1
|
Dery L, Stern J, Shimon I, Rudman Y, Kushnir S, Shochat T, Fleseriu M, Akirov A. Impact of etiology, sex, diabetes mellitus and remission status on erythrocytic profile in patients with cushing's syndrome: a large population database study. Pituitary 2024; 27:389-402. [PMID: 38769229 DOI: 10.1007/s11102-024-01399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE The study aimed to characterize the erythrocytic profile in patients with cushing's syndrome (CS) versus controls from the normal population according to etiology, sex, presence of diabetes mellitus (DM) and hypercortisolemia remission status. METHODS This retrospective cohort analysis compared erythrocytic parameters between patients with CS of pituitary (CD) and adrenal (aCS) etiology and age, sex, body mass index (BMI) and socioeconomic status-matched controls in a 1:5 ratio. Laboratory values at baseline were calculated as mean values during the year preceding CS diagnosis, and over one year thereafter. RESULTS The cohort included 397 CS patients (68.26% female; mean age 51.11 ± 16.85 years) and 1970 controls. Patients with CS had significantly higher baseline median levels of hemoglobin (Hgb) (13.70 g/dL vs. 13.12 g/dL [p < 0.0001]) and hematocrit (Hct) (41.64% vs. 39.80% [p < 0.0001]) compared to controls. These differences were observed for both CD and aCS and for both sexes. Patients who attained remission had Hgb and Hct levels comparable to controls (13.20 g/dL and 40.08% in patients with CD and aCS vs. 13.20 g/dL and 39.98% in controls). Meanwhile, those with persistent/recurrent disease maintained elevated levels. Patients with comorbid DM had similar Hgb but higher Hct (p = 0.0419), while patients without DM showed elevated erythrocytic values compared to controls (p < 0.0001). CONCLUSION Our data illustrates that erythrocytic parameters are directly influenced by glucocorticoid excess as Hgb and Hct are higher in patients with CS, and normalize after remission. We have identified the influence of DM on erythrocytic parameters in patients with CS for the first time.
Collapse
Affiliation(s)
- Laura Dery
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Julia Stern
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Shimon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Endocrinology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Yaron Rudman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Endocrinology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Shiri Kushnir
- Research Authority, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Tzipora Shochat
- Biostatistics Unit, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Maria Fleseriu
- Departments of Medicine and Neurological Surgery, Pituitary Center, Oregon Health & Science University, Portland, OR, USA
| | - Amit Akirov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Institute of Endocrinology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel.
| |
Collapse
|
2
|
Serrano G, Berastegui N, Díaz-Mazkiaran A, García-Olloqui P, Rodriguez-Res C, Huerga-Dominguez S, Ainciburu M, Vilas-Zornoza A, Martin-Uriz PS, Aguirre-Ruiz P, Ullate-Agote A, Ariceta B, Lamo-Espinosa JM, Acha P, Calvete O, Jimenez T, Molero A, Montoro MJ, Díez-Campelo M, Valcarcel D, Solé F, Alfonso-Pierola A, Ochoa I, Prósper F, Ezponda T, Hernaez M. Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide. Nat Commun 2024; 15:5272. [PMID: 38902243 PMCID: PMC11189937 DOI: 10.1038/s41467-024-49529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
While myelodysplastic syndromes with del(5q) (del(5q) MDS) comprises a well-defined hematological subgroup, the molecular basis underlying its origin remains unknown. Using single cell RNA-seq (scRNA-seq) on CD34+ progenitors from del(5q) MDS patients, we have identified cells harboring the deletion, characterizing the transcriptional impact of this genetic insult on disease pathogenesis and treatment response. Interestingly, both del(5q) and non-del(5q) cells present similar transcriptional lesions, indicating that all cells, and not only those harboring the deletion, may contribute to aberrant hematopoietic differentiation. However, gene regulatory network (GRN) analyses reveal a group of regulons showing aberrant activity that could trigger altered hematopoiesis exclusively in del(5q) cells, pointing to a more prominent role of these cells in disease phenotype. In del(5q) MDS patients achieving hematological response upon lenalidomide treatment, the drug reverts several transcriptional alterations in both del(5q) and non-del(5q) cells, but other lesions remain, which may be responsible for potential future relapses. Moreover, lack of hematological response is associated with the inability of lenalidomide to reverse transcriptional alterations. Collectively, this study reveals transcriptional alterations that could contribute to the pathogenesis and treatment response of del(5q) MDS.
Collapse
Affiliation(s)
- Guillermo Serrano
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nerea Berastegui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Aintzane Díaz-Mazkiaran
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Paula García-Olloqui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carmen Rodriguez-Res
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Sofia Huerga-Dominguez
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Marina Ainciburu
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Amaia Vilas-Zornoza
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Patxi San Martin-Uriz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Paula Aguirre-Ruiz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Asier Ullate-Agote
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Beñat Ariceta
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | | | - Pamela Acha
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Oriol Calvete
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tamara Jimenez
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Antonieta Molero
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Julia Montoro
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Díez-Campelo
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - David Valcarcel
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Francisco Solé
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Alfonso-Pierola
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Idoia Ochoa
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain
- Department of Electrical and Electronics engineering, School of Engineering (Tecnun), University of Navarra, Donostia, Spain
| | - Felipe Prósper
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
| | - Teresa Ezponda
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
| | - Mikel Hernaez
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Wang N, LaVasseur C, Riaz R, Papoin J, Blanc L, Narla A. Targeting of Calbindin 1 rescues erythropoiesis in a human model of Diamond Blackfan anemia. Blood Cells Mol Dis 2023; 102:102759. [PMID: 37267698 PMCID: PMC10330851 DOI: 10.1016/j.bcmd.2023.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by congenital anomalies, cancer predisposition and a severe hypo-proliferative anemia. It was the first disease linked to ribosomal dysfunction and >70 % of patients have been identified to have a haploinsufficiency of a ribosomal protein (RP) gene, with RPS19 being the most common mutation. There is significant variability within the disease in terms of phenotype as well as response to therapy suggesting that other genes contribute to the pathophysiology and potential management of this disease. To explore these questions, we performed a genome-wide CRISPR screen in a cellular model of DBA and identified Calbindin 1 (CALB1), a member of the calcium-binding superfamily, as a potential modifier of the disordered erythropoiesis in DBA. We used human derived CD34+ cells cultured in erythroid stimulating media with knockdown of RPS19 as a model for DBA to study the effects of CALB1. We found that knockdown of CALB1 in this DBA model promoted erythroid maturation. We also noted effects of CALB1 knockdown on cell cycle. Taken together, our results reveal CALB1 is a novel regulator of human erythropoiesis and has implications for using CALB1 as a novel therapeutic target in DBA.
Collapse
Affiliation(s)
- Nan Wang
- Division of Hematology-Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Corinne LaVasseur
- Division of Hematology-Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Rao Riaz
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America; Zucker School of Medicine at Hofstra Northwell, Hempstead, NY, United States of America.
| | - Anupama Narla
- Division of Hematology-Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States of America.
| |
Collapse
|
4
|
Garana BB, Joly JH, Delfarah A, Hong H, Graham NA. Drug mechanism enrichment analysis improves prioritization of therapeutics for repurposing. BMC Bioinformatics 2023; 24:215. [PMID: 37226094 DOI: 10.1186/s12859-023-05343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND There is a pressing need for improved methods to identify effective therapeutics for diseases. Many computational approaches have been developed to repurpose existing drugs to meet this need. However, these tools often output long lists of candidate drugs that are difficult to interpret, and individual drug candidates may suffer from unknown off-target effects. We reasoned that an approach which aggregates information from multiple drugs that share a common mechanism of action (MOA) would increase on-target signal compared to evaluating drugs on an individual basis. In this study, we present drug mechanism enrichment analysis (DMEA), an adaptation of gene set enrichment analysis (GSEA), which groups drugs with shared MOAs to improve the prioritization of drug repurposing candidates. RESULTS First, we tested DMEA on simulated data and showed that it can sensitively and robustly identify an enriched drug MOA. Next, we used DMEA on three types of rank-ordered drug lists: (1) perturbagen signatures based on gene expression data, (2) drug sensitivity scores based on high-throughput cancer cell line screening, and (3) molecular classification scores of intrinsic and acquired drug resistance. In each case, DMEA detected the expected MOA as well as other relevant MOAs. Furthermore, the rankings of MOAs generated by DMEA were better than the original single-drug rankings in all tested data sets. Finally, in a drug discovery experiment, we identified potential senescence-inducing and senolytic drug MOAs for primary human mammary epithelial cells and then experimentally validated the senolytic effects of EGFR inhibitors. CONCLUSIONS DMEA is a versatile bioinformatic tool that can improve the prioritization of candidates for drug repurposing. By grouping drugs with a shared MOA, DMEA increases on-target signal and reduces off-target effects compared to analysis of individual drugs. DMEA is publicly available as both a web application and an R package at https://belindabgarana.github.io/DMEA .
Collapse
Affiliation(s)
- Belinda B Garana
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA
| | - James H Joly
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA
- Nautilus Biotechnology, San Carlos, CA, USA
| | - Alireza Delfarah
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA
- Calico Life Sciences, South San Francisco, CA, USA
| | - Hyunjun Hong
- Department of Computer Science, Information Systems, and Applications, Los Angeles City College, Los Angeles, CA, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Varricchio L, Geer EB, Martelli F, Mazzarini M, Funnell A, Bieker JJ, Papayannopoulou T, Migliaccio AR. Patients with hypercortisolemic Cushing disease possess a distinct class of hematopoietic progenitor cells leading to erythrocytosis. Haematologica 2023; 108:1053-1067. [PMID: 35861015 PMCID: PMC10071118 DOI: 10.3324/haematol.2021.280542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Although human cell cultures stimulated with dexamethasone suggest that the glucocorticoid receptor (GR) activates stress erythropoiesis, the effects of GR activation on erythropoiesis in vivo remain poorly understood. We characterized the phenotype of a large cohort of patients with Cushing disease, a rare condition associated with elevated cortisol levels. Results from hypercortisolemic patients with active Cushing disease were compared with those obtained from eucortisolemic patients after remission and from volunteers without the disease. Patients with active Cushing disease exhibited erythrocytosis associated with normal hemoglobin F levels. In addition, their blood contained elevated numbers of GR-induced CD163+ monocytes and a unique class of CD34+ cells expressing CD110, CD36, CD133 and the GR-target gene CXCR4. When cultured, these CD34+ cells generated similarly large numbers of immature erythroid cells in the presence and absence of dexamethasone, with raised expression of the GR-target gene GILZ. Of interest, blood from patients with Cushing disease in remission maintained high numbers of CD163+ monocytes and, although their CD34+ cells had a normal phenotype, these cells were unresponsive to added dexamethasone. Collectively, these results indicate that chronic exposure to excess glucocorticoids in vivo leads to erythrocytosis by generating erythroid progenitor cells with a constitutively active GR. Although remission rescues the erythrocytosis and the phenotype of the circulating CD34+ cells, a memory of other prior changes is maintained in remission.
Collapse
Affiliation(s)
- Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eliza B Geer
- Multidisciplinary Pituitary and Skull Base Tumor Center, Departments of Medicine and Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater Studiorum University, Bologna, Italy; Altius Institute for Biomedical Sciences, Seattle, WA
| | | | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA, USA; Center for Integrated Biomedical Research, Campus Bio-medico, Rome.
| |
Collapse
|
6
|
Wang B, Wang C, Wan Y, Gao J, Ma Y, Zhang Y, Tong J, Zhang Y, Liu J, Chang L, Xu C, Shen B, Chen Y, Jiang E, Kurita R, Nakamura Y, Lim KC, Engel JD, Zhou J, Cheng T, Zhu X, Zhu P, Shi L. Decoding the pathogenesis of Diamond-Blackfan anemia using single-cell RNA-seq. Cell Discov 2022; 8:41. [PMID: 35534476 PMCID: PMC9085895 DOI: 10.1038/s41421-022-00389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.
Collapse
Affiliation(s)
- Bingrui Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yige Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Biao Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
7
|
Cyclosporine A Inhibits Viral Infection and Release as Well as Cytokine Production in Lung Cells by Three SARS-CoV-2 Variants. Microbiol Spectr 2022; 10:e0150421. [PMID: 34985303 PMCID: PMC8729790 DOI: 10.1128/spectrum.01504-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In December 2019, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started spreading worldwide causing the coronavirus disease 2019 (COVID-19) pandemic. The hyperactivation of the immune system has been proposed to account for disease severity and death in COVID-19 patients. Despite several approaches having been tested, no therapeutic protocol has been approved. Given that Cyclosporine A (CsA) is well-known to exert a strong antiviral activity on several viral strains and an anti-inflammatory role in different organs with relevant benefits in diverse pathological contexts, we tested its effects on SARS-CoV-2 infection of lung cells. We found that treatment with CsA either before or after infection of CaLu3 cells by three SARS-CoV-2 variants: (i) reduces the expression of both viral RNA and proteins in infected cells; (ii) decreases the number of progeny virions released by infected cells; (iii) dampens the virus-triggered synthesis of cytokines (including IL-6, IL-8, IL1α and TNF-α) that are involved in cytokine storm in patients. Altogether, these data provide a rationale for CsA repositioning for the treatment of severe COVID-19 patients. IMPORTANCE SARS-CoV-2 is the most recently identified member of the betacoronavirus genus responsible for the COVID-19 pandemic. Repurposing of available drugs has been a “quick and dirty” approach to try to reduce mortality and severe symptoms in affected patients initially, and can still represent an undeniable and valuable approach to face COVID-19 as the continuous appearance and rapid diffusion of more “aggressive”/transmissible variants, capable of eluding antibody neutralization, challenges the effectiveness of some anti-SARS-CoV-2 vaccines. Here, we tested a known antiviral and anti-inflammatory drug, Cyclosporine A (CsA), and found that it dampens viral infection and cytokine release from lung cells upon exposure to three different SARS-CoV-2 variants. Knock down of the main intracellular target of CsA, Cyclophilin A, does not phenocopy the drug inhibition of viral infection. Altogether, these findings shed new light on the cellular mechanisms of SARS-CoV-2 infection and provide the rationale for CsA repositioning to treat severe COVID-19 patients.
Collapse
|
8
|
Zhang Z, Ran Y, Xu L, Pan Z, Xie Y. High-dose dexamethasone injection disordered metabolism and multiple protein kinases expression in the mouse kidney. Biosci Rep 2021; 41:BSR20211847. [PMID: 34735568 PMCID: PMC8607334 DOI: 10.1042/bsr20211847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/05/2022] Open
Abstract
Glucocorticoids (GCs) have been widely used in clinical treatment as anti-inflammatory, anti-shock and immunosuppressive medicines. However, the effect of excessive GCs on immune response and metabolism of kidney remains unclear. Here, we profiled the gene expression of kidney from mice with high-dose dexamethasone (DEX) treatment. A total of 1193 differentially expressed genes (DEGs) were screened in DEX treatment group compared with the saline group, including 715 down- regulated and 478 up-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of these DEGs showed extracellular matrix (ECM)-receptor interaction, cell adhesion molecules signaling pathway were significantly enriched, and that the vast majority of DEGs were involved in monocarboxylic acid metabolism, leukocyte cell-cell adhesion and fatty acid metabolism. Gene set enrichment analysis (GSEA) revealed that DEGs were strongly associated with immune-response and cell adhesion gene sets, such as Fc γ R-mediated phagocytosis, leukocyte transendothelial migration, T-cell receptor signaling pathway, cell adhesion, ECM-receptor interaction and focal adhesion-associated pathways. KEGG pathway analysis of differentially expressed kinases (DEKs) showed T-cell receptor and forkhead box class O signaling pathway were enriched. Furthermore, we found multiple protein kinases expression were dysregulated greatly after dexamethasone treatment, including classical effector of GCs stimulation-serum and GC-regulated kinase. These protein kinases are involved in multiple signaling pathways in mice kidney, such as mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. We profiled the gene expression of the kidney from high-dose dexamethasone-treated mice and provided important information for further study the mechanism of side effects of GCs in clinical therapy.
Collapse
Affiliation(s)
- Zaikuan Zhang
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yingchun Ran
- Department of Emergency Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Lei Xu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Pan
- The College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yajun Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
9
|
Pellegrin S, Severn CE, Toye AM. Towards manufactured red blood cells for the treatment of inherited anemia. Haematologica 2021; 106:2304-2311. [PMID: 34042406 PMCID: PMC8409035 DOI: 10.3324/haematol.2020.268847] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Patients with inherited anemia and hemoglobinopathies (such as sickle cell disease and β-thalassemia) are treated with red blood cell (RBC) transfusions to alleviate their symptoms. Some of these patients may have rare blood group types or go on to develop alloimmune reactions, which can make it difficult to source compatible blood in the donor population. Laboratory-grown RBC represent a particularly attractive alternative which could satisfy an unmet clinical need. The challenge, however, is to produce - from a limited number of stem cells - the 2x1012 RBC required for a standard adult therapeutic dose. Encouraging progress has been made in RBC production from adult stem cells under good manufacturing practice. In 2011, the Douay group conducted a successful proof-of-principle mini-transfusion of autologous manufactured RBC in a single volunteer. In the UK, a trial is planned to assess whether manufactured RBC are equivalent to RBC produced naturally in donors, by testing an allogeneic mini-dose of laboratory-grown manufactured RBC in multiple volunteers. This review discusses recent progress in the erythroid culture field as well as opportunities for further scaling up of manufactured RBC production for transfusion practice.
Collapse
Affiliation(s)
- Stephanie Pellegrin
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Charlotte E Severn
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol; Bristol Institute of Transfusion Sciences, NHSBT Filton. Bristol.
| |
Collapse
|
10
|
Taylor AM, Macari ER, Chan IT, Blair MC, Doulatov S, Vo LT, Raiser DM, Siva K, Basak A, Pirouz M, Shah AN, McGrath K, Humphries JM, Stillman E, Alter BP, Calo E, Gregory RI, Sankaran VG, Flygare J, Ebert BL, Zhou Y, Daley GQ, Zon LI. Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia. Sci Transl Med 2021; 12:12/566/eabb5831. [PMID: 33087503 DOI: 10.1126/scitranslmed.abb5831] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare hematopoietic disease characterized by a block in red cell differentiation. Most DBA cases are caused by mutations in ribosomal proteins and characterized by higher than normal activity of the tumor suppressor p53. Higher p53 activity is thought to contribute to DBA phenotypes by inducing apoptosis during red blood cell differentiation. Currently, there are few therapies available for patients with DBA. We performed a chemical screen using zebrafish ribosomal small subunit protein 29 (rps29) mutant embryos that have a p53-dependent anemia and identified calmodulin inhibitors that rescued the phenotype. Our studies demonstrated that calmodulin inhibitors attenuated p53 protein amount and activity. Treatment with calmodulin inhibitors led to decreased p53 translation and accumulation but does not affect p53 stability. A U.S. Food and Drug Administration-approved calmodulin inhibitor, trifluoperazine, rescued hematopoietic phenotypes of DBA models in vivo in zebrafish and mouse models. In addition, trifluoperazine rescued these phenotypes in human CD34+ hematopoietic stem and progenitor cells. Erythroid differentiation was also improved in CD34+ cells isolated from a patient with DBA. This work uncovers a potential avenue of therapeutic development for patients with DBA.
Collapse
Affiliation(s)
- Alison M Taylor
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth R Macari
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Iris T Chan
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Megan C Blair
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Sergei Doulatov
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Linda T Vo
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - David M Raiser
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kavitha Siva
- Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Anindita Basak
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Mehdi Pirouz
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Arish N Shah
- MIT Department of Biology and David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Katherine McGrath
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Jessica M Humphries
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Emma Stillman
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20850, USA
| | - Eliezer Calo
- MIT Department of Biology and David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Richard I Gregory
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Johan Flygare
- Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Benjamin L Ebert
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Yi Zhou
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA. .,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA.,Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
11
|
Shahbaz S, Xu L, Osman M, Sligl W, Shields J, Joyce M, Tyrrell DL, Oyegbami O, Elahi S. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2. Stem Cell Reports 2021; 16:1165-1181. [PMID: 33979601 PMCID: PMC8111797 DOI: 10.1016/j.stemcr.2021.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection is associated with lower blood oxygen levels, even in patients without hypoxia requiring hospitalization. This discordance illustrates the need for a more unifying explanation as to whether SARS-CoV-2 directly or indirectly affects erythropoiesis. Here, we show significantly enriched CD71+ erythroid precursors/progenitors in the blood circulation of COVID-19 patients. We found that these cells have distinctive immunosuppressive properties. In agreement, we observed a strong negative correlation between the frequency of these cells with T and B cell proportions in COVID-19 patients. The expansion of these CD71+ erythroid precursors/progenitors was negatively correlated with the hemoglobin levels. A subpopulation of abundant erythroid cells, CD45+ CD71+ cells, co-express ACE2, TMPRSS2, CD147, and CD26, and these can be infected with SARS-CoV-2. In turn, pre-treatment of erythroid cells with dexamethasone significantly diminished ACE2/TMPRSS2 expression and subsequently reduced their infectivity with SARS-CoV-2. This provides a novel insight into the impact of SARS-CoV-2 on erythropoiesis and hypoxia seen in COVID-19 patients.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Lai Xu
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Wendy Sligl
- Department of Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Critical Care Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada; Division of Infectious Diseases, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Justin Shields
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Michael Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Olaide Oyegbami
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G2E1, AB, Canada.
| |
Collapse
|
12
|
Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, Venkatesan V, Datari P, Pai AA, Janet NB, Balasubramanian P, Nakamura Y, Srivastava A, Mohankumar KM, Thangavel S, Velayudhan SR. Direct Generation of Immortalized Erythroid Progenitor Cell Lines from Peripheral Blood Mononuclear Cells. Cells 2021; 10:523. [PMID: 33804564 PMCID: PMC7999632 DOI: 10.3390/cells10030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vasanth Thamodaran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Phaneendra Datari
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Nancy Beryl Janet
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan;
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Kumarasamypet Murugesan Mohankumar
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| |
Collapse
|
13
|
Elahi S. Neonatal and Children’s Immune System and COVID-19: Biased Immune Tolerance versus Resistance Strategy. THE JOURNAL OF IMMUNOLOGY 2020; 205:1990-1997. [DOI: 10.4049/jimmunol.2000710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The recent outbreak of COVID-19 has emerged as a major global health concern. Although susceptible to infection, recent evidence indicates mostly asymptomatic or mild presentation of the disease in infants, children, and adolescents. Similar observations were made for acute respiratory infections caused by other coronaviruses (severe acute respiratory syndrome and Middle East respiratory syndrome). These observations suggest that the immune system behaves differently in children than adults. Recent developments in the field demonstrated fundamental differences in the neonatal immune system as compared with adults, whereby infants respond to microorganisms through biased immune tolerance rather than resistance strategies. Similarly, more frequent/recent vaccinations in children and younger populations may result in trained immunity. Therefore, the physiological abundance of certain immunosuppressive cells, a tightly regulated immune system, and/or exposure to attenuated vaccines may enhance trained immunity to limit excessive immune reaction to COVID-19 in the young.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G1Z2, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada; and
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| |
Collapse
|
14
|
Ratti S, Mongiorgi S, Rusciano I, Manzoli L, Follo MY. Glycogen Synthase Kinase-3 and phospholipase C-beta signalling: Roles and possible interactions in myelodysplastic syndromes and acute myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118649. [DOI: 10.1016/j.bbamcr.2020.118649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
|
15
|
Youn M, Huang H, Chen C, Kam S, Wilkes MC, Chae HD, Sridhar KJ, Greenberg PL, Glader B, Narla A, Lin S, Sakamoto KM. MMP9 inhibition increases erythropoiesis in RPS14-deficient del(5q) MDS models through suppression of TGF-β pathways. Blood Adv 2019; 3:2751-2763. [PMID: 31540902 PMCID: PMC6759738 DOI: 10.1182/bloodadvances.2019000537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
The del(5q) myelodysplastic syndrome (MDS) is a distinct subtype of MDS, associated with deletion of the ribosomal protein S14 (RPS14) gene that results in macrocytic anemia. This study sought to identify novel targets for the treatment of patients with del(5q) MDS by performing an in vivo drug screen using an rps14-deficient zebrafish model. From this, we identified the secreted gelatinase matrix metalloproteinase 9 (MMP9). MMP9 inhibitors significantly improved the erythroid defect in rps14-deficient zebrafish. Similarly, treatment with MMP9 inhibitors increased the number of colony forming unit-erythroid colonies and the CD71+ erythroid population from RPS14 knockdown human BMCD34+ cells. Importantly, we found that MMP9 expression is upregulated in RPS14-deficient cells by monocyte chemoattractant protein 1. Double knockdown of MMP9 and RPS14 increased the CD71+ population compared with RPS14 single knockdown, suggesting that increased expression of MMP9 contributes to the erythroid defect observed in RPS14-deficient cells. In addition, transforming growth factor β (TGF-β) signaling is activated in RPS14 knockdown cells, and treatment with SB431542, a TGF-β inhibitor, improved the defective erythroid development of RPS14-deficient models. We found that recombinant MMP9 treatment decreases the CD71+ population through increased SMAD2/3 phosphorylation, suggesting that MMP9 directly activates TGF-β signaling in RPS14-deficient cells. Finally, we confirmed that MMP9 inhibitors reduce SMAD2/3 phosphorylation in RPS14-deficient cells to rescue the erythroid defect. In summary, these study results support a novel role for MMP9 in the pathogenesis of del(5q) MDS and the potential for the clinical use of MMP9 inhibitors in the treatment of patients with del(5q) MDS.
Collapse
Affiliation(s)
- Minyoung Youn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Haigen Huang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA; and
| | - Cheng Chen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA; and
| | - Sharon Kam
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Mark C Wilkes
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Hee-Don Chae
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | | | - Bertil Glader
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Anupama Narla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA; and
| | - Kathleen M Sakamoto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
16
|
Choi SA, An JH, Lee SH, Lee GH, Yang HJ, Jeong PS, Cha JJ, Lee S, Park YH, Song BS, Sim BW, Kim YH, Kim JS, Jin YB, Huh JW, Lee SR, Lee JH, Kim SU. Comparative Evaluation of Hormones and Hormone-Like Molecule in Lineage Specification of Human Induced Pluripotent Stem Cells. Int J Stem Cells 2019; 12:240-250. [PMID: 31242719 PMCID: PMC6657937 DOI: 10.15283/ijsc18137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/10/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Proficient differentiation of human pluripotent stem cells (hPSCs) into specific lineages is required for applications in regenerative medicine. A growing amount of evidences had implicated hormones and hormone-like molecules as critical regulators of proliferation and lineage specification during in vivo development. Therefore, a deeper understanding of the hormones and hormone-like molecules involved in cell fate decisions is critical for efficient and controlled differentiation of hPSCs into specific lineages. Thus, we functionally and quantitatively compared the effects of diverse hormones (estradiol 17-β (E2), progesterone (P4), and dexamethasone (DM)) and a hormone-like molecule (retinoic acid (RA)) on the regulation of hematopoietic and neural lineage specification. Methods and Results We used 10 nM E2, 3 µM P4, 10 nM DM, and 10 nM RA based on their functional in vivo developmental potential. The sex hormone E2 enhanced functional activity of hematopoietic progenitors compared to P4 and DM, whereas RA impaired hematopoietic differentiation. In addition, E2 increased CD34+CD45+ cells with progenitor functions, even in the CD43- population, a well-known hemogenic marker. RA exhibited lineage-biased potential, preferentially committing hPSCs toward the neural lineage while restricting the hematopoietic fate decision. Conclusions Our findings reveal unique cell fate potentials of E2 and RA treatment and provide valuable differentiation information that is essential for hPSC applications.
Collapse
Affiliation(s)
- Seon-A Choi
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Ju-Hyun An
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Seung Hwan Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Geun-Hui Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Jae-Jin Cha
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Sanghoon Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Ji-Su Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.,Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Yeung Bae Jin
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Jae-Won Huh
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jong-Hee Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
17
|
Komrokji RS, Al Ali NH, Padron E, Cogle C, Tinsley S, Sallman D, Lancet JE, Lis AF. Lenalidomide and Prednisone in Low and Intermediate-1 IPSS Risk, Non-Del(5q) Patients With Myelodysplastic Syndromes: Phase 2 Clinical Trial. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:251-254. [DOI: 10.1016/j.clml.2018.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 11/15/2022]
|
18
|
Li H, Natarajan A, Ezike J, Barrasa MI, Le Y, Feder ZA, Yang H, Ma C, Markoulaki S, Lodish HF. Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production. Dev Cell 2019; 49:118-129.e7. [PMID: 30827895 DOI: 10.1016/j.devcel.2019.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
Abstract
The nature of cell-state transitions during the transit-amplifying phases of many developmental processes-hematopoiesis in particular-is unclear. Here, we use single-cell RNA sequencing to demonstrate a continuum of transcriptomic states in committed transit-amplifying erythropoietic progenitors, which correlates with a continuum of proliferative potentials in these cells. We show that glucocorticoids enhance erythrocyte production by slowing the rate of progression through this developmental continuum of transit-amplifying progenitors, permitting more cell divisions prior to terminal erythroid differentiation. Mechanistically, glucocorticoids prolong expression of genes that antagonize and slow induction of genes that drive terminal erythroid differentiation. Erythroid progenitor daughter cell pairs have similar transcriptomes with or without glucocorticoid stimulation, indicating largely symmetric cell division. Thus, the rate of progression along a developmental continuum dictates the absolute number of erythroid cells generated from each transit-amplifying progenitor, suggesting a paradigm for regulating the total output of differentiated cells in numerous other developmental processes.
Collapse
Affiliation(s)
- Hojun Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Natarajan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jideofor Ezike
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Yenthanh Le
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zoë A Feder
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Huan Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Clement Ma
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | | | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
20
|
Götze KS, Platzbecker U. Old Dogs, New Tricks: Revisiting Immune Modulatory Approaches for Myelodysplastic Syndromes. Hemasphere 2018; 2:e162. [PMID: 31723800 PMCID: PMC6745963 DOI: 10.1097/hs9.0000000000000162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/17/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Katharina S. Götze
- Department of Medicine III, Technische Universität München, Munich, Germany
- Deutsche MDS Gruppe (D-MDS)
- German Cancer Consortium (DKTK) and German Cancer Center (DKFZ) Germany, Partner site Munich
| | - Uwe Platzbecker
- Deutsche MDS Gruppe (D-MDS)
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
- EHA-SWG on MDS and EMSCO (www.emsco.eu)
| |
Collapse
|
21
|
Fink EC, McConkey M, Adams DN, Haldar SD, Kennedy JA, Guirguis AA, Udeshi ND, Mani DR, Chen M, Liddicoat B, Svinkina T, Nguyen AT, Carr SA, Ebert BL. Crbn I391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 2018; 132:1535-1544. [PMID: 30064974 PMCID: PMC6172563 DOI: 10.1182/blood-2018-05-852798] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022] Open
Abstract
Thalidomide and its derivatives, lenalidomide and pomalidomide, are clinically effective treatments for multiple myeloma and myelodysplastic syndrome with del(5q). These molecules lack activity in murine models, limiting investigation of their therapeutic activity or toxicity in vivo. Here, we report the development of a mouse model that is sensitive to thalidomide derivatives because of a single amino acid change in the direct target of thalidomide derivatives, cereblon (Crbn). In human cells, thalidomide and its analogs bind CRBN and recruit protein targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and subsequent degradation by the proteasome. We show that mice with a single I391V amino acid change in Crbn exhibit thalidomide-induced degradation of drug targets previously identified in human cells, including Ikaros (Ikzf1), Aiolos (Ikzf3), Zfp91, and casein kinase 1a1 (Ck1α), both in vitro and in vivo. We use the Crbn I391V model to demonstrate that the in vivo therapeutic activity of lenalidomide in del(5q) myelodysplastic syndrome can be explained by heterozygous expression of Ck1α in del(5q) cells. We found that lenalidomide acts on hematopoietic stem cells with heterozygous expression of Ck1α and inactivation of Trp53 causes lenalidomide resistance. We further demonstrate that Crbn I391V is sufficient to confer thalidomide-induced fetal loss in mice, capturing a major toxicity of this class of drugs. Further study of the Crbn I391V model will provide valuable insights into the in vivo efficacy and toxicity of this class of drugs.
Collapse
Affiliation(s)
- Emma C Fink
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | - Dylan N Adams
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | - Saurav D Haldar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | - James A Kennedy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Andrew A Guirguis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | | | - D R Mani
- Proteomics Platform, Broad Institute, Cambridge, MA
| | - Michelle Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | - Brian Liddicoat
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | | | - Andrew T Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| | | | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Division of Medicine, Brigham and Women's Hospital, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| |
Collapse
|
22
|
Jonasova A, Neuwirtova R, Polackova H, Siskova M, Stopka T, Cmunt E, Belickova M, Moudra A, Minarik L, Fuchs O, Michalova K, Zemanova Z. Lenalidomide treatment in lower risk myelodysplastic syndromes-The experience of a Czech hematology center. (Positive effect of erythropoietin ± prednisone addition to lenalidomide in refractory or relapsed patients). Leuk Res 2018; 69:12-17. [PMID: 29614393 DOI: 10.1016/j.leukres.2018.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
Lenalidomide therapy represents meaningful progress in the treatment of anemic patients with myelodysplastic syndromes with del(5q). We present our initial lenalidomide experience and the positive effect of combining erythropoietin and steroids with lenalidomide in refractory and relapsed patients. We treated by lenalidomide 55 (42 female; 13 male; median age 69) chronically transfused lower risk MDS patients with del(5q) (45) and non-del(5q) (10). Response, meaning transfusion independence (TI) lasting ≥ eight weeks, was achieved in 38 (90%) of analyzed patients with del(5q), of whom three achieved TI only by adding erythropoietin ± prednisone. Another five patients responded well to this combination when their anemia relapsed later during the treatment. In the non-del(5q) group only one patient with RARS-T reached TI. Cytogenetic response was reached in 64% (32% complete, 32% partial response). The TP53 mutation was detected in 7 (18%) patients; four patients progressed to higher grade MDS or acute myeloid leukemia (AML). All seven RAEB-1 patients cleared bone marrow blasts during lenalidomide treatment and reached complete remission (CR); however, three later progressed to higher grade MDS or AML. Lenalidomide represents effective treatment for del(5q) group and combination with prednisone and erythropoietin may be used for non-responders or therapy failures.
Collapse
Affiliation(s)
- Anna Jonasova
- 1st Department of Medicine and Biocev, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, U Nemocnice 2, Prague 2, 128 08, Czech Republic.
| | - Radana Neuwirtova
- 1st Department of Medicine and Biocev, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, U Nemocnice 2, Prague 2, 128 08, Czech Republic
| | - Helena Polackova
- 1st Department of Medicine and Biocev, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, U Nemocnice 2, Prague 2, 128 08, Czech Republic
| | - Magda Siskova
- 1st Department of Medicine and Biocev, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, U Nemocnice 2, Prague 2, 128 08, Czech Republic
| | - Tomas Stopka
- 1st Department of Medicine and Biocev, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, U Nemocnice 2, Prague 2, 128 08, Czech Republic
| | - Eduard Cmunt
- 1st Department of Medicine and Biocev, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, U Nemocnice 2, Prague 2, 128 08, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague, Czech Republic
| | - Alena Moudra
- Department of Genome Integrity, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Lubomir Minarik
- 1st Department of Medicine and Biocev, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, U Nemocnice 2, Prague 2, 128 08, Czech Republic
| | - Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague, Czech Republic
| | - Kyra Michalova
- Center of Oncocytogenetic, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 00 Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenetic, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 00 Prague, Czech Republic
| |
Collapse
|
23
|
Abstract
Regulation of gene expression at the level of protein synthesis is a crucial element in driving how the genetic landscape is expressed. However, we are still limited in technologies that can quantitatively capture the immediate proteomic changes that allow cells to respond to specific stimuli. Here, we present a method to capture and identify nascent proteomes in situ across different cell types without disturbing normal growth conditions, using O-propargyl-puromycin (OPP). Cell-permeable OPP rapidly labels nascent elongating polypeptides, which are subsequently conjugated to biotin-azide, using click chemistry, and captured with streptavidin beads, followed by digestion and analysis, using liquid chromatography-tandem mass spectrometry. Our technique of OPP-mediated identification (OPP-ID) allows detection of widespread proteomic changes within a short 2-hour pulse of OPP. We illustrate our technique by recapitulating alterations of proteomic networks induced by a potent mammalian target of rapamycin inhibitor, MLN128. In addition, by employing OPP-ID, we identify more than 2,100 proteins and uncover distinct protein networks underlying early erythroid progenitor and differentiation states not amenable to alternative approaches such as amino acid analog labeling. We present OPP-ID as a method to quantitatively identify nascent proteomes across an array of biological contexts while preserving the subtleties directing signaling in the native cellular environment.
Collapse
|
24
|
Neben CL, Tuzon CT, Mao X, Lay FD, Merrill AE. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet 2018; 26:3253-3270. [PMID: 28595297 DOI: 10.1093/hmg/ddx209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Fibroblast Growth Factor (FGF) signaling promotes self-renewal in progenitor cells by encouraging proliferation and inhibiting cellular senescence. Yet, these beneficial effects can be hijacked by disease-causing mutations in FGF receptor (FGFR) during embryogenesis. By studying dominant FGFR2 mutations that are germline in bent bone dysplasia syndrome (BBDS), we reveal a mechanistic connection between FGFR2, ribosome biogenesis, and cellular stress that links cell fate determination to disease pathology. We previously showed that FGFR2 mutations in BBDS, which amplify nucleolar targeting of FGFR2, activate ribosomal DNA (rDNA) transcription and delay differentiation in osteoprogenitor cells and patient-derived bone. Here we find that the BBDS mutations augment the ability of FGFR2 to recruit histone-remodeling factors that epigenetically activate transcriptionally silent rDNA. Nucleolar morphology is controlled by chromatin structure, and the high levels of euchromatic rDNA induced by the BBDS mutations direct nucleolar disorganization, alter ribosome biogenesis, and activate the Rpl11-Mdm2-p53 nucleolar stress response pathway. Inhibition of p53 in cells expressing the FGFR2 mutations in BBDS rescues delayed osteoblast differentiation, suggesting that p53 activation is an essential pathogenic factor in, and potential therapeutic target for, BBDS. This work establishes rDNA as developmentally regulated loci that receive direct input from FGF signaling to balance self-renewal and cell fate determination.
Collapse
Affiliation(s)
- Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaojing Mao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Poli A, Ratti S, Finelli C, Mongiorgi S, Clissa C, Lonetti A, Cappellini A, Catozzi A, Barraco M, Suh PG, Manzoli L, McCubrey JA, Cocco L, Follo MY. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs). FASEB J 2018; 32:681-692. [PMID: 28970249 DOI: 10.1096/fj.201700690r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PI-PLCβ1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLCβ1 reduces the expression of PKC-α, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLCβ1/PKC-α signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced γ/β-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-α. Moreover, lenalidomide could induce a selective G0/G1 arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLCβ1/PKC-α signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies.-Poli, A., Ratti, S., Finelli, C., Mongiorgi, S., Clissa, C., Lonetti, A., Cappellini, A., Catozzi, A., Barraco, M., Suh, P.-G., Manzoli, L., McCubrey, J. A., Cocco, L., Follo, M. Y. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).
Collapse
Affiliation(s)
- Alessandro Poli
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy.,Istituto Nazionale Genetica Molecolare, Fondazione Romeo e Enrica Invernizzi, Milan, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- L. and E. Seràgnoli Institute of Hematology, Lalla Seràgnoli, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Cristina Clissa
- L. and E. Seràgnoli Institute of Hematology, Lalla Seràgnoli, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.,Hematology and Stem Cell Transplant Center, San Salvatore Hospital, Pesaro, Italy
| | - Annalisa Lonetti
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy.,Lalla Seràgnoli Department of Pediatrics, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social Sciences and Health, University of Cassino, Cassino, Italy
| | - Alessia Catozzi
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Marilena Barraco
- L. and E. Seràgnoli Institute of Hematology, Lalla Seràgnoli, Policlinico Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
|
27
|
Doulatov S, Vo LT, Macari ER, Wahlster L, Kinney MA, Taylor AM, Barragan J, Gupta M, McGrath K, Lee HY, Humphries JM, DeVine A, Narla A, Alter BP, Beggs AH, Agarwal S, Ebert BL, Gazda HT, Lodish HF, Sieff CA, Schlaeger TM, Zon LI, Daley GQ. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci Transl Med 2017; 9:9/376/eaah5645. [PMID: 28179501 DOI: 10.1126/scitranslmed.aah5645] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/10/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.
Collapse
Affiliation(s)
- Sergei Doulatov
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Linda T Vo
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elizabeth R Macari
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Melissa A Kinney
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alison M Taylor
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Barragan
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Manav Gupta
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Katherine McGrath
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hsiang-Ying Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica M Humphries
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alex DeVine
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anupama Narla
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA.,Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alan H Beggs
- Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Benjamin L Ebert
- Harvard Medical School, Boston, MA 02115, USA.,Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hanna T Gazda
- Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Colin A Sieff
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten M Schlaeger
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Leonard I Zon
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA. .,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - George Q Daley
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA. .,Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Manton Center for Orphan Disease Research, Boston, MA 02115, USA
| |
Collapse
|
28
|
Treatment of Severe Refractory Hematuria due to Radiation-Induced Hemorrhagic Cystitis with Dexamethasone. Case Rep Med 2017; 2017:1560363. [PMID: 28713429 PMCID: PMC5497605 DOI: 10.1155/2017/1560363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 01/31/2023] Open
Abstract
Treatment of pelvic neoplasms with radiotherapy may develop sequelae, especially RHC. An 85-year-old male patient was admitted to a hospital emergency with gross hematuria leading to urinary retention and was diagnosed with RHC. The urinary bladder was probed, unobstructed, and maintained in continuous three-way saline irrigation. During 45 days of hospitalization, the patient underwent two cystoscopic procedures for urinary bladder flocculation, whole blood transfusions, and one platelet apheresis. None of these interventions led to clinical resolution. As the patient hematological condition was deteriorating, dexamethasone (4 mg i.v., bolus of 6/6, 12/12, and 24 h during five days) and epoetin alpha (1000 IU, 1 ml, s.c., for four weeks) were administered which led to the remission of the urinary bleeding. Dexamethasone therapy may be considered for RHC, when conventional treatments are not effective or are not possible, avoiding more aggressive interventions such as cystectomy.
Collapse
|
29
|
A case of lenalidomide-dependent myelodysplastic syndrome. Blood Adv 2017; 1:1238-1242. [PMID: 29296763 DOI: 10.1182/bloodadvances.2017006114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
A man with cytopenias, dysplasia, excess blasts, P53 and RUNX1 mutations, and ring chromosome 7 recovered after stopping lenalidomide.
Collapse
|
30
|
Siebenmann C, Robach P, Lundby C. Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol (1985) 2017; 123:957-966. [PMID: 28572493 DOI: 10.1152/japplphysiol.00118.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Humans ascending to high altitude (HA) experience a reduction in arterial oxyhemoglobin saturation and, as a result, arterial O2 content ([Formula: see text]). As HA exposure extends, this reduction in [Formula: see text] is counteracted by an increase in arterial hemoglobin concentration. Initially, hemoconcentration is exclusively related to a reduction in plasma volume (PV), whereas after several weeks a progressive expansion in total red blood cell volume (RCV) contributes, although often to a modest extent. Since the decrease in PV is more rapid and usually more pronounced than the expansion in RCV, at least during the first weeks of exposure, a reduction in circulating blood volume is common at HA. Although the regulation of hematological responses to HA has been investigated for decades, it remains incompletely understood. This is not only related to the large number of mechanisms that could be involved and the complexity of their interplay but also to the difficulty of conducting comprehensive experiments in the often secluded HA environment. In this review, we present our understanding of the kinetics, the mechanisms and the physiological relevance of the HA-induced reduction in PV and expansion in RCV.
Collapse
Affiliation(s)
- Christoph Siebenmann
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Paul Robach
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Carsten Lundby
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
31
|
Dulmovits BM, Hom J, Narla A, Mohandas N, Blanc L. Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis. Curr Opin Hematol 2017; 24:159-166. [PMID: 28099275 PMCID: PMC5518670 DOI: 10.1097/moh.0000000000000328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The erythroid progenitors burst-forming unit-erythroid and colony-forming unit-erythroid have a critical role in erythropoiesis. These cells represent a heterogeneous and poorly characterized population with modifiable self-renewal, proliferation and differentiation capabilities. This review focuses on the current state of erythroid progenitor biology with regard to immunophenotypic identification and regulatory programs. In addition, we will discuss the therapeutic implications of using these erythroid progenitors as pharmacologic targets. RECENT FINDINGS Erythroid progenitors are classically characterized by the appearance of morphologically defined colonies in semisolid cultures. However, these prior systems preclude a more thorough understanding of the composite nature of progenitor populations. Recent studies employing novel flow cytometric and cell-based assays have helped to redefine hematopoiesis, and suggest that erythroid progenitors may arise from different levels of the hematopoietic tree. Moreover, the identification of cell surface marker patterns in human burst-forming unit-erythroid and colony-forming unit-erythroid enhance our ability to perform downstream functional and molecular analyses at the population and single cell level. Advances in these techniques have already revealed novel subpopulations with increased self-renewing capacity, roles for erythroid progenitors in globin gene expression, and insights into pharmacologic mechanisms of glucocorticoids and pomalidomide. SUMMARY Immunophenotypic and molecular characterization resolves the diversity of erythroid progenitors, and may ultimately lead to the ability to target these progenitors to ameliorate diseases of dyserythropoiesis.
Collapse
Affiliation(s)
- Brian M. Dulmovits
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Jimmy Hom
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| | - Anupama Narla
- Stanford University School of Medicine, Department of Pediatric Hematology/Oncology, Stanford, CA
| | - Narla Mohandas
- Red Cell Physiology laboratory, New York Blood Center, New York, NY
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Hofstra Northwell School of Medicine, Department of Molecular Medicine and Pediatrics, Hempstead, NY
| |
Collapse
|
32
|
Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells. Anal Biochem 2016; 509:146-155. [DOI: 10.1016/j.ab.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022]
|
33
|
Wilk CM, Heinzler N, Boquoi A, Cadeddu RP, Strapatsas T, Dienst A, Majidi F, Deenen R, Bruns I, Schroeder T, Köhrer K, Haas R, Kobbe G, Fenk R. Lenalidomide consolidation treatment in patients with multiple myeloma suppresses myelopoieses but spares erythropoiesis. Int J Cancer 2016; 139:2343-52. [PMID: 27389073 DOI: 10.1002/ijc.30257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/07/2016] [Indexed: 12/15/2022]
Abstract
New drugs for the treatment of multiple myeloma (MM) comprise immunomodulatory substances such as lenalidomide and related compounds. While lenalidomide has found its way into first-line treatment as well as into relapse therapy, little is known about lenalidomide effects on normal hematopoietic stem and progenitor cells (HSPCs). In this study, we investigated whether HSPCs are influenced by lenalidomide on a phenotypic, functional and gene expression level. For that purpose, samples from patients with MM were obtained who underwent equivalent first-line treatment including induction therapy, cytotoxic stem cell mobilization and high-dose melphalan therapy followed by autologous blood stem cell transplantation and a subsequent uniform lenalidomide consolidation treatment within a prospective clinical trial. We found that after six months of lenalidomide therapy, the number of CD34(+) HSPCs decreased. Additionally, lenalidomide affects the numerical composition of hematopoietic cells in the bone marrow while it does not affect long-term HSPC proliferation in vitro. We found a significant amplification of fetal hemoglobin (HbF) expression on a transcriptional level and can confirm a stimulated erythropoiesis on a phenotypic level. These effects were accompanied by silencing of the TGF-β signaling pathway on the gene expression and protein level that is known to be amplified in active MM. However, these pleiotropic effects gave no evidence for mutagenic potential. In conclusion, lenalidomide does not exert long-term effects on proliferation of HSPCs but instead promotes erythropoiesis by shifting hemoglobin expression toward HbF and by silencing the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Christian Matthias Wilk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Niklas Heinzler
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Amelie Boquoi
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ron-Patrick Cadeddu
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tobias Strapatsas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Division of Emergency Care, Helios Klinikum Wuppertal, Wuppertal, Germany
| | - Ariane Dienst
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Fatemeh Majidi
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - René Deenen
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ingmar Bruns
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf and Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
34
|
Koury MJ. Tracking erythroid progenitor cells in times of need and times of plenty. Exp Hematol 2016; 44:653-63. [DOI: 10.1016/j.exphem.2015.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/22/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
|
35
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
36
|
Bouchnita A, Eymard N, Moyo TK, Koury MJ, Volpert V. Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis. Am J Hematol 2016; 91:371-8. [PMID: 26749142 DOI: 10.1002/ajh.24291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) infiltrates bone marrow and causes anemia by disrupting erythropoiesis, but the effects of marrow infiltration on anemia are difficult to quantify. Marrow biopsies of newly diagnosed MM patients were analyzed before and after four 28-day cycles of non-erythrotoxic remission induction chemotherapy. Complete blood cell counts and serum paraprotein concentrations were measured at diagnosis and before each chemotherapy cycle. At diagnosis, marrow area infiltrated by myeloma correlated negatively with hemoglobin, erythrocytes, and marrow erythroid cells. After successful chemotherapy, patients with less than 30% myeloma infiltration at diagnosis had no change in these parameters, whereas patients with more than 30% myeloma infiltration at diagnosis increased all three parameters. Clinical data were used to develop mathematical models of the effects of myeloma infiltration on the marrow niches of terminal erythropoiesis, the erythroblastic islands (EBIs). A hybrid discrete-continuous model of erythropoiesis based on EBI structure/function was extended to sections of marrow containing multiple EBIs. In the model, myeloma cells can kill erythroid cells by physically destroying EBIs and by producing proapoptotic cytokines. Following chemotherapy, changes in serum paraproteins as measures of myeloma cells and changes in erythrocyte numbers as measures of marrow erythroid cells allowed modeling of myeloma cell death and erythroid cell recovery, respectively. Simulations of marrow infiltration by myeloma and treatment with non-erythrotoxic chemotherapy demonstrate that myeloma-mediated destruction and subsequent reestablishment of EBIs and expansion of erythroid cell populations in EBIs following chemotherapy provide explanations for anemia development and its therapy-mediated recovery in MM patients.
Collapse
Affiliation(s)
- Anass Bouchnita
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
| | - Nathalie Eymard
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
| | - Tamara K. Moyo
- Division of Hematology/Oncology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Mark J. Koury
- Division of Hematology/Oncology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
- INRIA Team Dracula, INRIA Antenne Lyon La Doua, Villeurbanne 69603, France, and European Institute of Systems Biology and Medicine; Lyon 69007 France
| |
Collapse
|
37
|
Yang Z, Keel SB, Shimamura A, Liu L, Gerds AT, Li HY, Wood BL, Scott BL, Abkowitz JL. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci Transl Med 2016; 8:338ra67. [PMID: 27169803 PMCID: PMC5010382 DOI: 10.1126/scitranslmed.aaf3006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Diamond Blackfan anemia (DBA) and myelodysplastic syndrome (MDS) with isolated del(5q) are severe macrocytic anemias; although both are associated with impaired ribosome assembly, why the anemia occurs is not known. We cultured marrow cells from DBA (n = 3) and del(5q) MDS (n = 6) patients and determined how heme (a toxic chemical) and globin (a protein) are coordinated. We show that globin translation initiates slowly, whereas heme synthesis proceeds normally. This results in insufficient globin protein, excess heme and excess reactive oxygen species in early erythroid precursors, and CFU-E (colony-forming unit-erythroid)/proerythroblast cell death. The cells that can more rapidly and effectively export heme or can slow heme synthesis preferentially survive and appropriately mature. Consistent with these observations, treatment with 10 μM succinylacetone, a specific inhibitor of heme synthesis, improved the erythroid cell output of DBA and del(5q) MDS marrow cultures by 68 to 95% (P = 0.03 to 0.05), whereas the erythroid cell output of concurrent control marrow cultures decreased by 4 to 13%. Our studies demonstrate that erythropoiesis fails when heme exceeds globin. Our data further suggest that therapies that decrease heme synthesis (or facilitate heme export) could improve the red blood cell production of persons with DBA, del(5q) MDS, and perhaps other macrocytic anemias.
Collapse
Affiliation(s)
- Zhantao Yang
- University of Washington, Seattle, WA 98195, USA
| | | | - Akiko Shimamura
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Li Liu
- University of Washington, Seattle, WA 98195, USA
| | - Aaron T Gerds
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Brent L Wood
- University of Washington, Seattle, WA 98195, USA
| | - Bart L Scott
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
38
|
Toma A, Kosmider O, Chevret S, Delaunay J, Stamatoullas A, Rose C, Beyne-Rauzy O, Banos A, Guerci-Bresler A, Wickenhauser S, Caillot D, Laribi K, De Renzis B, Bordessoule D, Gardin C, Slama B, Sanhes L, Gruson B, Cony-Makhoul P, Chouffi B, Salanoubat C, Benramdane R, Legros L, Wattel E, Tertian G, Bouabdallah K, Guilhot F, Taksin AL, Cheze S, Maloum K, Nimuboma S, Soussain C, Isnard F, Gyan E, Petit R, Lejeune J, Sardnal V, Renneville A, Preudhomme C, Fontenay M, Fenaux P, Dreyfus F. Lenalidomide with or without erythropoietin in transfusion-dependent erythropoiesis-stimulating agent-refractory lower-risk MDS without 5q deletion. Leukemia 2015; 30:897-905. [PMID: 26500139 DOI: 10.1038/leu.2015.296] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 01/01/2023]
Abstract
After failure of erythropoiesis-stimulating agents (ESAs), lenalidomide (LEN) yields red blood cell (RBC) transfusion independence (TI) in 20-30% of lower-risk non-del5q myelodysplastic syndrome (MDS). Several observations suggest an additive effect of ESA and LEN in this situation. We performed a randomized phase III study in 131 RBC transfusion-dependent (TD, median transfusion requirement six RBC units per 8 weeks) lower-risk ESA-refractory non-del5q MDS. Patients received LEN alone, 10 mg per day, 21 days per 4 weeks (L arm) or LEN (same schedule) + erythropoietin (EPO) beta, 60,000 U per week (LE arm). In an intent-to-treat (ITT) analysis, erythroid response (HI-E, IWG 2006 criteria) after four treatment cycles (primary end point) was 23.1% (95% CI 13.5-35.2) in the L arm and 39.4% (95% CI 27.6-52.2) in the LE arm (P=0.044), while RBC-TI was reached in 13.8 and 24.2% of the patients in the L and LE arms, respectively (P=0.13). Median response duration was 18.1 and 15.1 months in the L and LE arms, respectively (P=0.47). Side effects were moderate and similar in the two arms. Low baseline serum EPO level and a G polymorphism of CRBN gene predicted HI-E. Combining LEN and EPO significantly improves erythroid response over LEN alone in lower-risk non-del5q MDS patients with anemia resistant to ESA.
Collapse
Affiliation(s)
- A Toma
- Department of Hematology, Hopital Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (APHP) and Paris 12 University, Creteil, France
| | - O Kosmider
- Assistance Publique-Hopitaux de Paris, Hopital Cochin, Laboratory of Hematology and Paris Descartes University, Paris, France
| | - S Chevret
- Biostatistics Team (ECSTRA), UMR1153, Inserm, Hopital Saint Louis, APHP and Paris 7 University, Paris, France
| | - J Delaunay
- Department of Hematology, Centre Hospitalier Universitaire, Nantes, France
| | - A Stamatoullas
- Department of Hematology, Centre Henri Becquerel, Rouen, France
| | - C Rose
- Department of Hematology, Hopital Saint Vincent de Paul, Lomme, France
| | - O Beyne-Rauzy
- Department of Hematology, Centre Hospitalier Universitaire, Purpan, France
| | - A Banos
- Department of Hematology, Centre Hospitalier Universitaire, Strasbourg, France
| | - A Guerci-Bresler
- Department of Hematology, Centre Hospitalier Universitaire, Nancy, France
| | - S Wickenhauser
- Department of Hematology, Centre Hospitalier Universitaire, Nimes, France
| | - D Caillot
- Department of Hematology, Centre Hospitalier Universitaire, Dijon, France
| | - K Laribi
- Department of Hematology, Centre Hospitalier, Le Mans, France
| | - B De Renzis
- Department of Hematology, Centre Hospitalier Universitaire, Clermont Ferrand, France
| | - D Bordessoule
- Department of Hematology, Centre Hospitalier Universitaire, Limoges, France
| | - C Gardin
- Department of Hematology, Hopital Avicenne, APHP, and Paris 13 University Bobigny, Bobigny, France
| | - B Slama
- Department of Hematology, Centre Hospitalier, Avignon, France
| | - L Sanhes
- Department of Hematology, Centre Hospitalier, Perpignan, France
| | - B Gruson
- Department of Hematology, Hopital Universitaire Amiens, Amiens, France
| | - P Cony-Makhoul
- Department of Hematology, Centre Hospitalier Annecy-Genevois, Prigny, France
| | - B Chouffi
- Department of Hematology, Centre Hospitalier, Boulogne sur Mer, France
| | - C Salanoubat
- Department of Hematology, Centre Hospitalier, Corbeil, France
| | - R Benramdane
- Department of Hematology, Centre Hospitalier, Pontoise, France
| | - L Legros
- Department of Hematology, Centre Hospitalier Universitaire, Nice, France
| | - E Wattel
- Department of Hematology, Centre Hospitalier Edouard Herriot, Lyon, France
| | - G Tertian
- Department of Hematology, Hopital Kremlin Bicetre, APHP, Kremlin Bicetre, France
| | - K Bouabdallah
- Department of Hematology, Centre Hospitalier Universitaire, Bordeaux, France
| | - F Guilhot
- Department of Hematology, Centre Hospitalier Jean Bernard, Poitiers, France
| | - A L Taksin
- Department of Hematology, Centre Hospitalier, Versailles, France
| | - S Cheze
- Department of Hematology, Centre Hospitalier Universitaire, Caen, France
| | - K Maloum
- Department of Hematology, Hopital Pitie Salpetriere, APHP and Paris 6 University Paris, Paris, France
| | - S Nimuboma
- Department of Hematology, Centre Hospitalier Universitaire, Rennes, France
| | - C Soussain
- Department of Oncology, Centre Rene Huguenin, Saint Cloud, France
| | - F Isnard
- Department of Hematology, Hopital Saint Antoine, APHP, and Paris 6 University Paris, Paris, France
| | - E Gyan
- Department of Hematology, Centre Hospitalier Universitaire, Tours, France
| | - R Petit
- Departement de Recherche Clinique, Hopital Saint Louis, APHP, Paris, France
| | - J Lejeune
- Biostatistics Team (ECSTRA), UMR1153, Inserm, Hopital Saint Louis, APHP and Paris 7 University, Paris, France
| | - V Sardnal
- Assistance Publique-Hopitaux de Paris, Hopital Cochin, Laboratory of Hematology and Paris Descartes University, Paris, France
| | - A Renneville
- Department of Biology, Centre Hospitalier Universitaire, Lille, France
| | - C Preudhomme
- Department of Biology, Centre Hospitalier Universitaire, Lille, France
| | - M Fontenay
- Assistance Publique-Hopitaux de Paris, Hopital Cochin, Laboratory of Hematology and Paris Descartes University, Paris, France
| | - P Fenaux
- Department of Hematology, Service Hematologie Seniors, Hopital Saint Louis, APHP, and Paris 7 University Paris, Paris, France
| | - F Dreyfus
- Department of Hematology, Hopital Cochin, APHP, and Paris 5 University Paris, Paris, France
| |
Collapse
|
39
|
Sjögren SE, Siva K, Soneji S, George AJ, Winkler M, Jaako P, Wlodarski M, Karlsson S, Hannan RD, Flygare J. Glucocorticoids improve erythroid progenitor maintenance and dampen Trp53 response in a mouse model of Diamond-Blackfan anaemia. Br J Haematol 2015; 171:517-29. [PMID: 26305041 PMCID: PMC5014181 DOI: 10.1111/bjh.13632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
Abstract
Diamond-Blackfan anaemia (DBA) is a rare congenital disease causing severe anaemia and progressive bone marrow failure. The majority of patients carry mutations in ribosomal proteins, which leads to depletion of erythroid progenitors in the bone marrow. As many as 40% of all DBA patients receive glucocorticoids to alleviate their anaemia. However, despite their use in DBA treatment for more than half a century, the therapeutic mechanisms of glucocorticoids remain largely unknown. Therefore we sought to study disease specific effects of glucocorticoid treatment using a ribosomal protein s19 (Rps19) deficient mouse model of DBA. This study determines for the first time that a mouse model of DBA can respond to glucocorticoid treatment, similar to DBA patients. Our results demonstrate that glucocorticoid treatment reduces apoptosis, rescues erythroid progenitor depletion and premature differentiation of erythroid cells. Furthermore, glucocorticoids prevent Trp53 activation in Rps19-deficient cells- in a disease-specific manner. Dissecting the therapeutic mechanisms behind glucocorticoid treatment of DBA provides indispensible insight into DBA pathogenesis. Identifying mechanisms important for DBA treatment also enables development of more disease-specific treatments of DBA.
Collapse
Affiliation(s)
- Sara E Sjögren
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Kavitha Siva
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Shamit Soneji
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Amee J George
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Marcus Winkler
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Pekka Jaako
- Lund Stem Cell Centre, Lund University, Lund, Sweden.,Division of Molecular Haematology, Lund University, Lund, Sweden
| | - Marcin Wlodarski
- Division of Paediatric Haematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Stefan Karlsson
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden.,Lund Stem Cell Centre, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Loiseau C, Ali A, Itzykson R. New therapeutic approaches in myelodysplastic syndromes: Hypomethylating agents and lenalidomide. Exp Hematol 2015; 43:661-72. [PMID: 26123365 DOI: 10.1016/j.exphem.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/17/2023]
Abstract
Recent advances in the treatment of myelodysplastic syndromes have come from the use of the hypomethylating agents decitabine and azacitidine as well as the immunomodulatory drug lenalidomide. Their clinical benefit has been demonstrated by randomized phase III clinical trials, mostly in high-risk and del(5q) myelodysplastic syndromes, respectively. Neither drug, however, appears to eradicate myelodysplastic stem cells, and thus they currently do not represent curative options. Here, we review data from both clinical and translational research on those drugs to identify their molecular and cellular mechanisms of action and to delineate paths for improved treatment allocation and further therapeutic advances in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Clémence Loiseau
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France
| | - Ashfaq Ali
- Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France
| | - Raphael Itzykson
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France; Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France.
| |
Collapse
|
41
|
Elucidation of the EP defect in Diamond-Blackfan anemia by characterization and prospective isolation of human EPs. Blood 2015; 125:2553-7. [PMID: 25755292 DOI: 10.1182/blood-2014-10-608042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/25/2015] [Indexed: 01/19/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a disorder characterized by a selective defect in erythropoiesis. Delineation of the precise defect is hampered by a lack of markers that define cells giving rise to erythroid burst- and erythroid colony-forming unit (BFU-E and CFU-E) colonies, the clonogenic assays that quantify early and late erythroid progenitor (EEP and LEP) potential, respectively. By combining flow cytometry, cell-sorting, and single-cell clonogenic assays, we identified Lin(-)CD34(+)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(-)CD36(-) bone marrow cells as EEP giving rise to BFU-E, and Lin(-)CD34(+/-)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(+)CD36(+) cells as LEP giving rise to CFU-E, in a hierarchical fashion. We then applied these definitions to DBA and identified that, compared with controls, frequency, and clonogenicity of DBA, EEP and LEP are significantly decreased in transfusion-dependent but restored in corticosteroid-responsive patients. Thus, both quantitative and qualitative defects in erythroid progenitor (EP) contribute to defective erythropoiesis in DBA. Prospective isolation of defined EPs will facilitate more incisive study of normal and aberrant erythropoiesis.
Collapse
|
42
|
Abou Zahr A, Saad Aldin E, Komrokji RS, Zeidan AM. Clinical utility of lenalidomide in the treatment of myelodysplastic syndromes. J Blood Med 2014; 6:1-16. [PMID: 25565910 PMCID: PMC4278786 DOI: 10.2147/jbm.s50482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of acquired clonal hematopoietic disorders characterized by peripheral blood cytopenias, paradoxical BM hypercellularity, ineffective hematopoiesis, and increased risk of leukemic transformation. Risk stratification, using different prognostic scores and markers, is at the core of MDS management. Deletion 5q [del(5q)] MDS is a distinct class of MDS characterized by the haploinsufficiency of specific genes, microRNAs, and proteins, which has been linked to increased sensitivity to the drug lenalidomide. Phase II and III clinical trials have demonstrated the efficacy of lenalidomide in improving clinical outcomes of patients with del(5q) MDS, including reduction in red blood cell transfusion requirements and improvements in quality of life. Lenalidomide has also demonstrated some activity in non-del(5q) lower-risk MDS as well as higher-risk MDS, especially in combination with other agents. In this paper, we review the pathogenesis of del(5q) MDS, the proposed mechanisms of action of lenalidomide, the major clinical trials that documented the activity of lenalidomide in different MDS populations, potential predictors of benefit from the drug and suggested mechanisms of resistance, and the use of combination strategies to expand the clinical utility of lenalidomide in MDS.
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- Section of Hematology/Oncology, Department of Internal Medicine, Mount Sinai Beth Israel, New York City, New York, NY, USA
| | - Ehab Saad Aldin
- Department of Internal Medicine, Medstar Good Samaritan Hospital, Baltimore, MD, USA
| | - Rami S Komrokji
- Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
43
|
McGraw KL, Basiorka AA, Johnson JO, Clark J, Caceres G, Padron E, Heaton R, Ozawa Y, Wei S, Sokol L, List AF. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors. PLoS One 2014; 9:e114249. [PMID: 25469886 PMCID: PMC4254997 DOI: 10.1371/journal.pone.0114249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023] Open
Abstract
Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.
Collapse
Affiliation(s)
- Kathy L. McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
| | - Ashley A. Basiorka
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center-Cancer Biology Ph.D. Program, University of South Florida, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Joseph O. Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Justine Clark
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
| | - Gisela Caceres
- Morsani Molecular Diagnostic Laboratory, H. Lee Moffitt Cancer Center, 10902 N. McKinley Drive, Tampa, FL, 33612, United States of America
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
| | - Ruth Heaton
- Department of Pathology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, United States of America
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, 3-35 Michishita-cho, Nakamura-ku, Aichi, 453-8511, Japan
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive Tampa, FL, 33612, United States of America
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
| | - Alan F. List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ruggero D, Shimamura A. Marrow failure: a window into ribosome biology. Blood 2014; 124:2784-92. [PMID: 25237201 PMCID: PMC4215310 DOI: 10.1182/blood-2014-04-526301] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022] Open
Abstract
Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita are inherited syndromes characterized by marrow failure, congenital anomalies, and cancer predisposition. Genetic and molecular studies have uncovered distinct abnormalities in ribosome biogenesis underlying each of these 3 disorders. How defects in ribosomes, the essential organelles required for protein biosynthesis in all cells, cause tissue-specific abnormalities in human disease remains a question of fundamental scientific and medical importance. Here we review the overlapping and distinct clinical features of these 3 syndromes and discuss current knowledge regarding the ribosomal pathways disrupted in each of these disorders. We also explore the increasing complexity of ribosome biology and how this informs our understanding of developmental biology and human disease.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Akiko Shimamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Pediatric Hematology/Oncology, Seattle Children's Hospital, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
45
|
Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. Ribosomopathies: mechanisms of disease. PLASMATOLOGY 2014; 7:7-16. [PMID: 25512719 PMCID: PMC4251057 DOI: 10.4137/cmbd.s16952] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 01/05/2023]
Abstract
Ribosomopathies are diseases caused by alterations in the structure or function of ribosomal components. Progress in our understanding of the role of the ribosome in translational and transcriptional regulation has clarified the mechanisms of the ribosomopathies and the relationship between ribosomal dysfunction and other diseases, especially cancer. This review aims to discuss these topics with updated information.
Collapse
Affiliation(s)
- Hani Nakhoul
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Jiangwei Ke
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA. ; Department of Laboratory Medicine, Jiangxi Children's Hospital, Nanchang, Jiangxi, China
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Cancer Center, Tulane University, School of Medicine, New Orleans, Louisiana, LA, USA
| |
Collapse
|
46
|
Fauzi I, Panoskaltsis N, Mantalaris A. Early exposure of murine embryonic stem cells to hematopoietic cytokines differentially directs definitive erythropoiesis and cardiomyogenesis in alginate hydrogel three-dimensional cultures. Stem Cells Dev 2014; 23:2720-9. [PMID: 24926614 DOI: 10.1089/scd.2014.0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
HepG2-conditioned medium (CM) facilitates early differentiation of murine embryonic stem cells (mESCs) into hematopoietic cells in two-dimensional cultures through formation of embryoid-like colonies (ELCs), bypassing embryoid body (EB) formation. We now demonstrate that three-dimensional (3D) cultures of alginate-encapsulated mESCs cultured in a rotating wall vessel bioreactor can be differentially driven toward definitive erythropoiesis and cardiomyogenesis in the absence of ELC formation. Three groups were evaluated: mESCs in maintenance medium with leukemia inhibitory factor (LIF, control) and mESCs cultured with HepG2 CM (CM1 and CM2). Control and CM1 groups were cultivated for 8 days in early differentiation medium with murine stem cell factor (mSCF) followed by 10 days in hematopoietic differentiation medium (HDM) containing human erythropoietin, m-interleukin (mIL)-3, and mSCF. CM2 cells were cultured for 18 days in HDM, bypassing early differentiation. In CM1, a fivefold expansion of hematopoietic colonies was observed at day 14, with enhancement of erythroid progenitors, hematopoietic genes (Gata-2 and SCL), erythroid genes (EKLF and β-major globin), and proteins (Gata-1 and β-globin), although ζ-globin was not expressed. In contrast, CM2 primarily produced beating colonies in standard hematopoietic colony assay and expressed early cardiomyogenic markers, anti-sarcomeric α-actinin and Gata-4. In conclusion, a scalable, automatable, integrated, 3D bioprocess for the differentiation of mESC toward definitive erythroblasts has been established. Interestingly, cardiomyogenesis was also directed in a specific protocol with HepG2 CM and hematopoietic cytokines making this platform a useful tool for the study of erythroid and cardiomyogenic development.
Collapse
Affiliation(s)
- Iliana Fauzi
- 1 Biological Systems Engineering Laboratory , Department of Chemical Engineering and Chemical Technology, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
47
|
Xie X, Li Y, Pei X. From stem cells to red blood cells: how far away from the clinical application? SCIENCE CHINA-LIFE SCIENCES 2014; 57:581-5. [PMID: 24829108 DOI: 10.1007/s11427-014-4667-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/05/2014] [Indexed: 12/23/2022]
Abstract
The generation of red blood cells (RBCs) from stem cells provides a solution for deficiencies in blood transfusion. Currently, primary hematopoietic stem cells, embryonic stem cells and induced pluripotent stem cells have shown the potential to produce fully mature RBCs. Here, we discuss the advantages, induction protocols, progress and possible clinical applications of stem cells in RBC production.
Collapse
Affiliation(s)
- XiaoYan Xie
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850, China
| | | | | |
Collapse
|
48
|
Mason PJ, Perdigones N, Bessler M. Using induced human pluripotent stem cells to study Diamond-Blackfan anemia: an outlook on the clinical possibilities. Expert Rev Hematol 2013; 6:627-9. [PMID: 24219546 DOI: 10.1586/17474086.2013.859521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philip J Mason
- Department of Pediatrics, Comprehensive Bone Marrow Failure Center, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
TP53 suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients. Proc Natl Acad Sci U S A 2013; 110:16127-32. [PMID: 24043769 DOI: 10.1073/pnas.1311055110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stabilization of p53 in erythroid precursors in response to nucleosomal stress underlies the hypoplastic anemia in myelodysplastic syndromes (MDS) with chromosome 5q deletion [del(5q)]. We investigated whether cenersen, a clinically active 20-mer antisense oligonucleotide complementary to TP53 exon10, could suppress p53 expression and restore erythropoiesis in del(5q) MDS. Cenersen treatment of ribosomal protein S-14-deficient erythroblasts significantly reduced cellular p53 and p53-up-regulated modulator of apoptosis expression compared with controls, accompanied by a significant reduction in apoptosis and increased cell proliferation. In a two-stage erythroid differentiation assay, cenersen significantly suppressed nuclear p53 in bone marrow CD34+ cells isolated from patients with del(5q) MDS, whereas erythroid burst recovery increased proportionally to the magnitude of p53 suppression without evidence of del(5q) clonal suppression (r = -0.6; P = 0.005). To explore the effect of p53 suppression on erythropoiesis in vivo, dexamethasone, a glucocorticoid receptor-dependent p53 antagonist, was added to lenalidomide treatment in eight lower-risk, transfusion-dependent, del(5q) MDS patients with acquired drug resistance. Transfusion independence was restored in five patients accompanied by expansion of erythroid precursors and decreased cellular p53 expression. We conclude that targeted suppression of p53 could support effective erythropoiesis in lenalidomide-resistant del(5q) MDS.
Collapse
|
50
|
Giagounidis A, Mufti GJ, Fenaux P, Germing U, List A, MacBeth KJ. Lenalidomide as a disease-modifying agent in patients with del(5q) myelodysplastic syndromes: linking mechanism of action to clinical outcomes. Ann Hematol 2013; 93:1-11. [PMID: 24018623 PMCID: PMC3889654 DOI: 10.1007/s00277-013-1863-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/23/2013] [Indexed: 12/01/2022]
Abstract
Deletion of the long arm of chromosome 5, del(5q), is the most prevalent cytogenetic abnormality in patients with myelodysplastic syndromes (MDS). In isolation, it is traditionally associated with favorable prognosis compared with other subtypes of MDS. However, owing to the inherent heterogeneity of the disease, prognosis for patients with del(5q) MDS is highly variable depending on the presence of factors such as additional chromosomal abnormalities, >5 % blasts in the bone marrow (BM), or transfusion dependence. Over recent years, the immunomodulatory drug lenalidomide has demonstrated remarkable efficacy in patients with del(5q) MDS. Advances in the understanding of the pathogenesis of the disease have suggested that lenalidomide targets aberrant signaling pathways caused by haplosufficiency of specific genes in a commonly deleted region on chromosome 5 (e.g., SPARC, RPS14, Cdc25C, and PP2A). As a result, the agent specifically targets del(5q) clones while also promoting erythropoiesis and repopulation of the bone marrow in normal cells. This review discusses recent developments in the understanding of the mechanism of action of lenalidomide, and how this underlies favorable outcomes in patients with del(5q) MDS. In addition, we discuss how improved understanding of the mechanism of disease will facilitate clinicians’ ability to predict/monitor response and identify patients at risk of relapse.
Collapse
|