1
|
Ogunmolasuyi AM, Adewoyin MA. Microfluidic device: A versatile biosensor platform to multiplex aptamer-based detection of malaria biomarkers. Cell Biochem Funct 2024; 42:e4104. [PMID: 39118353 DOI: 10.1002/cbf.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Plasmodium falciparum malaria remains a dominant infectious disease that affects Africa than the rest of the world, considering its associated cases and death rates. It's a febrile illness that produces several reliable biomarkers, for example, P. falciparum lactate dehydrogenase (PfLDH), P. falciparum Plasmodium glutamate dehydrogenase (PfGDH), and P. falciparum histidine-rich proteins (HRP-II) in blood circulatory system that can easily be employed as targets in rapid diagnostic tests (RDTs). In recent times, several DNA aptamers have been developed via SELEX technology to detect some specific malaria biomarkers (PfLDH, PvLDH, HRP-II, PfGDH) in a biosensor mode with good binding affinity properties to overcome the trend of cross-reactivity, limited sensitivity and stability problems that have been observed with immunodiagnostics. In this review, we summarized existing diagnostic methods and relevant biomarkers to suggest promising approaches to develop sensitive and species-specific multiplexed diagnostic devices enabling effective detection of malaria in complex biological matrices and surveillance in the endemic region.
Collapse
Affiliation(s)
| | - Mary A Adewoyin
- Department of Biological Sciences, Anchor University, Lagos, Nigeria
| |
Collapse
|
2
|
Li N, Hao R, Ren P, Wang J, Dong J, Ye T, Zhao D, Qiao X, Meng Z, Gan H, Liu S, Sun Y, Dou G, Gu R. Glycosaminoglycans: Participants in Microvascular Coagulation of Sepsis. Thromb Haemost 2024; 124:599-612. [PMID: 38242171 PMCID: PMC11199054 DOI: 10.1055/a-2250-3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.
Collapse
Affiliation(s)
- Nanxi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolin Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Tong Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Danyang Zhao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Xuan Qiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| |
Collapse
|
3
|
Nguyen ST, Du D, Wychrij D, Cain MD, Wu Q, Klein RS, Russo I, Goldberg DE. Histidine-rich protein II nanoparticle delivery of heme iron load drives endothelial inflammation in cerebral malaria. Proc Natl Acad Sci U S A 2023; 120:e2306318120. [PMID: 37307435 PMCID: PMC10293821 DOI: 10.1073/pnas.2306318120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Histidine-rich protein II (HRPII) is secreted by Plasmodium falciparum during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models. We have discovered an important mechanism for BBB disruption that is driven by unique features of HRPII. By characterizing serum from infected patients and HRPII produced by P. falciparum parasites in culture, we found that HRPII exists in large multimeric particles of 14 polypeptides that are richly laden with up to 700 hemes per particle. Heme loading of HRPII is required for efficient binding and internalization via caveolin-mediated endocytosis in hCMEC/D3 cerebral microvascular endothelial cells. Upon acidification of endolysosomes, two-thirds of the hemes are released from acid-labile binding sites and metabolized by heme oxygenase 1, generating ferric iron and reactive oxygen species. Subsequent activation of the NLRP3 inflammasome and IL-1β secretion resulted in endothelial leakage. Inhibition of these pathways with heme sequestration, iron chelation, or anti-inflammatory drugs protected the integrity of the BBB culture model from HRPII:heme. Increased cerebral vascular permeability was seen after injection of young mice with heme-loaded HRPII (HRPII:heme) but not with heme-depleted HRPII. We propose that during severe malaria infection, HRPII:heme nanoparticles in the bloodstream deliver an overwhelming iron load to endothelial cells to cause vascular inflammation and edema. Disrupting this process is an opportunity for targeted adjunctive therapies to reduce the morbidity and mortality of cerebral malaria.
Collapse
Affiliation(s)
- Suong T. Nguyen
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Du
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Wychrij
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Matthew D. Cain
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Qingping Wu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Ilaria Russo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
4
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Antithrombin protects against Plasmodium falciparum histidine-rich protein II-mediated inflammation and coagulation. Blood Adv 2021; 6:931-945. [PMID: 34768285 PMCID: PMC8945290 DOI: 10.1182/bloodadvances.2021005836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum (Pf)-derived histidine-rich protein II (HRPII) has been shown to inhibit heparin-dependent anticoagulant activity of antithrombin (AT) and induce inflammation in vitro and in vivo. In a recent study, we showed that HRPII interacts with the AT-binding vascular glycosaminoglycans (GAGs) to not only disrupt the barrier-permeability function of endothelial cells but also inhibit the anti-inflammatory signaling function of AT. Here we investigated the mechanisms of the pro-inflammatory function of HRPII and the protective activity of AT in cellular and animal models. We found that AT competitively inhibits the GAG-dependent HRPII-mediated activation of NF-κB and expression of intercellular cell adhesion molecule 1 (ICAM1) in endothelial cells. Furthermore, AT inhibits HRPII-mediated histone H3 citrullination and neutrophil extracellular trap (NET) formation in HL60 cells and freshly isolated human neutrophils. In vivo, HRPII induced Mac1 expression on blood neutrophils, MPO release in plasma, neutrophil infiltration and histone H3 citrullination in the lung tissues. HRPII also induced endothelial cell activation as measured by increased ICAM1 expression and elevated vascular permeability in the lungs. AT effectively inhibited HRPII-mediated neutrophil infiltration, NET formation and endothelial cell activation in vivo. AT also inhibited HRPII-meditated deposition of platelets and fibrin(ogen) in the lungs and circulating level of von Willebrand factor in the plasma. We conclude that AT exerts protective effects against pathogenic effects of Pf-derived HRPII in both cellular and animal models.
Collapse
|
6
|
Sahu PK, Duffy FJ, Dankwa S, Vishnyakova M, Majhi M, Pirpamer L, Vigdorovich V, Bage J, Maharana S, Mandala W, Rogerson SJ, Seydel KB, Taylor TE, Kim K, Sather DN, Mohanty A, Mohanty RR, Mohanty A, Pattnaik R, Aitchison JD, Hoffman A, Mohanty S, Smith JD, Bernabeu M, Wassmer SC. Determinants of brain swelling in pediatric and adult cerebral malaria. JCI Insight 2021; 6:145823. [PMID: 34549725 PMCID: PMC8492338 DOI: 10.1172/jci.insight.145823] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A–EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A–EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Fergal J Duffy
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Selasi Dankwa
- Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Wilson Mandala
- Malawi University of Science and Technology, Limbe, Malawi
| | - Stephen J Rogerson
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kami Kim
- Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - D Noah Sather
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Akshaya Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Anita Mohanty
- Department of Intensive Care, IGH, Rourkela, Odisha, India
| | | | - John D Aitchison
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angelika Hoffman
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Maria Bernabeu
- Seattle Children's Research Institute, Seattle, Washington, USA.,European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Protein S (PS) is an essential natural anticoagulant. PS deficiency is a major contributor to acquired hypercoagulability. Acquired hypercoagulability causes myocardial infarction, stroke, and deep vein thrombosis in millions of individuals. Yet, despite its importance in hemostasis, PS is the least understood anticoagulant. Even after 40 years since PS was first described, we are still uncovering information about how PS functions. The purpose of this review is to highlight recent findings that advance our understanding of the functions of PS and explain hypercoagulability caused by severe PS deficiency. RECENT FINDINGS PS has long been described as a cofactor for Activated Protein C (APC) and Tissue Factor Pathway Inhibitor (TFPI). However, a recent report describes direct inhibition of Factor IXa (FIXa) by PS, an activity of PS that had been completely overlooked. Thrombophilia is becoming a more frequently reported disorder. Hereditary PS deficiency is an anticoagulant deficiency that results eventually in thrombophilia. In addition, PS deficiency is a predisposing factor for venous thromboembolism (VTE), but an effect of PS deficiency in arterial thrombosis, such as arterial ischemic stroke, is uncertain. Plasma PS concentration decreases in pregnant women. Inherited thrombophilias are important etiologies for recurrent pregnancy loss, and anticoagulation therapy is of benefit to women with recurrent pregnancy loss who had documented only PS deficiency.Hypoxia is a risk factor for VTE, and hypoxia downregulates plasma PS level. Importantly, COVID-19 can lead to hypoxemia because of lung damage from IL6-driven inflammatory responses to the viral infection. Because hypoxia decreases the abundance of the key anticoagulant PS, we surmise that the IL6-induced cytokine explosion combined with hypoxemia causes a drop in PS level that exacerbates the thrombotic risk in COVID-19 patients. SUMMARY This review is intended to advance understanding of the anticoagulant function of an important plasma protein, PS. Despite 40+ years of research, we have not had a complete description of PS biology as it pertains to control of blood coagulation. However, the picture of PS function has become sharper with the recent discovery of FIXa inhibition by PS. Hemostasis mediated by PS now includes regulation of FIXa activity alongside the cofactor activities of PS in the TFPI/APC pathways. In addition, the direct inhibition of FIXa by PS suggests that PS, particularly a small derivative of PS, could be used to treat individuals with PS deficiencies or abnormalities that cause thrombotic complications.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry & Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
8
|
Gierula M, Ahnström J. Anticoagulant protein S-New insights on interactions and functions. J Thromb Haemost 2020; 18:2801-2811. [PMID: 32702208 DOI: 10.1111/jth.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023]
Abstract
Protein S is a critical regulator of coagulation that functions as a cofactor for the activated protein C (APC) and tissue factor pathway inhibitor (TFPI) pathways. It also has direct anticoagulant functions, inhibiting the intrinsic tenase and prothrombinase complexes. Through these functions, protein S regulates coagulation during both its initiation and its propagation phases. The importance of protein S in hemostatic regulation is apparent from the strong association between protein S deficiencies and increased risk for venous thrombosis. This is most likely because both APC and TFPIα are inefficient anticoagulants in the absence of any cofactors. The detailed molecular mechanisms involved in protein S cofactor functions remain to be fully clarified. However, recent advances in the field have greatly improved our understanding of these functions. Evidence suggests that protein S anticoagulant properties often depend on the presence of synergistic cofactors and the formation of multicomponent complexes on negatively charged phospholipid surfaces. Their high affinity binding to negatively charged phospholipids helps bring the anticoagulant proteins to the membranes, resulting in efficient and targeted regulation of coagulation. In this review, we provide an update on protein S and how it functions as a critical hemostatic regulator.
Collapse
|
9
|
Fredenburgh JC. His-rich materials: Elucidating the role of histidine-rich protein II in inflammation in malaria. J Thromb Haemost 2020; 18:1271-1273. [PMID: 32496019 DOI: 10.1111/jth.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/19/2020] [Indexed: 08/31/2023]
|
10
|
Dinarvand P, Yang L, Biswas I, Giri H, Rezaie AR. Plasmodium falciparum histidine rich protein HRPII inhibits the anti-inflammatory function of antithrombin. J Thromb Haemost 2020; 18:1473-1483. [PMID: 31858717 PMCID: PMC7274886 DOI: 10.1111/jth.14713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND It has been reported that histidine-rich protein II (HRPII), secreted by the malaria parasite, Plasmodium falciparum (Pf), inhibits the heparin-dependent anticoagulant activity of antithrombin (AT) in vitro and in plasma-based assay systems. OBJECTIVE The objective of this study was to test the hypothesis that HRPII may also interact with the AT-binding vascular glycosaminoglycans (GAGs), thereby inhibiting the anti-inflammatory signaling function of the serpin. METHODS We expressed HRPII in bacteria, purified it to homogeneity and studied its effect on endothelial cell signaling in the absence and presence of AT employing established signaling assays. RESULTS We demonstrate that a low concentration of HRPII potently disrupts the barrier permeability function of endothelial cells. Moreover, HRPII competitively inhibits the protective effect of AT by a concentration-dependent manner. Similarly, AT inhibits the pro-inflammatory activity of HRPII by a concentration-dependent manner. The siRNA knockdown of 3-O-sulfotransferase 1 (3-OST-1), the enzyme responsible for the essential 3-O-sulfation of the AT-binding GAGs, downregulates the pro-inflammatory function of HRPII in endothelial cells, supporting the hypothesis that HRPII competitively inhibits the interaction of AT with 3-OS containing vascular GAGs. Histidine-rich protein II elicits its barrier-disruptive effect by the Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and AT counteracts this effect. We further demonstrate that inorganic polyphosphates bind HRPII with a high affinity to amplify the pro-inflammatory signaling function of HRPII in both cellular and in vivo permeability models. CONCLUSION We postulate that Pf-derived HRPII and polyphosphate can contribute to the pathogenesis of malaria infection by downregulating the AT-dependent anti-inflammatory and anticoagulant pathways.
Collapse
Affiliation(s)
- Peyman Dinarvand
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis
| | - Likui Yang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
11
|
Blood-Brain Barrier in Cerebral Malaria: Pathogenesis and Therapeutic Intervention. Trends Parasitol 2019; 35:516-528. [PMID: 31147271 DOI: 10.1016/j.pt.2019.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Cerebral malaria is a life-threatening complication of malaria caused by the parasite Plasmodium falciparum. The growing problem of drug resistance and the dearth of new antiparasitic drugs are a serious threat to the antimalaria treatment regimes. Studies on humans and the murine model have implicated the disruption of the blood-brain barrier (BBB) in the lethal course of the disease. Therefore, efforts to alleviate the BBB dysfunction could serve as an adjunct therapy. Here, we review the mechanisms associated with the disruption of the BBB. In addition, we discuss the current, still limited, knowledge on the contribution of different cell types, microparticles, and the kynurenine pathway in the regulation of BBB dysfunction, and how these molecules could be used as potential new therapeutic targets.
Collapse
|
12
|
Poti KE, Balaban AE, Pal P, Kobayashi T, Goldberg DE, Sinnis P, Sullivan DJ. In vivo compartmental kinetics of Plasmodium falciparum histidine-rich protein II in the blood of humans and in BALB/c mice infected with a transgenic Plasmodium berghei parasite expressing histidine-rich protein II. Malar J 2019; 18:78. [PMID: 30866956 PMCID: PMC6416945 DOI: 10.1186/s12936-019-2712-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background The Plasmodium falciparum histidine-rich protein II (PfHRP2) is a common biomarker used in malaria rapid diagnostic tests (RDTs), but can persist in the blood for up to 40 days following curative treatment. The persistence of PfHRP2 presents a false positive limitation to diagnostic interpretation. However, the in vivo dynamics and compartmentalization underlying PfHRP2 persistence have not been fully characterized in the plasma and erythrocyte (RBC) fraction of the whole blood. Methods The kinetics and persistence of PfHRP2 in the plasma and RBC fractions of the whole blood were investigated post-treatment in human clinical samples and samples isolated from BALB/c mice infected with a novel transgenic Plasmodium berghei parasite engineered to express PfHRP2 (PbPfHRP2). Results PfHRP2 levels in human RBCs were consistently 20–40 times greater than plasma levels, even post-parasite clearance. PfHRP2 positive, DNA negative, once-infected RBCs were identified in patients that comprised 0.1–1% of total RBCs for 6 and 12 days post-treatment, even post-atovaquone–proguanil regimens. Transgenic PbPfHRP2 parasites in BALB/c mice produced and exported tgPfHRP2 to the RBC cytosol similar to P. falciparum. As in humans, tgPfHRP2 levels were found to be approximately 20-fold higher within the RBC fraction than the plasma post-treatment. RBC localized tgPfHRP2 persisted longer than tgPfHRP2 in the plasma after curative treatment. tgPfHRP2 positive, but DNA negative once-infected RBCs were also detected in mouse peripheral blood for 7–9 days after curative treatment. Conclusions The data suggest that persistence of PfHRP2 is due to slower clearance of protein from the RBC fraction of the whole blood. This appears to be a result of the presence PfHRP2 in previously infected, pitted cells, as opposed to PfHRP2 binding naïve RBCs in circulation post-treatment. The results thus confirm that the extended duration of RDT positivity after parasite clearance is likely due to pitted, once-infected RBCs that remain positive for PfHRP2. Electronic supplementary material The online version of this article (10.1186/s12936-019-2712-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin E Poti
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amanda E Balaban
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Priya Pal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamaki Kobayashi
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Merida-de-Barros DA, Chaves SP, Belmiro CLR, Wanderley JLM. Leishmaniasis and glycosaminoglycans: a future therapeutic strategy? Parasit Vectors 2018; 11:536. [PMID: 30285837 PMCID: PMC6171297 DOI: 10.1186/s13071-018-2953-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/13/2018] [Indexed: 01/08/2023] Open
Abstract
Leishmania spp. depend on effective macrophage infection to establish and develop in mammalian hosts. Both metacyclic promastigotes and amastigotes are able to infect host cells, and thus they rely on several ligands that, when recognized by macrophage receptors, mediate parasite uptake. During macrophage primary infection with metacyclic forms from the insect vector and during amastigote dissemination via macrophage rupture, both infective stages have to cope with the host extracellular microenvironment, including extracellular matrix molecules. Glycosaminoglycans are abundant in the extracellular matrix and many of these molecules are able to interact with the parasite and the host cell, mediating positive and negative effects for the infection, depending on their structure and/or location. In addition, glycosaminoglycans are present at the surface of macrophages as proteoglycans, playing important roles for parasite recognition and uptake. In this review, we discuss glycosaminoglycans in the context of Leishmania infection as well as the possible applications of the current knowledge regarding these molecules for the development of new therapeutic strategies to control parasite dissemination.
Collapse
Affiliation(s)
- Débora Almeida Merida-de-Barros
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós Graduação em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzana Passos Chaves
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Luis Ribeiro Belmiro
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós Graduação em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Liu X, Wang Y, Liang J, Wang L, Qin N, Zhao Y, Zhao G. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome. BMC Genomics 2018; 19:312. [PMID: 29716542 PMCID: PMC5930813 DOI: 10.1186/s12864-018-4654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Results Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract genes highly transcribed at the trophozoite stage. Finally, 55 candidate genes were identified. Considering that parasite-infected erythrocyte surface protein 2 (PIESP2) contains gap-junction-related Neuromodulin_N domain and that anti-PIESP2 might provide protection against malaria, we chose PIESP2 for further experimental study. Conclusions Our analysis revealed a limited number of genes linked to human disease in P. falciparum genome. These genes could be interesting targets for further functional characterization. Electronic supplementary material The online version of this article (10.1186/s12864-018-4654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuewu Liu
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanyuan Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Liang
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Luojun Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Qin
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya Zhao
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
16
|
Krampa FD, Aniweh Y, Awandare GA, Kanyong P. Recent Progress in the Development of Diagnostic Tests for Malaria. Diagnostics (Basel) 2017; 7:diagnostics7030054. [PMID: 28925968 PMCID: PMC5617953 DOI: 10.3390/diagnostics7030054] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
The impact of malaria on global health has continually prompted the need to develop effective diagnostic strategies. In malaria endemic regions, routine diagnosis is hampered by technical and infrastructural challenges to laboratories. These laboratories lack standard facilities, expertise or diagnostic supplies; thus, therapy is administered based on clinical or self-diagnosis. There is the need for accurate diagnosis of malaria due to the continuous increase in the cost of medication, and the emergence and spread of drug resistant strains. However, the widely utilized Giemsa-stained microscopy and immunochromatographic tests for malaria are liable to several drawbacks, including inadequate sensitivity and false-positive outcomes. Alternative methods that offer improvements in performance are either expensive, have longer turnaround time or require a level of expertise that makes them unsuitable for point-of-care (POC) applications. These gaps necessitate exploration of more efficient detection techniques with the potential of POC applications, especially in resource-limited settings. This minireview discusses some of the recent trends and new approaches that are seeking to improve the clinical diagnosis of malaria.
Collapse
Affiliation(s)
- Francis D Krampa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
- Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra, Ghana.
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
- Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra, Ghana.
| | - Prosper Kanyong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana.
- Nanotechnology & Integrated Bioengineering Centre, Ulster University, Jordanstown BT37 0QB, UK.
| |
Collapse
|
17
|
Park GS, Opoka RO, Shabani E, Wypyszynski A, Hanisch B, John CC. Plasmodium falciparum Histidine-Rich Protein-2 Plasma Concentrations Are Higher in Retinopathy-Negative Cerebral Malaria Than in Severe Malarial Anemia. Open Forum Infect Dis 2017; 4:ofx151. [PMID: 28948179 PMCID: PMC5597884 DOI: 10.1093/ofid/ofx151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/14/2017] [Indexed: 11/14/2022] Open
Abstract
Background Malaria retinopathy has been proposed as marker of “true” cerebral malaria (CM), ie, coma due to Plasmodium falciparum vs coma due to other causes, with incidental P falciparum parasitemia. Plasma P falciparum histidine-rich protein-2 (PfHRP2) concentrations distinguish retinopathy-positive (RP) from retinopathy-negative (RN) CM but have not been compared between RN CM and other forms of severe malaria or asymptomatic parasitemia (AP). Methods We compared plasma PfHRP2 concentrations in 260 children with CM (247 examined for retinopathy), 228 children with severe malarial anemia (SMA), and 30 community children with AP. Results Plasmodium falciparum HRP2 concentrations were higher in children with RP CM than RN CM (P = .006), with an area under the receiver operating characteristic curve of 0.61 (95% confidence interval, 0.53–0.68). Plasmodium falciparum HRP2 concentrations and sequestered parasite biomass were higher in RN CM than SMA (both P < .03) or AP (both P < .001). Conclusions Plasmodium falciparum HRP2 concentrations are higher in children with RN CM than in children with SMA or AP, suggesting that P falciparum is involved in disease pathogenesis in children with CM. Plasmodium falciparum HRP2 concentrations may provide a more feasible and consistent assessment of the contribution of P falciparum to severe disease than malaria retinopathy.
Collapse
Affiliation(s)
- Gregory S Park
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Robert O Opoka
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Estela Shabani
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis.,Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis
| | - Alexis Wypyszynski
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Benjamin Hanisch
- Division of Pediatric Infectious Diseases, Children's National Medical Center, Washington, District of Columbia
| | - Chandy C John
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis.,Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
18
|
Pal P, Balaban AE, Diamond MS, Sinnis P, Klein RS, Goldberg DE. Plasmodium falciparum histidine-rich protein II causes vascular leakage and exacerbates experimental cerebral malaria in mice. PLoS One 2017; 12:e0177142. [PMID: 28475625 PMCID: PMC5419595 DOI: 10.1371/journal.pone.0177142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
A devastating complication of Plasmodium falciparum infection is cerebral malaria, in which vascular leakage and cerebral swelling lead to coma and often death. P. falciparum produces a protein called histidine-rich protein II (HRPII) that accumulates to high levels in the bloodstream of patients and serves as a diagnostic and prognostic marker for falciparum malaria. Using a human cerebral microvascular endothelial barrier model, we previously found that HRPII activates the endothelial cell inflammasome, resulting in decreased integrity of tight junctions and increased endothelial barrier permeability. Here, we report that intravenous administration of HRPII induced blood-brain barrier leakage in uninfected mice. Furthermore, HRPII infusion in P. berghei-infected mice increased early mortality from experimental cerebral malaria. These data support the hypothesis that HRPII is a virulence factor that contributes to cerebral malaria by compromising the integrity of the blood-brain barrier.
Collapse
Affiliation(s)
- Priya Pal
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Amanda E. Balaban
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Michael S. Diamond
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robyn S. Klein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Neurobiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| |
Collapse
|
19
|
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy 2017; 9:131-155. [DOI: 10.2217/imt-2016-0091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A totally effective, antimalarial vaccine must involve sporozoite and merozoite proteins (or their fragments) to ensure complete parasite blocking during critical invasion stages. This Special Report examines proteins involved in critical biological functions for parasite survival and highlights the conserved amino acid sequences of the most important proteins involved in sporozoite invasion of hepatocytes and merozoite invasion of red blood cells. Conserved high activity binding peptides are located in such proteins’ functionally strategic sites, whose functions are related to receptor binding, nutrient and protein transport, enzyme activity and molecule–molecule interactions. They are thus excellent targets for vaccine development as they block proteins binding function involved in invasion and also their biological function.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Rocío Rojas-Luna
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad del Rosario, Bogotá DC, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| |
Collapse
|
20
|
Thrombin Cleavage of Plasmodium falciparum Erythrocyte Membrane Protein 1 Inhibits Cytoadherence. mBio 2016; 7:mBio.01120-16. [PMID: 27624125 PMCID: PMC5021802 DOI: 10.1128/mbio.01120-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum malaria remains one of the most deadly infections worldwide. The pathogenesis of the infection results from the sequestration of infected erythrocytes (IRBC) in vital organs, including the brain, with resulting impairment of blood flow, hypoxia, and lactic acidosis. Sequestration occurs through the adhesion of IRBC to host receptors on microvascular endothelium by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large family of variant surface antigens, each with up to seven extracellular domains that can bind to multiple host receptors. Consequently, antiadhesive therapies directed at single endothelial adhesion molecules may not be effective. In this study, we demonstrated that the serine protease thrombin, which is pivotal in the activation of the coagulation cascade, cleaved the major parasite adhesin on the surface of IRBC. As a result, adhesion under flow was dramatically reduced, and already adherent IRBC were detached. Thrombin cleavage sites were mapped to the Duffy binding-like δ1 (DBLδ1) domain and interdomains 1 and 2 in the PfEMP1 of the parasite line IT4var19. Furthermore, we observed an inverse correlation between the presence of thrombin and IRBC in cerebral malaria autopsies of children. We investigated a modified (R67A) thrombin and thrombin inhibitor, hirugen, both of which inhibit the binding of substrates to exosite I, thereby reducing its proinflammatory properties. Both approaches reduced the barrier dysfunction induced by thrombin without affecting its proteolytic activity on PfEMP1, raising the possibility that thrombin cleavage of variant PfEMP1 may be exploited as a broadly inhibitory antiadhesive therapy. Plasmodium falciparum malaria is the third leading cause of mortality due to a pathogen, with 214 million people infected and 438,000 deaths annually. The adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to microvascular endothelium is a major pathological process in severe malaria. While the recent implementation of artemisinin-based antimalarial therapy for severe malaria improves patient survival by targeting all parasite stages, antiparasite drugs alone may not immediately reverse pathophysiological processes in occluded vessels. Here we show that thrombin, an enzyme intimately involved in the clotting process, cleaves the main parasite adhesin expressed on the surface of IRBC, thereby preventing and reversing the binding of IRBC to endothelial cells. This beneficial effect of thrombin can be achieved by modified thrombins that cause significantly less clotting and vessel leakage while preserving the ability to cleave the parasite protein. Our results provide the basis for using modified thrombins as adjunctive therapy in severe malaria.
Collapse
|
21
|
Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis. mBio 2016; 7:mBio.00617-16. [PMID: 27273825 PMCID: PMC4959673 DOI: 10.1128/mbio.00617-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral malaria (CM) is a disease of the vascular endothelium caused by Plasmodium falciparum. It is characterized by parasite sequestration, inflammatory cytokine production, and vascular leakage. A distinguishing feature of P. falciparum infection is parasite production and secretion of histidine-rich protein II (HRPII). Plasma HRPII is a diagnostic and prognostic marker for falciparum malaria. We demonstrate that disruption of a human cerebral microvascular endothelial barrier by P. falciparum-infected erythrocytes depends on expression of HRPII. Purified recombinant or native HRPII can recapitulate these effects. HRPII action occurs via activation of the inflammasome, resulting in decreased integrity of tight junctions and increased endothelial permeability. We propose that HRPII is a virulence factor that may contribute to cerebral malaria by compromising endothelial barrier integrity within the central nervous system. Cerebral malaria is a devastating disease. Patients have high levels of the protein HRPII in their blood. We have found that endothelial cell barriers become leaky when treated with concentrations of HRPII similar to those found in patients. This result suggests that HRPII may be important in cerebral malaria. Our finding that HRPII functions by causing inflammation suggests points of intervention for therapy or vaccination against this disease.
Collapse
|
22
|
Emerging roles for hemostatic dysfunction in malaria pathogenesis. Blood 2016; 127:2281-8. [PMID: 26851291 DOI: 10.1182/blood-2015-11-636464] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
Severe Plasmodium falciparum malaria remains a leading cause of mortality, particularly in sub-Saharan Africa where it accounts for up to 1 million deaths per annum. In spite of the significant mortality and morbidity associated with cerebral malaria (CM), the molecular mechanisms involved in the pathophysiology of severe malaria remain surprisingly poorly understood. Previous studies have demonstrated that sequestration of P falciparum-infected erythrocytes within the microvasculature of the brain plays a key role in the development of CM. In addition, there is convincing evidence that both endothelial cell activation and platelets play critical roles in the modulating the pathogenesis of severe P falciparum malaria. In this review, we provide an overview of recent studies that have identified novel roles through which hemostatic dysfunction may directly influence malaria pathogenesis. In particular, we focus on emerging data suggesting that von Willebrand factor, coagulation cascade activation, and dysfunction of the protein C pathway may be of specific importance in this context. These collective insights underscore a growing appreciation of the important, but poorly understood, role of hemostatic dysfunction in malaria progression and, importantly, illuminate potential approaches for novel therapeutic strategies. Given that the mortality rate associated with CM remains on the order of 20% despite the availability of effective antimalarial therapy, development of adjunctive therapies that can attenuate CM progression clearly represents a major unmet need. These emerging data are thus not only of basic scientific interest, but also of direct clinical significance.
Collapse
|
23
|
Riedl J, Mordmüller B, Koder S, Pabinger I, Kremsner PG, Hoffman SL, Ramharter M, Ay C. Alterations of blood coagulation in controlled human malaria infection. Malar J 2016; 15:15. [PMID: 26743539 PMCID: PMC4705755 DOI: 10.1186/s12936-015-1079-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Alterations of blood coagulation are thought to be involved in malaria pathogenesis. This study had the aim to investigate changes of blood coagulation under the standardized conditions of controlled human malaria infection. Methods In a clinical trial aseptic, purified, cryopreserved Plasmodium falciparum sporozoites were intravenously (n = 24) or intradermally (n = 6) injected into 30 healthy volunteers. Twenty-two participants developed parasitaemia. Serial blood samples before and during prepatent period and at parasitaemia, diagnosed by microscopic assessment of thick blood smear, were obtained. Biomarkers of blood coagulation (thrombin generation potential, D-dimer, prothrombin fragment 1 + 2, von Willebrand factor, ADAMTS13 activity and soluble P-selectin) were determined. Results At first detection of P. falciparum parasitaemia, 72.7 % of volunteers had peak thrombin generation 10 % above their baseline. Overall, peak thrombin generation was 17.7 % higher at parasitaemia compared to baseline [median (25th–75th percentile): 225.4 nM (168.1–295.6) vs. 191.5 nM (138.2–231.9); p = 0.026]. There were no significant changes of other coagulation parameters. Conclusions The thrombin generation potential, an in vitro blood coagulation test, which reflects an individual´s global coagulation status, was increased by 17.7 % at very early stages of P. falciparum malaria, suggesting a hypercoagulable state may be induced, even when parasite density is low. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1079-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Riedl
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.
| | - Silvia Koder
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.
| | | | - Michael Ramharter
- Clinical Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
24
|
Moxon CA, Chisala NV, Mzikamanda R, MacCormick I, Harding S, Downey C, Molyneux M, Seydel KB, Taylor TE, Heyderman RS, Toh CH. Laboratory evidence of disseminated intravascular coagulation is associated with a fatal outcome in children with cerebral malaria despite an absence of clinically evident thrombosis or bleeding. J Thromb Haemost 2015; 13:1653-64. [PMID: 26186686 PMCID: PMC4605993 DOI: 10.1111/jth.13060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND A procoagulant state is implicated in cerebral malaria (CM) pathogenesis, but whether disseminated intravascular coagulation (DIC) is present or associated with a fatal outcome is unclear. OBJECTIVES To determine the frequency of overt DIC, according to ISTH criteria, in children with fatal and non-fatal CM. METHODS/PATIENTS Malawian children were recruited into a prospective cohort study in the following diagnostic groups: retinopathy-positive CM (n = 140), retinopathy-negative CM (n = 36), non-malarial coma (n = 14), uncomplicated malaria (UM), (n = 91), mild non-malarial febrile illness (n = 85), and healthy controls (n = 36). Assays in the ISTH DIC criteria were performed, and three fibrin-related markers, i.e. protein C, antithrombin, and soluble thrombomodulin, were measured. RESULTS AND CONCLUSIONS Data enabling assignment of the presence or absence of 'overt DIC' were available for 98 of 140 children with retinopathy-positive CM. Overt DIC was present in 19 (19%), and was associated with a fatal outcome (odds ratio [OR] 3.068; 95% confidence interval [CI] 1.085-8.609; P = 0.035]. The levels of the three fibrin-related markers and soluble thrombomodulin were higher in CM patients than in UM patients (all P < 0.001). The mean fibrin degradation product level was higher in fatal CM patients (71.3 μg mL(-1) [95% CI 49.0-93.6]) than in non-fatal CM patients (48.0 μg mL(-1) [95% CI 37.7-58.2]; P = 0.032), but, in multivariate logistic regression, thrombomodulin was the only coagulation-related marker that was independently associated with a fatal outcome (OR 1.084 for each ng mL(-1) increase [95% CI 1.017-1.156]; P = 0.014). Despite these laboratory derangements, no child in the study had clinically evident bleeding or thrombosis. An overt DIC score and high thrombomodulin levels are associated with a fatal outcome in CM, but infrequently indicate a consumptive coagulopathy.
Collapse
Affiliation(s)
- C A Moxon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - N V Chisala
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - R Mzikamanda
- University of Malawi College of Medicine, Blantyre, Malawi
| | - I MacCormick
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- University of Malawi College of Medicine, Blantyre, Malawi
| | - S Harding
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK
| | - C Downey
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| | - M Molyneux
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - K B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - T E Taylor
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - R S Heyderman
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - C-H Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
25
|
Kang K, Dzakah EE, Li W, Xie M, Luo X, Liu H. Novel monoclonal antibodies against Plasmodium falciparum histidine-rich protein 2: development and application in rapid diagnostic tests of malaria in hyperendemic regions of China and Myanmar. BMC Microbiol 2015; 15:98. [PMID: 25962879 PMCID: PMC4427986 DOI: 10.1186/s12866-015-0429-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria presents a considerable threat to public health. Histidine-rich protein 2 (HRP 2) is the major protein released into human blood upon infection by Plasmodium falciparum. In this study, we aimed to evaluate the immunogenicity of HRP 2 exon II and the efficacy of novel monoclonal antibodies (mAbs) against HRP 2 for Point-of-Care Test (POCT). METHODS The recombinant protein was expressed in soluble form in E. coli and used to immunize mice for mAb production. Two IgG1 mAbs (1A5 and 1C10) with high affinity, specificity and sensitivity for both native and recombinant HRP 2 were selected after fusion of mouse spleen with myeloma cells. The affinity constant of 1A5 and 1C10 were 7.15 and 4.91 × 10-7 L/mol, respectively. Subsequently, an immunochromatograhic assay was used for screening of clinical samples in endemic regions of China and Myanmar. RESULTS The immunochromatographic test retrospectively showed an overall sensitivity of 99.07%, and specificity of 100%. Sensitivity at parasite densities < 200, 200-2000, and > 2000 parasites/μL was 87.5, 98.7, and 100%, respectively. CONCLUSIONS These results suggest that HRP 2 exon II contains immunogenic sites similar to those of the native antigen and can be used for the development of mAbs suitable for malaria diagnosis in endemic communities.
Collapse
Affiliation(s)
- Keren Kang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China. .,National Engineering Laboratory of Point-of-Care Tests, Guangzhou Wondfo Biotech Co. Ltd, Guangzhou, 510663, China.
| | - Emmanuel E Dzakah
- National Engineering Laboratory of Point-of-Care Tests, Guangzhou Wondfo Biotech Co. Ltd, Guangzhou, 510663, China. .,Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Wenmei Li
- National Engineering Laboratory of Point-of-Care Tests, Guangzhou Wondfo Biotech Co. Ltd, Guangzhou, 510663, China.
| | - Mingquan Xie
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaochun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | - Hui Liu
- Yunnan Provincial Center for Parasitic Diseases Control and Prevention (NIPD), Yunnan, 650000, China.
| |
Collapse
|
26
|
Mathema VB, Na-Bangchang K. A brief review on biomarkers and proteomic approach for malaria research. ASIAN PAC J TROP MED 2015; 8:253-62. [DOI: 10.1016/s1995-7645(14)60327-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Shanks GD. Synergistic Mortality Caused by Plasmodium falciparum During the 1918 Influenza Pandemic. Am J Trop Med Hyg 2015; 92:941-2. [PMID: 25802427 DOI: 10.4269/ajtmh.14-0792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 11/07/2022] Open
Abstract
At the end of World War I, British medical officers noted that soldiers infected with malaria were more likely to die during the 1918 influenza pandemic than those without malaria. This synergistic mortality appeared to be specific to Plasmodium falciparum and has not been generally noted since 1920. A possible explanation is that a malaria-induced procoagulant state enhanced the activation of influenza virus to increase inflammation and subsequent severe clinical outcomes. Falciparum proteins bind and likely inhibit antithrombin 3 and other factors. Pathogens interact in ways that may inform pathophysiology studies of remote epidemics.
Collapse
Affiliation(s)
- G Dennis Shanks
- Australian Army Malaria Institute, Enoggera, Australia; University of Queensland, School of Population Health, Brisbane, Australia; Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Spillman NJ, Beck JR, Goldberg DE. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu Rev Biochem 2015; 84:813-41. [PMID: 25621510 DOI: 10.1146/annurev-biochem-060614-034157] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.
Collapse
|
29
|
Francischetti IMB, Gordon E, Bizzarro B, Gera N, Andrade BB, Oliveira F, Ma D, Assumpção TCF, Ribeiro JMC, Pena M, Qi CF, Diouf A, Moretz SE, Long CA, Ackerman HC, Pierce SK, Sá-Nunes A, Waisberg M. Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria. PLoS One 2014; 9:e87140. [PMID: 24586264 PMCID: PMC3938406 DOI: 10.1371/journal.pone.0087140] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023] Open
Abstract
Background The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. Methods and Findings We undertook testing Tempol—a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant—in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants—such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91phox–/–) or mice treated with inhibitors of SOD (diethyldithiocarbamate) or NADPH oxidase (diphenyleneiodonium) did not show protection or exacerbation for CM. Conclusion Results with Tempol suggest that intracellular ROS contribute, in part, to CM pathogenesis. Therapeutic targeting of intracellular ROS in CM is discussed.
Collapse
Affiliation(s)
- Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (IMBF); (MW)
| | - Emile Gordon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Bruna Bizzarro
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Nidhi Gera
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Bruno B. Andrade
- Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, Maryland, United States of America
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dongying Ma
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Teresa C. F. Assumpção
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hans C. Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Michael Waisberg
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- University of Virginia, Department of Pathology, Charlottesville, Virginia, United States of America
- * E-mail: (IMBF); (MW)
| |
Collapse
|
30
|
Seydel KB, Fox LL, Glover SJ, Reeves MJ, Pensulo P, Muiruri A, Mpakiza A, Molyneux ME, Taylor TE. Plasma concentrations of parasite histidine-rich protein 2 distinguish between retinopathy-positive and retinopathy-negative cerebral malaria in Malawian children. J Infect Dis 2012; 206:309-18. [PMID: 22634877 DOI: 10.1093/infdis/jis371] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Brain histology and ophthalmoscopy suggest that approximately 25% of children with World Health Organization-defined cerebral malaria (CM) have a nonmalarial cause of death. Misclassification complicates clinical care, confounds studies of association, and may obfuscate successes in malaria control. Retinopathy predicts intracerebral parasite sequestration with >90% sensitivity and specificity, but detecting retinopathy requires well-trained personnel and expensive equipment. METHODS We investigated the utility of plasma concentrations of parasite histidine-rich protein 2 (pHRP2), a Plasmodium-specific protein, as a predictor of intracerebral parasite sequestration at autopsy and of malaria retinopathy on clinical examination in patients with clinically defined CM. RESULTS In 64 autopsy cases, 47 of whom had histological evidence of sequestration, the sensitivity and specificity of a plasma pHRP2 level of >1700 ng/mL were 98% and 94%, respectively, and the area under the receiver operating characteristic (AUROC) curve was 0.98. In a separate, prospectively studied group of 101 children with clinically defined CM, of whom 71 had retinopathy, the same pHRP2 cutoff predicted retinopathy-positivity with a sensitivity of 90% and specificity of 87% (AUROC, 0.90). CONCLUSIONS Elevated plasma pHRP2 concentrations can identify Malawian children with histologically confirmed or retinopathy-positive CM and is a more field-friendly approach to confirming the diagnosis than post mortem sampling or ophthalmoscopy.
Collapse
Affiliation(s)
- Karl B Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, Preiser PR, Bozdech Z, Cortés A. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 2012; 22:925-38. [PMID: 22415456 PMCID: PMC3337437 DOI: 10.1101/gr.129692.111] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malaria genetic variation has been extensively characterized, but the level of epigenetic plasticity remains largely unexplored. Here we provide a comprehensive characterization of transcriptional variation in the most lethal malaria parasite, Plasmodium falciparum, based on highly accurate transcriptional analysis of isogenic parasite lines grown under homogeneous conditions. This analysis revealed extensive transcriptional heterogeneity within genetically homogeneous clonal parasite populations. We show that clonally variant expression controlled at the epigenetic level is an intrinsic property of specific genes and gene families, the majority of which participate in host–parasite interactions. Intrinsic transcriptional variability is not restricted to genes involved in immune evasion, but also affects genes linked to lipid metabolism, protein folding, erythrocyte remodeling, or transcriptional regulation, among others, indicating that epigenetic variation results in both antigenic and functional variation. We observed a general association between heterochromatin marks and clonally variant expression, extending previous observations for specific genes to essentially all variantly expressed gene families. These results suggest that phenotypic variation of functionally unrelated P. falciparum gene families is mediated by a common mechanism based on reversible formation of H3K9me3-based heterochromatin. In changing environments, diversity confers fitness to a population. Our results support the idea that P. falciparum uses a bet-hedging strategy, as an alternative to directed transcriptional responses, to adapt to common fluctuations in its environment. Consistent with this idea, we found that transcriptionally different isogenic parasite lines markedly differed in their survival to heat-shock mimicking febrile episodes and adapted to periodic heat-shock with a pattern consistent with natural selection of pre-existing parasites.
Collapse
|
32
|
Francischetti IMB, Oliveira CJ, Ostera GR, Yager SB, Debierre-Grockiego F, Carregaro V, Jaramillo-Gutierrez G, Hume JCC, Jiang L, Moretz SE, Lin CK, Ribeiro JMC, Long CA, Vickers BK, Schwarz RT, Seydel KB, Iacobelli M, Ackerman HC, Srinivasan P, Gomes RB, Wang X, Monteiro RQ, Kotsyfakis M, Sá-Nunes A, Waisberg M. Defibrotide interferes with several steps of the coagulation-inflammation cycle and exhibits therapeutic potential to treat severe malaria. Arterioscler Thromb Vasc Biol 2012; 32:786-98. [PMID: 22116094 PMCID: PMC3288196 DOI: 10.1161/atvbaha.111.240291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/05/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. METHODS AND RESULTS DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. CONCLUSION Therapeutic use of DF in malaria is proposed.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anticoagulants/pharmacology
- Antimalarials/pharmacology
- Blood Coagulation/drug effects
- Cells, Cultured
- Complement Activation/drug effects
- Cytokines/blood
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/parasitology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/parasitology
- Female
- Glycosylphosphatidylinositols/metabolism
- Hemoglobins/metabolism
- Humans
- Inflammation Mediators/blood
- Malaria, Cerebral/blood
- Malaria, Cerebral/drug therapy
- Malaria, Cerebral/immunology
- Malaria, Cerebral/parasitology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- Plasmodium berghei/drug effects
- Plasmodium berghei/pathogenicity
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/metabolism
- Plasmodium falciparum/pathogenicity
- Platelet Aggregation/drug effects
- Polydeoxyribonucleotides/pharmacology
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/metabolism
- Severity of Illness Index
- Thromboplastin/metabolism
- Time Factors
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 2011; 7:e1002290. [PMID: 22022265 PMCID: PMC3192844 DOI: 10.1371/journal.ppat.1002290] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/14/2011] [Indexed: 11/18/2022] Open
Abstract
Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP), including several lectin-like proteins and members of a P. indica-specific gene family (DELD) with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.
Collapse
Affiliation(s)
- Alga Zuccaro
- Department of Organismic Interactions, Max-Planck Institute (MPI) for Terrestrial Microbiology, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|