1
|
Takao S, Morell V, Uni M, Slavit A, Rha S, Cheng S, Schmalbrock LK, Brown FC, Beneyto-Calabuig S, Koche RP, Velten L, Kentsis A. Epigenetic mechanisms controlling human leukemia stem cells and therapy resistance. Nat Commun 2025; 16:3196. [PMID: 40180954 PMCID: PMC11968996 DOI: 10.1038/s41467-025-58370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Cancer stem cells are essential for initiation and therapy resistance of many cancers, including acute myeloid leukemias (AML). Here, we apply functional genomic profiling to diverse human leukemias, including high-risk MLL- and NUP98-rearranged specimens, using label tracing in vivo. Human leukemia propagation is mediated by a rare quiescent label-retaining cell (LRC) population undetectable by current immunophenotypic markers. AML quiescence is reversible, preserving genetic clonal competition and epigenetic inheritance. LRC quiescence is defined by distinct promoter-centered chromatin and gene expression dynamics controlled by an AP-1/ETS transcription factor network, where JUN is necessary and sufficient for LRC quiescence and associated with persistence and chemotherapy resistance in diverse patients. This enables prospective isolation and manipulation of immunophenotypically-varied leukemia stem cells, establishing the functions of epigenetic plasticity in leukemia development and therapy resistance. These findings offer insights into leukemia stem cell quiescence and the design of therapeutic strategies for their clinical identification and control.
Collapse
Affiliation(s)
- Sumiko Takao
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor Morell
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Masahiro Uni
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Slavit
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sophia Rha
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shuyuan Cheng
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura K Schmalbrock
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fiona C Brown
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergi Beneyto-Calabuig
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Richard P Koche
- Center for Epigenetics Research, Sloan Kettering Institute, New York, NY, USA
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Georges E, Ho W, Iturritza MU, Eory L, Malysz K, Sobhiafshar U, Archibald AL, Macqueen DJ, Shih B, Garrick D, Vernimmen D. Transcriptomic characterisation of acute myeloid leukemia cell lines bearing the same t(9;11) driver mutation reveals different molecular signatures. BMC Genomics 2025; 26:300. [PMID: 40133836 PMCID: PMC11938659 DOI: 10.1186/s12864-025-11415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common type of acute leukemia, accounting for 20% of cases in children and adolescents. Genome-wide studies have identified genes that are commonly mutated in AML, including many epigenetic regulators involved in either DNA methylation (DNMT3A, TET2, IDH1/2) or histone post-translational modifications (ASXL1, EZH2, MLL1). Several cell lines derived from AML patients are widely used in cancer research. Whether important differences in these cell lines exist remains poorly characterised. RESULTS Here, we used RNA sequencing (RNA-Seq) to contrast the transcriptome of four commonly used AML-derived cell lines: THP-1, NOMO-1, MOLM-13 bearing the common initiating t(9;11) translocation, and MV4.11 bearing the t(4;11) translocation. Gene set enrichment analyses and comparison of key transcription and epigenetic regulator genes revealed important differences in the transcriptome, distinguishing these AML models. Among these, we found striking differences in the expression of clusters of genes located on chromosome 19 encoding Zinc Finger (ZNF) transcriptional repressors. Low expression of many ZNF genes within these clusters is associated with poor survival in AML patients. CONCLUSION The present study offers a valuable resource by providing a detailed comparative characterisation of the transcriptome of cell lines within the same AML subtype used as models for leukemia research.
Collapse
Affiliation(s)
- Elise Georges
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - William Ho
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Miren Urrutia Iturritza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Kamila Malysz
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ulduz Sobhiafshar
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Barbara Shih
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Present Address: Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - David Garrick
- INSERM UMR 1342, Institut de Recherche Saint Louis, Université Paris Cité, Paris, 75010, France
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
3
|
Tian M, Hao F, Jin X, Wang X, Chang T, He S, Wang H, Jiang Y, Wang Y, Liu J, Feng Y, Li D, Yin Z, Ba X, Wei M. KLHL25-ACLY module functions as a switch in the fate determination of the differentiation of iTreg/Th17. Commun Biol 2025; 8:471. [PMID: 40119138 PMCID: PMC11928475 DOI: 10.1038/s42003-025-07917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
The differentiation of Th17 and iTreg is tightly associated with fatty acid metabolism. TGFβ1-induced iTreg differentiation from Th0 relies on fatty acid oxidation (FAO), whereas IL-6 with TGFβ1 shifts metabolism to Th17-preferred fatty acid synthesis (FAS). However, how IL-6 reprograms fatty acid metabolism remains unclear. Here, we unveiled that TGFβ1-activated JNK is recruited to the Klhl25 promoter by NF-YA. JNK then phosphorylates histone H3 at Ser10 to activate Klhl25 transcription, leading to the ubiquitination-dependent degradation of ATP-citrate lyase (ACLY) and the switch from FAS to FAO, which supports iTreg generation. Whereas, upon IL-6 signaling, NF-YA is phosphorylated by ERK, losing its DNA binding ability, which shuts off TGFβ1-JNK-mediated Klhl25 transcription and ACLY ubiquitination, thereby increasing FAS and supporting Th17 differentiation. This study demonstrated that KLHL25-ACLY module functions as a switch in response to TGFβ1 and IL-6 signals, playing a decisive role in the fate determination of iTreg/Th17 differentiation.
Collapse
Affiliation(s)
- Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
- School of Physical Education, Northeast Normal University, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Xinyu Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Tianyi Chang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Shuang He
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Huiyue Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Ying Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Zhuhai, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China.
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Dolfini D, Imbriano C, Mantovani R. The role(s) of NF-Y in development and differentiation. Cell Death Differ 2025; 32:195-206. [PMID: 39327506 PMCID: PMC11802806 DOI: 10.1038/s41418-024-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
NF-Y is a conserved sequence-specific trimeric Transcription Factor -TF- binding to the CCAAT element. We review here the role(s) in development, from pre-implantation embryo to terminally differentiated tissues, by rationalizing and commenting on genetic, genomic, epigenetic and biochemical studies. This effort brings to light the impact of NF-YA isoforms on stemness and differentiation, as well as binding to distal vs promoter proximal sites and connections with selected TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
5
|
Yu D, Kang J, Ju C, Wang Q, Qiao Y, Qiao L, Yang D. Dual disease co-expression analysis reveals potential roles of estrogen-related genes in postmenopausal osteoporosis and Parkinson's disease. Front Genet 2025; 15:1518471. [PMID: 39840278 PMCID: PMC11747517 DOI: 10.3389/fgene.2024.1518471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The deficiency of estrogen correlates with a range of diseases, notably Postmenopausal osteoporosis (PMO) and Parkinson's disease (PD). There is a possibility that PMO and PD may share underlying molecular mechanisms that are pivotal in their development and progression. The objective of this study was to identify critical genes and potential mechanisms associated with PMO by examining co-expressed genes linked to PD. Methods Initially, pertinent data concerning PMO and PD were obtained from the GWAS database, followed by conducting a Bayesian colocalization analysis. Subsequently, co-expressed genes from the PMO dataset (GSE35956) and the PD dataset (GSE20164) were identified and cross-referenced with estrogen-related genes (ERGs). Differentially expressed genes (DEGs) among PMO, PD, and ERGs were subjected to an array of bioinformatics analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses, in addition to protein-protein interaction (PPI) network analysis. The study also involved constructing TF-gene interactions, TF-microRNA coregulatory networks, interactions of hub genes with diseases, and validation through quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results The colocalization analysis uncovered shared genetic variants between PD and osteoporosis, with a posterior probability of colocalization (PPH4) measured at 0.967. Notably, rs3796661 was recognized as a shared genetic variant. A total of 11 genes were classified as DEGs across PMO, PD, and ERGs. Five principal KEGG pathways were identified, which include the p53 signaling pathway, TGF-beta signaling pathway, cell cycle, FoxO signaling pathway, and cellular senescence. Additionally, three hub genes-WT1, CCNB1, and SMAD7-were selected from the PPI network utilizing Cytoscape software. These three hub genes, which possess significant diagnostic value for PMO and PD, were further validated using GEO datasets. Interactions between transcription factors and genes, as well as between microRNAs and hub genes, were established. Ultimately, the expression trends of the identified hub genes were confirmed through qRT-PCR validation. Conclusions This study is anticipated to offer innovative approaches for identifying potential biomarkers and important therapeutic targets for both PMO and PD.
Collapse
Affiliation(s)
- Dongdong Yu
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jian Kang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chengguo Ju
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qingyan Wang
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ye Qiao
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Long Qiao
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dongxiang Yang
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
6
|
Yang YT, Yao CY, Kao CJ, Chiu PJ, Lin ME, Hou HA, Lin CC, Chou WC, Tien HF. Clinical relevance of NFYA splice variants in patients with acute myeloid leukaemia undergoing intensive chemotherapy. Br J Haematol 2024; 205:1751-1764. [PMID: 39192759 DOI: 10.1111/bjh.19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Aberrant alternative splicing (AS) contributes to leukemogenesis, but reports on the clinical and biological implications of aberrant AS in acute myeloid leukaemia (AML) remain limited. Here, we used RNA-seq to analyse AS in AML cells from 341 patients, comparing them to healthy CD34+ haematopoietic stem cells (HSCs). Our findings highlight distinct AS patterns in the nuclear transcription factor Y subunit alpha (NFYA) gene, with two main isoforms: NFYA-L (Long) and NFYA-S (Short), differing in exon 3 inclusion. Patients with lower NFYA-L but higher NFYA-S expression, termed NFYA-S predominance, displayed more favourable characteristics and better outcomes following intensive chemotherapy, regardless of age and European LeukemiaNet risk classification, compared to those with higher NFYA-L but lower NFYA-S expression, termed NFYA-L predominance. The prognostic effects were validated using The Cancer Genome Atlas cohort. Transcriptome analysis revealed upregulated cell cycle genes in NFYA-S predominant cases, resembling those of active HSCs, demonstrating relative chemosensitivity. Conversely, NFYA-L predominant cases, as observed in KMT2A-rearranged leukaemia, were associated with relative chemoresistance. NFYA-S overexpression in OCI-AML3 cells promoted cell proliferation, S-phase entry and increased cytarabine sensitivity, suggesting its clinical and therapeutic relevance in AML. Our study underscores NFYA AS as a potential prognostic biomarker in AML.
Collapse
Affiliation(s)
- Yi-Tsung Yang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Yao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Ju Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ming-En Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
7
|
Ronzio M, Bernardini A, Taglietti V, Ceribelli M, Donati G, Gallo A, Pavesi G, Dellabona P, Casorati G, Messina G, Mantovani R, Dolfini D. Genomic binding of NF-Y in mouse and human cells. Genomics 2024; 116:110895. [PMID: 39025317 DOI: 10.1016/j.ygeno.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
NF-Y is a Transcription Factor that regulates transcription through binding to the CCAAT-box. To understand its strategy, we analyzed 16 ChIP-seq datasets from human and mouse cells. Shared loci, mostly located in promoters of expressed genes of cell cycle, metabolism and gene expression pathways, are associated with histone marks of active chromatin and specific modules of TFs. Other peaks are in enhancers and Transposable Elements -TE- of retroviral origin in human and mouse. We evaluated the relationship with USF1, a common synergistic partner in promoters and MLT1 TEs, upon NF-YB inactivation: USF1 binding decreases in promoters, modestly in MLT1, suggesting a pioneering role of NF-Y in formers, not in the latters. These data define a common set of NF-Y functional targets across different mammalian cell types, suggesting a pioneering role in promoters with respect to TEs.
Collapse
Affiliation(s)
- Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Michele Ceribelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giacomo Donati
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Graziella Messina
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Hulett RE, Rivera-López C, Gehrke AR, Gompers A, Srivastava M. A wound-induced differentiation trajectory for neurons. Proc Natl Acad Sci U S A 2024; 121:e2322864121. [PMID: 38976727 PMCID: PMC11260127 DOI: 10.1073/pnas.2322864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.
Collapse
Affiliation(s)
- Ryan E. Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA02138
| | - Andrew R. Gehrke
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
9
|
Mayer IM, Doma E, Klampfl T, Prchal-Murphy M, Kollmann S, Schirripa A, Scheiblecker L, Zojer M, Kunowska N, Gebrail L, Shaw LE, Mann U, Farr A, Grausenburger R, Heller G, Zebedin-Brandl E, Farlik M, Malumbres M, Sexl V, Kollmann K. Kinase-inactivated CDK6 preserves the long-term functionality of adult hematopoietic stem cells. Blood 2024; 144:156-170. [PMID: 38684032 PMCID: PMC11302456 DOI: 10.1182/blood.2023021985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) are characterized by the ability to self-renew and to replenish the hematopoietic system. The cell-cycle kinase cyclin-dependent kinase 6 (CDK6) regulates transcription, whereby it has both kinase-dependent and kinase-independent functions. Herein, we describe the complex role of CDK6, balancing quiescence, proliferation, self-renewal, and differentiation in activated HSCs. Mouse HSCs expressing kinase-inactivated CDK6 show enhanced long-term repopulation and homing, whereas HSCs lacking CDK6 have impaired functionality. The transcriptomes of basal and serially transplanted HSCs expressing kinase-inactivated CDK6 exhibit an expression pattern dominated by HSC quiescence and self-renewal, supporting a concept, in which myc-associated zinc finger protein (MAZ) and nuclear transcription factor Y subunit alpha (NFY-A) are critical CDK6 interactors. Pharmacologic kinase inhibition with a clinically used CDK4/6 inhibitor in murine and human HSCs validated our findings and resulted in increased repopulation capability and enhanced stemness. Our findings highlight a kinase-independent role of CDK6 in long-term HSC functionality. CDK6 kinase inhibition represents a possible strategy to improve HSC fitness.
Collapse
Affiliation(s)
| | - Eszter Doma
- University of Veterinary Medicine, Vienna, Vienna, Austria
| | | | | | | | | | | | - Markus Zojer
- University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Lea Gebrail
- University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Lisa E. Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mann
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alex Farr
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Gerwin Heller
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Eva Zebedin-Brandl
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marcos Malumbres
- Cancer Cell Cycle Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Cell Division and Cancer Group, Spanish National Cancer Research Center, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Veronika Sexl
- University of Veterinary Medicine, Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
10
|
Schultheis H, Bentsen M, Heger V, Looso M. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Sci Rep 2024; 14:9275. [PMID: 38654130 DOI: 10.1038/s41598-024-59989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only ~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.
Collapse
Affiliation(s)
- Hendrik Schultheis
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanessa Heger
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
11
|
Dolfini D, Gnesutta N, Mantovani R. Expression and function of NF-Y subunits in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189082. [PMID: 38309445 DOI: 10.1016/j.bbcan.2024.189082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
12
|
Yamanaka T, Kurosawa M, Yoshida A, Shimogori T, Hiyama A, Maity SN, Hattori N, Matsui H, Nukina N. The transcription factor NF-YA is crucial for neural progenitor maintenance during brain development. J Biol Chem 2024; 300:105629. [PMID: 38199563 PMCID: PMC10839448 DOI: 10.1016/j.jbc.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
In contrast to stage-specific transcription factors, the role of ubiquitous transcription factors in neuronal development remains a matter of scrutiny. Here, we demonstrated that a ubiquitous factor NF-Y is essential for neural progenitor maintenance during brain morphogenesis. Deletion of the NF-YA subunit in neural progenitors by using nestin-cre transgene in mice resulted in significant abnormalities in brain morphology, including a thinner cerebral cortex and loss of striatum during embryogenesis. Detailed analyses revealed a progressive decline in multiple neural progenitors in the cerebral cortex and ganglionic eminences, accompanied by induced apoptotic cell death and reduced cell proliferation. In neural progenitors, the NF-YA short isoform lacking exon 3 is dominant and co-expressed with cell cycle genes. ChIP-seq analysis from the cortex during early corticogenesis revealed preferential binding of NF-Y to the cell cycle genes, some of which were confirmed to be downregulated following NF-YA deletion. Notably, the NF-YA short isoform disappears and is replaced by its long isoform during neuronal differentiation. Forced expression of the NF-YA long isoform in neural progenitors resulted in a significant decline in neuronal count, possibly due to the suppression of cell proliferation. Collectively, we elucidated a critical role of the NF-YA short isoform in maintaining neural progenitors, possibly by regulating cell proliferation and apoptosis. Moreover, we identified an isoform switch in NF-YA within the neuronal lineage in vivo, which may explain the stage-specific role of NF-Y during neuronal development.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan; Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aya Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Hiyama
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan; Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Ebrahimighaei R, Tarassova N, Bond SC, McNeill MC, Hathway T, Vohra H, Newby AC, Bond M. Extracellular matrix stiffness controls cardiac fibroblast proliferation via the nuclear factor-Y (NF-Y) transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119640. [PMID: 37996060 DOI: 10.1016/j.bbamcr.2023.119640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The proliferative expansion of cardiac fibroblasts (CF) contributes towards cardiac fibrosis, which results in myocardial stiffening, cardiac dysfunction, and heart failure. CF sense and respond to increased stiffness of their local extracellular matrix, modulating their phenotype towards increased collagen synthesis and higher proliferation, leading potentially to a vicious circle of positive feedback. Here we describe a novel mechanism that mediates increased CF proliferation in response to a pathologically stiff Exteracellular matrix (ECM). The mechanism we describe is independent of the well-characterised mechano-sensitive transcript factors, YAP-TEAD and MKL1-SRF, which our data indicate are only responsible for part of the genes induced by stiffened ECM. Instead, our data identify Nuclear Factor-Y (NF-Y) as a novel mechanosensitive transcription factor, which mediates enhanced CF proliferation in response to a stiff ECM. We show that levels of NF-YA protein, the major regulatory subunit of NF-Y, and NF-Y transcriptional activity, are increased by a stiff ECM. Indeed, NF-Y activity drives the expression of multiple cell-cycle genes. Furthermore, NF-YA protein levels are dependent on FAK signalling suggesting a mechanistic link to ECM composition. Consistent with its role as a mechano-sensor, inhibition of NF-Y using siRNA or dominant negative mutant blocks CF proliferation on plastic in vitro, which models a stiff ECM, whereas ectopic expression of NF-YA increases the proliferation of cells interacting under conditions that model a physiologically soft ECM. In summary, our data demonstrate that NF-Y is a biomechanically sensitive transcription factor that promotes CF proliferation in a model of pathologically stiffened ECM.
Collapse
Affiliation(s)
- Reza Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom
| | - Nathalie Tarassova
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Samuel C Bond
- Clifton High School, Clifton, Bristol, BS8 3JD, United Kingdom.
| | - Madeleine C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Tom Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Hunaid Vohra
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Andrew C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| | - Mark Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol, BS2 8HW, United Kingdom.
| |
Collapse
|
14
|
Peng Y, Song W, Teif VB, Ovcharenko I, Landsman D, Panchenko AR. Detection of new pioneer transcription factors as cell-type-specific nucleosome binders. eLife 2024; 12:RP88936. [PMID: 38293962 PMCID: PMC10945518 DOI: 10.7554/elife.88936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Wrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding, and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq, and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2, and HeLa-S3 cell lines. Last, we systematically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.
Collapse
Affiliation(s)
- Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal UniversityWuhanChina
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Wei Song
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe ParkColchesterUnited Kingdom
| | - Ivan Ovcharenko
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - David Landsman
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
- Department of Biology and Molecular Sciences, Queen’s UniversityKingstonCanada
- School of Computing, Queen’s UniversityKingstonCanada
- Ontario Institute of Cancer ResearchTorontoCanada
| |
Collapse
|
15
|
Moreira P, Papatheodorou P, Deng S, Gopal S, Handley A, Powell DR, Pocock R. Nuclear factor Y is a pervasive regulator of neuronal gene expression. Cell Rep 2023; 42:113582. [PMID: 38096055 DOI: 10.1016/j.celrep.2023.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Nervous system function relies on the establishment of complex gene expression programs that provide neuron-type-specific and core pan-neuronal features. These complementary regulatory paradigms are controlled by terminal selector and parallel-acting transcription factors (TFs), respectively. Here, we identify the nuclear factor Y (NF-Y) TF as a pervasive direct and indirect regulator of both neuron-type-specific and pan-neuronal gene expression. Mapping global NF-Y targets reveals direct binding to the cis-regulatory regions of pan-neuronal genes and terminal selector TFs. We show that NFYA-1 controls pan-neuronal gene expression directly through binding to CCAAT boxes in target gene promoters and indirectly by regulating the expression of terminal selector TFs. Further, we find that NFYA-1 regulation of neuronal gene expression is important for neuronal activity and motor function. Thus, our research sheds light on how global neuronal gene expression programs are buffered through direct and indirect regulatory mechanisms.
Collapse
Affiliation(s)
- Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Paul Papatheodorou
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Shuer Deng
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
16
|
Peng Y, Song W, Teif VB, Ovcharenko I, Landsman D, Panchenko AR. Detection of new pioneer transcription factors as cell-type specific nucleosome binders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540098. [PMID: 37425841 PMCID: PMC10327179 DOI: 10.1101/2023.05.10.540098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Wrapping of DNA into nucleosomes restricts accessibility to the DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, may initiate local chromatin opening and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2 and HeLa cell lines. Lastly, we systemically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.
Collapse
Affiliation(s)
- Yunhui Peng
- current address: Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wei Song
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ivan Ovcharenko
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Landsman
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anna R. Panchenko
- Department of Pathology and Molecular Medicine, Queen’s University, ON, Canada
- Department of Biology and Molecular Sciences, Queen’s University, ON, Canada
- School of Computing, Queen’s University, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| |
Collapse
|
17
|
Hulett RE, Gehrke AR, Gompers A, Rivera-López C, Srivastava M. A wound-induced differentiation trajectory for neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540286. [PMID: 37214981 PMCID: PMC10197691 DOI: 10.1101/2023.05.10.540286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.
Collapse
|
18
|
Turkalj S, Jakobsen NA, Groom A, Metzner M, Riva SG, Gür ER, Usukhbayar B, Salazar MA, Hentges LD, Mickute G, Clark K, Sopp P, Davies JOJ, Hughes JR, Vyas P. GTAC enables parallel genotyping of multiple genomic loci with chromatin accessibility profiling in single cells. Cell Stem Cell 2023; 30:722-740.e11. [PMID: 37146586 DOI: 10.1016/j.stem.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angus Groom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simone G Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Ravza Gür
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gerda Mickute
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
19
|
Weichenhan D, Riedel A, Meinen C, Basic A, Toth R, Bähr M, Lutsik P, Hey J, Sollier E, Toprak UH, Kelekçi S, Lin YY, Hakobyan M, Touzart A, Goyal A, Wierzbinska JA, Schlesner M, Westermann F, Lipka DB, Plass C. Translocation t(6;7) in AML-M4 cell line GDM-1 results in MNX1 activation through enhancer-hijacking. Leukemia 2023; 37:1147-1150. [PMID: 36949154 PMCID: PMC10169647 DOI: 10.1038/s41375-023-01865-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Affiliation(s)
- Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Riedel
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Charlotte Meinen
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alisa Basic
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reka Toth
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Marion Bähr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Oncology KU Leuven, Leuven, Belgium
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Umut H Toprak
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simge Kelekçi
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Yu-Yu Lin
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mariam Hakobyan
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Aurore Touzart
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Université de Paris Cité, Institut Necker Enfants-Malades (INEM), Institut National de la Santé et de la Recherche Médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Justyna A Wierzbinska
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Matthias Schlesner
- Faculty of Applied Informatics, University of Augsburg, Augsburg, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
20
|
CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21. Leukemia 2022; 36:956-969. [PMID: 35110726 DOI: 10.1038/s41375-022-01512-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
The cell cycle progression of hematopoietic stem cells (HSCs) and acute myeloid leukemia (AML) cells is precisely controlled by multiple regulatory factors. However, the underlying mechanisms are not fully understood. Here, we find that cyclin-dependent kinase 19 (CDK19), not its paralogue CDK8, is relatively enriched in mouse HSCs, and its expression is more significantly increased than CDK8 after proliferative stresses. Furthermore, SenexinB (a CDK8/19 inhibitor) treatment impairs the proliferation and self-renewal ability of HSCs. Moreover, overexpression of CDK19 promotes HSC function better than CDK8 overexpression. Using CDK19 knockout mice, we observe that CDK19-/- HSCs exhibit similar phenotypes to those of cells treated with SenexinB. Interestingly, the p53 signaling pathway is significantly activated in HSCs lacking CDK19 expression. Further investigations show that CDK19 can interact with p53 to inhibit p53-mediated transcription of p21 in HSCs and treatment with a specific p53 inhibitor (PFTβ) partially rescues the defects of CDK19-null HSCs. Importantly, SenexinB treatment markedly inhibits the proliferation of AML cells. Collectively, our findings indicate that CDK19 is involved in regulating HSC and AML cell proliferation via the p53-p21 pathway, revealing a new mechanism underlying cell cycle regulation in normal and malignant hematopoietic cells.
Collapse
|
21
|
Bernardini A, Lorenzo M, Chaves-Sanjuan A, Swuec P, Pigni M, Saad D, Konarev PV, Graewert MA, Valentini E, Svergun DI, Nardini M, Mantovani R, Gnesutta N. The USR domain of USF1 mediates NF-Y interactions and cooperative DNA binding. Int J Biol Macromol 2021; 193:401-413. [PMID: 34673109 DOI: 10.1016/j.ijbiomac.2021.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
The trimeric CCAAT-binding NF-Y is a "pioneer" Transcription Factor -TF- known to cooperate with neighboring TFs to regulate gene expression. Genome-wide analyses detected a precise stereo-alignment -10/12 bp- of CCAAT with E-box elements and corresponding colocalization of NF-Y with basic-Helix-Loop-Helix (bHLH) TFs. We dissected here NF-Y interactions with USF1 and MAX. USF1, but not MAX, cooperates in DNA binding with NF-Y. NF-Y and USF1 synergize to activate target promoters. Reconstruction of complexes by structural means shows independent DNA binding of MAX, whereas USF1 has extended contacts with NF-Y, involving the USR, a USF-specific amino acid sequence stretch required for trans-activation. The USR is an intrinsically disordered domain and adopts different conformations based on E-box-CCAAT distances. Deletion of the USR abolishes cooperative DNA binding with NF-Y. Our data indicate that the functionality of certain unstructured domains involves adapting to small variation in stereo-alignments of the multimeric TFs sites.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Mariangela Lorenzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | | | - Paolo Swuec
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Matteo Pigni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Dana Saad
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Petr V Konarev
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Science, Moscow 119333, Russian Federation
| | | | - Erica Valentini
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy.
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy.
| |
Collapse
|
22
|
Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Zabolian A, Hashemi M, Hushmandi K, Ashrafizadeh M, Aref AR, Samarghandian S. Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies. Biomed Pharmacother 2021; 144:112335. [PMID: 34700233 DOI: 10.1016/j.biopha.2021.112335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth common gynecologic cancer and is considered as second leading cause of death among women. Various strategies are applied in treatment of cervical cancer including radiotherapy, chemotherapy and surgery. However, cervical cancer cells demonstrate aggressive behavior in advanced phases, requiring novel strategies in their elimination. On the other hand, SOX proteins are transcription factors capable of regulating different molecular pathways and their expression varies during embryogenesis, disease development and carcinogenesis. In the present review, our aim is to reveal role of SOX transcription factors in cervical cancer. SOX transcription factors play like a double-edged sword in cancer. For instance, SOX9 possesses both tumor-suppressor and tumor-promoting role in cervical cancer. Therefore, exact role of each SOX members in cervical cancer has been discussed to direct further experiments for revealing other functions. SOX proteins can regulate proliferation and metastasis of cervical cancer cells. Furthermore, response of cervical cancer cells to chemotherapy and radiotherapy is tightly regulated by SOX transcription factors. Different downstream targets of SOX proteins such as Wnt signaling, EMT and Hedgehog have been identified. Besides, upstream mediators such as microRNAs, lncRNAs and circRNAs can regulate SOX expression in cervical cancer. In addition to pre-clinical studies, role of SOX transcription factors as prognostic and diagnostic tools in cervical cancer has been shown.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
23
|
Rigillo G, Basile V, Belluti S, Ronzio M, Sauta E, Ciarrocchi A, Latella L, Saclier M, Molinari S, Vallarola A, Messina G, Mantovani R, Dolfini D, Imbriano C. The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle. Nat Commun 2021; 12:6013. [PMID: 34650038 PMCID: PMC8516959 DOI: 10.1038/s41467-021-26293-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Mirko Ronzio
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Elisabetta Sauta
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Lucia Latella
- Department of Medicine, Institute of Translational Pharmacology, Italian National Research Council and Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marielle Saclier
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Antonio Vallarola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Roberto Mantovani
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, via Celoria 26, Milan, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, Modena, Italy.
| |
Collapse
|
24
|
Baldari S, Manni I, Di Rocco G, Paolini F, Palermo B, Piaggio G, Toietta G. Reduction of Cell Proliferation by Acute C 2H 6O Exposure. Cancers (Basel) 2021; 13:cancers13194999. [PMID: 34638483 PMCID: PMC8508324 DOI: 10.3390/cancers13194999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Alcoholic beverages and acetaldehyde formed during their metabolism are carcinogenic to humans. Alcohol drinking may affect bone marrow stem cell niche, suppressing physiological hematopoiesis and ultimately reducing the organism’s capacity to fight against cancer, infections, and to promote tissue regeneration. To elucidate in vivo the cellular mechanisms associated with alcohol intake toxicity, we used a mouse model in which proliferating cells produce the firefly’s light-emitting protein. In this animal, alcohol exposure transiently “turns off the light”, indicating a negative effect on cell proliferation in the bone marrow and spleen. Pharmacological treatment with substances interfering with ethanol metabolism, reducing acetaldehyde production, partially restores the physiological cell proliferation rate. Over 560 million people worldwide have increased susceptibility to acetaldehyde toxicity and 4% of cancer deaths are attributable to alcohol. Our model might provide a suitable tool to further investigate in vivo the effects of alcohol metabolism and aldehydes production on carcinogenesis. Abstract Endogenous acetaldehyde production from the metabolism of ingested alcohol exposes hematopoietic progenitor cells to increased genotoxic risk. To develop possible therapeutic strategies to prevent or reverse alcohol abuse effects, it would be critical to determine the temporal progression of acute ethanol toxicity on progenitor cell numbers and proliferative status. We followed the variation of the cell proliferation rate in bone marrow and spleen in response to acute ethanol intoxication in the MITO-Luc mouse, in which NF-Y-dependent cell proliferation can be assessed in vivo by non-invasive bioluminescent imaging. One week after ethanol administration, bioluminescent signals in bone marrow and spleen decreased below the level corresponding to physiological proliferation, and they progressively resumed to pre-treatment values in approximately 4 weeks. Boosting acetaldehyde catabolism by administration of an aldehyde dehydrogenase activity activator or administration of polyphenols with antioxidant activity partially restored bone marrow cells’ physiological proliferation. These results indicate that in this mouse model, bioluminescent alteration reflects the reduction of the physiological proliferation rate of bone marrow progenitor cells due to the toxic effect of aldehydes generated by alcohol oxidation. In summary, this study presents a novel view of the impact of acute alcohol intake on bone marrow cell proliferation in vivo.
Collapse
Affiliation(s)
- Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Isabella Manni
- Stabilimento Allevatore Fornitore Utilizzatore (SAFU), IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Giulia Piaggio
- Stabilimento Allevatore Fornitore Utilizzatore (SAFU), IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
- Correspondence: ; Tel.: +39-06-5266-2604
| |
Collapse
|
25
|
Liu Y, He S, Zhou R, Zhang X, Yang S, Deng D, Zhang C, Yu X, Chen Y, Su Z. Nuclear Factor-Y in Mouse Pancreatic β-Cells Plays a Crucial Role in Glucose Homeostasis by Regulating β-Cell Mass and Insulin Secretion. Diabetes 2021; 70:1703-1716. [PMID: 33980692 DOI: 10.2337/db20-1238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The current study was undertaken in a conditional knockout of Nf-ya specifically in pancreatic β-cells (Nf-ya βKO) to define the essential physiological role of NF-Y in β-cells. Nf-ya βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca2+ influx in response to glucose, which was associated with an inefficient glucose uptake into β-cells due to a decreased expression of GLUT2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islet homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.
Collapse
Affiliation(s)
- Yin Liu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Siyuan He
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xueping Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dan Deng
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
U2af1 is required for survival and function of hematopoietic stem/progenitor cells. Leukemia 2021; 35:2382-2398. [PMID: 33414485 PMCID: PMC8283943 DOI: 10.1038/s41375-020-01116-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
U2AF1 is involved in the recognition of the 3' splice site during pre-mRNA splicing. Mutations in U2AF1 are frequently observed in myelodysplastic syndromes. However, the role of wild-type U2AF1 in normal hematopoiesis has remained elusive. Using a novel conditional U2af1 knockout allele, we have found that deletion of U2af1 results in profound defects in hematopoiesis characterized by pancytopenia, ablation of hematopoietic stem/progenitor cells (HSPC) leading to bone marrow failure and early lethality in mice. U2af1 deletion impairs HSPC function and repopulation capacity. U2af1 deletion also causes increased DNA damage and reduced survival in hematopoietic progenitors. RNA sequencing analysis reveals significant alterations in the expression of genes related to HSC maintenance, cell proliferation, and DNA damage response-related pathways in U2af1-deficient HSPC. U2af1 deficiency also induces splicing alterations in genes important for HSPC function. This includes altered splicing and perturbed expression of Nfya and Pbx1 transcription factors in U2af1-deficient HSPC. Collectively, these results suggest an important role for U2af1 in the maintenance and function of HSPC in normal hematopoiesis. A better understanding of the normal function of U2AF1 in hematopoiesis is important for development of appropriate therapeutic approaches for U2AF1 mutant induced hematologic malignancies.
Collapse
|
27
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Zhang Y, Sun Y, Zhang Y, Miao Q, Wang Q, Yang B, Li Y, Li L, Zhang R. Nuclear factor Y participates in alcoholic liver disease by activating SREBP1 expression in mice. Biochem Biophys Res Commun 2021; 541:90-94. [PMID: 33485268 DOI: 10.1016/j.bbrc.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/11/2023]
Abstract
Chronic and excessive alcohol consumption leads to alcoholic liver disease (ALD). However, the molecular mechanisms in the regulation of ALD have not been fully deciphered. Liver lipid accumulation is an important research direction in ALD. In this study, the physiological role of nuclear factor Y (NF-Y) in ALD and the related mechanisms were investigated using murine hepatocytes and an ethanol-induced liver injury mouse model. In this study, ethanol promoted hepatic NF-Y expression in a mouse model and Hepa1-6 mouse hepatocytes. Lentivirus-mediated NF-Y overexpression in Hepa1-6 cells markedly increased sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FASN) expression compared with empty vector control cells. Conversely, CRISPR/Cas9-mediated knockdown of NF-Y subunit A (NF-YA) attenuated FASN and SREBP1 expression. Mechanistically, luciferase reporter gene assays and chromatin immunoprecipitation (ChIP) analysis indicated that NF-Y activates the transcription of SREBP1 by directly binding to the CCAAT regulatory sequence motif in the promoter. Overall, our results reveal a previously unrecognized physiological function of NF-Y in ALD by activating sterol regulatory element-binding protein 1 (SREBP1). Modulation of hepatic NF-Y expression may therefore offer an attractive therapeutic approach to manage ALD.
Collapse
Affiliation(s)
- Yanjie Zhang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Yajun Sun
- Department of Pharmacy, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Yange Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, Fujian Province, China
| | - Qin Miao
- Department of Addiction, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Qi Wang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Bin Yang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Yanzhong Li
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Lin Li
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China
| | - Ruiling Zhang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan Province, China.
| |
Collapse
|
29
|
Gene expression profiling in neuronal cells identifies a different type of transcriptome modulated by NF-Y. Sci Rep 2020; 10:21714. [PMID: 33303918 PMCID: PMC7728767 DOI: 10.1038/s41598-020-78682-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
A heterotrimeric transcription factor NF-Y is crucial for cell-cycle progression in various types of cells. In contrast, studies using NF-YA knockout mice have unveiled its essential role in endoplasmic reticulum (ER) homeostasis in neuronal cells. However, whether NF-Y modulates a different transcriptome to mediate distinct cellular functions remains obscure. Here, we knocked down NF-Y in two types of neuronal cells, neuro2a neuroblastoma cells and mouse brain striatal cells, and performed gene expression profiling. We found that down-regulated genes preferentially contained NF-Y-binding motifs in their proximal promoters, and notably enriched genes related to ER functions rather than those for cell cycle. This contrasts with the profiling data of HeLa and embryonic stem cells in which distinct down-regulation of cell cycle-related genes was observed. Clustering analysis further identified several functional clusters where populations of the down-regulated genes were highly distinct. Further analyses using chromatin immunoprecipitation and RNA-seq data revealed that the transcriptomic difference was not correlated with DNA binding of NF-Y but with splicing of NF-YA. These data suggest that neuronal cells have a different type of transcriptome in which ER-related genes are dominantly modulated by NF-Y, and imply that NF-YA splicing alteration could be involved in this cell type-specific gene modulation.
Collapse
|
30
|
Li Y, Xiao X, Chen H, Chen Z, Hu K, Yin D. Transcription factor NFYA promotes G1/S cell cycle transition and cell proliferation by transactivating cyclin D1 and CDK4 in clear cell renal cell carcinoma. Am J Cancer Res 2020; 10:2446-2463. [PMID: 32905496 PMCID: PMC7471361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023] Open
Abstract
NFYA (nuclear transcription factor Y, subunit A) is a CCAAT-binding transcription factor. Accumulating evidence suggests that NFYA plays an important role in breast, ovarian, lung and gastric cancer. However, the role of NFYA in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, it was discovered that the expression of NFYA is elevated in tissues of ccRCC patient and high NFYA expression is linked to poor overall survival in ccRCC patient. Inhibition of G1/S cell cycle transition and decreased cell proliferation were observed upon NFYA knockdown in ccRCC cells. Moreover, further investigation revealed that NFYA binds directly to the promoter region of both CDK4 and cyclin D1 (CCND1) thus transactivating their expression, resulting in RB phosphorylation and the activation of subsequent E2F pathway activation. Taken together, these findings imply the oncogenic role of NFYA in ccRCC progression and its potential as a target for ccRCC therapy.
Collapse
Affiliation(s)
- Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Xing Xiao
- Department of Dermatology, Shenzhen Children’s HospitalShenzhen 518000, Guangdong, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, Guangdong, China
| |
Collapse
|
31
|
Cui M, Wang Z, Chen K, Shah AM, Tan W, Duan L, Sanchez-Ortiz E, Li H, Xu L, Liu N, Bassel-Duby R, Olson EN. Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing. Dev Cell 2020; 53:102-116.e8. [PMID: 32220304 DOI: 10.1016/j.devcel.2020.02.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
The adult mammalian heart is incapable of regeneration following injury. In contrast, the neonatal mouse heart can efficiently regenerate during the first week of life. The molecular mechanisms that mediate the regenerative response and its blockade in later life are not understood. Here, by single-nucleus RNA sequencing, we map the dynamic transcriptional landscape of five distinct cardiomyocyte populations in healthy, injured, and regenerating mouse hearts. We identify immature cardiomyocytes that enter the cell cycle following injury and disappear as the heart loses the ability to regenerate. These proliferative neonatal cardiomyocytes display a unique transcriptional program dependent on nuclear transcription factor Y subunit alpha (NFYa) and nuclear factor erythroid 2-like 1 (NFE2L1) transcription factors, which exert proliferative and protective functions, respectively. Cardiac overexpression of these two factors conferred protection against ischemic injury in mature mouse hearts that were otherwise non-regenerative. These findings advance our understanding of the cellular basis of neonatal heart regeneration and reveal a transcriptional landscape for heart repair following injury.
Collapse
Affiliation(s)
- Miao Cui
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population & Data Sciences and Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Akansha M Shah
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lauren Duan
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences and Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, The Hamon Center for Regenerative Science and Medicine and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Libetti D, Bernardini A, Sertic S, Messina G, Dolfini D, Mantovani R. The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation. Cells 2020; 9:cells9030789. [PMID: 32214056 PMCID: PMC7140862 DOI: 10.3390/cells9030789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/19/2022] Open
Abstract
NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, “long” (NF-YAl) and “short” (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and—to a lesser extent, MyoD— levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.
Collapse
|
33
|
Myers JA, Couch T, Murphy Z, Malik J, Getman M, Steiner LA. The histone methyltransferase Setd8 alters the chromatin landscape and regulates the expression of key transcription factors during erythroid differentiation. Epigenetics Chromatin 2020; 13:16. [PMID: 32178723 PMCID: PMC7075014 DOI: 10.1186/s13072-020-00337-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
Background SETD8 is the sole methyltransferase capable of mono-methylating histone H4, lysine 20. SETD8 and H4K20me1 play a role in a number of essential biologic processes, including cell cycle progression, establishment of higher order chromatin structure, and transcriptional regulation. SETD8 is highly expressed in erythroid cells and erythroid deletion of Setd8 is embryonic lethal by embryonic day 11.5 (E11.5) due to profound anemia, suggesting that it has an erythroid-specific function. The function of SETD8 in the hemopoietic system is poorly understood. The goal of our study was to gain insights into the function of SETD8 during erythroid differentiation. Results We performed ATAC-seq (assay for transposase-accessible chromatin) on sorted populations of E10.5 Setd8 mutant and control erythroblasts. Accessibility profiles were integrated with expression changes and a mark of heterochromatin (H3K27me3) performed in wild-type E10.5 erythroblasts to further understand the role of SETD8 in erythropoiesis. Data integration identified regions of greater chromatin accessibility in Setd8 mutant cells that co-located with H3K27me3 in wild-type E10.5 erythroblasts suggesting that these regions, and their associated genes, are repressed during normal erythropoiesis. The majority of these more accessible regions were located in promoters and they frequently co-located with the NFY complex. Pathway analysis of genes identified through data integration revealed stemness-related pathways. Among those genes were multiple transcriptional regulators active in multipotent progenitors, but repressed during erythroid differentiation including Hhex, Hlx, and Gata2. Consistent with a role for SETD8 in erythroid specification, SETD8 expression is up-regulated upon erythroid commitment, and Setd8 disruption impairs erythroid colony forming ability. Conclusion Taken together, our results suggest that SETD8 is an important regulator of the chromatin landscape during erythroid differentiation, particularly at promoters. Our results also identify a novel role for Setd8 in the establishment of appropriate patterns of lineage-restricted gene expression during erythroid differentiation.
Collapse
Affiliation(s)
- Jacquelyn A Myers
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.,Genomics Resource Center, University of Rochester, Rochester, NY, USA
| | - Tyler Couch
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Zachary Murphy
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Jeffrey Malik
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.,Genomics Resource Center, University of Rochester, Rochester, NY, USA
| | - Michael Getman
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Laurie A Steiner
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
34
|
Feder K, Edmaier-Schröger K, Rawat VPS, Kirsten N, Metzeler K, Kraus JM, Döhner K, Döhner H, Kestler HA, Feuring-Buske M, Buske C. Differences in expression and function of LEF1 isoforms in normal versus leukemic hematopoiesis. Leukemia 2019; 34:1027-1037. [DOI: 10.1038/s41375-019-0635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
35
|
NF-YA transcriptionally activates the expression of SOX2 in cervical cancer stem cells. PLoS One 2019; 14:e0215494. [PMID: 31365524 PMCID: PMC6668781 DOI: 10.1371/journal.pone.0215494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Roles for SOX2 have been extensively studied in several types of cancer, including colorectal cancer, glioblastoma and breast cancer, with particular emphasis placed on the roles of SOX2 in cancer stem cell. Our previous study identified SOX2 as a marker in cervical cancer stem cells driven by a full promoter element of SOX2 EGFP reporter. Here, dual-luciferase reporter and mutagenesis analyses were employed, identifying key cis-elements in the SOX2 promoter, including binding sites for SOX2, OCT4 and NF-YA factors in SOX2 promoter. Mutagenesis analysis provided additional evidence to show that one high affinity-binding domain CCAAT box was precisely recognized and bound by the transcription factor NF-YA. Furthermore, overexpression of NF-YA in primitive cervical cancer cells SiHa and C33A significantly activated the transcription and the protein expression of SOX2. Collectively, our data identified NF-YA box CCAAT as a key cis-element in the SOX2 promoter, suggesting that NF-YA is a potent cellular regulator in the maintenance of SOX2-positive cervical cancer stem cell by specific transcriptional activation of SOX2.
Collapse
|
36
|
Wang Y, Yang S, Guan Q, Chen J, Zhang X, Zhang Y, Yuan Y, Su Z. Effects of Genetic Variants of Nuclear Receptor Y on the Risk of Type 2 Diabetes Mellitus. J Diabetes Res 2019; 2019:4902301. [PMID: 31205951 PMCID: PMC6530108 DOI: 10.1155/2019/4902301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor-Y (NF-Y) consists of three evolutionary conserved subunits including NF-YA, NF-YB, and NF-YC; it is a critical transcriptional regulator of lipid and glucose metabolism and adipokine biosynthesis that are associated with type 2 diabetes mellitus (T2DM) occurrence, while the impacts of genetic variants in the NF-Y gene on the risk of T2DM remain to be investigated. In the present study, we screened five single-nucleotide polymorphisms (SNPs) with the SNaPshot method in 427 patients with T2DM and 408 healthy individuals. Subsequently, we analyzed the relationships between genotypes and haplotypes constructed from these SNPs with T2DM under diverse genetic models. Furthermore, we investigated the allele effects on the quantitative metabolic traits. Of the five tagSNPs, we found that three SNPs (rs2268188, rs6918969, and rs28869187) exhibited nominal significant differences in allelic or genotypic frequency between patients with T2DM and healthy individuals. The minor alleles G, C, and C at rs2268188, rs6918969, and rs28869187, respectively, conferred a higher T2DM risk under a dominant genetic model, and the carriers of these risk alleles (either homozygotes of the minor allele or heterozygotes) had statistically higher levels of fasting plasma glucose, cholesterol, and triglycerides. Haplotype analysis showed that SNPs rs2268188, rs6918969, rs28869187, and rs35105472 formed a haplotype block, and haplotype TTAC was protective against T2DM (OR = 0.76, 95% CI = 0.33-0.82, P = 0.004), while haplotype GCCG was associated with an elevated susceptibility to T2DM (OR = 2.33, 95% CI = 1.43-3.57, P = 0.001). This study is the first ever observation to our knowledge that indicates the genetic variants of NF-YA might influence a Chinese Han individual's occurrence of T2DM.
Collapse
Affiliation(s)
- Ying Wang
- Department of Geriatric Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu, 610041 Sichuan, China
| | - Jinglu Chen
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueping Zhang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Zhang
- Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiming Yuan
- Department of Geriatric Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Accurate annotation of accessible chromatin in mouse and human primordial germ cells. Cell Res 2018; 28:1077-1089. [PMID: 30305709 DOI: 10.1038/s41422-018-0096-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 09/02/2018] [Indexed: 12/15/2022] Open
Abstract
Extensive and accurate chromatin remodeling is essential during primordial germ cell (PGC) development for the perpetuation of genetic information across generations. Here, we report that distal cis-regulatory elements (CREs) marked by DNase I-hypersensitive sites (DHSs) show temporally restricted activities during mouse and human PGC development. Using DHS maps as proxy, we accurately locate the genome-wide binding sites of pluripotency transcription factors in mouse PGCs. Unexpectedly, we found that mouse female meiotic recombination hotspots can be captured by DHSs, and for the first time, we identified 12,211 recombination hotspots in mouse female PGCs. In contrast to that of meiotic female PGCs, the chromatin of mitotic-arrested male PGCs is permissive through nuclear transcription factor Y (NFY) binding in the distal regulatory regions. Furthermore, we examined the evolutionary pressure on PGC CREs, and comparative genomic analysis revealed that mouse and human PGC CREs are evolutionarily conserved and show strong conservation across the vertebrate tree outside the mammals. Therefore, our results reveal unique, temporally accessible chromatin configurations during mouse and human PGC development.
Collapse
|
38
|
Li G, Zhao H, Wang L, Wang Y, Guo X, Xu B. The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am J Cancer Res 2018; 8:1106-1125. [PMID: 30094088 PMCID: PMC6079162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with the ability to bind to CCAAT boxes in nearly all eukaryotes and has long been a topic of interest since it is first identified. In plants, due to each subunit of NF-Y is encoded by multiple gene families, there are a wide variety NF-Y complex combinations that fulfill many pivotal functions. However, the animal NF-Y complex usually has only one type of combination, as each subunit is generally encoded by a single gene. Even though, mounting evidence points to that the animal NF-Y complex is also essential for numerous biological processes involved in proliferation and apoptosis, cancer and tumor, stress responses, growth and development. Therefore, a relatively comprehensive functional dissection of animal NF-Y will enable a deeper comprehension of how lesser combinations of the NF-Y complex regulate diverse aspects of biology processes in animal. Here, we focus mainly on reviewing recent advances related to NF-Y in the animal field, including subunit structural characteristics, expression regulation models and biological functions, and we also discuss future directions.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| |
Collapse
|
39
|
Belluti S, Semeghini V, Basile V, Rigillo G, Salsi V, Genovese F, Dolfini D, Imbriano C. An autoregulatory loop controls the expression of the transcription factor NF-Y. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:509-518. [DOI: 10.1016/j.bbagrm.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
|
40
|
Zhang Y, Guan Q, Liu Y, Zhang Y, Chen Y, Chen J, Liu Y, Su Z. Regulation of hepatic gluconeogenesis by nuclear factor Y transcription factor in mice. J Biol Chem 2018. [PMID: 29530977 DOI: 10.1074/jbc.ra117.000508] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatic gluconeogenesis is essential to maintain blood glucose levels, and its abnormal activation leads to hyperglycemia and type 2 diabetes. However, the molecular mechanisms in the regulation of hepatic gluconeogenesis remain to be fully defined. In this study, using murine hepatocytes and a liver-specific knockout mouse model, we explored the physiological role of nuclear factor Y (NF-Y) in regulating hepatic glucose metabolism and the underlying mechanism. We found that NF-Y targets the gluconeogenesis pathway in the liver. Hepatic NF-Y expression was effectively induced by cAMP, glucagon, and fasting in vivo Lentivirus-mediated NF-Y overexpression in Hepa1-6 hepatocytes markedly raised the gluconeogenic gene expression and cellular glucose production compared with empty vector control cells. Conversely, CRISPR/Cas9-mediated knockdown of NF-Y subunit A (NF-YA) attenuated gluconeogenic gene expression and glucose production. We also provide evidence indicating that CRE-loxP-mediated, liver-specific NF-YA knockout compromises hepatic glucose production. Mechanistically, luciferase reporter gene assays and ChIP analysis indicated that NF-Y activates transcription of the gluconeogenic genes Pck1 and G6pc, by encoding phosphoenolpyruvate carboxykinase (PEPCK) and the glucose-6-phosphatase catalytic subunit (G6Pase), respectively, via directly binding to the CCAAT regulatory sequence motif in their promoters. Of note, NF-Y enhanced gluconeogenesis by interacting with cAMP-responsive element-binding protein (CREB). Overall, our results reveal a previously unrecognized physiological function of NF-Y in controlling glucose metabolism by up-regulating the gluconeogenic genes Pck1 and G6pc Modulation of hepatic NF-Y expression may therefore offer an attractive therapeutic approach to manage type 2 diabetes.
Collapse
Affiliation(s)
- Yanjie Zhang
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Qiuyue Guan
- the Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu 610041, Sichuan, China, and
| | - Yin Liu
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Yuwei Zhang
- the Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yulong Chen
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Jinglu Chen
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Yulan Liu
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China
| | - Zhiguang Su
- From the Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center, Chengdu 610041, Sichuan, China,
| |
Collapse
|
41
|
Nishi-Tatsumi M, Yahagi N, Takeuchi Y, Toya N, Takarada A, Murayama Y, Aita Y, Sawada Y, Piao X, Oya Y, Shikama A, Masuda Y, Kubota M, Izumida Y, Matsuzaka T, Nakagawa Y, Sekiya M, Iizuka Y, Kawakami Y, Kadowaki T, Yamada N, Shimano H. A key role of nuclear factor Y in the refeeding response of fatty acid synthase in adipocytes. FEBS Lett 2017; 591:965-978. [PMID: 28281280 DOI: 10.1002/1873-3468.12620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 11/10/2022]
Abstract
Fatty acid synthase (Fasn) is a key component of energy metabolism that is dynamically induced by food intake. Although extensive studies have revealed a number of transcription factors involved in the fasting/refeeding transition of Fasn expression in hepatocytes, much less evidence is available for adipocytes. Using the in vivo Ad-luc analytical system, we identified the inverted CCAAT element (ICE) around -100 nucleotides in the Fasn promoter as a critical cis-element for the refeeding response in adipocytes. Electrophoretic mobility shift assays and chromatin immunoprecipitation show that nuclear factor Y (NF-Y) binds to ICE specifically in refeeding states. Notably, the NF-Y binding to ICE is differently regulated between adipocytes and hepatocytes. These findings provide insights into the specific mechanisms controlling energy metabolism in adipocytes.
Collapse
Affiliation(s)
- Makiko Nishi-Tatsumi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Toya
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ayako Takarada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshikazu Sawada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Xiaoying Piao
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Oya
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Midori Kubota
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoko Iizuka
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kadowaki
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
42
|
Terenina E, Fabre S, Bonnet A, Monniaux D, Robert-Granié C, SanCristobal M, Sarry J, Vignoles F, Gondret F, Monget P, Tosser-Klopp G. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol Genomics 2017; 49:67-80. [DOI: 10.1152/physiolgenomics.00069.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/08/2023] Open
Abstract
Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes ( DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins ( IL5, IL24), TNF-associated receptor ( TNFR1), and cytochrome-c oxidase ( COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.
Collapse
Affiliation(s)
- Elena Terenina
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Stephane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Danielle Monniaux
- INRA UMR 0085, CNRS UMR 7247, Université Francois Rabelais de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | - Magali SanCristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florence Vignoles
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florence Gondret
- INRA, UMR1348 Pegase, Saint‐Gilles, France; and
- AgroCampus-Ouest, UMR1348 Pegase, Saint‐Gilles, France
| | - Philippe Monget
- INRA UMR 0085, CNRS UMR 7247, Université Francois Rabelais de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | |
Collapse
|
43
|
Gurtner A, Manni I, Piaggio G. NF-Y in cancer: Impact on cell transformation of a gene essential for proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:604-616. [PMID: 27939755 DOI: 10.1016/j.bbagrm.2016.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
NF-Y is a ubiquitous heterotrimeric transcription factor with a binding affinity for the CCAAT consensus motif, one of the most common cis-acting element in the promoter and enhancer regions of eukaryote genes in direct (CCAAT) or reverse (ATTGG) orientation. NF-Y consists of three subunits, NF-YA, the regulatory subunit of the trimer, NF-YB, and NF-YC, all required for CCAAT binding. Growing evidence in cells and animal models support the notion that NF-Y, driving transcription of a plethora of cell cycle regulatory genes, is a key player in the regulation of proliferation. Proper control of cellular growth is critical for cancer prevention and uncontrolled proliferation is a hallmark of cancer cells. Indeed, during cell transformation aberrant molecular pathways disrupt mechanisms controlling proliferation and many growth regulatory genes are altered in tumors. Here, we review bioinformatics, molecular and functional evidence indicating the involvement of the cell cycle regulator NF-Y in cancer-associated pathways. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Aymone Gurtner
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
44
|
Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression. Mol Cell Biochem 2016; 426:47-54. [PMID: 27837431 DOI: 10.1007/s11010-016-2879-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023]
Abstract
Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.
Collapse
|
45
|
Maity SN. NF-Y (CBF) regulation in specific cell types and mouse models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:598-603. [PMID: 27815195 DOI: 10.1016/j.bbagrm.2016.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 02/08/2023]
Abstract
The CCAAT-binding factor CBF/NF-Y is needed for cell proliferation and early embryonic development. NF-Y can regulate the expression of different cell type-specific genes that are activated by various physiological signaling pathways. Dysregulation of NF-Y was observed in pathogenic conditions in humans such as scleroderma, neurodegenerative disease, and cancer. Conditional inactivation of the NF-YA gene in mice demonstrated that NF-Y activity is essential for normal tissue homeostasis, survival, and metabolic function. Altogether, NF-Y is an essential transcription factor that plays a critical role in mammalian development, from the early stages to adulthood, and in human pathogenesis. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Sankar N Maity
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
46
|
Guo J, Kong LM, Peng AF, Long XH, Zhou Y, Shu Y. Transcription factor NF‑YA promotes a malignant phenotype by upregulating fatty acid synthase expression. Mol Med Rep 2016; 14:5007-5014. [PMID: 27840951 PMCID: PMC5355697 DOI: 10.3892/mmr.2016.5897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/14/2016] [Indexed: 11/06/2022] Open
Abstract
Recent studies have revealed that increased expression of the alpha subunit of nuclear transcription factor Y (NF‑YA) is associated with the malignant phenotype of various tumors. However, whether elevated expression of NF‑YA promotes a malignant phenotype in osteosarcoma (OS), and the molecular mechanisms underlying this predicted effect is currently unknown. In the present study, small hairpin RNA (shRNA)‑mediated knockdown of endogenous NF‑YA significantly inhibited the migration and invasion capabilities of OS cells in vitro, whereas ectopic expression of NF‑YA increased the migration and invasion capabilities of these cells. In addition, the induction of upregulated NF‑YA expression on the malignant phenotype of OS cells was attenuated by silencing fatty acid synthase (FASN) expression. Furthermore, the expression level of FASN was increased by upregulating NF‑YA, while decreased FASN expression was observed following NF‑YA silencing in OS cells. The results of the present study suggest that NF‑YA may promote a malignant phenotype in OS cells, in part, by activating the FASN signaling pathway, which may represent a promising target for the management of OS.
Collapse
Affiliation(s)
- Jing Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Min Kong
- Department of Orthopedics, The Central People's Hospital of Ji'an City, Ji'an, Jiangxi 343000, P.R. China
| | - Ai Fen Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Shu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
47
|
Zambelli F, Pavesi G. Genome wide features, distribution and correlations of NF-Y binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:581-589. [PMID: 27769808 DOI: 10.1016/j.bbagrm.2016.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
NF-Y is a trimeric transcription factor that binds on DNA the CCAAT-box motif. In this article we reviewed and complemented with additional bioinformatic analysis existing data on genome-wide NF-Y binding characterization in human, reaching the following main conclusions: (1) about half of NF-Y binding sites are located at promoters, about 60-80 base pairs from transcription start sites; NF-Y binding to distal genomic regions takes place at inactive chromatin loci and/or DNA repetitive elements more often than active enhancers; (2) on almost half of its binding sites, regardless of their genomic localization (promoters or distal regions), NF-Y finds on DNA more than one CCAAT-box, and most of those multiple CCAAT binding loci present precise spacing and organization of the elements composing them; (3) there exists a well defined class of transcription factors that show genome-wide co-localization with NF-Y. Some of them lack their canonical binding site in binding regions overlapping with NF-Y, hence hinting at NF-Y mediated recruitment, while others show a precise positioning on DNA of their binding sites with respect to the CCAAT box bound by NF-Y. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy; Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy.
| |
Collapse
|
48
|
Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep 2016; 6:34575. [PMID: 27687130 PMCID: PMC5043352 DOI: 10.1038/srep34575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression.
Collapse
|
49
|
NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea. PLoS Genet 2016; 12:e1006109. [PMID: 27304889 PMCID: PMC4909293 DOI: 10.1371/journal.pgen.1006109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/16/2016] [Indexed: 12/21/2022] Open
Abstract
Gametes are the source and carrier of genetic information, essential for the propagation of all sexually reproducing organisms. Male gametes are derived from a progenitor stem cell population called spermatogonial stem cells (SSCs). SSCs give rise to male gametes through the coordination of two essential processes: self-renewal to produce more SSCs, and differentiation to produce mature sperm. Disruption of this equilibrium can lead to excessive proliferation of SSCs, causing tumorigenesis, or can result in aberrant differentiation, leading to infertility. Little is known about how SSCs achieve the fine balance between self-renewal and differentiation, which is necessary for their remarkable output and developmental potential. To understand the mechanisms of SSC maintenance, we examine the planarian homolog of Nuclear Factor Y-B (NF-YB), which is required for the maintenance of early planarian male germ cells. Here, we demonstrate that NF-YB plays a role in the self-renewal and proliferation of planarian SSCs, but not in their specification or differentiation. Furthermore, we characterize members of the NF-Y complex in Schistosoma mansoni, a parasitic flatworm related to the free-living planarian. We find that the function of NF-YB in regulating male germ cell proliferation is conserved in schistosomes. This finding is especially significant because fecundity is the cause of pathogenesis of S. mansoni. Our findings can help elucidate the complex relationship between self-renewal and differentiation of SSCs, and may also have implications for understanding and controlling schistosomiasis.
Collapse
|
50
|
Dolfini D, Zambelli F, Pedrazzoli M, Mantovani R, Pavesi G. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors. Nucleic Acids Res 2016; 44:4684-702. [PMID: 26896797 PMCID: PMC4889920 DOI: 10.1093/nar/gkw096] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein–protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein–protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Maurizio Pedrazzoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| |
Collapse
|