1
|
Vir P, Gunasekera D, Dorjbal B, McDaniel D, Agrawal A, Merricks EP, Ragni MV, Leissinger CA, Stering AI, Lieuw K, Nichols TC, Pratt KP. Lack of factor VIII detection in humans and dogs with an intron 22 inversion challenges hypothesis regarding inhibitor risk. J Thromb Haemost 2024; 22:3415-3430. [PMID: 39233012 DOI: 10.1016/j.jtha.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Almost half of severe hemophilia A (HA) cases are caused by an intron 22 inversion (Int22Inv) mutation, which truncates the 26-exon F8 messenger RNA (mRNA) after exon 22. Another F8 transcript, F8B, is initiated from within F8-intron-22. F8B mRNA consists of a short exon spliced to exons 23 to 26 and is expressed in multiple human cell types. It has been hypothesized that Int22Inv patients have self-tolerance to partial factor (F)VIII proteins expressed from these 2 transcripts. FVIII is expressed in endothelial cells, primarily in the liver and lungs. Several studies have reported FVIII expression in other cell types, although this has been controversial. OBJECTIVES To determine if partial FVIII proteins are expressed from intron 22-inverted and/or F8B mRNA and if FVIII is expressed in nonendothelial cells. METHODS A panel of FVIII-specific antibodies was validated and employed to label FVIII in cells and tissues and for immunoprecipitation followed by western blots and mass spectrometry proteomics analysis. RESULTS Immunofluorescent staining localized FVIII to endothelial cells in liver sections from non-HA but not HA-Int22Inv dogs. Neither FVIII nor FVIIIB was detected in human peripheral blood mononuclear cells, B cell or T cell lines, or cell lines expanded from peripheral blood mononuclear cells, whereas FVIII antigen and activity were readily detected in primary nonhemophilic liver sinusoidal endothelial cells. CONCLUSION If FVIII is expressed in nonendothelial cells or if partial FVIII proteins are expressed in HA-Int22Inv, the concentrations are below the detection limits of these sensitive assays. Our results argue against promotion of immune tolerance through expression of partial FVIII proteins in Int-22Inv patients.
Collapse
Affiliation(s)
- Pooja Vir
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Devi Gunasekera
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Batsukh Dorjbal
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Dennis McDaniel
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; Biological Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Atul Agrawal
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Cindy A Leissinger
- Department of Medicine, Louisiana Center for Bleeding and Clotting Disorders, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Allen I Stering
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kenneth Lieuw
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Westwood LJ, Le Couteur DG, Hunt NJ, Cogger VC. Strategies to target and genetically modify the liver sinusoid. SINUSOIDAL CELLS IN LIVER DISEASES 2024:161-189. [DOI: 10.1016/b978-0-323-95262-0.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Gong J, Yang R, Zhou M, Chang LJ. Improved intravenous lentiviral gene therapy based on endothelial-specific promoter-driven factor VIII expression for hemophilia A. Mol Med 2023; 29:74. [PMID: 37308845 DOI: 10.1186/s10020-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Shenzhen Geno-Immune Medical Institute, 6 Yuexing 2nd Rd., 2nd Floor, Nanshan Dist., Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
4
|
CD14+/CD31+ monocytes expanded by UM171 correct hemophilia A in zebrafish upon lentiviral gene transfer of factor VIII. Blood Adv 2023; 7:697-711. [PMID: 36477543 PMCID: PMC9984962 DOI: 10.1182/bloodadvances.2022009014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging gene therapy clinical trials test the correction of hemophilia A (HA) by replacing factor VIII (FVIII) in autologous hematopoietic stem cells (HSCs). Although it is known that platelets, monocyte/macrophages, and mesenchymal stromal cells can secrete transgenic FVIII, a systematic examination of blood lineages as extrahepatic sources of FVIII, to our knowledge, has not yet been performed. In this study, we sought to provide a comprehensive map of native and lentivirus-based transgenic FVIII production from HSC stage to mature blood cells, through a flow cytometry analysis. In addition, we generated a model of transient HA in zebrafish based on antisense RNA, to assess the corrective potential of the FVIII-transduced HSCs. We discovered that FVIII production begins at the CD34+ progenitor stage after cytokine stimulation in culture. Among all mature white blood cells, monocytes are the largest producers of native FVIII and can maintain protein overexpression during differentiation from HSCs when transduced by a FVIII lentiviral vector. Moreover, the addition of the HSC self-renewal agonist UM171 to CD34+ cells during transduction expanded a subpopulation of CD14+/CD31+ monocytes with excellent ability to carry the FVIII transgene, allowing the correction of HA phenotype in zebrafish. Finally, the HA zebrafish model showed that f8 RNA is predominantly localized in the hematopoietic system at the larval stage, which indicates a potential contributory role of FVIII in hematopoiesis that warrants further investigation. We believe that this study may be of broad interest to hematologists and researchers striving to advance knowledge and permanent treatments for patients with HA.
Collapse
|
5
|
Barbon S, Stocco E, Rajendran S, Zardo L, Macchi V, Grandi C, Tagariello G, Porzionato A, Radossi P, De Caro R, Parnigotto PP. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int J Mol Sci 2022; 23:ijms23137282. [PMID: 35806285 PMCID: PMC9266329 DOI: 10.3390/ijms23137282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Lorena Zardo
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
| | - Claudio Grandi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Giuseppe Tagariello
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Paolo Radossi
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
- Correspondence:
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| |
Collapse
|
6
|
Son JS, Park CY, Lee G, Park JY, Kim HJ, Kim G, Chi KY, Woo DH, Han C, Kim SK, Park HJ, Kim DW, Kim JH. Therapeutic correction of hemophilia A using 2D endothelial cells and multicellular 3D organoids derived from CRISPR/Cas9-engineered patient iPSCs. Biomaterials 2022; 283:121429. [DOI: 10.1016/j.biomaterials.2022.121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023]
|
7
|
Olgasi C, Borsotti C, Merlin S, Bergmann T, Bittorf P, Adewoye AB, Wragg N, Patterson K, Calabria A, Benedicenti F, Cucci A, Borchiellini A, Pollio B, Montini E, Mazzuca DM, Zierau M, Stolzing A, Toleikis P, Braspenning J, Follenzi A. Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Mol Ther Methods Clin Dev 2021; 23:551-566. [PMID: 34853801 PMCID: PMC8606349 DOI: 10.1016/j.omtm.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Hemophilia A (HA) is a rare bleeding disorder caused by deficiency/dysfunction of the FVIII protein. As current therapies based on frequent FVIII infusions are not a definitive cure, long-term expression of FVIII in endothelial cells through lentiviral vector (LV)-mediated gene transfer holds the promise of a one-time treatment. Thus, here we sought to determine whether LV-corrected blood outgrowth endothelial cells (BOECs) implanted through a prevascularized medical device (Cell Pouch) would rescue the bleeding phenotype of HA mice. To this end, BOECs from HA patients and healthy donors were isolated, expanded, and transduced with an LV carrying FVIII driven by an endothelial-specific promoter employing GMP-like procedures. FVIII-corrected HA BOECs were either directly transplanted into the peritoneal cavity or injected into a Cell Pouch implanted subcutaneously in NSG-HA mice. In both cases, FVIII secretion was sufficient to improve the mouse bleeding phenotype. Indeed, FVIII-corrected HA BOECs reached a relatively short-term clinically relevant engraftment being detected up to 16 weeks after transplantation, and their genomic integration profile did not show enrichment for oncogenes, confirming the process safety. Overall, this is the first preclinical study showing the safety and feasibility of transplantation of GMP-like produced LV-corrected BOECs within an implantable device for the long-term treatment of HA.
Collapse
Affiliation(s)
- Cristina Olgasi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Thorsten Bergmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Patrick Bittorf
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Adeolu Badi Adewoye
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Nicholas Wragg
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST47QB Stoke-on-Trent, UK
| | | | | | | | - Alessia Cucci
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Borchiellini
- Haematology Unit Regional Center for Hemorrhagic and Thrombotic Diseases, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | - Berardino Pollio
- Immune-Haematology and Transfusion Medicine, Regina Margherita Children Hospital, City of Health and Science University Hospital of Molinette, 10126 Turin, Italy
| | | | | | - Martin Zierau
- IMS Integrierte Management Systeme e. K., 64646 Heppenheim, Germany
| | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, LE113TU Loughborough, UK
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Joris Braspenning
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97082 Würzburg, Germany
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
8
|
Gong J, Chung TH, Zheng J, Zheng H, Chang LJ. Transduction of modified factor VIII gene improves lentiviral gene therapy efficacy for hemophilia A. J Biol Chem 2021; 297:101397. [PMID: 34774524 PMCID: PMC8649223 DOI: 10.1016/j.jbc.2021.101397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.
Collapse
Affiliation(s)
- Jie Gong
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Tsai-Hua Chung
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China
| | - Jie Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China; Shenzhen Geno-Immune Medical Institute, Shenzhen, China; Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Hayakawa M, Sakata A, Hayakawa H, Matsumoto H, Hiramoto T, Kashiwakura Y, Baatartsogt N, Fukushima N, Sakata Y, Suzuki-Inoue K, Ohmori T. Characterization and visualization of murine coagulation factor VIII-producing cells in vivo. Sci Rep 2021; 11:14824. [PMID: 34290295 PMCID: PMC8295325 DOI: 10.1038/s41598-021-94307-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Coagulation factors are produced from hepatocytes, whereas production of coagulation factor VIII (FVIII) from primary tissues and cell species is still controversial. Here, we tried to characterize primary FVIII-producing organ and cell species using genetically engineered mice, in which enhanced green fluorescent protein (EGFP) was expressed instead of the F8 gene. EGFP-positive FVIII-producing cells existed only in thin sinusoidal layer of the liver and characterized as CD31high, CD146high, and lymphatic vascular endothelial hyaluronan receptor 1 (Lyve1)+. EGFP-positive cells can be clearly distinguished from lymphatic endothelial cells in the expression profile of the podoplanin− and C-type lectin-like receptor-2 (CLEC-2)+. In embryogenesis, EGFP-positive cells began to emerge at E14.5 and subsequently increased according to liver maturation. Furthermore, plasma FVIII could be abolished by crossing F8 conditional deficient mice with Lyve1-Cre mice. In conclusion, in mice, FVIII is only produced from endothelial cells exhibiting CD31high, CD146high, Lyve1+, CLEC-2+, and podoplanin− in liver sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Morisada Hayakawa
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. .,Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Asuka Sakata
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroko Hayakawa
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hikari Matsumoto
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takafumi Hiramoto
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Kashiwakura
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Nemekhbayar Baatartsogt
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Noriyoshi Fukushima
- Department of Pathology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yoichi Sakata
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. .,Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
10
|
Viswanathan P, Sharma Y, Jaber FL, Tchaikovskaya T, Gupta S. Transplanted hepatocytes rescue mice in acetaminophen-induced acute liver failure through paracrine signals for hepatic ATM and STAT3 pathways. FASEB J 2021; 35:e21471. [PMID: 33683737 DOI: 10.1096/fj.202002421r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
Acute liver failure constitutes a devastating condition that needs novel cell and molecular therapies. To elicit synergisms in cell types of therapeutic interest, we studied hepatocytes and liver sinusoidal endothelial in mice with acetaminophen-induced acute liver failure. The context of regenerative signals was examined by transplants in peritoneal cavity because it possesses considerable capacity and allows soluble signals to enter the systemic circulation. Whereas transplanted hepatocytes and liver sinusoidal endothelial cells engrafted in peritoneal cavity, only the former could rescue mice in liver failure by improving injury outcomes, activating hepatic DNA damage repair, and inducing liver regeneration. The cytokines secreted by donor hepatocytes or liver sinusoidal endothelial cells differed and in hepatocytes from mice undergoing acetaminophen toxicity major cytokines were even rendered deficient (eg, G-CSF, VEGF, and others). Significantly, recapitulating hepatotoxicity-related DNA damage response in cultured cells identified impairments in ATM and JAK/STAT3 intersections since replacing cytokines produced less from injured hepatocytes restored these pathways to avoid acetaminophen hepatotoxicity. Similarly, hepatocyte transplantation in acute liver failure restored ATM and JAK/STAT3 pathways to advance DNA damage/repair and liver regeneration. The unexpected identification of novel hepatic G-CSF receptor expression following injury allowed paradigmatic studies of G-CSF supplementation to confirm the centrality of this paracrine ATM and STAT3 intersection. Remarkably, DNA damage/repair and hepatic regeneration directed by G-CSF concerned rebalancing of regulatory gene networks overseeing inflammation, metabolism, and cell viability. We conclude that healthy donor hepatocytes offer templates for generating specialized cell types to replace metabolic functions and regenerative factors in liver failure.
Collapse
Affiliation(s)
- Preeti Viswanathan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yogeshwar Sharma
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fadi-Luc Jaber
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tatyana Tchaikovskaya
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.,Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.,Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Famà R, Borroni E, Merlin S, Airoldi C, Pignani S, Cucci A, Corà D, Bruscaggin V, Scardellato S, Faletti S, Pelicci G, Pinotti M, Walker GE, Follenzi A. Deciphering the Ets-1/2-mediated transcriptional regulation of F8 gene identifies a minimal F8 promoter for hemophilia A gene therapy. Haematologica 2021; 106:1624-1635. [PMID: 32467137 PMCID: PMC8168518 DOI: 10.3324/haematol.2019.239202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Amajor challenge in the development of a gene therapy for hemophilia A is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help to optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets- 1/Est-2 combination, while Ets-2 alone was ineffective. Moreover, Ets-1/Ets- 2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of green fluorescent protein (GFP) or FVIII cassettes driven by the shortened promoters, led to GFP expression mainly in endothelial cells in the liver and to longterm FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in hemophilia A gene therapy.
Collapse
Affiliation(s)
- Rosella Famà
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Airoldi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Pignani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alessia Cucci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Davide Corà
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | | | - Sharon Scardellato
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuliana Pelicci
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, Universita' di Ferrara, Italy
| | - Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
12
|
Qiu L, Xie M, Zhou M, Liu X, Hu Z, Wu L. Restoration of FVIII Function and Phenotypic Rescue in Hemophilia A Mice by Transplantation of MSCs Derived From F8-Modified iPSCs. Front Cell Dev Biol 2021; 9:630353. [PMID: 33644070 PMCID: PMC7905062 DOI: 10.3389/fcell.2021.630353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A (HA), an X-linked recessive congenital bleeding disorder, affects 80%–85% of patients with hemophilia. Nearly half of severe cases of hemophilia are caused by a 0.6-Mb genomic inversion (Inv22) that disrupts F8. Although viral-based gene therapy has shown therapeutic effects for hemophilia B (HB), this promising approach is not applicable for HA at the present stage; this limitation is mainly due to the large size of F8 cDNA, which far exceeds the adeno-associated virus (AAV) packaging capacity. We previously reported an in situ genetic correction of Inv22 in HA patient-specific induced pluripotent stem cells (HA-iPSCs) by using TALENs. We also investigated an alternative strategy for targeted gene addition, in which cDNA of the B-domain deleted F8 (BDDF8) was targeted at the rDNA locus of HA-iPSCs using TALENickases to restore FVIII function. Mesenchymal stem cells (MSCs) have low immunogenicity and can secrete FVIII under physiological conditions; in this study, MSCs were differentiated from F8-corrected iPSCs, BDDF8-iPSCs, and HA-iPSCs. Differentiated MSCs were characterized, and FVIII expression efficacy in MSCs was verified in vitro. The three types of MSCs were introduced into HA mice via intravenous injection. Long-term engraftment with restoration of FVIII function and phenotypic rescue was observed in HA mice transplanted with F8-corrected iMSCs and BDDF8-iMSCs. Our findings suggest that ex vivo gene therapy using iMSCs derived from F8-modified iPSCs can be feasible, effective, and promising for the clinical translation of therapeutic gene editing of HA and other genetic birth defects, particularly those that involve large sequence variants.
Collapse
Affiliation(s)
- Liyan Qiu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetic, School of Life Sciences, Central South University, Changsha, China
| | - Mi Xie
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetic, School of Life Sciences, Central South University, Changsha, China
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetic, School of Life Sciences, Central South University, Changsha, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetic, School of Life Sciences, Central South University, Changsha, China
| | - Zhiqing Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetic, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetic, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
13
|
Elnaggar M, Al-Mohannadi A, Kizhakayil D, Raynaud CM, Al-Mannai S, Gentilcore G, Pavlovski I, Sathappan A, Van Panhuys N, Borsotti C, Follenzi A, Grivel JC, Deola S. Flow-Cytometry Platform for Intracellular Detection of FVIII in Blood Cells: A New Tool to Assess Gene Therapy Efficiency for Hemophilia A. Mol Ther Methods Clin Dev 2020; 17:1-12. [PMID: 31886317 PMCID: PMC6920166 DOI: 10.1016/j.omtm.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Abstract
Detection of factor VIII (FVIII) in cells by flow cytometry is controversial, and no monoclonal fluorescent antibody is commercially available. In this study, we optimized such an assay and successfully used it as a platform to study the functional properties of phosphoglycerate kinase (PGK)-FVIII lentiviral vector-transduced cells by directly visualizing FVIII in cells after different gene transfer conditions. We could measure cellular stress parameters after transduction by correlating gene expression and protein accumulation data. Flow cytometry performed on transduced cell lines showed that increasing MOI rates resulted in increased protein levels, plateauing after an MOI of 30. We speculated that, at higher MOI, FVIII production could be impaired by a limiting factor required for proper folding. To test this hypothesis, we interfered with the unfolded protein response by blocking proteasomal degradation and measured the accumulation of intracellular misfolded protein. Interestingly, at higher MOIs the cells displayed signs of toxicity with reactive oxygen species accumulation. This suggests the need for identifying a safe window of transduction dose to avoid consequent cell toxicity. Herein, we show that our flow cytometry platform for intracytoplasmic FVIII protein detection is a reliable method for optimizing gene therapy protocols in hemophilia A by shedding light on the functional status of cells after gene transfer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Igor Pavlovski
- Research Department, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | | | - Chiara Borsotti
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro,” 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro,” 28100 Novara, Italy
| | | | - Sara Deola
- Research Department, Sidra Medicine, PO Box 26999, Doha, Qatar
| |
Collapse
|
14
|
FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Adv 2020; 3:825-838. [PMID: 30862611 DOI: 10.1182/bloodadvances.2018027979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
Here we describe a successful gene therapy approach for hemophilia A (HA), using the natural F8 promoter (pF8) to direct gene replacement to factor VIII (FVIII)-secreting cells. The promoter sequence and the regulatory elements involved in the modulation of F8 expression are still poorly characterized and biased by the historical assumption that FVIII expression is mainly in hepatocytes. Bioinformatic analyses have highlighted an underestimated complexity in gene expression at this locus, suggesting an activation of pF8 in more cell types than those previously expected. C57Bl/6 mice injected with a lentiviral vector expressing green fluorescent protein (GFP) under the pF8 (lentiviral vector [LV].pF8.GFP) confirm the predominant GFP expression in liver sinusoidal endothelial cells, with a few positive cells detectable also in hematopoietic organs. Therapeutic gene delivery (LV.pF8.FVIII) in hemophilic C57/Bl6 and 129-Bl6 mice successfully corrected the bleeding phenotype, rescuing up to 25% FVIII activity, using a codon-optimized FVIII, with sustained activity for the duration of the experiment (1 year) without inhibitor formation. Of note, LV.pF8.FVIII delivery in FVIII-immunized HA mice resulted in the complete reversion of the inhibitor titer with the recovery of therapeutic FVIII activity. Depletion of regulatory T cells (Tregs) in LV-treated mice allowed the formation of anti-FVIII antibodies, indicating a role for Tregs in immune tolerance induction. The significant blood loss reduction observed in all LV.pF8.FVIII-treated mice 1 year after injection confirmed the achievement of a long-term phenotypic correction. Altogether, our results highlight the potency of pF8-driven transgene expression to correct the bleeding phenotype in HA, as well as potentially in other diseases in which an endothelial-specific expression is required.
Collapse
|
15
|
Merlin S, Follenzi A. Escape or Fight: Inhibitors in Hemophilia A. Front Immunol 2020; 11:476. [PMID: 32265927 PMCID: PMC7105606 DOI: 10.3389/fimmu.2020.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
Replacement therapy with coagulation factor VIII (FVIII) represents the current clinical treatment for patients affected by hemophilia A (HA). This treatment while effective is, however, hampered by the formation of antibodies which inhibit the activity of infused FVIII in up to 30% of treated patients. Immune tolerance induction (ITI) protocols, which envisage frequent infusions of high doses of FVIII to confront this side effect, dramatically increase the already high costs associated to a patient's therapy and are not always effective in all treated patients. Therefore, there are clear unmet needs that must be addressed in order to improve the outcome of these treatments for HA patients. Taking advantage of preclinical mouse models of hemophilia, several strategies have been proposed in recent years to prevent inhibitor formation and eradicate the pre-existing immunity to FVIII inhibitor positive patients. Herein, we will review some of the most promising strategies developed to avoid and eradicate inhibitors, including the use of immunomodulatory drugs or molecules, oral or transplacental delivery as well as cell and gene therapy approaches. The goal is to improve and potentiate the current ITI protocols and eventually make them obsolete.
Collapse
Affiliation(s)
- Simone Merlin
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| | - Antonia Follenzi
- Laboratory of Histology, Department of Health Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy.,Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
| |
Collapse
|
16
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
17
|
Sharma Y, Liu J, Kristian KE, Follenzi A, Gupta S. In Atp7b-/- Mice Modeling Wilson's Disease Liver Repopulation With Bone Marrow-Derived Myofibroblasts or Inflammatory Cells and Not Hepatocytes Is Deleterious. Gene Expr 2018; 19:15-24. [PMID: 30029699 PMCID: PMC6290324 DOI: 10.3727/105221618x15320123457380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Wilson's disease, Atp7b mutations impair copper excretion with liver or brain damage. Healthy transplanted hepatocytes repopulate the liver, excrete copper, and reverse hepatic damage in animal models of Wilson's disease. In Fah-/- mice with tyrosinemia and α-1 antitrypsin mutant mice, liver disease is resolved by expansions of healthy hepatocytes derived from transplanted healthy bone marrow stem cells. This potential of stem cells has not been defined for Wilson's disease. In diseased Atp7b-/- mice, we reconstituted bone marrow with donor cells expressing green fluorescent protein reporter from healthy transgenic mice. Mature hepatocytes originating from donor bone marrow were identified by immunostaining for green fluorescence protein and bile canalicular marker, dipeptidylpeptidase-4. Mesenchymal and inflammatory cell markers were used for other cells from donor bone marrow cells. Gene expression, liver tests, and tissues were analyzed for outcomes in Atp7b-/- mice. After bone marrow transplantation in Atp7b-/- mice, donor-derived hepatocytes containing bile canaliculi appeared within weeks. Despite this maturity, donor-derived hepatocytes neither divided nor expanded. The liver of Atp7b-/- mice was not repopulated by donor-derived hepatocytes: Atp7b mRNA remained undetectable; liver tests, copper content, and fibrosis actually worsened. Restriction of proliferation in hepatocytes accompanied oxidative DNA damage. By contrast, donor-derived mesenchymal and inflammatory cells extensively proliferated. These contributed to fibrogenesis through greater expression of inflammatory cytokines. In Wilson's disease, donor bone marrow-derived cells underwent different fates: hepatocytes failed to proliferate; inflammatory cells proliferated to worsen disease outcomes. This will help guide stem cell therapies for conditions with proinflammatory or profibrogenic microenvironments.
Collapse
Affiliation(s)
- Yogeshwar Sharma
- *Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghua Liu
- †Department of Obstetrics and Gynecology, Shanghai Public Health Clinical Center, Shanghai, P.R. China
| | | | - Antonia Follenzi
- §Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- ¶Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Sanjeev Gupta
- *Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- §Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- #Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Borsotti C, Follenzi A. New technologies in gene therapy for inducing immune tolerance in hemophilia A. Expert Rev Clin Immunol 2018; 14:1013-1019. [PMID: 30345839 DOI: 10.1080/1744666x.2018.1539667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Conventional hemophilia treatment is based on repeated infusion of the missing clotting factor. This therapy is lifelong, expensive and can result in the formation of neutralizing antibodies, thus causing failure of the treatment and requiring higher doses of the replacement drug. Areas covered: Gene and cell therapies offer the advantage of providing a definitive and long-lasting correction of the mutated gene, promoting its physiological expression and preventing neutralizing antibody development. This review focuses on the most recent approaches that have been shown to prevent and even eradicate immune response toward the replaced factor. Expert commentary: Despite the encouraging data demonstrated by ongoing clinical trials and pre-clinical studies, more extensive investigations are necessary to establish the long-term safety and efficacy of gene therapy treatments in maintaining immune tolerance.
Collapse
Affiliation(s)
- Chiara Borsotti
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| | - Antonia Follenzi
- a Department of Health Sciences , Università del Piemonte Orientale , Novara , Italy
| |
Collapse
|
19
|
Kakabadze Z, Kakabadze A, Chakhunashvili D, Karalashvili L, Berishvili E, Sharma Y, Gupta S. Decellularized human placenta supports hepatic tissue and allows rescue in acute liver failure. Hepatology 2018; 67:1956-1969. [PMID: 29211918 PMCID: PMC5906146 DOI: 10.1002/hep.29713] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Abstract
UNLABELLED Tissue engineering with scaffolds to form transplantable organs is of wide interest. Decellularized tissues have been tested for this purpose, although supplies of healthy donor tissues, vascular recellularization for perfusion, and tissue homeostasis in engineered organs pose challenges. We hypothesized that decellularized human placenta will be suitable for tissue engineering. The universal availability and unique structures of placenta for accommodating tissue, including presence of embedded vessels, were major attractions. We found decellularized placental vessels were reendothelialized by adjacent native cells and bridged vessel defects in rats. In addition, implantation of liver fragments containing all cell types successfully hepatized placenta with maintenance of albumin and urea synthesis, as well as hepatobiliary transport of 99m Tc-mebrofenin, up to 3 days in vitro. After hepatized placenta containing autologous liver was transplanted into sheep, tissue units were well-perfused and self-assembled. Histological examination indicated transplanted tissue retained hepatic cord structures with characteristic hepatic organelles, such as gap junctions, and hepatic sinusoids lined by endothelial cells, Kupffer cells, and other cell types. Hepatocytes in this neo-organ expressed albumin and contained glycogen. Moreover, transplantation of hepatized placenta containing autologous tissue rescued sheep in extended partial hepatectomy-induced acute liver failure. This rescue concerned amelioration of injury and induction of regeneration in native liver. The grafted hepatized placenta was intact with healthy tissue that neither proliferated nor was otherwise altered. CONCLUSION The unique anatomic structure and matrix of human placenta were effective for hepatic tissue engineering. This will advance applications ranging from biological studies, drug development, and toxicology to patient therapies. (Hepatology 2018;67:1956-1969).
Collapse
Affiliation(s)
- Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Ann Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - David Chakhunashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Lia Karalashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Ekaterine Berishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Sanjeev Gupta
- Department of Medicine, Bronx, New York, USA,Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, The Irwin S. and Sylvia Chanin Institute for Cancer Research, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
20
|
Kakabadze Z, Kakabadze A, Chakhunashvili D, Karalashvili L, Berishvili E, Sharma Y, Gupta S. Decellularized human placenta supports hepatic tissue and allows rescue in acute liver failure. Hepatology 2018. [PMID: 29211918 DOI: 10.1002/hep.v67.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
UNLABELLED Tissue engineering with scaffolds to form transplantable organs is of wide interest. Decellularized tissues have been tested for this purpose, although supplies of healthy donor tissues, vascular recellularization for perfusion, and tissue homeostasis in engineered organs pose challenges. We hypothesized that decellularized human placenta will be suitable for tissue engineering. The universal availability and unique structures of placenta for accommodating tissue, including presence of embedded vessels, were major attractions. We found decellularized placental vessels were reendothelialized by adjacent native cells and bridged vessel defects in rats. In addition, implantation of liver fragments containing all cell types successfully hepatized placenta with maintenance of albumin and urea synthesis, as well as hepatobiliary transport of 99m Tc-mebrofenin, up to 3 days in vitro. After hepatized placenta containing autologous liver was transplanted into sheep, tissue units were well-perfused and self-assembled. Histological examination indicated transplanted tissue retained hepatic cord structures with characteristic hepatic organelles, such as gap junctions, and hepatic sinusoids lined by endothelial cells, Kupffer cells, and other cell types. Hepatocytes in this neo-organ expressed albumin and contained glycogen. Moreover, transplantation of hepatized placenta containing autologous tissue rescued sheep in extended partial hepatectomy-induced acute liver failure. This rescue concerned amelioration of injury and induction of regeneration in native liver. The grafted hepatized placenta was intact with healthy tissue that neither proliferated nor was otherwise altered. CONCLUSION The unique anatomic structure and matrix of human placenta were effective for hepatic tissue engineering. This will advance applications ranging from biological studies, drug development, and toxicology to patient therapies. (Hepatology 2018;67:1956-1969).
Collapse
Affiliation(s)
- Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Ann Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - David Chakhunashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Lia Karalashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Ekaterine Berishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY
- Diabetes Center, Albert Einstein College of Medicine, Bronx, NY
- The Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
21
|
Mishra A, Arindkar S, Sahay P, Kumar JM, Upadhyay PK, Majumdar SS, Nagarajan P. Evaluation of high-fat high-fructose diet treatment in factor VIII (coagulation factor)-deficient mouse model. Int J Exp Pathol 2018; 99:46-53. [PMID: 29656466 DOI: 10.1111/iep.12264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/03/2018] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD)-like conditions enhance the production and action of clotting factors in humans. However, studies examining the effect of NAFLD due to high-fat high-fructose (HFHF) diet in factor VIII-deficient (haemophilia A) animals or patients have not been reported previously. In this study, we investigated the individual role of factor VIII in the progression of diet-induced NAFLD in the factor 8-/- (F8-/- ) mouse model system and its consequences on the haemophilic status of the mice. The F8-/- mice were fed with HFHF diet for 14 weeks. Physiological, biochemical, haematological, molecular, pathological, and immune histochemical analyses were performed to evaluate the effect of this diet. The F8-/- mice developed hepatic steatosis after 14 weeks HFHF diet and displayed lower energy metabolism, higher myeloid cell infiltration in the liver, decreased platelet count, upregulated de novo fatty acid synthesis, lipid accumulation, and collagen deposition. This study helps to understand the role of factor VIII in NAFLD pathogenesis and to analyse the severity and consequences of steatosis in haemophilic patients as compared to normal population. This study suggests that haemophilic animals (F8-/- mice) are highly prone to hepatic steatosis and thrombocytopenia.
Collapse
Affiliation(s)
| | | | - Preeti Sahay
- National Institute of Immunology, New Delhi, India
| | | | | | | | | |
Collapse
|
22
|
Dolan G, Benson G, Duffy A, Hermans C, Jiménez-Yuste V, Lambert T, Ljung R, Morfini M, Zupančić Šalek S. Haemophilia B: Where are we now and what does the future hold? Blood Rev 2018; 32:52-60. [DOI: 10.1016/j.blre.2017.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
23
|
Dorsey A, Pilli VS, Fried H, Majumder R. Protein S: a Multifunctional Anticoagulant. BIOMEDICAL RESEARCH AND CLINICAL PRACTICE 2017; 2:10.15761/BRCP.1000151. [PMID: 30148214 PMCID: PMC6103620 DOI: 10.15761/brcp.1000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- A'drianne Dorsey
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| | - Vijaya Satish Pilli
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| | - Howard Fried
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| | - Rinku Majumder
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| |
Collapse
|
24
|
Merlin S, Cannizzo ES, Borroni E, Bruscaggin V, Schinco P, Tulalamba W, Chuah MK, Arruda VR, VandenDriessche T, Prat M, Valente G, Follenzi A. A Novel Platform for Immune Tolerance Induction in Hemophilia A Mice. Mol Ther 2017; 25:1815-1830. [PMID: 28552407 DOI: 10.1016/j.ymthe.2017.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disease caused by factor VIII (FVIII) deficiency. We previously demonstrated that FVIII is produced specifically in liver sinusoid endothelial cells (LSECs) and to some degree in myeloid cells, and thus, in the present work, we seek to restrict the expression of FVIII transgene to these cells using cell-specific promoters. With this approach, we aim to limit immune response in a mouse model by lentiviral vector (LV)-mediated gene therapy encoding FVIII. To increase the target specificity of FVIII expression, we included miRNA target sequences (miRTs) (i.e., miRT-142.3p, miRT-126, and miRT-122) to silence expression in hematopoietic cells, endothelial cells, and hepatocytes, respectively. Notably, we report, for the first time, therapeutic levels of FVIII transgene expression at its natural site of production, which occurred without the formation of neutralizing antibodies (inhibitors). Moreover, inhibitors were eradicated in FVIII pre-immune mice through a regulatory T cell-dependent mechanism. In conclusion, targeting FVIII expression to LSECs and myeloid cells by using LVs with cell-specific promoter minimized off-target expression and immune responses. Therefore, at least for some transgenes, expression at the physiologic site of synthesis can enhance efficacy and safety, resulting in long-term correction of genetic diseases such as HA.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Elvira Stefania Cannizzo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Valentina Bruscaggin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Piercarla Schinco
- Azienda Ospedaliera Universitaria Città della Salute e della Scienza, 10126 Torino, Italy
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy.
| |
Collapse
|
25
|
Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 2016; 73:3311-21. [PMID: 27141940 PMCID: PMC11108490 DOI: 10.1007/s00018-016-2229-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.
Collapse
Affiliation(s)
- Miaohua Mo
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Shan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Ying Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Hong Li
- Department of General Surgery, Qingdao Municipal Hospital, 5 Donghai M Rd, Qingdao, China.
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China.
| |
Collapse
|
26
|
Patterns of expression of factor VIII and von Willebrand factor by endothelial cell subsets in vivo. Blood 2016; 128:104-9. [PMID: 27207787 DOI: 10.1182/blood-2015-12-684688] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Circulating factor VIII (FVIII) is derived from liver and from extrahepatic sources probably of endothelial origin, but the vascular sites of FVIII production remain unclear. Among organs profiled, only liver and lymph nodes (LNs) show abundant expression of F8 messenger RNA (mRNA). Transcriptomic profiling of subsets of stromal cells, including endothelial cells (ECs) from mouse LNs and other tissues, showed that F8 mRNA is expressed by lymphatic ECs (LECs) but not by capillary ECs (capECs), fibroblastic reticular cells, or hematopoietic cells. Among blood ECs profiled, F8 expression was seen only in fenestrated ECs (liver sinusoidal and renal glomerular ECs) and some high endothelial venules. In contrast, von Willebrand factor mRNA was expressed in capECs but not in LECs; it was coexpressed with F8 mRNA in postcapillary high endothelial venules. Purified LECs and liver sinusoidal ECs but not capECs from LNs secrete active FVIII in culture, and human and mouse lymph contained substantial FVIII C activity. Our results revealed localized vascular expression of FVIII and von Willebrand factor and identified LECs as a major cellular source of FVIII in extrahepatic tissues.
Collapse
|
27
|
Kasuda S, Tatsumi K, Sakurai Y, Shima M, Hatake K. Therapeutic approaches for treating hemophilia A using embryonic stem cells. Hematol Oncol Stem Cell Ther 2016; 9:64-70. [PMID: 27131224 DOI: 10.1016/j.hemonc.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/09/2016] [Indexed: 01/14/2023] Open
Abstract
Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future.
Collapse
Affiliation(s)
- Shogo Kasuda
- Department of Legal Medicine, Nara Medical University School of Medicine, Kashihara, Japan
| | - Kohei Tatsumi
- Department of Pediatrics, Nara Medical University School of Medicine, Kashihara, Japan
| | - Yoshihiko Sakurai
- Department of Pediatrics, Nara Medical University School of Medicine, Kashihara, Japan; Department of Pediatrics, Matsubara Tokushukai Hospital, Matsubara, Japan.
| | - Midori Shima
- Department of Pediatrics, Nara Medical University School of Medicine, Kashihara, Japan
| | - Katsuhiko Hatake
- Department of Legal Medicine, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
28
|
Olmedillas López S, Garcia-Arranz M, Garcia-Olmo D, Liras A. Preliminary study on non-viral transfection of F9 (factor IX) gene by nucleofection in human adipose-derived mesenchymal stem cells. PeerJ 2016; 4:e1907. [PMID: 27114871 PMCID: PMC4841220 DOI: 10.7717/peerj.1907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
Background. Hemophilia is a rare recessive X-linked disease characterized by a deficiency of coagulation factor VIII or factor IX. Its current treatment is merely palliative. Advanced therapies are likely to become the treatment of choice for the disease as they could provide a curative treatment. Methods. The present study looks into the use of a safe non-viral transfection method based on nucleofection to express and secrete human clotting factor IX (hFIX) where human adipose tissue derived mesenchymal stem cells were used as target cells in vitro studies and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used to analyze factor IX expression in vivo studies. Previously, acute liver injury was induced by an injected intraperitoneal dose of 500 mg/kg body weight of acetaminophen. Results. Nucleofection showed a percentage of positive cells ranging between 30.7% and 41.9% and a cell viability rate of 29.8%, and cells were shown to secrete amounts of hFIX between 36.8 and 71.9 ng/mL. hFIX levels in the blood of NSG mice injected with ASCs transfected with this vector, were 2.7 ng/mL 48 h after injection. Expression and secretion of hFIX were achieved both in vitro cell culture media and in vivo in the plasma of mice treated with the transfected ASCs. Such cells are capable of eventually migrating to a previously damaged target tissue (the liver) where they secrete hFIX, releasing it to the bloodstream over a period of at least five days from administration. Conclusions. The results obtained in the present study may form a preliminary basis for the establishment of a future ex vivo non-viral gene/cellular safe therapy protocol that may eventually contribute to advancing the treatment of hemophilia.
Collapse
Affiliation(s)
| | - Mariano Garcia-Arranz
- Health Research Institute-Jiménez Diaz Foundation (iiS-FJD), Madrid, Spain; Department of Surgery, School of Medicine, Autonoma University of Madrid, Spain
| | - Damian Garcia-Olmo
- Health Research Institute-Jiménez Diaz Foundation (iiS-FJD), Madrid, Spain; Department of Surgery, School of Medicine, Autonoma University of Madrid, Spain
| | - Antonio Liras
- Department of Physiology, School of Biology, Complutense University of Madrid, Spain; Victoria Eugenia Royal Hemophilia Foundation, Madrid, Spain; Health Research Institute-Hospital 12 de Octubre Foundation (iiS-i+12O), Madrid, Spain
| |
Collapse
|
29
|
|
30
|
Arruda VR. The search for the origin of factor VIII synthesis and its impact on therapeutic strategies for hemophilia A. Haematologica 2016; 100:849-50. [PMID: 26130509 DOI: 10.3324/haematol.2015.129858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Valder R Arruda
- The Children's Hospital of Philadelphia, Center for Cell and Molecular Therapeutics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| |
Collapse
|
31
|
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7:7. [PMID: 26753925 PMCID: PMC4709937 DOI: 10.1186/s13287-015-0271-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are increasingly used as an intravenously applied cellular therapeutic. They were found to be potent in situations such as tissue repair or severe inflammation. Still, data are lacking with regard to the biodistribution of MSCs, their cellular or molecular target structures, and the mechanisms by which MSCs reach these targets. This review discusses current hypotheses for how MSCs can reach tissue sites. Both preclinical and clinical studies using MSCs applied intravenously or intra-arterially are discussed in the context of our current understanding of how MSCs might work in physiological and pathological situations.
Collapse
Affiliation(s)
- Johannes Leibacher
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany
| | - Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany. .,Blood Donor Center Zürich, Swiss Red Cross, Zürich, Switzerland.
| |
Collapse
|
32
|
Wu Y, Hu Z, Li Z, Pang J, Feng M, Hu X, Wang X, Lin-Peng S, Liu B, Chen F, Wu L, Liang D. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci Rep 2016; 6:18865. [PMID: 26743572 PMCID: PMC4705535 DOI: 10.1038/srep18865] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
Nearly half of severe Hemophilia A (HA) cases are caused by F8 intron 22 inversion (Inv22). This 0.6-Mb inversion splits the 186-kb F8 into two parts with opposite transcription directions. The inverted 5' part (141 kb) preserves the first 22 exons that are driven by the intrinsic F8 promoter, leading to a truncated F8 transcript due to the lack of the last 627 bp coding sequence of exons 23-26. Here we describe an in situ genetic correction of Inv22 in patient-specific induced pluripotent stem cells (iPSCs). By using TALENs, the 627 bp sequence plus a polyA signal was precisely targeted at the junction of exon 22 and intron 22 via homologous recombination (HR) with high targeting efficiencies of 62.5% and 52.9%. The gene-corrected iPSCs retained a normal karyotype following removal of drug selection cassette using a Cre-LoxP system. Importantly, both F8 transcription and FVIII secretion were rescued in the candidate cell types for HA gene therapy including endothelial cells (ECs) and mesenchymal stem cells (MSCs) derived from the gene-corrected iPSCs. This is the first report of an efficient in situ genetic correction of the large inversion mutation using a strategy of targeted gene addition.
Collapse
Affiliation(s)
- Yong Wu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqing Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Li
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jialun Pang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Mai Feng
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xuyun Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolin Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Bo Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Merlin S, Bhargava KK, Ranaldo G, Zanolini D, Palestro CJ, Santambrogio L, Prat M, Follenzi A, Gupta S. Kupffer Cell Transplantation in Mice for Elucidating Monocyte/Macrophage Biology and for Potential in Cell or Gene Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:539-51. [PMID: 26773351 DOI: 10.1016/j.ajpath.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KC) play major roles in immunity and tissue injury or repair. Because recapitulation of KC biology and function within liver will allow superior insights into their functional repertoire, we studied the efficacy of the cell transplantation approach for this purpose. Mouse KC were isolated from donor livers, characterized, and transplanted into syngeneic recipients. To promote cell engraftment through impairments in native KC, recipients were preconditioned with gadolinium chloride. The targeting, fate, and functionality of transplanted cells were evaluated. The findings indicated that transplanted KC engrafted and survived in recipient livers throughout the study period of 3 months. Transplanted KC expressed macrophage functions, including phagocytosis and cytokine expression, with or without genetic modifications using lentiviral vectors. This permitted studies of whether transplanted KC could affect outcomes in the context of acetaminophen hepatotoxicity or hepatic ischemia-reperfusion injury. Transplanted KC exerted beneficial effects in these injury settings. The benefits resulted from cytoprotective factors including vascular endothelial growth factor. In conclusion, transplanted adult KC were successfully targeted and engrafted in the liver with retention of innate immune and tissue repair functions over the long term. This will provide excellent opportunities to address critical aspects in the biogenesis, fate, and function of KC within their native liver microenvironment and to develop the cell and gene therapy potential of KC transplantation.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Kuldeep K Bhargava
- Division of Nuclear Medicine and Molecular Imaging, North Shore - Long Island Jewish Health System, New Hyde Park, New York
| | - Gabriella Ranaldo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Diego Zanolini
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christopher J Palestro
- Division of Nuclear Medicine and Molecular Imaging, North Shore - Long Island Jewish Health System, New Hyde Park, New York
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York.
| | - Sanjeev Gupta
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Marion Bessin Liver Research Center, Cancer Research Center, Diabetes Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
34
|
Zheng S, Yang J, Yang J, Tang Y, Shao Q, Guo L, Liu Q. Transplantation of umbilical cord mesenchymal stem cells via different routes in rats with acute liver failure. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15854-15862. [PMID: 26884856 PMCID: PMC4730069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE This study aimed to compare the therapeutic efficacy of transplantation of human umbilical cord mesenchymal stem cells (hUCMSC) in different routes in acute hepatic failure (ALF) in rats. METHODS hUCMSCs were isolated and identified by detection of surface antigens via flow cytometry. In T group and H group, ALF rats received hUCMSC transplantation through the tail vein and intrahepatic injection, respectively. In hUCMSC group, healthy rats received hUCMSCs transplantation via the tail vein. In ALF group, rats received injection of normal saline through the tail vein. RESULTS The TBil and ALT in ALF rats with and without transplantation were significantly higher than in healthy rats (P<0.05). HE staining of the liver showed obvious hepatocyte regeneration and reduced infiltration of inflammatory cells, and liver pathology was improved in T group and H group as compared to ALF group. At 3 d after transplantation, CK18 expression was detectable in both H group and T group. At 1 w and 2 w, the mRNA expressions of CK8, CK18 and AFP in H group and T group were significantly different from those in ALF group (P<0.05). The liver function and differentiation of stem cells were comparable between H group and T group (P>0.05). CONCLUSION hUCMSCs transplantation can improve the liver function and promote the liver repair following ALF. hUCMSCs transplantation via tail vein has similar therapeutic efficacy to that through intrahepatic injection.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Gastroenterology, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | - Juan Yang
- Department of Gastroenterology, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | - Jinhui Yang
- Center for Liver Diseases, Second Affiliated Hospital of Kunming Medical UniversityKunming 650021, China
| | - Yingmei Tang
- Center for Liver Diseases, Second Affiliated Hospital of Kunming Medical UniversityKunming 650021, China
| | - Qinghua Shao
- Department of Hepatobiliary Surgery, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | - Ling Guo
- Department of Scientific Research and Education, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | | |
Collapse
|
35
|
Kochat V, Kanjirakkuzhiyil S, Baligar P, Nagarajan P, Mukhopadhyay A. Donor antigen-primed regulatory T cells permit liver regeneration and phenotype correction in hemophilia A mouse by allogeneic bone marrow stem cells. Stem Cell Res Ther 2015; 6:129. [PMID: 26152192 PMCID: PMC4513683 DOI: 10.1186/s13287-015-0119-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 06/25/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Cell replacement therapy may be considered as an alternate approach to provide therapeutic dose of plasma factor VIII (FVIII) in patients with hemophilia A (HA). However, immune rejection limits the use of allogeneic cells in this mode of therapy. Here, we have examined the role of donor major histocompatibility complex (MHC)-stimulated host CD4(+)CD25(+) regulatory T (Treg) cells in suppressing immune responses against allogeneic uncommitted (Lin(-)) bone marrow cells (BMCs) for correction of bleeding disorder in HA mice. METHODS Allogeneic donor Lin(-) BMCs were co-transplanted with allo-antigen sensitized Treg cells in HA mice having acetaminophen-induced acute liver injury. Plasma FVIII activity was determined by in vitro functional assay, and correction of bleeding phenotype was assessed on the basis of capillary blood clotting time and tail-clip challenge. The immunosuppression potential of the sensitized Treg cells on CD4(+) T cells was studied both in vitro and in vivo. Suppression of inflammatory reactions in the liver against the homed donor cells by sensitized Treg cells was analysed by histopathological scoring. Allo-specificity of sensitized Treg cells and long-term retention of immunosuppression were examined against a third-party donor and by secondary challenge of allogeneic donor cells, respectively. The engraftment and phenotype change of donor BMCs in the liver and their role in synthesis of FVIII and liver regeneration were also determined. RESULTS Co-transplantation of allogeneic Lin(-) BMCs with sensitized Treg cells led to systemic immune modulation and suppression of inflammatory reactions in the liver, allowing better engraftment of allogeneic cells in the liver. Allo-antigen priming led to allo-specific immune suppression even after 1 year of transplantation. Donor-derived endothelial cells expressed FVIII in HA mice, leading to the correction of bleeding phenotype. Donor-derived hepatocyte-like cells, which constitute the major fraction of engrafted cells, supported regeneration of the liver after acute injury. CONCLUSIONS A highly proficient FVIII secreting core system can be created in regenerating liver by transplanting allogeneic Lin(-) BMCs in HA mice where transplantation tolerance against donor antigens can be induced by in vitro allo-antigen primed Treg cells. This strategy can be beneficial in treatment of genetic liver disorders for achieving prophylactic levels of the missing proteins.
Collapse
Affiliation(s)
- Veena Kochat
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Sumod Kanjirakkuzhiyil
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Prakash Baligar
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Perumal Nagarajan
- Experimental Animal Facility, National Institute of Immunology, New Delhi, India.
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
36
|
Sokal EM, Lombard C, Mazza G. Mesenchymal stem cell treatment for hemophilia: a review of current knowledge. J Thromb Haemost 2015; 13 Suppl 1:S161-6. [PMID: 26149017 DOI: 10.1111/jth.12933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hemophilia remains a non-curative disease, and patients are constrained to undergo repeated injections of clotting factors. In contrast, the sustained production of endogenous factors VIII (FVIII) or IX (FIX) by the patient's own cells could represent a curative treatment. Gene therapy has thus provided new hope for these patients. However, the issues surrounding the durability of expression and immune responses against gene transfer vectors remain. Cell therapy, involving stem cells expanded in vitro, can provide de novo protein synthesis and, if implanted successfully, could induce a steady-state production of low quantities of factors, which may keep the patient above the level required to prevent spontaneous bleeding. Liver-derived stem cells are already being assessed in clinical trials for inborn errors of metabolism and, in view of their capacity to produce FVIII and FIX in cell culture, they are now also being considered for clinical application in hemophilia patients.
Collapse
Affiliation(s)
- E M Sokal
- Service de gastroentérologie et hépatologie pédiatrique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Cliniques St Luc, Brussels, Belgium
| | - C Lombard
- Université Catholique de Louvain, Brussels, Belgium
| | - G Mazza
- Division of Medicine, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
37
|
Endo K, Hori T, Jobara K, Hata T, Tsuruyama T, Uemoto S. Pretransplant replacement of donor liver grafts with recipient Kupffer cells attenuates liver graft rejection in rats. J Gastroenterol Hepatol 2015; 30:944-51. [PMID: 25532540 DOI: 10.1111/jgh.12872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Rejection of liver grafts is a difficult issue that has not been resolved. Preoperative replacement of liver cells in the graft with cells from the intended recipient may attenuate rejection. We investigated whether preoperative transplant of recipient bone marrow cells (BMCs) to the donor replaced liver allograft cells and attenuated rejection. METHODS We used a rat model of allogeneic liver transplant (LT) from Dark Agouti (DA) to Lewis (LEW) rats. In BMC group, DA rats received BMC transplants from LacZ-transgenic LEW rats at 1 week before LT. In the control group, DA rats received no preoperative treatment. We evaluated graft damage at 7 days after LT and the survival of the recipient rats. RESULTS Rats in the BMC group experienced prolonged survival that was abrogated by the administration of gadolinium chloride to donors at 24 h before LT. Serum concentrations of total bilirubin and hyaluronic acid on day 7 were significantly lower in the BMC group, and histopathological analyses revealed that rejection of the liver graft was attenuated. X-gal staining and immunohistostaining of the liver graft revealed that BMCs engrafted in the sinusoidal space differentiated into Kupffer cells. CONCLUSIONS Preoperative transplant of recipient BMCs to LT donors replaced donor Kupffer cells and attenuated post-LT rejection, indicating that this strategy may increase the success of LT.
Collapse
Affiliation(s)
- Kosuke Endo
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Zanolini D, Merlin S, Feola M, Ranaldo G, Amoruso A, Gaidano G, Zaffaroni M, Ferrero A, Brunelleschi S, Valente G, Gupta S, Prat M, Follenzi A. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A. Haematologica 2015; 100:881-92. [PMID: 25911555 DOI: 10.3324/haematol.2014.123117] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/22/2015] [Indexed: 12/14/2022] Open
Abstract
A large fraction of factor VIII in blood originates from liver sinusoidal endothelial cells although extrahepatic sources also contribute to plasma factor VIII levels. Identification of cell-types other than endothelial cells with the capacity to synthesize and release factor VIII will be helpful for therapeutic approaches in hemophilia A. Recent cell therapy and bone marrow transplantation studies indicated that Küpffer cells, monocytes and mesenchymal stromal cells could synthesize factor VIII in sufficient amount to ameliorate the bleeding phenotype in hemophilic mice. To further establish the role of blood cells in expressing factor VIII, we studied various types of mouse and human hematopoietic cells. We identified factor VIII in cells isolated from peripheral and cord blood, as well as bone marrow. Co-staining for cell type-specific markers verified that factor VIII was expressed in monocytes, macrophages and megakaryocytes. We additionally verified that factor VIII was expressed in liver sinusoidal endothelial cells and endothelial cells elsewhere, e.g., in the spleen, lungs and kidneys. Factor VIII was well expressed in sinusoidal endothelial cells and Küpffer cells isolated from human liver, whereas by comparison isolated human hepatocytes expressed factor VIII at very low levels. After transplantation of CD34(+) human cord blood cells into NOD/SCIDγNull-hemophilia A mice, fluorescence activated cell sorting of peripheral blood showed >40% donor cells engrafted in the majority of mice. In these animals, plasma factor VIII activity 12 weeks after cell transplantation was up to 5% and nine of 12 mice survived after a tail clip-assay. In conclusion, hematopoietic cells, in addition to endothelial cells, express and secrete factor VIII: this information should offer further opportunities for understanding mechanisms of factor VIII synthesis and replenishment.
Collapse
Affiliation(s)
- Diego Zanolini
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Simone Merlin
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Maria Feola
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Gabriella Ranaldo
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Angela Amoruso
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Gianluca Gaidano
- Dept. of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mauro Zaffaroni
- Azienda Ospedaliera Universitaria Maggiore della Carità, SCDU Pediatria, Novara, Italy
| | - Alessandro Ferrero
- Azienda Ospedaliera Mauriziano, SC Chirurgia Generale ed Oncologica, Torino, Italy
| | - Sandra Brunelleschi
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Guido Valente
- Dept. of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Sanjeev Gupta
- Dept. of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Prat
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Antonia Follenzi
- Dept. of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
39
|
Fomin ME, Togarrati PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 2014; 12:1954-65. [PMID: 25297648 PMCID: PMC4388483 DOI: 10.1111/jth.12750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/11/2022]
Abstract
Hemophilia A results from an insufficiency of factor VIII (FVIII). Although replacement therapy with plasma-derived or recombinant FVIII is a life-saving therapy for hemophilia A patients, such therapy is a life-long treatment rather than a cure for the disease. In this review, we discuss the possibilities, progress, and challenges that remain in the development of a cell-based cure for hemophilia A. The success of cell therapy depends on the type and availability of donor cells, the age of the host and method of transplantation, and the levels of engraftment and production of FVIII by the graft. Early therapy, possibly even prenatal transplantation, may yield the highest levels of engraftment by avoiding immunological rejection of the graft. Potential cell sources of FVIII include a specialized subset of endothelial cells known as liver sinusoidal endothelial cells (LSECs) present in the adult and fetal liver, or patient-specific endothelial cells derived from induced pluripotent stem cells that have undergone gene editing to produce FVIII. Achieving sufficient engraftment of transplanted LSECs is one of the obstacles to successful cell therapy for hemophilia A. We discuss recent results from transplants performed in animals that show production of functional and clinically relevant levels of FVIII obtained from donor LSECs. Hence, the possibility of treating hemophilia A can be envisioned through persistent production of FVIII from transplanted donor cells derived from a number of potential cell sources or through creation of donor endothelial cells from patient-specific induced pluripotent stem cells.
Collapse
Affiliation(s)
- Marina E. Fomin
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Padma Priya Togarrati
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Marcus O. Muench
- Cell Therapy Core, Blood Systems Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
- Liver Center, University of California, San Francisco, CA
| |
Collapse
|
40
|
A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 2014; 123:3706-13. [PMID: 24705491 DOI: 10.1182/blood-2014-02-555151] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cellular source of coagulation factor VIII (FVIII) remains controversial. Like many coagulation proteins, FVIII is produced in the liver, and FVIII synthesis has long been associated with hepatocytes. But extrahepatic synthesis also occurs, and mounting evidence suggests that hepatocytes are not responsible for FVIII production. To determine the tissue that synthesizes FVIII, we developed a Cre/lox-dependent conditional knockout (KO) model in which exons 17 and 18 of the murine factor VIII gene (F8) are flanked by loxP sites, or floxed (F8(F)). In cells expressing Cre-recombinase, the floxed sequence is deleted, resulting in F8(F→KO) gene inactivation. When F8(F) mice were crossed with various tissue-specific Cre strains, we found that hepatocyte-specific F8-KO mice are indistinguishable from controls, whereas efficient endothelial-KO models display a severe hemophilic phenotype with no detectable plasma FVIII activity. A hematopoietic Cre model was more equivocal, so experimental bone marrow transplantation was used to examine hematopoietic FVIII synthesis. FVIII(null) mice that received bone marrow transplants from wild-type donors were still devoid of plasma FVIII activity after hematopoietic donor cell engraftment. Our results indicate that endothelial cells are the predominant, and possibly exclusive, source of plasma FVIII.
Collapse
|
41
|
Abstract
Animal models of hemophilia and related diseases are important for the development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease (VWD) have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and VWD pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform preclinical assessments of standard protein replacement therapies, as well as novel gene transfer technology. The differences both between species and in underlying causative mutations must be considered in choosing the best animal for a specific scientific study.
Collapse
|
42
|
Kochat V, Baligar P, Maiwall R, Mukhopadhyay A. Bone marrow stem-cell therapy for genetic and chronic liver diseases. Hepatol Int 2014. [DOI: 10.1007/s12072-013-9499-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Shahani T, Covens K, Lavend'homme R, Jazouli N, Sokal E, Peerlinck K, Jacquemin M. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 2014; 12:36-42. [PMID: 24118899 DOI: 10.1111/jth.12412] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Although the liver is the major site of coagulation factor VIII (FVIII) synthesis, the type of cells producing FVIII within the liver is still unclear. OBJECTIVES To measure FVIII in extracts of primary liver sinusoidal endothelial cells (LSECs) and hepatocytes, thereby preventing potential bias resulting from the modifications of the cell phenotype that can take place during in vitro culture. METHODS LSECs were purified by flow cytometry cell sorting on the basis of their coexpression of Tie2 and CD32b. The purity of the cells was controlled by RNA sequencing. FVIII activity (FVIII:C) in extracts of purified cells was measured with a sensitive FVIII chromogenic assay, in which the specificity of the reaction is controlled by neutralization of FVIII activity with specific inhibitor antibodies. RESULTS The FVIII:C concentration in purified LSECs ranged from 0.3 to 2.8 nU per cell. In contrast, FVIII:C was undetectable in hepatocytes. The intracellular FVIII:C concentrations are therefore at least 10-100-fold higher in LSECs than in hepatocytes. CONCLUSIONS Our data demonstrate that LSECs, but not hepatocytes, contain measurable amounts of FVIII:C, and suggest that the former are the main cells producing FVIII in the human liver.
Collapse
Affiliation(s)
- T Shahani
- Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | | | | | | | |
Collapse
|
44
|
Sanada C, Kuo CJ, Colletti EJ, Soland M, Mokhtari S, Knovich MA, Owen J, Zanjani ED, Porada CD, Almeida-Porada G. Mesenchymal stem cells contribute to endogenous FVIII:c production. J Cell Physiol 2013; 228:1010-6. [PMID: 23042590 DOI: 10.1002/jcp.24247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/26/2012] [Indexed: 11/08/2022]
Abstract
Besides the liver, it has been difficult to identify which organ(s) and/or cellular component(s) contribute significantly to the production of human FVIII:c (FVIII). Thus far, only endothelial cells have been shown to constitute a robust extrahepatic source of FVIII, possibly explaining both the diverse presence of FVIII mRNA in the body, and the observed increase in FVIII levels during liver failure. Here, we investigate whether human mesenchymal stem cells (MSC), ubiquitously present in different organs, could also contribute to FVIII production. MSC isolated from human lung, liver, brain, and bone marrow expressed FVIII message as determined by quantitative-RT-PCR. Using an antibody specific for FVIII, confocal microscopy, and umbilical cord-derived endothelial cells (HUVEC) as a negative control, we demonstrated that, in MSC, FVIII protein was not stored in granules; rather, it localized to the perinuclear region. Furthermore, functional FVIII was detected in MSC supernatants and cell lysates by aPTT and chromogenic assays. These results demonstrate that MSC can contribute at low levels to the functional FVIII pool, and advance the understanding of the physiology of FVIII production and secretion.
Collapse
Affiliation(s)
- Chad Sanada
- Department of Animal Biotechnology, University of Nevada, Reno, NV, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wagner B, Henschler R. Fate of intravenously injected mesenchymal stem cells and significance for clinical application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 130:19-37. [PMID: 23334265 DOI: 10.1007/10_2012_155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) have initially been characterized as a fibroblastlike cell population that can be expanded readily in vitro, and is able to support hematopoiesis in vitro and in vivo. By serendipity it was discovered that MSCs can also be administered into the bloodstream. This mode of application formed a major breakthrough in the clinical use of MSCs, because MSC transplantation was found to cure severe immune hyperactivation states such as graft-versus-host disease after allogeneic bone marrow transplantation, or bacterial sepsis. However, MSCs were found difficult to trace and consensus to date is lacking in the scientific community as to where transplanted MSCs end up in the body and which major principles are responsible for the therapeutic effects of MSCs. This chapter gives an overview of the current knowledge on interactions of freshly transplanted MSCs with the cells in the blood stream and the vessel wall, with major organs such as lung, liver, gut, and spleen, and discusses the limitations of the methodologies used to trace transplanted MSCs. The findings will be put into perspective on how therapeutically applied, culture-expanded MSCs may exert beneficial effects.
Collapse
Affiliation(s)
- Beate Wagner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig Maximilians University München, Marchioninistrasse 15, 81433, Munich, Germany
| | | |
Collapse
|
46
|
Advanced therapies for the treatment of hemophilia: future perspectives. Orphanet J Rare Dis 2012; 7:97. [PMID: 23237078 PMCID: PMC3551751 DOI: 10.1186/1750-1172-7-97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/07/2012] [Indexed: 11/24/2022] Open
Abstract
Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional, structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering). For their part, induced pluripotent stem cells have recently been shown to also play a significant role in the fields of cell therapy and tissue engineering. Hemophilia is optimally suited for advanced therapies owing to the fact that, as a monogenic condition, it does not require very high expression levels of a coagulation factor to reach moderate disease status. As a result, significant progress has been possible with respect to these kinds of strategies, especially in the fields of gene therapy (by using viral and non-viral vectors) and cell therapy (by means of several types of target cells). Thus, although still considered a rare disorder, hemophilia is now recognized as a condition amenable to gene therapy, which can be administered in the form of lentiviral and adeno-associated vectors applied to adult stem cells, autologous fibroblasts, platelets and hematopoietic stem cells; by means of non-viral vectors; or through the repair of mutations by chimeric oligonucleotides. In hemophilia, cell therapy approaches have been based mainly on transplantation of healthy cells (adult stem cells or induced pluripotent cell-derived progenitor cells) in order to restore alterations in coagulation factor expression.
Collapse
|
47
|
|