hemolytic disorder characterized by the presence of spherical-shaped red blood cells on the peripheral blood smear. Non-dominant HS cases are due to de novo mutations of the type associated with dominant inheritance or recessive genes. This study is aimed to identify HS-related biological mechanisms and predicting HS candidate genes. METHODS We searched the known HS-related genes from the public databases. By analyzing the gene ontology (GO) and biological pathway of these genes, we extracted the optimal features to encode HS genes. Based on them, we predicted the HS-related genes from genes of whole genomes using the Random Forest classification. We used the gene interaction networks analysis to further identify the core regulatory genes that were related to HS. RESULTS Forty-one known HS-related genes were found out and encoded. Three hundred and sixty-seven GO terms and ten biological pathway terms were identified as the optimal features for prediction. We subsequently predicted 150 novel HS-related genes and identified the core regulatory genes in the interaction network of predicted and known genes. These features and genes that we identified could complement the genetic features of HS.
Collapse
Affiliation(s)
- Jing Chen
- a Nursing College of Zhengzhou University , Zhengzhou , China
| | - Yang Zhou
- b Department of Hematology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yaqi Gao
- c Nursing College of Hebi Polytechnic , Hebi , China
| | - Weijie Cao
- b Department of Hematology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Hui Sun
- b Department of Hematology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yanfang Liu
- b Department of Hematology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Chong Wang
- b Department of Hematology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
15
|
Giger K, Habib I, Ritchie K, Low PS. Diffusion of glycophorin A in human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2839-2845. [PMID: 27580023 DOI: 10.1016/j.bbamem.2016.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 11/19/2022]
Abstract
Several lines of evidence suggest that glycophorin A (GPA) interacts with band 3 in human erythrocyte membranes including: i) the existence of an epitope shared between band 3 and GPA in the Wright b blood group antigen, ii) the fact that antibodies to GPA inhibit the diffusion of band 3, iii) the observation that expression of GPA facilitates trafficking of band 3 from the endoplasmic reticulum to the plasma membrane, and iv) the observation that GPA is diminished in band 3 null erythrocytes. Surprisingly, there is also evidence that GPA does not interact with band 3, including data showing that: i) band 3 diffusion increases upon erythrocyte deoxygenation whereas GPA diffusion does not, ii) band 3 diffusion is greatly restricted in erythrocytes containing the Southeast Asian Ovalocytosis mutation whereas GPA diffusion is not, and iii) most anti-GPA or anti-band 3 antibodies do not co-immunoprecipitate both proteins. To try to resolve these apparently conflicting observations, we have selectively labeled band 3 and GPA with fluorescent quantum dots in intact erythrocytes and followed their diffusion by single particle tracking. We report here that band 3 and GPA display somewhat similar macroscopic and microscopic diffusion coefficients in unmodified cells, however perturbations of band 3 diffusion do not cause perturbations of GPA diffusion. Taken together the collective data to date suggest that while weak interactions between GPA and band 3 undoubtedly exist, GPA and band 3 must have separate interactions in the membrane that control their lateral mobility.
Collapse
Affiliation(s)
- Katie Giger
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ibrahim Habib
- INSERM, UMR_S1134, Laboratory of Excellence GR-Ex, Université Paris-Diderot, Institut National de la Transfusion Sanguine, 75015 Paris, France
| | - Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, IN 47907, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
16
|
Crisp RL, Maltaneri RE, Vittori DC, Solari L, Gammella D, Schvartzman G, García E, Rapetti MC, Donato H, Nesse A. Red blood cell aquaporin-1 expression is decreased in hereditary spherocytosis. Ann Hematol 2016; 95:1595-601. [PMID: 27465156 DOI: 10.1007/s00277-016-2757-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/10/2016] [Indexed: 01/06/2023]
Abstract
Aquaporin-1 (AQP1) is the membrane water channel responsible for changes in erythrocyte volume in response to the tonicity of the medium. As the aberrant distribution of proteins in hereditary spherocytosis (HS) generates deficiencies of proteins other than those codified by the mutated gene, we postulated that AQP1 expression might be impaired in spherocytes. AQP1 expression was evaluated through flow cytometry in 5 normal controls, 1 autoimmune hemolytic anemia, 10 HS (2 mild, 3 moderate, 2 severe, and 3 splenectomized), and 3 silent carriers. The effect of AQP1 inhibitors was evaluated through water flow-based tests: osmotic fragility and hypertonic cryohemolysis. Serum osmolality was measured in 20 normal controls and 13 HS. The effect of erythropoietin (Epo) on AQP1 expression was determined in cultures of erythroleukemia UT-7 cells, dependent on Epo to survive. Independent of erythrocyte size, HS patients showed a lower content of AQP1 in erythrocyte membranes which correlated with the severity of the disease. Accordingly, red blood cells from HS subjects were less sensitive to cryohemolysis than normal erythrocytes after inhibition of the AQP1 water channel. A lower serum osmolality in HS with respect to normal controls suggests alterations during reticulocyte remodeling. The decreased AQP1 expression could contribute to explain variable degrees of anemia in hereditary spherocytosis. The finding of AQP1 expression induced by Epo in a model of erythroid cells may be interpreted as a mechanism to restore the balance of red cell water fluxes.
Collapse
Affiliation(s)
- Renée L Crisp
- División Hematología Clínica, Departamento de Medicina, Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consultorios de Hematología Infantil, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Pabellón II, Piso 4, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Daniela C Vittori
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Pabellón II, Piso 4, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| | - Liliana Solari
- Laboratorio de Citometría, Departamento de Diagnóstico, Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina
| | - Daniel Gammella
- Laboratorio de Citometría, Departamento de Diagnóstico, Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina
| | | | - Eliana García
- Servicio de Oncohematología Pediátrica, Departamento de Pediatría, Hospital Nacional Alejandro Posadas, Buenos Aires, Argentina
| | - María C Rapetti
- Sección Hematología/Oncología, Hospital Municipal del Niño de San Justo, San Justo, Buenos Aires, Argentina
| | - Hugo Donato
- Consultorios de Hematología Infantil, Buenos Aires, Argentina.,Sección Hematología/Oncología, Hospital Municipal del Niño de San Justo, San Justo, Buenos Aires, Argentina
| | - Alcira Nesse
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Pabellón II, Piso 4, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina.
| |
Collapse
|
17
|
Satchwell TJ, Bell AJ, Hawley BR, Pellegrin S, Mordue KE, van Deursen CTBM, Braak NHT, Huls G, Leers MPG, Overwater E, Tamminga RYJ, van der Zwaag B, Fermo E, Bianchi P, van Wijk R, Toye AM. Severe Ankyrin-R deficiency results in impaired surface retention and lysosomal degradation of RhAG in human erythroblasts. Haematologica 2016; 101:1018-27. [PMID: 27247322 DOI: 10.3324/haematol.2016.146209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
Ankyrin-R provides a key link between band 3 and the spectrin cytoskeleton that helps to maintain the highly specialized erythrocyte biconcave shape. Ankyrin deficiency results in fragile spherocytic erythrocytes with reduced band 3 and protein 4.2 expression. We use in vitro differentiation of erythroblasts transduced with shRNAs targeting ANK1 to generate erythroblasts and reticulocytes with a novel ankyrin-R 'near null' human phenotype with less than 5% of normal ankyrin expression. Using this model, we demonstrate that absence of ankyrin negatively impacts the reticulocyte expression of a variety of proteins, including band 3, glycophorin A, spectrin, adducin and, more strikingly, protein 4.2, CD44, CD47 and Rh/RhAG. Loss of band 3, which fails to form tetrameric complexes in the absence of ankyrin, alongside GPA, occurs due to reduced retention within the reticulocyte membrane during erythroblast enucleation. However, loss of RhAG is temporally and mechanistically distinct, occurring predominantly as a result of instability at the plasma membrane and lysosomal degradation prior to enucleation. Loss of Rh/RhAG was identified as common to erythrocytes with naturally occurring ankyrin deficiency and demonstrated to occur prior to enucleation in cultures of erythroblasts from a hereditary spherocytosis patient with severe ankyrin deficiency but not in those exhibiting milder reductions in expression. The identification of prominently reduced surface expression of Rh/RhAG in combination with direct evaluation of ankyrin expression using flow cytometry provides an efficient and rapid approach for the categorization of hereditary spherocytosis arising from ankyrin deficiency.
Collapse
Affiliation(s)
- Timothy J Satchwell
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | | | - Bethan R Hawley
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - Stephanie Pellegrin
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | | | | | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, The Netherlands
| | - Mathie P G Leers
- Department of Clinical Chemistry and Hematology, Atrium Medical Center Parkstad, Heerlen, The Netherlands
| | - Eline Overwater
- Department of Clinical Genetics, VU University Medical Center, and Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Rienk Y J Tamminga
- Department of Pediatric Hematology, Beatrix Childrens Hospital, University Medical Center Groningen, The Netherlands
| | - Bert van der Zwaag
- Department of Medical Genetics, University Medical Center Utrecht, The Netherlands
| | - Elisa Fermo
- Oncohematology Unit - Physiopathology of Anemias Unit, Foundation IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- Oncohematology Unit - Physiopathology of Anemias Unit, Foundation IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, Laboratory for Red Blood Cell Research, University Medical Center Utrecht, The Netherlands
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, UK National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| |
Collapse
|
18
|
Yeo JH, McAllan BM, Fraser ST. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:368-378. [PMID: 26898901 DOI: 10.1017/s1431927616000155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production.
Collapse
Affiliation(s)
- Jia Hao Yeo
- 1Discipline of Anatomy & Histology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| | - Bronwyn M McAllan
- 2Discipline of Physiology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| | - Stuart T Fraser
- 1Discipline of Anatomy & Histology,School of Medical Sciences,Bosch Institute,University of Sydney,Camperdown,NSW 2050,Australia
| |
Collapse
|
19
|
Azouzi S, Collec E, Mohandas N, An X, Colin Y, Le Van Kim C. The human Kell blood group binds the erythroid 4.1R protein: new insights into the 4.1R-dependent red cell membrane complex. Br J Haematol 2015; 171:862-71. [PMID: 26455906 DOI: 10.1111/bjh.13778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
Protein 4.1R plays an important role in maintaining the mechanical properties of the erythrocyte membrane. We analysed the expression of Kell blood group protein in erythrocytes from a patient with hereditary elliptocytosis associated with complete 4.1R deficiency (4.1(-) HE). Flow cytometry and Western blot analyses revealed a severe reduction of Kell. In vitro pull down and co-immunoprecipitation experiments from erythrocyte membranes showed a direct interaction between Kell and 4.1R. Using different recombinant domains of 4.1R and the cytoplasmic domain of Kell, we demonstrated that the R(46) R motif in the juxta-membrane region of Kell binds to lobe B of the 4.1R FERM domain. We also observed that 4.1R deficiency is associated with a reduction of XK and DARC (also termed ACKR1) proteins, the absence of the glycosylated form of the urea transporter B and a slight decrease of band 3. The functional alteration of the 4.1(-) HE erythrocyte membranes was also determined by measuring various transport activities. We documented a slower rate of HCO3 (-) /Cl(-) exchange, but normal water and ammonia transport across erythrocyte membrane in the absence of 4.1. These findings provide novel insights into the structural organization of blood group antigen proteins into the 4.1R complex of the human red cell membrane.
Collapse
Affiliation(s)
- Slim Azouzi
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | - Emmanuel Collec
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | | | - Xiuli An
- New York Blood Center, New York, NY, USA
| | - Yves Colin
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| | - Caroline Le Van Kim
- Institut National de la Transfusion Sanguine, Paris, France.,Inserm, UMR_S1134, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence GR-Ex, New York, NY, USA
| |
Collapse
|
20
|
Satchwell TJ, Bell AJ, Toye AM. The sorting of blood group active proteins during enucleation. ISBT SCIENCE SERIES 2015; 10:163-168. [PMID: 26640516 PMCID: PMC4668593 DOI: 10.1111/voxs.12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enucleation represents the critical stage during red blood cell development when the nucleus is extruded from an orthochromatic erythroblast in order to generate a nascent immature reticulocyte. Extrusion of the nucleus results in loss of a proportion of the erythroblast plasma membrane, which surrounds the nucleus, the bulk of the endoplasmic reticulum and a small region of cytoplasm. For this reason enucleation provides an important point in erythroblast differentiation at which proteins not required for the function of the erythrocyte can be lost, whilst those that are important for the structure-function properties of the mature erythrocyte must be efficiently retained in the reticulocyte plasma membrane. Disturbances in protein distribution during enucleation are envisaged to occur during human diseases such as Hereditary Spherocytosis. This article will discuss the current knowledge of erythroblast enucleation in the context of retention and loss of proteins that display antigenic blood group sites and that exist within multiprotein complexes within the erythrocyte membrane.
Collapse
Affiliation(s)
- Timothy J. Satchwell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| | - Amanda J. Bell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
| | - Ashley M. Toye
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| |
Collapse
|
21
|
Automated reticulocyte parameters for hereditary spherocytosis screening. Ann Hematol 2014; 93:1809-18. [DOI: 10.1007/s00277-014-2127-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
|
22
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
23
|
Wang J, Song J, An C, Dong W, Zhang J, Yin C, Hale J, Baines AJ, Mohandas N, An X. A 130-kDa protein 4.1B regulates cell adhesion, spreading, and migration of mouse embryo fibroblasts by influencing actin cytoskeleton organization. J Biol Chem 2013; 289:5925-37. [PMID: 24381168 DOI: 10.1074/jbc.m113.516617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein 4.1B is a member of protein 4.1 family, adaptor proteins at the interface of membranes and the cytoskeleton. It is expressed in most mammalian tissues and is known to be required in formation of nervous and cardiac systems; it is also a tumor suppressor with a role in metastasis. Here, we explore functions of 4.1B using primary mouse embryonic fibroblasts (MEF) derived from wild type and 4.1B knock-out mice. MEF cells express two 4.1B isoforms: 130 and 60-kDa. 130-kDa 4.1B was absent from 4.1B knock-out MEF cells, but 60-kDa 4.1B remained, suggesting incomplete knock-out. Although the 130-kDa isoform was predominantly located at the plasma membrane, the 60-kDa isoform was enriched in nuclei. 130-kDa-deficient 4.1B MEF cells exhibited impaired cell adhesion, spreading, and migration; they also failed to form actin stress fibers. Impaired cell spreading and stress fiber formation were rescued by re-expression of the 130-kDa 4.1B but not the 60-kDa 4.1B. Our findings document novel, isoform-selective roles for 130-kDa 4.1B in adhesion, spreading, and migration of MEF cells by affecting actin organization, giving new insight into 4.1B functions in normal tissues as well as its role in cancer.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Biophysics, Peking University Health Science Center, Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goossens D, da Silva N, Metral S, Cortes U, Callebaut I, Picot J, Mouro-Chanteloup I, Cartron JP. Mice expressing RHAG and RHD human blood group genes. PLoS One 2013; 8:e80460. [PMID: 24260394 PMCID: PMC3832391 DOI: 10.1371/journal.pone.0080460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously.
Collapse
Affiliation(s)
- Dominique Goossens
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- * E-mail:
| | - Nelly da Silva
- Institut National de la Transfusion Sanguine, Paris, France
| | - Sylvain Metral
- Institut National de la Transfusion Sanguine, Paris, France
| | - Ulrich Cortes
- Institut National de la Transfusion Sanguine, Paris, France
| | - Isabelle Callebaut
- IInstitut de Minéralogie et de Physique des milieux Condensés UMR 7590 CNRS, Université Pierre et Marie Curie, Paris, France
| | - Julien Picot
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
| | - Isabelle Mouro-Chanteloup
- Institut National de la Transfusion Sanguine, Paris, France
- Inserm UMR_S 665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
| | | |
Collapse
|
25
|
Szade K, Bukowska-Strakova K, Nowak WN, Szade A, Kachamakova-Trojanowska N, Zukowska M, Jozkowicz A, Dulak J. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One 2013; 8:e63329. [PMID: 23696815 PMCID: PMC3656957 DOI: 10.1371/journal.pone.0063329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/30/2013] [Indexed: 02/06/2023] Open
Abstract
Murine very small embryonic-like (VSEL) cells, defined by the Lin(-)Sca-1(+)CD45(-) phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-)Sca(+)CD45(-) population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs) or endothelial progenitor cells (EPCs). The study evidenced that murine Lin(-)Sca-1(+)CD45(-) population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+)KDR(-), c-Kit(-)KDR(+), and c-Kit(-)KDR(-) subpopulations could be distinguished, while c-Kit(+)KDR(+) events were very rare. The c-Kit(+)KDR(-) subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-)KDR(+) cells. The c-Kit(-)KDR(-)FSC(low) subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-)Sca-1(+)CD45(-)FSC(low) population, even by single-cell qRT-PCR. We also found that the Lin(-)Sca-1(+)CD45(-)c-Kit(+) subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+)c-Kit(+)Lin(-) (SKL) CD34(-)CD45(-)CD105(+) cells, expressing particular HSC markers. Co-culture of Lin(-)Sca-1(+)CD45(-)FSC(low) with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-)CD105(+) subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-)Sca-1(+)CD45(-)FSC(low) cells are heterogeneous population, which do not express the pluripotency marker Oct-4A. Despite expression of some hematopoietic markers by a Lin(-)Sca-1(+)CD45(-)c-Kit(+)KDR(-) subset of VSELs, they do not display hematopoietic potential in a clonogenic assay and are enriched in early apoptotic cells.
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Witold Norbert Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JD); (AJ)
| |
Collapse
|
26
|
Bell AJ, Satchwell TJ, Heesom KJ, Hawley BR, Kupzig S, Hazell M, Mushens R, Herman A, Toye AM. Protein distribution during human erythroblast enucleation in vitro. PLoS One 2013; 8:e60300. [PMID: 23565219 PMCID: PMC3614867 DOI: 10.1371/journal.pone.0060300] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
Enucleation is the step in erythroid terminal differentiation when the nucleus is expelled from developing erythroblasts creating reticulocytes and free nuclei surrounded by plasma membrane. We have studied protein sorting during human erythroblast enucleation using fluorescence activated cell sorting (FACS) to obtain pure populations of reticulocytes and nuclei produced by in vitro culture. Nano LC mass spectrometry was first used to determine the protein distribution profile obtained from the purified reticulocyte and extruded nuclei populations. In general cytoskeletal proteins and erythroid membrane proteins were preferentially restricted to the reticulocyte alongside key endocytic machinery and cytosolic proteins. The bulk of nuclear and ER proteins were lost with the nucleus. In contrast to the localization reported in mice, several key erythroid membrane proteins were detected in the membrane surrounding extruded nuclei, including band 3 and GPC. This distribution of key erythroid membrane and cytoskeletal proteins was confirmed using western blotting. Protein partitioning during enucleation was investigated by confocal microscopy with partitioning of cytoskeletal and membrane proteins to the reticulocyte observed to occur at a late stage of this process when the nucleus is under greatest constriction and almost completely extruded. Importantly, band 3 and CD44 were shown not to restrict specifically to the reticulocyte plasma membrane. This highlights enucleation as a stage at which excess erythroid membrane proteins are discarded in human erythroblast differentiation. Given the striking restriction of cytoskeleton proteins and the fact that membrane proteins located in macromolecular membrane complexes (e.g. GPA, Rh and RhAG) are segregated to the reticulocyte, we propose that the membrane proteins lost with the nucleus represent an excess mobile population of either individual proteins or protein complexes.
Collapse
Affiliation(s)
- Amanda J. Bell
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Kate J. Heesom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Bethan R. Hawley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Sabine Kupzig
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
| | - Matthew Hazell
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
| | - Rosey Mushens
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
| | - Andrew Herman
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Science, NHS Blood and Transplant, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Prohaska R, Sibon OC, Rudnicki DD, Danek A, Hayflick SJ, Verhaag EM, Jan J V, Margolis RL, Walker RH. Brain, blood, and iron: perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiol Dis 2012; 46:607-24. [PMID: 22426390 PMCID: PMC3352961 DOI: 10.1016/j.nbd.2012.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/17/2012] [Accepted: 03/01/2012] [Indexed: 12/20/2022] Open
Abstract
The terms "neuroacanthocytosis" (NA) and "neurodegeneration with brain iron accumulation" (NBIA) both refer to groups of genetically heterogeneous disorders, classified together due to similarities of their phenotypic or pathological findings. Even collectively, the disorders that comprise these sets are exceedingly rare and challenging to study. The NBIA disorders are defined by their appearance on brain magnetic resonance imaging, with iron deposition in the basal ganglia. Clinical features vary, but most include a movement disorder. New causative genes are being rapidly identified; however, the mechanisms by which mutations cause iron accumulation and neurodegeneration are not well understood. NA syndromes are also characterized by a progressive movement disorder, accompanied by cognitive and psychiatric features, resulting from mutations in a number of genes whose roles are also basically unknown. An overlapping feature of the two groups, NBIA and NA, is the occurrence of acanthocytes, spiky red cells with a poorly-understood membrane dysfunction. In this review we summarise recent developments in this field, specifically insights into cellular mechanisms and from animal models. Cell membrane research may shed light upon the significance of the erythrocyte abnormality, and upon possible connections between the two sets of disorders. Shared pathophysiologic mechanisms may lead to progress in the understanding of other types of neurodegeneration.
Collapse
Affiliation(s)
- Rainer Prohaska
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Ody C.M. Sibon
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Dobrila D. Rudnicki
- Department of Psychiatry, Division of Neurobiology, Laboratory of Genetic Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susan J. Hayflick
- Departments of Molecular & Medical Genetics, Pediatrics and Neurology, Oregon Health & Science University, Portland OR USA
| | - Esther M. Verhaag
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Vonk Jan J
- Section of Radiation & Stress Cell Biology, Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Russell L. Margolis
- Department of Psychiatry, Division of Neurobiology, Laboratory of Genetic Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruth H. Walker
- Departments of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA and Mount Sinai School of Medicine, New York, NY USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling, development, angiogenesis and cellular growth) and diseases (e.g. chronic inflammation, autoimmunity, cancer, infection). We discuss here how galectins contribute to the development of specialized microenvironmental niches during hematopoiesis. RECENT FINDINGS An expanding set of data strengthens a role of galectins in hematopoietic differentiation, particularly by setting specific interactions between hematopoietic and stromal cells: galectin-5 is found in reticulocytes and erythroblastic islands suggesting a major role during erythropoiesis; galectin-1 and 3 are involved in thymocyte apoptosis, signaling and intrathymic migration; galectin-1 plays critical roles in pre-BII cells development. Moreover, expression of galectins-1 and 10 are differentially expressed during T-regulatory cell development. Various galectins (3, 4, 5, 9) have been reported to be regulated during myelopoiesis and traffic into intracellular compartments, dictating the cellular distribution of specific glycoproteins and glycosphingolipids. SUMMARY The abundance of galectins in both extracellular and intracellular compartments, their multifunctional properties and ability to form supramolecular signaling complexes with specific glycoconjugates, make these glycan-binding proteins excellent candidates to mediate interactions between hematopoietic cells and the stromal microenvironment. Their secretion by one of the cellular partners can modulate adhesive properties by cross-linking specific glycoconjugates present on stromal or hematopoietic cells, by favoring the formation of synapses or by creating glycoprotein lattices on the surface of different cell types. Their divergent specificities and affinities for various glycoproteins contribute to the multiplicity of their cellular interactions.
Collapse
|
29
|
Stewart AK, Shmukler BE, Vandorpe DH, Rivera A, Heneghan JF, Li X, Hsu A, Karpatkin M, O'Neill AF, Bauer DE, Heeney MM, John K, Kuypers FA, Gallagher PG, Lux SE, Brugnara C, Westhoff CM, Alper SL. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S. Am J Physiol Cell Physiol 2011; 301:C1325-43. [PMID: 21849667 PMCID: PMC3233792 DOI: 10.1152/ajpcell.00054.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.
Collapse
Affiliation(s)
- Andrew K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int 2011; 2011:139851. [PMID: 22007239 PMCID: PMC3189604 DOI: 10.4061/2011/139851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022] Open
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Collapse
Affiliation(s)
- Ganesan Keerthivasan
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
31
|
Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2. Genes Immun 2011; 13:175-83. [PMID: 21956657 DOI: 10.1038/gene.2011.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Typhoid fever, which is caused by Salmonella typhi and paratyphi, is a severe systemic disease that remains a major public health issue in several areas of the world. We can model the human disease using mice infected with a related bacterium, Salmonella typhimurium. This model recapitulates several clinical aspects of the human disease and allows for the study of the host response to Salmonella typhimurium infection in vivo. Previous work in our laboratory has identified three Immunity to typhimurium loci (Ity, Ity2 and Ity3) in the wild-derived MOLF/Ei mice, influencing survival after infection with Salmonella typhimurium. The MOLF/Ei alleles at Ity and Ity2 are protective, while the MOLF/Ei allele at Ity3 confers susceptibility. In this paper, we have generated a novel cross combination between the highly susceptible strain, MOLF/Ei, and the resistant strain, 129S6, to better define the genetic architecture of susceptibility to infection in MOLF/Ei. Using this cross, we have replicated the locus on chr 11 (Ity2) and identified a novel locus on chr 13 (Ity13). Using microarrays and transcriptional profiling, we examined the response of uninfected and infected Ity2 congenic mice. These analyses demonstrate a role for both type-1-interferon (IFN) and TRP53 signaling in the pathogenesis of Salmonella infection.
Collapse
|
32
|
|
33
|
Wooden JM, Finney GL, Rynes E, Maccoss MJ, Lambert AJ, Robledo RF, Peters LL, Gilligan DM. Comparative proteomics reveals deficiency of SLC9A1 (sodium/hydrogen exchanger NHE1) in β-adducin null red cells. Br J Haematol 2011; 154:492-501. [PMID: 21689084 DOI: 10.1111/j.1365-2141.2011.08612.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spherocytosis is one of the most common inherited disorders, yet presents with a wide range of clinical severity. While several genes have been found mutated in patients with spherocytosis, the molecular basis for the variability in severity of haemolytic anaemia is not entirely understood. To identify candidate proteins involved in haemolytic anaemia pathophysiology, we utilized a label-free comparative proteomic approach to detect differences in red blood cells (RBCs) from normal and β-adducin (Add2) knock-out mice. We detected seven proteins that were decreased and 48 proteins that were increased in β-adducin null RBC ghosts. Since haemolytic anaemias are characterized by reticulocytosis, we compared reticulocyte-enriched samples from phenylhydrazine-treated mice with mature RBCs from untreated mice. Among the 48 proteins increased in Add2 knockout RBCs, only 11 were also increased in reticulocytes. Of the proteins decreased in Add2 knockout RBCs, α-adducin showed the greatest intensity difference, followed by SLC9A1, the sodium-hydrogen exchanger previously termed NHE1. We verified these mass spectrometry results by immunoblot. This is the first example of SLC9A1deficiency in haemolytic anaemia and suggests new insights into the mechanisms leading to fragile RBCs.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Reticulocyte remodeling has emerged as an important model for the understanding of vesicular trafficking and selective autophagy in mammalian cells. This review covers recent advances in our understanding of these processes in reticulocytes and the role of these processes in erythroid development. RECENT FINDINGS Enucleation is caused by the coalescence of vesicles at the nuclear-cytoplasmic junction and microfilament contraction. Mitochondrial elimination is achieved through selective autophagy, in which mitochondria are targeted to autophagosomes, and undergo subsequent degradation and exocytosis. The mechanism involves an integral mitochondrial outer membrane protein and general autophagy pathways. Plasma membrane remodeling, and the elimination of certain intracellular organelles occur through the exosomal pathway. SUMMARY Vesicular trafficking and selective autophagy have emerged as central processes in cellular remodeling. In reticulocytes, this includes enucleation and the elimination of all membrane-bound organelles and ribosomes. Ubiquitin-like conjugation pathways, which are required for autophagy in yeast, are not essential for mitochondrial clearance in reticulocytes. Thus, in higher eukaryotes, there appears to be redundancy between these pathways and other processes, such as vesicular nucleation. Future studies will address the relationship between autophagy and vesicular trafficking, and the significance of both for cellular remodeling.
Collapse
Affiliation(s)
- Paul A Ney
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
35
|
Critical band 3 multiprotein complex interactions establish early during human erythropoiesis. Blood 2011; 118:182-191. [PMID: 21527529 DOI: 10.1182/blood-2010-10-314187] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Band 3, the major anion transport protein of human erythrocytes, forms the core of a multiprotein complex in the erythrocyte membrane. Here we studied the spatiotemporal mechanisms of band 3 multiprotein complex assembly during erythropoiesis. Significant pools of intracellular band 3 and Rh-associated glycoprotein (RhAG) were found in the basophilic erythroblast. These intracellular pools decreased in the polychromatic erythroblast, whereas surface expression increased and were lowest in the orthochromatic erythroblast and reticulocytes. Protease treatment of intact cells to remove extracellular epitopes recognized by antibodies to band 3 and RhAG was used to study surface delivery kinetics and intracellular complex composition from the proerythroblast stage to the enucleated reticulocyte. Newly synthesized band 3 and protein 4.2 interact initially in the early stages of the secretory pathway and are found associated at the plasma membrane from the basophilic stage of erythropoiesis. Although we could successfully coimmunoprecipitate Rh with RhAG from plasma membrane pools at a similar stage, no intracellular interaction between these proteins was detectable. Knockdown of RhAG during early erythropoiesis was accompanied by a concomitant drop in membrane expression of Rh polypeptides. These data are consistent with assembly of major components of the band 3 macrocomplex at an early stage during erythropoiesis.
Collapse
|
36
|
Abstract
Antigens of 23 of the 30 human blood group systems are defined by the amino acid sequence of red cell membrane proteins. The antigens of DI, RH, RHAG, MNS, GE and CO systems are carried on blood group-active proteins (Band 3, D and CE polypeptides, RhAG, Glycophorins A and B, Glycophorins C and D and Aquaporin 1, respectively) which are expressed at high levels (>200,000 copies/red cell). These major proteins contribute to essential red cell functions either directly as membrane transporters and by providing linkage to the underlying red cell skeleton or by facilitating the membrane assembly of the protein complexes involved in these processes. The proteins expressing antigens of the remaining 17 blood group systems are much less abundant (<20,000 copies/red cell) and their functional importance for the circulating red cell is largely unknown. Human gene knock-outs (null phenotypes) have been described for many of these minor blood group-active proteins, but only absence of Kx glycoprotein has been clearly linked with pathology directly related to the function of circulating red cells. Recent evidence suggesting the normal quality control system for glycoprotein synthesis is altered during the latter stages of red cell production raises the possibility that many of these low abundance blood group-active proteins are vestigial. In sickle cell disease and polycythaemia vera, elevated Lutheran glycoprotein expression may contribute to pathology. Dyserythropoiesis with reduced antigen expression can result from mutations in the erythroid transcription factors GATA-1 and EKLF.
Collapse
Affiliation(s)
- D J Anstee
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK.
| |
Collapse
|
37
|
Baines A. Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 2010; 17:95-103. [DOI: 10.1016/j.tracli.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
|
38
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
39
|
Mohandas N, Chasis JA. The erythroid niche: molecular processes occurring within erythroblastic islands. Transfus Clin Biol 2010; 17:110-1. [PMID: 20655267 DOI: 10.1016/j.tracli.2010.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/31/2010] [Indexed: 11/19/2022]
Abstract
Erythroblasts terminally differentiate within specialized niches composed of erythroblast islands nesting in extracellular matrix proteins. A number of adhesion molecules active in erythroid island attachments have been identified. We have recently observed a receptor/counter receptor interaction that appears to maintain island integrity: erythroid ICAM-4 interacting with macrophage alphaV integrin. When ICAM-4/alphaV binding is blocked, a 70% decrease in islands is observed. Moreover, erythroblastic islands are markedly decreased in ICAM-4 null mice. Using erythropoietin to examine whether ICAM-4/alphaV binding plays a role in stress erythropoiesis, we found that the reticulocyte response is different in ICAM-4 null mice compared to control mice. We speculate that this may be a reflection of the baseline decrease in island number in the ICAM-4 null mice. Erythroblast enucleation also occurs within the erythroid niche. Earlier, we examined whether abnormal protein sorting during nuclear extrusion creates the deficiencies of membrane proteins that are well described in hereditary spherocytosis (HS) and hereditary elliptocytosis (HE). We observed that whereas glycophorin C partitions to reticulocytes in normal mouse cells, it sorts to extruding nuclei in murine hereditary elliptocytosis cells. Additionally, in a murine model of hereditary spherocytosis, band 3, glycophorin A and RhAG partition to both nuclei and reticulocytes, while in normal cells these three proteins distribute predominantly to reticulocytes. Hence, it appears that abnormal protein sorting generates specific protein deficiencies in hereditary elliptocytosis and hereditary spherocytosis.
Collapse
Affiliation(s)
- Narla Mohandas
- The Red Cell Physiology Laboratory, The New York Blood Center, 310 East 67th Street, New York, NY 10065, USA
| | | |
Collapse
|
40
|
|