1
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Huang J, Ren Q, Jiao L, Niu S, Liu C, Zhou J, Wu L, Yang Y. TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Exp Ther Med 2024; 28:283. [PMID: 38800044 PMCID: PMC11117099 DOI: 10.3892/etm.2024.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoarthritis (OA) is a disease of the joints, characterized by chronic inflammation, cartilage destruction and extracellular matrix (ECM) remodeling. Aberrant chondrocyte hypertrophy promotes cartilage destruction and OA development. Collagen X, the biomarker of chondrocyte hypertrophy, is upregulated by runt-related transcription factor 2 (Runx2), which is mediated by the bone morphogenetic protein 4 (BMP4)/Smad1 signaling pathway. BMP binding endothelial regulator (BMPER), a secreted glycoprotein, acts as an agonist of BMP4. 5,7,3',4'-tetramethoxyflavone (TMF) is a natural flavonoid derived from Murraya exotica L. Results of our previous study demonstrated that TMF exhibits chondroprotective effects against OA development through the activation of Forkhead box protein O3a (FOXO3a) expression. However, whether TMF suppresses chondrocyte hypertrophy through activation of FOXO3a expression and inhibition of BMPER/BMP4/Smad1 signaling remains unknown. Results of the present study revealed that TMF inhibited collagen X and Runx2 expression, inhibited BMPER/BMP4/Smad1 signaling, and activated FOXO3a expression; thus, protecting against chondrocyte hypertrophy and OA development. However, BMPER overexpression and FOXO3a knockdown impacted the protective effects of TMF. Thus, TMF inhibited chondrocyte hypertrophy in OA cartilage through mediating the FOXO3a/BMPER signaling pathway.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shuo Niu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chenghong Liu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Juan Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yadong Yang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
3
|
BMPER Improves Vascular Remodeling and the Contractile Vascular SMC Phenotype. Int J Mol Sci 2023; 24:ijms24054950. [PMID: 36902380 PMCID: PMC10002482 DOI: 10.3390/ijms24054950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Dedifferentiated vascular smooth muscle cells (vSMCs) play an essential role in neointima formation, and we now aim to investigate the role of the bone morphogenetic protein (BMP) modulator BMPER (BMP endothelial cell precursor-derived regulator) in neointima formation. To assess BMPER expression in arterial restenosis, we used a mouse carotid ligation model with perivascular cuff placement. Overall BMPER expression after vessel injury was increased; however, expression in the tunica media was decreased compared to untreated control. Consistently, BMPER expression was decreased in proliferative, dedifferentiated vSMC in vitro. C57BL/6_Bmper+/- mice displayed increased neointima formation 21 days after carotid ligation and enhanced expression of Col3A1, MMP2, and MMP9. Silencing of BMPER increased the proliferation and migration capacity of primary vSMCs, as well as reduced contractibility and expression of contractile markers, whereas stimulation with recombinant BMPER protein had the opposite effect. Mechanistically, we showed that BMPER binds insulin-like growth factor-binding protein 4 (IGFBP4), resulting in the modulation of IGF signaling. Furthermore, perivascular application of recombinant BMPER protein prevented neointima formation and ECM deposition in C57BL/6N mice after carotid ligation. Our data demonstrate that BMPER stimulation causes a contractile vSMC phenotype and suggest that BMPER has the potential for a future therapeutic agent in occlusive cardiovascular diseases.
Collapse
|
4
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Ding P, Chen W, Yan X, Zhang J, Li C, Zhang G, Wang Y, Li Y. BMPER alleviates ischemic brain injury by protecting neurons and inhibiting neuroinflammation via Smad3-Akt-Nrf2 pathway. CNS Neurosci Ther 2021; 28:593-607. [PMID: 34904361 PMCID: PMC8928915 DOI: 10.1111/cns.13782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Bone morphogenetic proteins (BMPs) are a group of proteins related to bone morphogenesis. BMP‐binding endothelial regulator (BMPER), a secreted protein that interacts with BMPs, is known to be involved in ischemic injuries. Here, we explored the effects of BMPER on cerebral ischemia and its mechanism of action. Methods A mouse model of brain ischemia was induced by middle cerebral artery occlusion (MCAO). An in vitro ischemic model was established by subjecting primary cultured neurons to oxygen‐glucose deprivation/reperfusion (OGD/R). Serum levels of BMPs/BMPER were measured in MCAO mice and in patients with acute ischemic stroke (AIS). Brain damages were compared between BMPER‐ and vehicle‐treated mice. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence staining were performed to examine neuroinflammation and cell death. BMPER‐related pathways were assessed by Western blotting. Results BMPER level was elevated in MCAO mice and AIS patients. BMPER administration reduced mortality, infarct size, brain edema, and neurological deficit after MCAO. Neuroinflammation and cell death after ischemia were alleviated by BMPER both in vivo and in vitro. BMPER activated the Smad3/Akt/Nrf2 pathway in OGD/R‐challenged neurons. Conclusion BMPER is a neuroprotective hormone that alleviates ischemic brain injury via activating the Smad3/Akt/Nrf2 pathway. These findings may provide potential therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Peng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Anesthesiology, PLA 983 Hospital, Tianjin, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaodi Yan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinxiang Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Chen J, Liu HF, Qiao LB, Wang FB, Wang L, Lin Y, Liu J. Global RNA editing identification and characterization during human pluripotent-to-cardiomyocyte differentiation. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:879-891. [PMID: 34760335 PMCID: PMC8551472 DOI: 10.1016/j.omtn.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/05/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
RNA editing is widely involved in stem cell differentiation and development; however, RNA editing events during human cardiomyocyte differentiation have not yet been characterized and elucidated. Here, we identified genome-wide RNA editing sites and systemically characterized their genomic distribution during four stages of human cardiomyocyte differentiation. It was found that the expression level of ADAR1 affected the global number of adenosine to inosine (A-to-I) editing sites but not the editing degree. Next, we identified 43, 163, 544, and 141 RNA editing sites that contribute to changes in amino acid sequences, variation in alternative splicing, alterations in miRNA-target binding, and changes in gene expression, respectively. Generally, RNA editing showed a stage-specific pattern with 211 stage-shared editing sites. Interestingly, cardiac muscle contraction and heart-disease-related pathways were enriched by cardio-specific editing genes, emphasizing the connection between cardiomyocyte differentiation and heart diseases from the perspective of RNA editing. Finally, it was found that these RNA editing sites are also related to several congenital and noncongenital heart diseases. Together, our study provides a new perspective on cardiomyocyte differentiation and offers more opportunities to understand the mechanisms underlying cell fate determination, which can promote the development of cardiac regenerative medicine and therapies for human heart diseases.
Collapse
Affiliation(s)
- Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hui-Fang Liu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Li-Bo Qiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fang-Bin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.,Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
7
|
Song T, Huang D, Song D. The potential regulatory role of BMP9 in inflammatory responses. Genes Dis 2021; 9:1566-1578. [PMID: 36157503 PMCID: PMC9485205 DOI: 10.1016/j.gendis.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a protective response of the body to pathogens and injury. Hence, it is particularly important to explore the pathogenesis and key regulatory factors of inflammation. BMP9 is a unique member of the BMP family, which is widely known for its strong osteogenic potential and insensitivity to the inhibition of BMP3. Recently, several studies have reported an underlying pivotal link between BMP9 and inflammation. What is clear, though not well understood, is that BMP9 plays a role in inflammation in a carefully choreographed manner in different contexts. In this review, we have summarized current studies focusing on BMP9 and inflammation in various tissues and the latest advances in BMP9 expression, signal transduction, and crystal structure to better understand the relationship between BMP9 and inflammation. In addition, we also briefly summarized the inflammatory characteristics of some TGF-β superfamily members to provide better insights and ideas for the study of BMP9 and inflammation.
Collapse
Affiliation(s)
- Tianzhu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Corresponding author.
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
- Corresponding author.
| |
Collapse
|
8
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
9
|
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020; 141:115542. [PMID: 32736145 PMCID: PMC8185454 DOI: 10.1016/j.bone.2020.115542] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFβ) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.
Collapse
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Guihard PJ, Guo Y, Wu X, Zhang L, Yao J, Jumabay M, Yao Y, Garfinkel A, Boström KI. Shaping Waves of Bone Morphogenetic Protein Inhibition During Vascular Growth. Circ Res 2020; 127:1288-1305. [PMID: 32854559 PMCID: PMC7987130 DOI: 10.1161/circresaha.120.317439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The BMPs (bone morphogenetic proteins) are essential morphogens in angiogenesis and vascular development. Disruption of BMP signaling can trigger cardiovascular diseases, such as arteriovenous malformations. OBJECTIVE A computational model predicted that BMP4 and BMP9 and their inhibitors MGP (matrix gamma-carboxyglutamic acid [Gla] protein) and CV2 (crossveinless-2) would form a regulatory system consisting of negative feedback loops with time delays and that BMP9 would trigger oscillatory expression of the 2 inhibitors. The goal was to investigate this regulatory system in endothelial differentiation and vascular growth. METHODS AND RESULTS Oscillations in the expression of MGP and CV2 were detected in endothelial cells in vitro, using quantitative real-time polymerase chain reaction and immunoblotting. These organized temporally downstream BMP-related activities, including expression of stalk-cell markers and cell proliferation, consistent with an integral role of BMP9 in vessel maturation. In vivo, the inhibitors were located in distinct zones in relation to the front of the expanding retinal network, as determined by immunofluorescence. Time-dependent changes of the CV2 location in the retina and the existence of an endothelial population with signs of oscillatory MGP expression in developing vasculature supported the in vitro findings. Loss of MGP or its BMP4-binding capacity disrupted the retinal vasculature, resulting in poorly formed networks, especially in the venous drainage areas, and arteriovenous malformations as determined by increased cell coverage and functional testing. CONCLUSIONS Our results suggest a previously unknown mechanism of temporal orchestration of BMP4 and BMP9 activities that utilize the tandem actions of the extracellular antagonists MGP and CV2. Disruption of this mechanism may contribute to vascular malformations and disease.
Collapse
Affiliation(s)
- Pierre J. Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Lily Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- UCLA Jonsson Comprehensive Cancer Center
| | - Alan Garfinkel
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, UCLA
| |
Collapse
|
11
|
Salmon RM, Guo J, Wood JH, Tong Z, Beech JS, Lawera A, Yu M, Grainger DJ, Reckless J, Morrell NW, Li W. Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms. Nat Commun 2020; 11:1621. [PMID: 32238803 PMCID: PMC7113306 DOI: 10.1038/s41467-020-15425-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1)-mediated endothelial cell signalling in response to bone morphogenetic protein 9 (BMP9) and BMP10 is of significant importance in cardiovascular disease and cancer. However, detailed molecular mechanisms of ALK1-mediated signalling remain unclear. Here, we report crystal structures of the BMP10:ALK1 complex at 2.3 Å and the prodomain-bound BMP9:ALK1 complex at 3.3 Å. Structural analyses reveal a tripartite recognition mechanism that defines BMP9 and BMP10 specificity for ALK1, and predict that crossveinless 2 is not an inhibitor of BMP9, which is confirmed by experimental evidence. Introduction of BMP10-specific residues into BMP9 yields BMP10-like ligands with diminished signalling activity in C2C12 cells, validating the tripartite mechanism. The loss of osteogenic signalling in C2C12 does not translate into non-osteogenic activity in vivo and BMP10 also induces bone-formation. Collectively, these data provide insight into ALK1-mediated BMP9 and BMP10 signalling, facilitating therapeutic targeting of this important pathway.
Collapse
Affiliation(s)
- Richard M Salmon
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jingxu Guo
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jennifer H Wood
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Zhen Tong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - John S Beech
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Aleksandra Lawera
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Minmin Yu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David J Grainger
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jill Reckless
- RxCelerate Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
12
|
Wang L, Yao J, Yu T, Zhang D, Qiao X, Yao Z, Wu X, Zhang L, Boström KI, Yao Y. Homeobox D3, A Novel Link Between Bone Morphogenetic Protein 9 and Transforming Growth Factor Beta 1 Signaling. J Mol Biol 2020; 432:2030-2041. [PMID: 32061928 DOI: 10.1016/j.jmb.2020.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
AIMS Several signaling pathways contribute to endothelial-mesenchymal transitions and vascular calcification, including bone morphogenetic protein (BMP) and transforming growth factor (TGF) β signaling. The transcription factor homeobox D3 (Hoxd3) is known to regulate an invasive endothelial phenotype, and the aim of the study is to determine if HOXD3 modulates BMP and TGFβ signaling in the endothelium. METHODS AND RESEARCH We report that the endothelium with high BMP activity due to the loss of BMP inhibitor matrix Gla protein (MGP) shows induction of Hoxd3. HOXD3 is part of a BMP-triggered cascade. When activated by BMP9, activin receptor-like kinase (ALK) 1 induces HOXD3 expression. Hoxd3 promoter is a direct target of phosphorylated (p) SMAD1, a mediator of BMP signaling. High BMP activity further results in enhanced TGFβ signaling due to induction of TGFβ1 and its receptor, ALK5. This is mediated by HOXD3, which directly targets the Tgfb1 promoter. Finally, TGFβ1 and BMP9 stimulate the expression of MGP, which limits the enhanced ALK1 induction by counteracting BMP4. The cascade of BMP9-HOXD3-TGFβ also affects Notch signaling and angiogenesis through induction of Notch ligand Jagged 2 and suppression of Notch ligand delta-like 4 (Dll4). CONCLUSION The results suggest that HOXD3 is a novel link between BMP9/ALK1 and TGFβ1/ALK5 signaling. TRANSLATIONAL PERSPECTIVE BMP and TGFβ signaling are instrumental in vascular disease such as vascular calcification and atherosclerosis. This study demonstrated a novel type of cross talk between endothelial BMP and TGFβ signaling as mediated by HOXD3. The results provide a possible therapeutic approach to control dysfunctional BMP and TGFβ signaling by regulating HOXD3.
Collapse
Affiliation(s)
- Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Tongtong Yu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Zehao Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; College of Life Science, Nankai University, Tianjin, China
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA; The Molecular Biology Institute at UCLA, Los Angeles, CA, 90095-1570, USA.
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
13
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
14
|
Skip is essential for Notch signaling to induce Sox2 in cerebral arteriovenous malformations. Cell Signal 2020; 68:109537. [PMID: 31927035 DOI: 10.1016/j.cellsig.2020.109537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
Abstract
Notch signaling and Sry-box (Sox) family transcriptional factors both play critical roles in endothelial cell (EC) differentiation in vascularization. Recent studies have shown that excessive Notch signaling induces Sox2 to cause cerebral arteriovenous malformations (AVMs). Here, we examine human pulmonary AVMs and find no induction of Sox2. Results of epigenetic studies also show less alteration of Sox2-DNA binding in pulmonary AVMs than in cerebral AVMs. We identify high expression of ski-interacting protein (Skip) in brain ECs, a Notch-associated chromatin-modifying protein that is lacking in lung ECs. Knockdown of Skip abolished Notch-induction of Sox2 in brain ECs, while restoration of Skip in lung ECs enabled Notch-mediated Sox2 induction. The results suggest that Skip is a key factor for induction of Sox2 in cerebral AVMs.
Collapse
|
15
|
Blázquez-Medela AM, Jumabay M, Rajbhandari P, Sallam T, Guo Y, Yao J, Vergnes L, Reue K, Zhang L, Yao Y, Fogelman AM, Tontonoz P, Lusis AJ, Wu X, Boström KI. Noggin depletion in adipocytes promotes obesity in mice. Mol Metab 2019; 25:50-63. [PMID: 31027994 PMCID: PMC6600080 DOI: 10.1016/j.molmet.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis. METHODS We generated adipose-derived progenitor cells and a mouse model with adipocyte-specific Noggin deletion using the AdiponectinCre transgenic mouse, and determined the adipose phenotype of Noggin-deficiency. RESULTS Our studies showed that Noggin is expressed in progenitor cells but declines in adipocytes, possibly allowing for lipid accumulation. Correspondingly, adipocyte-specific Noggin deletion in vivo promoted age-related obesity in both genders with no change in food intake. Although the loss of Noggin caused white adipose tissue hypertrophy, and whitening and impaired function in brown adipose tissue in both genders, there were clear gender differences with the females being most affected. The females had suppressed expression of brown adipose markers and thermogenic genes including peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1alpha) and uncoupling protein 1 (UCP1) as well as genes associated with adipogenesis and lipid metabolism. The males, on the other hand, had early changes in a few BAT markers and thermogenic genes, but the main changes were in the genes associated with adipogenesis and lipid metabolism. Further characterization revealed that both genders had reductions in VO2, VCO2, and RER, whereas females also had reduced heat production. Noggin was also reduced in diet-induced obesity in inbred mice consistent with the obesity phenotype of the Noggin-deficient mice. CONCLUSIONS BMP signaling regulates female and male adipogenesis through different metabolic pathways. Modulation of adipose tissue metabolism by select BMP antagonists may be a strategy for long-term regulation of age-related weight gain and obesity.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, USA.
| |
Collapse
|
16
|
Advances in the molecular regulation of endothelial BMP9 signalling complexes and implications for cardiovascular disease. Biochem Soc Trans 2019; 47:779-791. [PMID: 31127068 DOI: 10.1042/bst20180137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Bone morphogenetic protein 9 (BMP9), a member of the transforming growth factor β (TGFβ) superfamily, is a circulating vascular quiescence and endothelial protective factor, accounting for the majority of BMP activities in plasma. BMP9 and BMP10 bind preferentially to the high-affinity type I receptor activin receptor-like kinase 1 on vascular endothelial cells. Recently, many reports have highlighted the important roles of BMP9 in cardiovascular disease, particularly pulmonary arterial hypertension. In vivo, BMP9 activity and specificity are determined by tightly regulated protein-protein recognition with cognate receptors and a co-receptor, and may also be influenced by other proteins present on the endothelial cell surface (such as low-affinity receptors) and in circulation (such as TGFβ family ligands competing for the same receptors). In this review, we summarise recent findings on the role and therapeutic potential of BMP9 in cardiovascular disease and review the current understanding of how the extracellular protein-protein interaction milieu could play a role in regulating endothelial BMP9 signalling specificity and activity.
Collapse
|
17
|
Yao J, Wu X, Zhang D, Wang L, Zhang L, Reynolds EX, Hernandez C, Boström KI, Yao Y. Elevated endothelial Sox2 causes lumen disruption and cerebral arteriovenous malformations. J Clin Invest 2019; 129:3121-3133. [PMID: 31232700 DOI: 10.1172/jci125965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Lumen integrity in vascularization requires fully differentiated endothelial cells (ECs). Here, we report that endothelial-mesenchymal transitions (EndMTs) emerged in ECs of cerebral arteriovenous malformation (AVMs) and caused disruption of the lumen or lumen disorder. We show that excessive Sry-box 2 (Sox2) signaling was responsible for the EndMTs in cerebral AVMs. EC-specific suppression of Sox2 normalized endothelial differentiation and lumen formation and improved the cerebral AVMs. Epigenetic studies showed that induction of Sox2 altered the cerebral-endothelial transcriptional landscape and identified jumonji domain-containing protein 5 (JMJD5) as a direct target of Sox2. Sox2 interacted with JMJD5 to induce EndMTs in cerebral ECs. Furthermore, we utilized a high-throughput system to identify the β-adrenergic antagonist pronethalol as an inhibitor of Sox2 expression. Treatment with pronethalol stabilized endothelial differentiation and lumen formation, which limited the cerebral AVMs.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lumin Wang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eric X Reynolds
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Carlos Hernandez
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,The Molecular Biology Institute at UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
18
|
Wu X, Yao J, Wang L, Zhang D, Zhang L, Reynolds EX, Yu T, Boström KI, Yao Y. Crosstalk between BMP and Notch Induces Sox2 in Cerebral Endothelial Cells. Cells 2019; 8:E549. [PMID: 31174355 PMCID: PMC6628192 DOI: 10.3390/cells8060549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022] Open
Abstract
Bone morphogenetic protein (BMP) and Notch signaling are critical for endothelial cell (EC) differentiation in vascular development. Recent studies have shown that excess BMP activity induces Notch signaling in cerebral ECs resulting in arteriovenous malformation (AVMs). However, it is unclear how the crosstalk between BMP and Notch signaling affects cerebral EC differentiation at the gene regulatory level. Here, we report that BMP6 activates the activin receptor-like kinase (ALK) 3, a BMP type 1 receptor, to induce Notch1 receptor and Jagged1 and Jagged2 ligands. We show that increased expression of the Notch components alters the transcriptional regulatory complex in the SRY-Box 2 (Sox2) promoter region so as to induce its expression in cerebral ECs. Together, our results identify Sox2 as a direct target of BMP and Notch signaling and provide information on how altered BMP and Notch signaling affects the endothelial transcriptional landscape.
Collapse
Affiliation(s)
- Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Lumin Wang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
- Department of cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Daoqin Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Eric X Reynolds
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | - Tongtong Yu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
- The Molecular Biology Institute at UCLA, Los Angeles, CA 90095-1570, USA.
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| |
Collapse
|
19
|
Endoglin is a conserved regulator of vasculogenesis in zebrafish - implications for hereditary haemorrhagic telangiectasia. Biosci Rep 2019; 39:BSR20182320. [PMID: 31064821 PMCID: PMC6527926 DOI: 10.1042/bsr20182320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is a progressive vascular disease with high mortality and prevalence. There is no effective treatment of HHT due to the lack of comprehensive knowledge of its underlying pathological mechanisms. The majority of HHT1 patients carry endoglin (ENG) mutations. Here, we used Danio rerio (zebrafish) as an in vivo model to investigate the effects of endoglin knockdown on vascular development. According to phylogenetic analyses and amino acid sequence similarity analyses, we confirmed that endoglin is conserved in vertebrates and descended from a single common ancestor. Endoglin is highly expressed in the vasculature beginning at the segmentation period in zebrafish. Upon endoglin knockdown by morpholinos, we observed disruption in the intersegmental vessels (ISVs) and decreased expression of several vascular markers. RNA sequencing (RNA-Seq) results implied that the BMP-binding endothelial regulator (bmper) is a gene affected by endoglin knockdown. Rescue experiments demonstrated that overexpression of bmper significantly increased the number of endothelial cells (ECs) and reduced the defects at ISVs in zebrafish. Moreover, there was enhanced tube formation in ENG mutant ECs derived from a HHT patient after human recombinant BMPER (hrBMPER) stimulation. Taken together, our results suggest that bmper, a potential downstream gene of ENG, could be targeted to improve vascular integrity in HHT.
Collapse
|
20
|
Yao Y, Yao J, Boström KI. SOX Transcription Factors in Endothelial Differentiation and Endothelial-Mesenchymal Transitions. Front Cardiovasc Med 2019; 6:30. [PMID: 30984768 PMCID: PMC6447608 DOI: 10.3389/fcvm.2019.00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022] Open
Abstract
The SRY (Sex Determining Region Y)-related HMG box of DNA binding proteins, referred to as SOX transcription factors, were first identified as critical regulators of male sex determination but are now known to play an important role in vascular development and disease. SOX7, 17, and 18 are essential in endothelial differentiation and SOX2 has emerged as an essential mediator of endothelial-mesenchymal transitions (EndMTs), a mechanism that enables the endothelium to contribute cells with abnormal cell differentiation to vascular disease such as calcific vasculopathy. In the following paper, we review published information on the SOX transcription factors in endothelial differentiation and hypothesize that SOX2 acts as a mediator of EndMTs that contribute to vascular calcification.
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Molecular Biology Institute, UCLA, Los Angeles, CA, United States
| |
Collapse
|
21
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
22
|
Zhang L, Ye Y, Long X, Xiao P, Ren X, Yu J. BMP signaling and its paradoxical effects in tumorigenesis and dissemination. Oncotarget 2018; 7:78206-78218. [PMID: 27661009 PMCID: PMC5363655 DOI: 10.18632/oncotarget.12151] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play important roles in embryonic and postnatal development by regulating cell differentiation, proliferation, motility, and survival, thus maintaining homeostasis during organ and tissue development. BMPs can lead to tumorigenesis and regulate cancer progression in different stages. Therefore, we summarized studies on BMP expression, the clinical significance of BMP dysfunction in various cancer types, and the molecular regulation of various BMP-related signaling pathways. We emphasized on the paradoxical effects of BMPs on various aspects of carcinogenesis, including epithelial–mesenchymal transition (EMT), cancer stem cells (CSCs), and angiogenesis. We also reviewed the molecular mechanisms by which BMPs regulate tumor generation and progression as well as potential therapeutic targets against BMPs that might be valuable in preventing tumor growth and invasion.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Yingnan Ye
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Xinxin Long
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Pei Xiao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China.,Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Clinical Research Center for Cancer, Tianjin, P. R. China
| |
Collapse
|
23
|
Circulating bone morphogenetic protein-9 levels are associated with hypertension and insulin resistance in humans. ACTA ACUST UNITED AC 2018; 12:372-380. [PMID: 29550458 DOI: 10.1016/j.jash.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
It has been demonstrated that bone morphogenetic protein-9 (BMP-9) may have an important role in vascular development and stability. However, the association of circulating BMP-9 with essential hypertension (HTN) has not been established in humans. The objective of this study is to observe the changes of circulating BMP-9 levels in patients with HTN and to investigate the association of circulation BMP-9 and insulin resistance (IR) in a cross-sectional study. Two hundred twenty-five individuals, including 132 patients with hypertension, and 93 healthy controls, were included in the present study. Circulating BMP-9 concentrations were measured with an ELISA kit. The association of circulating BMP-9 with other parameters was analyzed. When compared with healthy subjects, circulating BMP-9 concentrations were markedly lower in HTN patients (46.20 [31.85-62.80] vs. 77.21 [39.33-189.15], P < .01) and correlated negatively with blood pressure and the homeostasis model assessment of insulin resistance (P < .05 or P < .01). Decreasing levels of BMP-9 were independently and markedly related to HTN. In a multiple linear regression analysis, only systolic blood pressure and free fatty acid concentrations were independently associated with circulating BMP-9. Our findings suggest that BMP-9 may be a serum biomarker for HTN and IR.
Collapse
|
24
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
25
|
Yao J, Guihard PJ, Wu X, Blazquez-Medela AM, Spencer MJ, Jumabay M, Tontonoz P, Fogelman AM, Boström KI, Yao Y. Vascular endothelium plays a key role in directing pulmonary epithelial cell differentiation. J Cell Biol 2017; 216:3369-3385. [PMID: 28838957 PMCID: PMC5626536 DOI: 10.1083/jcb.201612122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/26/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
J. Yao et al. demonstrate that loss of MGP, a BMP inhibitor, causes abnormal hepatic differentiation in lungs. They find that interactions between endothelium and epithelium separate pulmonary from hepatic differentiation during development. Lack of MGP triggers hepatic differentiation in the pulmonary epithelium, as regulated by the endothelium. The vascular endothelium is critical for induction of appropriate lineage differentiation in organogenesis. In this study, we report that dysfunctional pulmonary endothelium, resulting from the loss of matrix Gla protein (MGP), causes ectopic hepatic differentiation in the pulmonary epithelium. We demonstrate uncontrolled induction of the hepatic growth factor (HGF) caused by dysregulated cross talk between pulmonary endothelium and epithelium in Mgp-null lungs. Elevated HGF induced hepatocyte nuclear factor 4 α (Hnf4a), which competed with NK2 homeobox 1 (Nkx2.1) for binding to forkhead box A2 (Foxa2) to drive hepatic differentiation in Mgp-null airway progenitor cells. Limiting endothelial HGF reduced Hnf4a, abolished interference of Hnf4a with Foxa2, and reduced hepatic differentiation in Mgp-null lungs. Together, our results suggest that endothelial–epithelial interactions, maintained by MGP, are essential in pulmonary cell differentiation.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
26
|
Abstract
Bone morphogenetic protein (BMP)9 and BMP10 are high affinity ligands for activin receptor-like kinase 1 (ALK1), a type I BMP receptor mainly expressed on vascular endothelial cells (ECs). ALK1-mediated BMP9/BMP10 signalling pathways have emerged as essential in EC biology and in angiogenesis. Several genetic mutations in the genes encoding the ligands and receptors of this pathway have been reported in two cardiovascular diseases, pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). Administration of recombinant BMP9 reverses experimental PAH in preclinical rodent models. Dalantercept, an Fc-fusion protein of the extracellular domain of ALK1 and a ligand trap for BMP9 and BMP10, is in phase II clinical trials for anti-tumour angiogenesis. Understanding the regulation of BMP9 and BMP10, at both gene and protein levels, under physiological and pathological conditions, will reveal essential information and potential novel prognostic markers for the BMP9/BMP10-targeted therapies.
Collapse
|
27
|
Jumabay M, Zhumabai J, Mansurov N, Niklason KC, Guihard PJ, Cubberly MR, Fogelman AM, Iruela-Arispe L, Yao Y, Saparov A, Boström KI. Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 2017; 233:1812-1822. [PMID: 28464239 DOI: 10.1002/jcp.25983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 05/01/2017] [Indexed: 11/09/2022]
Abstract
Bone morphogenetic protein (BMP) 10, a cardiac-restricted BMP family member, is essential in cardiomyogenesis, especially during trabeculation. Crossveinless-2 (CV2, also known as BMP endothelial cell precursor derived regulator [BMPER]) is a BMP-binding protein that modulates the activity of several BMPs. The objective of this study was to examine the combined effects of BMP10 and CV2 on cardiomyocyte differentiation using mouse dedifferentiated fat (mDFAT) cells, which spontaneously differentiate into cardiomyocyte-like cells, as a model. Our results revealed that CV2 binds directly to BMP10, as determined by co-immunoprecipitation, and inhibits BMP10 from initiating SMAD signaling, as determined by luciferase reporter gene assays. BMP10 treatment induced mDFAT cell proliferation, whereas CV2 modulated the BMP10-induced proliferation. Differentiation of cardiomyocyte-like cells proceeded in a reproducible fashion in mDFAT cells, starting with small round Nkx2.5-positive progenitor cells that progressively formed myotubes of increasing length that assembled into beating colonies and stained strongly for Troponin I and sarcomeric alpha-actinin. BMP10 enhanced proliferation of the small progenitor cells, thereby securing sufficient numbers to support formation of myotubes. CV2, on the other hand, enhanced formation and maturation of large myotubes and myotube-colonies and was expressed by endothelial-like cells in the mDFAT cultures. Thus BMP10 and CV2 have important roles in coordinating cardiomyogenesis in progenitor cells.
Collapse
Affiliation(s)
- Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jiayinaguli Zhumabai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Nurlan Mansurov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Katharine C Niklason
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mark R Cubberly
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alan M Fogelman
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Arman Saparov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Molecular Biology Institute, UCLA, Los Angeles, California
| |
Collapse
|
28
|
Tachida Y, Izumi N, Sakurai T, Kobayashi H. Mutual interaction between endothelial cells and mural cells enhances BMP9 signaling in endothelial cells. Biol Open 2017; 6:370-380. [PMID: 28298363 PMCID: PMC5374394 DOI: 10.1242/bio.020503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia is characterized by the formation of abnormal vascular networks and caused by the mutation of genes involved in BMP9 signaling. It is also known that the interaction between endothelial cells (ECs) and mural cells (MCs) is critical to maintain vessel integrity. However, it has not yet fully been uncovered whether the EC–MC interaction affects BMP9 signaling or not. To elucidate this point, we analyzed BMP9 signaling in a co-culture of several types of human primary culture ECs and MCs. The co-culture activated the Notch pathway in both types of cells in a co-culture- and BMP9-dependent manner. In HUVECs, the genes induced by BMP9 were significantly and synergistically induced in the presence of pericytes, fibroblasts or mesenchymal stem cells. The synergistic induction was greatly reduced in a non-contact condition. In fibroblasts, PDGFRB expression was potently induced in the presence of HUVECs, and BMP9 additively increased this response. Taken together, these results suggest that the EC–MC interaction potentiates BMP9 signaling both in ECs and MCs and plays a critical role in the maintenance of proper vessel functions. Summary: A mutual interaction between endothelial cells and mural cells enhances BMP9 signaling in endothelial cells, with implications for the maintenance of vascular integrity and vascular disease research.
Collapse
Affiliation(s)
- Yuki Tachida
- Pain and Neuroscience Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Nanae Izumi
- End-Organ Disease Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Toyo Sakurai
- Hit Discovery and Cell Processing Research Group Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Hideki Kobayashi
- Pain and Neuroscience Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| |
Collapse
|
29
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Emerging regulators of BMP bioavailability. Bone 2016; 93:220-221. [PMID: 26825814 DOI: 10.1016/j.bone.2016.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Center Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Center Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
30
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
31
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
32
|
Li R, Yan Z, Ye J, Huang H, Wang Z, Wei Q, Wang J, Zhao L, Lu S, Wang X, Tang S, Fan J, Zhang F, Zou Y, Song D, Liao J, Lu M, Liu F, Shi LL, Athiviraham A, Lee MJ, He TC, Zhang Z. The Prodomain-Containing BMP9 Produced from a Stable Line Effectively Regulates the Differentiation of Mesenchymal Stem Cells. Int J Med Sci 2016; 13:8-18. [PMID: 26816490 PMCID: PMC4716815 DOI: 10.7150/ijms.13333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND BMPs play important roles in regulating stem cell proliferation and differentiation. Using adenovirus-mediated expression of the 14 types of BMPs we demonstrated that BMP9 is one of the most potent BMPs in inducing osteogenic differentiation of mesenchymal stem cells (MSCs), which was undetected in the early studies using recombinant BMP9 proteins. Endogenous BMPs are expressed as a precursor protein that contains an N-terminal signal peptide, a prodomain and a C-terminal mature peptide. Most commercially available recombinant BMP9 proteins are purified from the cells expressing the mature peptide. It is unclear how effectively these recombinant BMP9 proteins functionally recapitulate endogenous BMP9. METHODS A stable cell line expressing the full coding region of mouse BMP9 was established in HEK-293 cells by using the piggyBac transposon system. The biological activities and stability of the conditioned medium generated from the stable line were analyzed. RESULTS The stable HEK-293 line expresses a high level of mouse BMP9. BMP9 conditioned medium (BMP9-cm) was shown to effectively induce osteogenic differentiation of MSCs, to activate BMP-R specific Smad signaling, and to up-regulate downstream target genes in MSCs. The biological activity of BMP9-cm is at least comparable with that induced by AdBMP9 in vitro. Furthermore, BMP9-cm exhibits an excellent stability profile as its biological activity is not affected by long-term storage at -80ºC, repeated thawing cycles, and extended storage at 4ºC. CONCLUSIONS We have established a producer line that stably expresses a high level of active BMP9 protein. Such producer line should be a valuable resource for generating biologically active BMP9 protein for studying BMP9 signaling mechanism and functions.
Collapse
Affiliation(s)
- Ruifang Li
- 1. Department of Neurology, Hubei Zhongshan Hospital, Wuhan, China; 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zhengjian Yan
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jixing Ye
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 4. Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - He Huang
- 5. Ben May Department for Cancer Research, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Qiang Wei
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Lianggong Zhao
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 6. Department of Orthopaedic Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Shun Lu
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 7. Department of Orthopaedic Surgery, Shandong Provincial Hospital and Shandong University School of Medicine, Jinan, China
| | - Xin Wang
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 8. Department of Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shengli Tang
- 1. Department of Neurology, Hubei Zhongshan Hospital, Wuhan, China; 9. Department of General Surgery, the Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaming Fan
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yulong Zou
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Dongzhe Song
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 8. Department of Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junyi Liao
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Minpeng Lu
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Feng Liu
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 3. Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Lewis L Shi
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Aravind Athiviraham
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Michael J Lee
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Tong-Chuan He
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zhonglin Zhang
- 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA; 9. Department of General Surgery, the Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Yao J, Guihard PJ, Blazquez-Medela AM, Guo Y, Liu T, Boström KI, Yao Y. Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells. Angiogenesis 2016; 19:1-7. [PMID: 26364300 PMCID: PMC4703505 DOI: 10.1007/s10456-015-9484-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
Matrix Gla protein (MGP) is an antagonist of bone morphogenetic proteins and expressed in vascular endothelial cells. Lack of MGP causes vascular abnormalities in multiple organs in mice. The objective of this study is to define the role of MGP in early endothelial differentiation. We find that expression of endothelial markers is highly induced in Mgp null organs, which, in wild type, contain high MGP expression. Furthermore, Mgp null embryonic stem cells express higher levels of endothelial markers than wild-type controls and an abnormal temporal pattern of expression. We also find that the Mgp-deficient endothelial cells adopt characteristics of mesenchymal stem cells. We conclude that loss of MGP causes dysregulation of early endothelial differentiation.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Western Yanta Road, Xi'an, 710061, China
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Ting Liu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Rd, Shanghai, 200127, China
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA, 90095-1570, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA.
- Division of Cardiology, David Geffen School of Medicine at UCLA, Box 951679, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
34
|
García de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev 2015; 27:65-79. [PMID: 26823333 DOI: 10.1016/j.cytogfr.2015.12.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.
Collapse
Affiliation(s)
- Amaya García de Vinuesa
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease, Leuven, Belgium; KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Médicale (INSERM, U1036), Grenoble F-38000, France; Commissariat à l'Énergie Atomique et aux Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Biologie du Cancer et de l'Infection, Grenoble F-38000, France; Université Grenoble-Alpes, Grenoble F-38000, France.
| |
Collapse
|
35
|
Ye L, Jiang WG. Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies. Cancer Lett 2015; 380:586-597. [PMID: 26639195 DOI: 10.1016/j.canlet.2015.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 02/09/2023]
Abstract
Bone morphogenetic protein (BMP) belongs to transforming growth factor-β superfamily. To date, more than 20 BMPs have been identified in humans. BMPs play a critical role in embryonic and postnatal development, and also in maintaining homeostasis in different organs and tissues by regulating cell differentiation, proliferation, survival and motility. They play important roles in the development and progression of certain malignancies, including prostate cancer, breast cancer, lung cancer, etc. Recently, more evidence shows that BMPs are also involved in tumour associated angiogenesis. For example BMP can either directly regulate the functions of vascular endothelial cells or indirectly influence the angiogenesis via regulation of angiogenic factors, such as vascular endothelial growth factor (VEGF). Such crosstalk can also be reflected in the interaction with other angiogenic factors, like hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). All these factors are involved in the orchestration of the angiogenic process during tumour development and progression. Review of the relevant studies will provide a comprehensive prospective on current understanding and shed light on the corresponding therapeutic opportunity.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
36
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Bone morphogenetic protein signaling in bone homeostasis. Bone 2015; 80:43-59. [PMID: 26051467 DOI: 10.1016/j.bone.2015.05.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/11/2015] [Accepted: 05/20/2015] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are cytokines belonging to the transforming growth factor-β (TGF-β) superfamily. They play multiple functions during development and tissue homeostasis, including regulation of the bone homeostasis. The BMP signaling pathway consists in a well-orchestrated manner of ligands, membrane receptors, co-receptors and intracellular mediators, that regulate the expression of genes controlling the normal functioning of the bone tissues. Interestingly, BMP signaling perturbation is associated to a variety of low and high bone mass diseases, including osteoporosis, bone fracture disorders and heterotopic ossification. Consistent with these findings, in vitro and in vivo studies have shown that BMPs have potent effects on the activity of cells regulating bone function, suggesting that manipulation of the BMP signaling pathway may be employed as a therapeutic approach to treat bone diseases. Here we review the recent advances on BMP signaling and bone homeostasis, and how this knowledge may be used towards improved diagnosis and development of novel treatment modalities. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
37
|
Blazquez-Medela AM, Guihard PJ, Yao J, Jumabay M, Lusis AJ, Boström KI, Yao Y. ABCC6 deficiency is associated with activation of BMP signaling in liver and kidney. FEBS Open Bio 2015; 5:257-63. [PMID: 25893161 PMCID: PMC4398664 DOI: 10.1016/j.fob.2015.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 12/02/2022] Open
Abstract
ABCC6 deficiency stimulates BMP signaling in multiple organs. ABCC6 deficiency causes tissue-specific induction of BMP-related genes. Tissue-specific targeting of BMP signaling may be needed in ABCC deficiency.
Mutations in ABCC6 (ATP-binding cassette, subfamily C, member 6), an orphan transporter expressed in the liver, are the cause of pseudoxanthoma elasticum. Since ABCC6 was reported to affect matrix Gla protein (MGP), an inhibitor of bone morphogenetic proteins (BMPs), we studied BMP signaling and expression in various tissues of mice with and without functional ABCC. Enhanced BMP signaling was found in all examined tissues in the absence of ABCC6. Despite this, the expression of particular BMP proteins varied widely between tissues. Interestingly, the expression of most BMP proteins in the liver moved in the opposite direction to the same BMP proteins in kidneys in response to ABCC6 alterations. Thus, ABCC6 deficiency stimulates BMP signaling by acting on the expression of multiple BMPs.
Collapse
Affiliation(s)
- Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| | - Aldons J Lusis
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States ; Molecular Biology Institute, UCLA, United States
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States ; Molecular Biology Institute, UCLA, United States
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, United States
| |
Collapse
|
38
|
Boström KI, Guihard P, Blazquez Medela AM, Yao J, Moon JH, Penton A, Yao Y. Matrix Gla protein limits pulmonary arteriovenous malformations in ALK1 deficiency. Eur Respir J 2015; 45:849-52. [PMID: 25614167 PMCID: PMC4373345 DOI: 10.1183/09031936.00114714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA The Molecular Biology Institute at UCLA, Los Angeles, CA, USA
| | - Pierre Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ana M Blazquez Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeremiah H Moon
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ashley Penton
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
39
|
Wei Z, Salmon RM, Upton PD, Morrell NW, Li W. Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis. J Biol Chem 2014; 289:31150-9. [PMID: 25237187 PMCID: PMC4223318 DOI: 10.1074/jbc.m114.579771] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BMP9, a member of the TGFβ superfamily, is a homodimer that forms a signaling complex with two type I and two type II receptors. Signaling through high-affinity activin receptor-like kinase 1 (ALK1) in endothelial cells, circulating BMP9 acts as a vascular quiescence factor, maintaining endothelial homeostasis. BMP9 is also the most potent BMP for inducing osteogenic signaling in mesenchymal stem cells in vitro and promoting bone formation in vivo. This activity requires ALK1, the lower affinity type I receptor ALK2, and higher concentrations of BMP9. In adults, BMP9 is constitutively expressed in hepatocytes and secreted into the circulation. Optimum concentrations of BMP9 are essential to maintain the highly specific endothelial-protective function. Factors regulating BMP9 stability and activity remain unknown. Here, we showed by chromatography and a 1.9 Å crystal structure that stable BMP9 dimers could form either with (D-form) or without (M-form) an intermolecular disulfide bond. Although both forms of BMP9 were capable of binding to the prodomain and ALK1, the M-form demonstrated less sustained induction of Smad1/5/8 phosphorylation. The two forms could be converted into each other by changing the redox potential, and this redox switch caused a major alteration in BMP9 stability. The M-form displayed greater susceptibility to redox-dependent cleavage by proteases present in serum. This study provides a mechanism for the regulation of circulating BMP9 concentrations and may provide new rationales for approaches to modify BMP9 levels for therapeutic purposes.
Collapse
Affiliation(s)
- Zhenquan Wei
- From the Department of Medicine, University of Cambridge, School of Clinical Medicine, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Richard M Salmon
- From the Department of Medicine, University of Cambridge, School of Clinical Medicine, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Paul D Upton
- From the Department of Medicine, University of Cambridge, School of Clinical Medicine, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Nicholas W Morrell
- From the Department of Medicine, University of Cambridge, School of Clinical Medicine, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Wei Li
- From the Department of Medicine, University of Cambridge, School of Clinical Medicine, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
40
|
Dyer LA, Pi X, Patterson C. The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab 2014; 25:472-80. [PMID: 24908616 PMCID: PMC4149816 DOI: 10.1016/j.tem.2014.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022]
Abstract
The bone morphogenetic protein (BMP) family of proteins has a multitude of roles throughout the body. In embryonic development, BMPs promote endothelial specification and subsequent venous differentiation. The BMP pathway also plays important roles in the adult vascular endothelium, promoting angiogenesis and mediating shear and oxidative stress. The canonical BMP pathway functions through the Smad transcription factors; however, other intracellular signaling cascades can be activated, and receptor complexes beyond the traditional type I and type II receptors add additional layers of regulation. Dysregulated BMP signaling has been linked to vascular diseases including pulmonary hypertension and atherosclerosis. This review addresses recent advances in the roles of BMP signaling in the endothelium and how BMPs affect endothelial dysfunction and human disease.
Collapse
MESH Headings
- Animals
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Bone Morphogenetic Protein Receptors/agonists
- Bone Morphogenetic Protein Receptors/genetics
- Bone Morphogenetic Protein Receptors/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Hypertension/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Mice, Transgenic
- Models, Biological
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- Oxidative Stress
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Shear Strength
- Signal Transduction
- Stress, Physiological
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
Collapse
Affiliation(s)
- Laura A Dyer
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Xinchun Pi
- New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| | - Cam Patterson
- New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| |
Collapse
|
41
|
Impaired resolution of inflammation in the Endoglin heterozygous mouse model of chronic colitis. Mediators Inflamm 2014; 2014:767185. [PMID: 25114380 PMCID: PMC4121192 DOI: 10.1155/2014/767185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/16/2022] Open
Abstract
Endoglin is a coreceptor of the TGF-β superfamily predominantly expressed on the vascular endothelium and selective subsets of immune cells. We previously demonstrated that Endoglin heterozygous (Eng (+/-)) mice subjected to dextran sulfate sodium (DSS) developed persistent gut inflammation and pathological angiogenesis. We now report that colitic Eng (+/-) mice have low colonic levels of active TGF-β1, which was associated with reduced expression of thrombospondin-1, an angiostatic factor known to activate TGF-β1. We also demonstrate dysregulated expression of BMPER and follistatin, which are extracellular regulators of the TGF-β superfamily that modulate angiogenesis and inflammation. Heightened colonic levels of the neutrophil chemoattractant and proangiogenic factor, CXCL1, were also observed in DSS-treated Eng (+/-) mice. Interestingly, despite increased macrophage and neutrophil infiltration, a gut-specific reduction in expression of the key phagocytic respiratory burst enzymes, NADPH oxidase 2 (Nox-2) and myeloperoxidase, was seen in Eng (+/-) mice undergoing persistent inflammation. Taken together, these findings suggest that endoglin is required for TGF-β superfamily mediated resolution of inflammation and fully functional myeloid cells.
Collapse
|
42
|
Shindyapina AV, Mkrtchyan GV, Gneteeva T, Buiucli S, Tancowny B, Kulka M, Aliper A, Zhavoronkov A. Mineralization of the Connective Tissue: A Complex Molecular Process Leading to Age-Related Loss of Function. Rejuvenation Res 2014; 17:116-33. [DOI: 10.1089/rej.2013.1475] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anastasia V. Shindyapina
- Lomonosov Moscow State University, Moscow, Russian Federation
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - Garik V. Mkrtchyan
- Lomonosov Moscow State University, Moscow, Russian Federation
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - Tatiana Gneteeva
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sveatoslav Buiucli
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - B. Tancowny
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - M. Kulka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Alexander Aliper
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
| | - Alexander Zhavoronkov
- Bioinformatics and Medical Information Technology Laboratory. Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
- First Open Institute for Regenerative Medicine for Young Scientists, Moscow, Russia
- The Biogerontology Research Foundation, Reading, United Kingdom
| |
Collapse
|
43
|
Potential roles of bone morphogenetic protein (BMP)-9 in human liver diseases. Int J Mol Sci 2014; 15:5199-220. [PMID: 24670474 PMCID: PMC4013558 DOI: 10.3390/ijms15045199] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/07/2014] [Accepted: 03/17/2014] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic proteins (BMP-2 to BMP-15) belong to the Transforming Growth Factor (TGF)-β superfamily and, besides their well-documented roles during embryogenesis and bone formation, some of them have recently been described to be involved in the pathogenesis of different organs, including the liver. The role of BMPs in liver damage responses including hepatocellular carcinoma (HCC) development has only begun to be addressed and strong evidence supports the concept of a pro-tumorigenic role of BMP signaling in HCC cells. BMP-9 (also termed Growth and Differentiation Factor (GDF)-2) represents the most recently discovered member of the BMP family. We have previously demonstrated that in HCC patient samples BMP-9 expression was positively associated with the tumor seize (“T stage”) and that it enhanced cell migration and induced epithelial to mesenchymal transition (EMT) in HCC cells in vitro. In another study we recently found that BMP-9 promotes growth in HCC cells, but not in non-transformed hepatocytes. Published as well as unpublished results obtained with primary hepatocytes support the concept of a dual function of BMP-9 in the liver: while in primary, non-malignant cells BMP-9 stabilizes the epithelial phenotype and inhibits proliferation, in HCC cells it induces cell growth and the acquisition of a migratory phenotype. In this review article we summarize current knowledge about BMPs in liver diseases, with special focus on the role of BMP-9 in HCC development and progression, that may provide new clues for a better understanding of the contribution of BMP-signaling to chronic liver diseases.
Collapse
|
44
|
Yao Y, Yao J, Radparvar M, Blazquez-Medela AM, Guihard PJ, Jumabay M, Boström KI. Reducing Jagged 1 and 2 levels prevents cerebral arteriovenous malformations in matrix Gla protein deficiency. Proc Natl Acad Sci U S A 2013; 110:19071-6. [PMID: 24191040 PMCID: PMC3839731 DOI: 10.1073/pnas.1310905110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cerebral arteriovenous malformations (AVMs) are common vascular malformations, which may result in hemorrhagic strokes and neurological deficits. Bone morphogenetic protein (BMP) and Notch signaling are both involved in the development of cerebral AVMs, but the cross-talk between the two signaling pathways is poorly understood. Here, we show that deficiency of matrix Gla protein (MGP), a BMP inhibitor, causes induction of Notch ligands, dysregulation of endothelial differentiation, and the development of cerebral AVMs in MGP null (Mgp(-/-)) mice. Increased BMP activity due to the lack of MGP induces expression of the activin receptor-like kinase 1, a BMP type I receptor, in cerebrovascular endothelium. Subsequent activation of activin receptor-like kinase 1 enhances expression of Notch ligands Jagged 1 and 2, which increases Notch activity and alters the expression of Ephrin B2 and Ephrin receptor B4, arterial and venous endothelial markers, respectively. Reducing the expression of Jagged 1 and 2 in the Mgp(-/-) mice by crossing them with Jagged 1 or 2 deficient mice reduces Notch activity, normalizes endothelial differentiation, and prevents cerebral AVMs, but not pulmonary or renal AVMs. Our results suggest that Notch signaling mediates and can modulate changes in BMP signaling that lead to cerebral AVMs.
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | - Melina Radparvar
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | | | | | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA and
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA and
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1679
| |
Collapse
|
45
|
Zhang J, Weng Y, Liu X, Wang J, Zhang W, Kim SH, Zhang H, Li R, Kong Y, Chen X, Shui W, Wang N, Zhao C, Wu N, He Y, Nan G, Chen X, Wen S, Zhang H, Deng F, Wan L, Luu HH, Haydon RC, Shi LL, He TC, Shi Q. Endoplasmic reticulum (ER) stress inducible factor cysteine-rich with EGF-like domains 2 (Creld2) is an important mediator of BMP9-regulated osteogenic differentiation of mesenchymal stem cells. PLoS One 2013; 8:e73086. [PMID: 24019898 PMCID: PMC3760886 DOI: 10.1371/journal.pone.0073086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors that can undergo osteogenic differentiation under proper stimuli. We demonstrated that BMP9 is one of the most osteogenic BMPs. However, the molecular mechanism underlying BMP9-initiated osteogenic signaling in MSCs remains unclear. Through gene expression profiling analysis we identified several candidate mediators of BMP9 osteogenic signaling. Here, we focus on one such signaling mediator and investigate the functional role of cysteine-rich with EGF-like domains 2 (Creld2) in BMP9-initiated osteogenic signaling. Creld2 was originally identified as an ER stress-inducible factor localized in the ER-Golgi apparatus. Our genomewide expression profiling analysis indicates that Creld2 is among the top up-regulated genes in BMP9-stimulated MSCs. We confirm that Creld2 is up-regulated by BMP9 in MSCs. ChIP analysis indicates that Smad1/5/8 directly binds to the Creld2 promoter in a BMP9-dependent fashion. Exogenous expression of Creld2 in MSCs potentiates BMP9-induced early and late osteogenic markers, and matrix mineralization. Conversely, silencing Creld2 expression inhibits BMP9-induced osteogenic differentiation. In vivo stem cell implantation assay reveals that exogenous Creld2 promotes BMP9-induced ectopic bone formation and matrix mineralization, whereas silencing Creld2 expression diminishes BMP9-induced bone formation and matrix mineralization. We further show that Creld2 is localized in ER and the ER stress inducers potentiate BMP9-induced osteogenic differentiation. Our results strongly suggest that Creld2 may be directly regulated by BMP9 and ER stress response may play an important role in regulating osteogenic differentiation.
Collapse
Affiliation(s)
- Jiye Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education and Chongqing Bureau of Education, The Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jinhua Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Wenwen Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Stephanie H. Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Hongyu Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ruidong Li
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Yuhan Kong
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Xiang Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Orthopaedic Surgery, The Affiliated Tangdu Hospital of the Fourth Military Medical University, Xi’an, China
| | - Wei Shui
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Laboratory Medicine and the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Laboratory Medicine and the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - Ningning Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Yunfeng He
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education and Chongqing Bureau of Education, The Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Sheng Wen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education and Chongqing Bureau of Education, The Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Laboratory Medicine and the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing, China
| | - Lihua Wan
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Tong-Chuan He
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics co-designated by Chinese Ministry of Education and Chongqing Bureau of Education, The Children’s Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (TCH); (QS)
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- * E-mail: (TCH); (QS)
| |
Collapse
|
46
|
Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. BMP signaling in mesenchymal stem cell differentiation and bone formation. JOURNAL OF BIOMEDICAL SCIENCE AND ENGINEERING 2013; 6:32-52. [PMID: 26819651 PMCID: PMC4725591 DOI: 10.4236/jbise.2013.68a1004] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and have diverse functions during development and organogenesis. BMPs play a major role in skeletal development and bone formation, and disruptions in BMP signaling cause a variety of skeletal and extraskeletal anomalies. Several knockout models have provided insight into the mechanisms responsible for these phenotypes. Proper bone formation requires the differentiation of osteoblasts from mesenchymal stem cell (MSC) precursors, a process mediated in part by BMP signaling. Multiple BMPs, including BMP2, BMP6, BMP7 and BMP9, promote osteoblastic differentiation of MSCs both in vitro and in vivo. BMP9 is one of the most osteogenic BMPs yet is a poorly characterized member of the BMP family. Several studies demonstrate that the mechanisms controlling BMP9-mediated osteogenesis differ from other osteogenic BMPs, but little is known about these specific mechanisms. Several pathways critical to BMP9-mediated osteogenesis are also important in the differentiation of other cell lineages, including adipocytes and chondrocytes. BMP9 has also demonstrated translational promise in spinal fusion and bone fracture repair. This review will summarize our current knowledge of BMP-mediated osteogenesis, with a focus on BMP9, by presenting recently completed work which may help us to further elucidate these pathways.
Collapse
Affiliation(s)
- Maureen Beederman
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Joseph D Lamplot
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinhua Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Shui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongyu Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Stephanie H Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jiye Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuhan Kong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sahitya Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Mary Rose Rogers
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Abdullah Pratt
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Jovito Angeles
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Lamplot JD, Qin J, Nan G, Wang J, Liu X, Yin L, Tomal J, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. BMP9 signaling in stem cell differentiation and osteogenesis. AMERICAN JOURNAL OF STEM CELLS 2013; 2:1-21. [PMID: 23671813 PMCID: PMC3636726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 06/02/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and play a critical role in skeletal development, bone formation and stem cell differentiation. Disruptions in BMP signaling result in a variety of skeletal and extraskeletal anomalies. BMP9 is a poorly characterized member of the BMP family and is among the most osteogenic BMPs, promoting osteoblastic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo. Recent findings from various in vivo and molecular studies strongly suggest that the mechanisms governing BMP9-mediated osteoinduction differ from other osteogenic BMPs. Many signaling pathways with diverse functions have been found to play a role in BMP9-mediated osteogenesis. Several of these pathways are also critical in the differentiation of other cell lineages, including adipocytes and chondrocytes. While BMP9 is known to be a potent osteogenic factor, it also influences several other pathways including cancer development, angiogenesis and myogenesis. Although BMP9 has been demonstrated as one of the most osteogenic BMPs, relatively little is known about the specific mechanisms responsible for these effects. BMP9 has demonstrated efficacy in promoting spinal fusion and bony non-union repair in animal models, demonstrating great translational promise. This review aims to summarize our current knowledge of BMP9-mediated osteogenesis by presenting recently completed work which may help us to further elucidate these pathways.
Collapse
Affiliation(s)
- Joseph D Lamplot
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jiaqiang Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Jinhua Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences and the Affiliated Hospital of Stomatology, Chongqing Medical UniversityChongqing 401147, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Justin Tomal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Wei Shui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Hongyu Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Stephanie H Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Jiye Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Yuhan Kong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| | - Sahitya Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Mary Rose Rogers
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Abdullah Pratt
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jovito Angeles
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics codesignated by Chinese Ministry of Education, The Children’s Hospital of Chongqing Medical UniversityChongqing 400014, China
- The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
48
|
Hu N, Jiang D, Huang E, Liu X, Li R, Liang X, Kim SH, Chen X, Gao JL, Zhang H, Zhang W, Kong YH, Zhang J, Wang J, Shui W, Luo X, Liu B, Cui J, Rogers MR, Shen J, Zhao C, Wang N, Wu N, Luu HH, Haydon RC, He TC, Huang W. BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci 2012. [PMID: 23203800 DOI: 10.1242/jcs.114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesenchymal stromal progenitor cells (MSCs) are multipotent progenitors that can be isolated from numerous tissues. MSCs can undergo osteogenic differentiation under proper stimuli. We have recently demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most osteogenic BMPs. As one of the least studied BMPs, BMP9 has been shown to regulate angiogenesis in endothelial cells. However, it is unclear whether BMP9-regulated angiogenic signaling plays any important role in the BMP9-initiated osteogenic pathway in MSCs. Here, we investigate the functional role of hypoxia-inducible factor 1α (HIF1α)-mediated angiogenic signaling in BMP9-regulated osteogenic differentiation of MSCs. We find that BMP9 induces HIF1α expression in MSCs through Smad1/5/8 signaling. Exogenous expression of HIF1α potentiates BMP9-induced osteogenic differentiation of MSCs both in vitro and in vivo. siRNA-mediated silencing of HIF1α or HIF1α inhibitor CAY10585 profoundly blunts BMP9-induced osteogenic signaling in MSCs. HIF1α expression regulated by cobalt-induced hypoxia also recapitulates the synergistic effect between HIF1α and BMP9 in osteogenic differentiation. Mechanistically, HIF1α is shown to exert its synergistic effect with BMP9 by inducing both angiogenic signaling and osteogenic signaling in MSCs. Thus, our findings should not only expand our understanding of the molecular basis behind BMP9-regulated osteoblastic lineage-specific differentiation, but also provide an opportunity to harness the BMP9-induced synergy between osteogenic and angiogenic signaling pathways in regenerative medicine.
Collapse
Affiliation(s)
- Ning Hu
- The First Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained after BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the up-regulation of the chemokine CXCL12/SDF1 and down-regulation of its receptor CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, the data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 nonresponsive paracrine state that represses endothelial cell migration and may promote vessel maturation.
Collapse
|
50
|
Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes. J Mol Cell Cardiol 2012; 53:790-800. [PMID: 22999861 DOI: 10.1016/j.yjmcc.2012.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/23/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022]
Abstract
White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.
Collapse
|