1
|
Su Z, Bian L, Zhao H, Yang C, Gu Y, Cai Y, Yang T, Xu X. KIR2DL5 +CD8 + T cells associate with dietary lipid intake and are active in type 1 diabetes. Int Immunopharmacol 2024; 141:112971. [PMID: 39178517 DOI: 10.1016/j.intimp.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Recent studies have shown that KIR+CD8+ T cells play a role in suppressing autoimmunity by eliminating pathogenic CD4+ T cells. However, their specific role in type 1 diabetes (T1D) remains unclear. METHODS In this study, we enrolled 108 patients diagnosed with T1D and 86 healthy individuals. We conducted flow cytometric analysis to examine the various subtypes of KIR+CD8+ T cells derived from peripheral blood mononuclear cells. Additionally, CD8+ T cells were isolated from the peripheral blood of T1D patients to assess the functions of different KIR+CD8+ T cell subtypes. To investigate the influence of lipids on the characteristics and activities of these T cell subtypes, the isolated CD8+ T cells were cultured with varying concentrations of palmitic acid (PA). Furthermore, we utilized an NSG (NOD scid gamma) mouse adoptive transfer model to assess the impact of dietary lipid intake on the functionality of KIR2DL5+CD8+ T cells in vivo. RESULTS We observed variations in circulating KIR+CD8+ T cell subtypes between patients with T1D and healthy controls. Notably, we observed a significant negative correlation between the frequencies of circulating KIR+CD8+ T cells and the titers of ZnT8 autoantibodies in individuals with T1D. Among these subtypes, KIR2DL5+CD8+ T cells demonstrated a positive association with dietary fat intake, characterized by increased perforin expression and reduced PD-1 expression. Importantly, KIR2DL5+CD8+ T cells exhibited enhanced proliferative capacity compared to other KIR+CD8+ T cell subsets. Palmitic acid (PA) was found to enhance the activation of KIR2DL5+CD8+ T cells and strengthened their ability to suppress CD4+ T cell proliferation in T1D patients. Moreover, dietary lipid intake significantly enhanced the functionality of KIR2DL5+CD8+ T cells in an NSG mouse adoptive transfer model. CONCLUSION Our findings suggest that lipid intake enhances the functionality of human KIR2DL5+CD8+ T cells and may offer implications for immunotherapy in T1D.
Collapse
Affiliation(s)
- Zhangyao Su
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingling Bian
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Endocrinology, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Hang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chun Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yong Gu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Maggi E, Munari E, Landolina N, Mariotti FR, Azzarone B, Moretta L. T cell landscape in the microenvironment of human solid tumors. Immunol Lett 2024; 270:106942. [PMID: 39486594 DOI: 10.1016/j.imlet.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
T cells are the main effectors involved in anti-tumor immunity, mediating most of the adaptive response towards cancer. After priming in lymph nodes, tumor antigens-specific naïve T lymphocytes proliferate and differentiate into effector CD4+ and CD8+ T cells that migrate from periphery into tumor sites aiming to eliminate cancer cells. Then while most effector T cells die, a small fraction persists and recirculates as long-lived memory T cells which generate enhanced immune responses when re-encountering the same antigen. A number of T (and non-T) cell subsets, stably resides in non-lymphoid peripheral tissues and may provide rapid immune response independently of T cells recruited from blood, against the reemergence of cancer cells. When tumor grows, however, tumor cells have evaded immune surveillance of effector cells (NK and CTL cells) which are exhausted, thus favoring the local expansion of T (and non-T) regulatory cells. In this review, the current knowledge of features of T cells present in the tumor microenvironment (TME) of solid adult and pediatric tumors, the mechanisms upregulating immune-checkpoint molecules and transcriptional and epigenetic landscapes leading to dysfunction and exhaustion of T effector cells are reviewed. The interaction of T cells with cancer- or TME non-neoplastic cells and their secreted molecules shape the T cell profile compromising the intrinsic plasticity of T cells and, therefore, favoring immune evasion. In this phase regulatory T cells contribute to maintain a high immunosuppressive TME thus facilitating tumor cell proliferation and metastatic spread. Despite the advancements of cancer immunotherapy, many tumors are unresponsive to immune checkpoint inhibitors, or therapeutical vaccines or CAR T cell-based adoptive therapy: some novel strategies to improve these T cell-based treatments are lastly proposed.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | | | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy.
| |
Collapse
|
3
|
Zhu J, Jin A, Pan B, Guo W, Yang W, Wang B. Exploring the role of KIR3DL2 on NK cells in hepatocellular carcinoma and its potential prognostic implications. iScience 2024; 27:110637. [PMID: 39262781 PMCID: PMC11388180 DOI: 10.1016/j.isci.2024.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a globally prevalent malignancy with a high recurrence rate, significantly impacting prognosis and survival. This study aims to identify prognostic molecular markers using single-cell sequencing of tumors and adjacent tissues in primary and recurrent HCC patients. We analyzed single-cell sequencing data from tumor and adjacent normal tissues of primary and recurrent HCC cases to compare immune cell quantity and gene expression profiles. Recurrent HCC patients exhibited a significant reduction in infiltrating NK cells expressing KIR3DL2. Pseudotemporal and cell communication analyses revealed these KIR3DL2high NK cells were in a quiescent state, suggesting NK cell exhaustion and poor prognosis. KIR3DL2 expression in peripheral blood NK cells correlated with that in tissues, highlighting its potential as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai 201104, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai 200940, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Lupo KB, Panjwani MK, Shahid S, Sottile R, Lawry C, Kolk G, Kontopolous T, Daniyan AF, Chandran SS, Klebanoff CA, Hsu KC. Engineered NKG2C + NK-like T cells exhibit superior antitumor efficacy while mitigating cytokine release syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603785. [PMID: 39211122 PMCID: PMC11360970 DOI: 10.1101/2024.07.16.603785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Engineered T and NK cell therapies have widely been used to treat hematologic malignancies and solid tumors, with promising clinical results. Current chimeric antigen receptor (CAR) T cell therapeutics have, however, been associated with treatment-related adverse events such as cytokine release syndrome (CRS) and are prone to immunologic exhaustion. CAR-NK therapeutics, while not associated with CRS, have limited in vivo persistence. We now demonstrate that an NK-like TCRαβ + CD8 T cell subset, identified and expanded ex vivo through its expression of the activating receptor NKG2C (NKG2C + NK-like T cells), can be transduced to express a second-generation CD19 CAR (1928z), resulting in superior tumor clearance, longer persistence and decreased exhaustion compared to conventional 1928z CAR + CD8 T cells and 1928z CAR+ NK cells. Moreover, CAR-modified NKG2C + NK-like T cells resulted in significantly reduced CRS compared to conventional CAR + CD8 T cells. Similarly, NKG2C + NK-like T cells engineered with a TCR targeting the NY-ESO-1 antigen exhibit robust tumor control and minimal exhaustion compared to TCR-engineered conventional CD8 T cells. These data establish NKG2C + NK-like T cells as a robust platform for cell engineering, and offer a safer, more durable alternative to conventional CAR-T and CAR-NK therapies.
Collapse
|
5
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Tao S, Norman PJ, You X, Kichula KM, Dong L, Chen N, He Y, Chen C, Zhang W, Zhu F. High-resolution KIR and HLA genotyping in three Chinese ethnic minorities reveals distinct origins. HLA 2024; 103:e15482. [PMID: 38625090 PMCID: PMC11027949 DOI: 10.1111/tan.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Polymorphism of killer-cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands impacts the effector activity of cytotoxic NK cell and T cell subsets. Therefore, understanding the extent and implications of KIR and HLA class I genetic polymorphism across various populations is important for immunological and medical research. In this study, we conducted a high-resolution investigation of KIR and HLA class I diversity in three distinct Chinese ethnic minority populations. We studied the She, Yugur, and Tajik, and compared them with the Zhejiang Han population (Zhe), which represents the majority Southern Han ethnicity. Our findings revealed that the Tajik population exhibited the most diverse KIR copy number, allele, and haplotype diversity among the four populations. This diversity aligns with their proposed ancestral origin, closely resembling that of Iranian populations, with a relatively higher presence of KIR-B genes, alleles, and haplotypes compared with the other Chinese populations. The Yugur population displayed KIR distributions similar to those of the Tibetans and Southeast Asians, whereas the She population resembled the Zhe and other East Asians, as confirmed by genetic distance analysis of KIR. Additionally, we identified 12.9% of individuals across the three minority populations as having KIR haplotypes characterized by specific gene block insertions or deletions. Genetic analysis based on HLA alleles yielded consistent results, even though there were extensive variations in HLA alleles. The observed variations in KIR interactions, such as higher numbers of 2DL1-C2 interactions in Tajik and Yugur populations and of 2DL3-C1 interactions in the She population, are likely shaped by demographic and evolutionary mechanisms specific to their local environments. Overall, our findings offer valuable insights into the distribution of KIR and HLA diversity among three distinct Chinese ethnic minority populations, which can inform future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Xuan You
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lina Dong
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Nanying Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yizhen He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
8
|
Alves E, Chopra A, Ram R, Currenti J, Kalams SA, Mallal SA, Phillips EJ, Gaudieri S. Underrepresentation of activating KIR gene expression in single-cell RNA-seq data is due to KIR gene misassignment. Eur J Immunol 2024; 54:e2350590. [PMID: 37944995 DOI: 10.1002/eji.202350590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Standard single-cell RNA-sequencing alignment pipelines exhibit a propensity for misassigning killer immunoglobulin-like receptor (KIR) transcripts, thereby giving rise to inaccuracies in quantifying KIR expression. Alves et al. elucidated that these default workflows frequently misclassify activating KIR transcripts as inhibitory KIR expression, resulting in a skewed representation of the KIR repertoire.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Jennifer Currenti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- School of Medicine, Curtin University, Bentley, Western Australia, Australia
| | - Spyros A Kalams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
9
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
10
|
Hanna SJ, Thayer TC, Robinson EJS, Vinh NN, Williams N, Landry LG, Andrews R, Siah QZ, Leete P, Wyatt R, McAteer MA, Nakayama M, Wong FS, Yang JHM, Tree TIM, Ludvigsson J, Dayan CM, Tatovic D. Single-cell RNAseq identifies clonally expanded antigen-specific T-cells following intradermal injection of gold nanoparticles loaded with diabetes autoantigen in humans. Front Immunol 2023; 14:1276255. [PMID: 37908349 PMCID: PMC10613693 DOI: 10.3389/fimmu.2023.1276255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Gold nanoparticles (GNPs) have been used in the development of novel therapies as a way of delivery of both stimulatory and tolerogenic peptide cargoes. Here we report that intradermal injection of GNPs loaded with the proinsulin peptide C19-A3, in patients with type 1 diabetes, results in recruitment and retention of immune cells in the skin. These include large numbers of clonally expanded T-cells sharing the same paired T-cell receptors (TCRs) with activated phenotypes, half of which, when the TCRs were re-expressed in a cell-based system, were confirmed to be specific for either GNP or proinsulin. All the identified gold-specific clones were CD8+, whilst proinsulin-specific clones were both CD8+ and CD4+. Proinsulin-specific CD8+ clones had a distinctive cytotoxic phenotype with overexpression of granulysin (GNLY) and KIR receptors. Clonally expanded antigen-specific T cells remained in situ for months to years, with a spectrum of tissue resident memory and effector memory phenotypes. As the T-cell response is divided between targeting the gold core and the antigenic cargo, this offers a route to improving resident memory T-cells formation in response to vaccines. In addition, our scRNAseq data indicate that focusing on clonally expanded skin infiltrating T-cells recruited to intradermally injected antigen is a highly efficient method to enrich and identify antigen-specific cells. This approach has the potential to be used to monitor the intradermal delivery of antigens and nanoparticles for immune modulation in humans.
Collapse
Affiliation(s)
- Stephanie J. Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Terri C. Thayer
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Department of Biological and Chemical Sciences, Roberts Wesleyan University, Rochester, NY, United States
| | - Emma J. S. Robinson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ngoc-Nga Vinh
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Nigel Williams
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, United States
| | - Robert Andrews
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Qi Zhuang Siah
- John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Pia Leete
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca Wyatt
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, United States
| | - F. Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jennie H. M. Yang
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Timothy I. M. Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences and Crown Princess Victoria Children´s Hospital, Linköping University, Linköping, Sweden
| | - Colin M. Dayan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Danijela Tatovic
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
11
|
Palmer WH, Leaton LA, Codo AC, Crute B, Roest J, Zhu S, Petersen J, Tobin RP, Hume PS, Stone M, van Bokhoven A, Gerich ME, McCarter MD, Zhu Y, Janssen WJ, Vivian JP, Trowsdale J, Getahun A, Rossjohn J, Cambier J, Loh L, Norman PJ. Polymorphic KIR3DL3 expression modulates tissue-resident and innate-like T cells. Sci Immunol 2023; 8:eade5343. [PMID: 37390222 PMCID: PMC10360443 DOI: 10.1126/sciimmunol.ade5343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Laura Ann Leaton
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Ana Campos Codo
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Bergren Crute
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - James Roest
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Richard P. Tobin
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Patrick S. Hume
- Department of Medicine, National Jewish Health, Denver, CO,
USA
| | - Matthew Stone
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado School of
Medicine, Aurora, CO, USA
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Martin D. McCarter
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Julian P. Vivian
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | | | - Andrew Getahun
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University,
School of Medicine, Heath Park, Cardiff, UK
| | - John Cambier
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville,
Australia
| | - Paul J. Norman
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
12
|
Zhang Y, Yan AW, Boelen L, Hadcocks L, Salam A, Gispert DP, Spanos L, Bitria LM, Nemat-Gorgani N, Traherne JA, Roberts C, Koftori D, Taylor GP, Forton D, Norman PJ, Marsh SG, Busch R, Macallan DC, Asquith B. KIR-HLA interactions extend human CD8+ T cell lifespan in vivo. J Clin Invest 2023; 133:e169496. [PMID: 37071474 PMCID: PMC10266773 DOI: 10.1172/jci169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUNDThere is increasing evidence, in transgenic mice and in vitro, that inhibitory killer cell immunoglobulin-like receptors (iKIRs) can modulate T cell responses. Furthermore, we have previously shown that iKIRs are an important determinant of T cell-mediated control of chronic viral infection and that these results are consistent with an increase in the CD8+ T cell lifespan due to iKIR-ligand interactions. Here, we tested this prediction and investigated whether iKIRs affect T cell lifespan in humans in vivo.METHODSWe used stable isotope labeling with deuterated water to quantify memory CD8+ T cell survival in healthy individuals and patients with chronic viral infections.RESULTSWe showed that an individual's iKIR-ligand genotype was a significant determinant of CD8+ T cell lifespan: in individuals with 2 iKIR-ligand gene pairs, memory CD8+ T cells survived, on average, for 125 days; in individuals with 4 iKIR-ligand gene pairs, the memory CD8+ T cell lifespan doubled to 250 days. Additionally, we showed that this survival advantage was independent of iKIR expression by the T cell of interest and, further, that the iKIR-ligand genotype altered the CD8+ and CD4+ T cell immune aging phenotype.CONCLUSIONSTogether, these data reveal an unexpectedly large effect of iKIR genotype on T cell survival.FUNDINGWellcome Trust; Medical Research Council; EU Horizon 2020; EU FP7; Leukemia and Lymphoma Research; National Institute of Health Research (NIHR) Imperial Biomedical Research Centre; Imperial College Research Fellowship; National Institutes of Health; Jefferiss Trust.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Ada W.C. Yan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Lies Boelen
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Linda Hadcocks
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Arafa Salam
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | | | - Loiza Spanos
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Laura Mora Bitria
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - James A. Traherne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chrissy Roberts
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Danai Koftori
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Graham P. Taylor
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- National Centre for Human Retrovirology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Daniel Forton
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- Department of Gastroenterology and Hepatology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Paul J. Norman
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Steven G.E. Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- UCL Cancer Institute, UCL, London, United Kingdom
| | - Robert Busch
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Derek C. Macallan
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Billiet L, De Cock L, Sanchez Sanchez G, Mayer RL, Goetgeluk G, De Munter S, Pille M, Ingels J, Jansen H, Weening K, Pascal E, Raes K, Bonte S, Kerre T, Vandamme N, Seurinck R, Roels J, Lavaert M, Van Nieuwerburgh F, Leclercq G, Taghon T, Impens F, Menten B, Vermijlen D, Vandekerckhove B. Single-cell profiling identifies a novel human polyclonal unconventional T cell lineage. J Exp Med 2023; 220:e20220942. [PMID: 36939517 PMCID: PMC10037106 DOI: 10.1084/jem.20220942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
In the human thymus, a CD10+ PD-1+ TCRαβ+ differentiation pathway diverges from the conventional single positive T cell lineages at the early double-positive stage. Here, we identify the progeny of this unconventional lineage in antigen-inexperienced blood. These unconventional T cells (UTCs) in thymus and blood share a transcriptomic profile, characterized by hallmark transcription factors (i.e., ZNF683 and IKZF2), and a polyclonal TCR repertoire with autoreactive features, exhibiting a bias toward early TCRα chain rearrangements. Single-cell RNA sequencing confirms a common developmental trajectory between the thymic and blood UTCs and clearly delineates this unconventional lineage in blood. Besides MME+ recent thymic emigrants, effector-like clusters are identified in this heterogeneous lineage. Expression of Helios and KIR and a decreased CD8β expression are characteristics of this lineage. This UTC lineage could be identified in adult blood and intestinal tissues. In summary, our data provide a comprehensive characterization of the polyclonal unconventional lineage in antigen-inexperienced blood and identify the adult progeny.
Collapse
Affiliation(s)
- Lore Billiet
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Rupert L. Mayer
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Karin Weening
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Eva Pascal
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Killian Raes
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sarah Bonte
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tessa Kerre
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- VIB Single Cell Core, VIB, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jana Roels
- VIB Single Cell Core, VIB, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
14
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
15
|
Song L, Bai G, Liu XS, Li B, Li H. Efficient and accurate KIR and HLA genotyping with massively parallel sequencing data. Genome Res 2023; 33:923-931. [PMID: 37169596 PMCID: PMC10519407 DOI: 10.1101/gr.277585.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Killer cell immunoglobulin like receptor (KIR) genes and human leukocyte antigen (HLA) genes play important roles in innate and adaptive immunity. They are highly polymorphic and cannot be genotyped with standard variant calling pipelines. Compared with HLA genes, many KIR genes are similar to each other in sequences and may be absent in the chromosomes. Therefore, although many tools have been developed to genotype HLA genes using common sequencing data, none of them work for KIR genes. Even specialized KIR genotypers could not resolve all the KIR genes. Here we describe T1K, a novel computational method for the efficient and accurate inference of KIR or HLA alleles from RNA-seq, whole-genome sequencing, or whole-exome sequencing data. T1K jointly considers alleles across all genotyped genes, so it can reliably identify present genes and distinguish homologous genes, including the challenging KIR2DL5A/KIR2DL5B genes. This model also benefits HLA genotyping, where T1K achieves high accuracy in benchmarks. Moreover, T1K can call novel single-nucleotide variants and process single-cell data. Applying T1K to tumor single-cell RNA-seq data, we found that KIR2DL4 expression was enriched in tumor-specific CD8+ T cells. T1K may open the opportunity for HLA and KIR genotyping across various sequencing applications.
Collapse
Affiliation(s)
- Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gali Bai
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA;
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Vavilova JD, Ustiuzhanina MO, Boyko AA, Streltsova MA, Kust SA, Kanevskiy LM, Iskhakov RN, Sapozhnikov AM, Gubernatorova EO, Drutskaya MS, Bychinin MV, Novikova ON, Sotnikova AG, Yusubalieva GM, Baklaushev VP, Kovalenko EI. Alterations in the CD56 - and CD56 + T Cell Subsets during COVID-19. Int J Mol Sci 2023; 24:ijms24109047. [PMID: 37240393 DOI: 10.3390/ijms24109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56- T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents. A decreased proportion of CD56+ T cells was found in ICU patients with fatal outcome. Severe COVID-19 was accompanied by a decrease in the proportion of CD8+ T cells, mainly due to the CD56- cell death, and a redistribution of the NKT-like cell subset composition with a predominance of more differentiated cytotoxic CD8+ T cells. The differentiation process was accompanied by an increase in the proportions of KIR2DL2/3+ and NKp30+ cells in the CD56+ T cell subset of COVID-19 patients and convalescents. Decreased percentages of NKG2D+ and NKG2A+ cells and increased PD-1 and HLA-DR expression levels were found in both CD56- and CD56+ T cells, and can be considered as indicators of COVID-19 progression. In the CD56- T cell fraction, increased CD16 levels were observed in MS patients and in ICU patients with lethal outcome, suggesting a negative role for CD56-CD16+ T cells in COVID-19. Overall, our findings suggest an antiviral role of CD56+ T cells in COVID-19.
Collapse
Affiliation(s)
- Julia D Vavilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria O Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna A Boyko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria A Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sofya A Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Leonid M Kanevskiy
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam N Iskhakov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M Sapozhnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina O Gubernatorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349 Sochi, Russia
| | - Mikhail V Bychinin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Oksana N Novikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Anna G Sotnikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Gaukhar M Yusubalieva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena I Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
17
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
18
|
Choi SJ, Koh JY, Rha MS, Seo IH, Lee H, Jeong S, Park SH, Shin EC. KIR +CD8 + and NKG2A +CD8 + T cells are distinct innate-like populations in humans. Cell Rep 2023; 42:112236. [PMID: 36897779 DOI: 10.1016/j.celrep.2023.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Subsets of the human CD8+ T cell population express inhibitory NK cell receptors, such as killer immunoglobulin-like receptors (KIRs) and NKG2A. In the present study, we examine the phenotypic and functional characteristics of KIR+CD8+ T cells and NKG2A+CD8+ T cells. KIRs and NKG2A tend to be expressed by human CD8+ T cells in a mutually exclusive manner. In addition, TCR clonotypes of KIR+CD8+ T cells barely overlap with those of NKG2A+CD8+ T cells, and KIR+CD8+ T cells are more terminally differentiated and replicative senescent than NKG2A+CD8+ T cells. Among cytokine receptors, IL12Rβ1, IL12Rβ2, and IL18Rβ are highly expressed by NKG2A+CD8+ T cells, whereas IL2Rβ is expressed by KIR+CD8+ T cells. IL-12/IL-18-induced production of IFN-γ is prominent in NKG2A+CD8+ T cells, whereas IL-15-induced NK-like cytotoxicity is prominent in KIR+CD8+ T cells. These findings suggest that KIR+CD8+ and NKG2A+CD8+ T cells are distinct innate-like populations with different cytokine responsiveness.
Collapse
Affiliation(s)
- Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, La Jolla, CA, USA
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - In-Ho Seo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
19
|
Chen X, Chen LC, Khericha M, Meng X, Salvestrini E, Shafer A, Iyer N, Alag AS, Ding Y, Nicolaou DM, Chen YY. Rational Protein Design Yields a CD20 CAR with Superior Antitumor Efficacy Compared with CD19 CAR. Cancer Immunol Res 2023; 11:150-163. [PMID: 36409926 PMCID: PMC9898126 DOI: 10.1158/2326-6066.cir-22-0504] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Chimeric antigen receptors (CAR) are fusion proteins whose functional domains are often connected in a plug-and-play manner to generate multiple CAR variants. However, CARs with highly similar sequences can exhibit dramatic differences in function. Thus, approaches to rationally optimize CAR proteins are critical to the development of effective CAR T-cell therapies. Here, we report that as few as two amino-acid changes in nonsignaling domains of a CAR were able to significantly enhance in vivo antitumor efficacy. We demonstrate juxtamembrane alanine insertion and single-chain variable fragment sequence hybridization as two strategies that could be combined to maximize CAR functionality, and describe a CD20 CAR that outperformed the CD19 CAR in antitumor efficacy in preclinical in vitro and in vivo assays. Precise changes in the CAR sequence drove dramatically different transcriptomic profiles upon antigen stimulation, with the most efficacious CAR inducing an enrichment in highly functional memory T cells upon antigen stimulation. These findings underscore the importance of sequence-level optimization to CAR T-cell function, and the protein-engineering strategy described here may be applied to the development of additional CARs against diverse antigens. See related Spotlight by Scheller and Hudecek, p. 142.
Collapse
Affiliation(s)
- Ximin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurence C. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mobina Khericha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Salvestrini
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Iyer
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Anya S. Alag
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yunfeng Ding
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Demetri M. Nicolaou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Seok J, Cho SD, Seo SJ, Park SH. Roles of Virtual Memory T Cells in Diseases. Immune Netw 2023; 23:e11. [PMID: 36911806 PMCID: PMC9995991 DOI: 10.4110/in.2023.23.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
21
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
22
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
23
|
KIR3DL2 contributes to the typing of acute adult T-cell leukemia and is a potential therapeutic target. Blood 2022; 140:1522-1532. [PMID: 35687761 DOI: 10.1182/blood.2022016765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a lymphoid neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), which encodes the transcriptional activator Tax, which participates in the immortalization of infected T cells. ATL is classified into 4 subtypes: smoldering, chronic, acute, and lymphoma. We determined whether natural killer receptors (NKRs) were expressed in ATL. NKR expression (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2, KIR3DL2, NKG2A, NKG2C, and NKp46) was assessed in a discovery cohort of 21 ATL, and KIR3DL2 was then assessed in 71 patients with ATL. KIR3DL2 was the only NKR among those studied frequently expressed by acute-type vs lymphoma- and chronic/smoldering-type ATL (36 of 40, 4 of 16, and 1 of 15, respectively; P = .001), although acute- and lymphoma-type ATL had similar mutation profiles by targeted exome sequencing. The correlation of KIR3DL2 expression with promoter demethylation was determined by microarray-based DNA methylation profiling. To explore the role of HTLV-1, KIR3DL2 and TAX messenger RNA (mRNA) expression levels were assessed by PrimeFlow RNA in primary ATL and in CD4+ T cells infected with HTLV-1 in vitro. TAX mRNA and KIR3DL2 protein expressions were correlated on ATL cells. HTLV-1 infection triggered KIR3DL2 by CD4+ cells but Tax alone did not induce KIR3DL2 expression. Ex vivo, autologous, antibody-dependent cell cytotoxicity using lacutamab, a first-in-class anti-KIR3DL2 humanized antibody, selectively killed KIR3DL2+ primary ATL cells ex vivo. To conclude, KIR3DL2 expression is associated with acute-type ATL. Transcription of KIR3DL2 may be triggered by HTLV-1 infection and correlates with hypomethylation of the promoter. The benefit of targeting KIR3DL2 with lacutamab is being further explored in a randomized phase 2 study in peripheral T-cell lymphoma, including ATL (registered on https://clinicaltrials.gov as #NCT04984837).
Collapse
|
24
|
Hu D, Xia W, Weiner HL. CD8 + T cells in neurodegeneration: friend or foe? Mol Neurodegener 2022; 17:59. [PMID: 36056406 PMCID: PMC9437386 DOI: 10.1186/s13024-022-00563-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2023] Open
Affiliation(s)
- Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA. .,Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, 01730, USA.
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, 01730, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
26
|
Abstract
Identification of regulatory CD8+ T cells that suppress pathological immune responses is an importunate pursuit. In a recent issue of Science, Li et al. demonstrated that human KIR+CD8+ T cells suppress autoimmunity by eliminating pathogenic CD4+ T cells.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
27
|
Li J, Zaslavsky M, Su Y, Guo J, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Mallajosyula VVA, Bracey NA, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Dekker CL, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Chien YH, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. KIR +CD8 + T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 2022; 376:eabi9591. [PMID: 35258337 PMCID: PMC8995031 DOI: 10.1126/science.abi9591] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxim Zaslavsky
- Program in Computer Science, Stanford University, Stanford, CA, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J. Sikora
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Shin-Heng Chiou
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Chen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiefu Li
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Wilhelmy
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alana M. McSween
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Nathan A. Bracey
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Gopal Krishna R. Dhondalay
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kartik Bhamidipati
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen L. Hauser
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - William H. Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lars M. Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ludvig M. Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Yueh-Hsiu Chien
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Kari C. Nadeau
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Naresha Saligrama
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
28
|
Beider K, Itzhaki O, Schachter J, Grushchenko-Polaq AH, Voevoda-Dimenshtein V, Rosenberg E, Ostrovsky O, Devillers O, Shapira Frommer R, Zeltzer LA, Toren A, Jacoby E, Shimoni A, Avigdor A, Nagler A, Besser MJ. Molecular and Functional Signatures Associated with CAR T Cell Exhaustion and Impaired Clinical Response in Patients with B Cell Malignancies. Cells 2022; 11:cells11071140. [PMID: 35406703 PMCID: PMC8997745 DOI: 10.3390/cells11071140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, its full capacity is currently limited by the generation of dysfunctional CAR T cells. Senescent or exhausted CAR T cells possess poor targeting and effector functions, as well as impaired cell proliferation and persistence in vivo. Strategies to detect, prevent or reverse T cell exhaustion are therefore required in order to enhance the effectiveness of CAR T immunotherapy. Here we report that CD19 CAR T cells from non-responding patients with B cell malignancies show enrichment of CD8+ cells with exhausted/senescent phenotype and display a distinct transcriptional signature with dysregulation of genes associated with terminal exhaustion. Furthermore, CAR T cells from non-responding patients exhibit reduced proliferative capacity and decreased IL-2 production in vitro, indicating functional impairment. Overall, our work reveals potential mediators of resistance, paving the way to studies that will enhance the efficacy and durability of CAR T therapy in B cell malignancies.
Collapse
Affiliation(s)
- Katia Beider
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Orit Itzhaki
- Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, Tel Aviv 6997801, Israel; (O.I.); (J.S.); (R.S.F.); (L.-a.Z.)
| | - Jacob Schachter
- Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, Tel Aviv 6997801, Israel; (O.I.); (J.S.); (R.S.F.); (L.-a.Z.)
| | - Ania Hava Grushchenko-Polaq
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Valeria Voevoda-Dimenshtein
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Evgenia Rosenberg
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Olga Ostrovsky
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Olivia Devillers
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Ronnie Shapira Frommer
- Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, Tel Aviv 6997801, Israel; (O.I.); (J.S.); (R.S.F.); (L.-a.Z.)
| | - Li-at Zeltzer
- Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, Tel Aviv 6997801, Israel; (O.I.); (J.S.); (R.S.F.); (L.-a.Z.)
| | - Amos Toren
- Center for Pediatric Cell Therapy, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (A.T.); (E.J.)
| | - Elad Jacoby
- Center for Pediatric Cell Therapy, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (A.T.); (E.J.)
| | - Avichai Shimoni
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Abraham Avigdor
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Aviv 6997801, Israel; (K.B.); (A.H.G.-P.); (V.V.-D.); (E.R.); (O.O.); (O.D.); (A.S.); (A.A.)
- Correspondence: (A.N.); (M.J.B.)
| | - Michal J. Besser
- Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, Tel Aviv 6997801, Israel; (O.I.); (J.S.); (R.S.F.); (L.-a.Z.)
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (A.N.); (M.J.B.)
| |
Collapse
|
29
|
Li J, Zaslavsky M, Su Y, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Aditya Mallajosyula VV, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. Human KIR + CD8 + T cells target pathogenic T cells in Celiac disease and are active in autoimmune diseases and COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.23.473930. [PMID: 34981055 PMCID: PMC8722592 DOI: 10.1101/2021.12.23.473930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.
Collapse
|
30
|
Bruijnesteijn J, van der Wiel M, de Groot NG, Bontrop RE. Rapid Characterization of Complex Killer Cell Immunoglobulin-Like Receptor (KIR) Regions Using Cas9 Enrichment and Nanopore Sequencing. Front Immunol 2021; 12:722181. [PMID: 34594334 PMCID: PMC8476923 DOI: 10.3389/fimmu.2021.722181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Long-read sequencing approaches have considerably improved the quality and contiguity of genome assemblies. Such platforms bear the potential to resolve even extremely complex regions, such as multigenic immune families and repetitive stretches of DNA. Deep sequencing coverage, however, is required to overcome low nucleotide accuracy, especially in regions with high homopolymer density, copy number variation, and sequence similarity, such as the MHC and KIR gene clusters of the immune system. Therefore, we have adapted a targeted enrichment protocol in combination with long-read sequencing to efficiently annotate complex KIR gene regions. Using Cas9 endonuclease activity, segments of the KIR gene cluster were enriched and sequenced on an Oxford Nanopore Technologies platform. This provided sufficient coverage to accurately resolve and phase highly complex KIR haplotypes. Our strategy eliminates PCR-induced amplification errors, facilitates rapid characterization of large and complex multigenic regions, including its epigenetic footprint, and is applicable in multiple species, even in the absence of a reference genome.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
31
|
Sottile R, Panjwani MK, Lau CM, Daniyan AF, Tanaka K, Barker JN, Brentjens RJ, Sun JC, Le Luduec JB, Hsu KC. Human cytomegalovirus expands a CD8 + T cell population with loss of BCL11B expression and gain of NK cell identity. Sci Immunol 2021; 6:eabe6968. [PMID: 34559552 DOI: 10.1126/sciimmunol.abe6968] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rosa Sottile
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Kazim Panjwani
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colleen M Lau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony F Daniyan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kento Tanaka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juliet N Barker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Jean-Benoît Le Luduec
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
David G, Willem C, Legrand N, Djaoud Z, Mérieau P, Walencik A, Guillaume T, Gagne K, Chevallier P, Retière C. Deciphering the biology of KIR2DL3 + T lymphocytes that are associated to relapse in haploidentical HSCT. Sci Rep 2021; 11:15782. [PMID: 34349169 PMCID: PMC8338934 DOI: 10.1038/s41598-021-95245-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
KIR are mainly expressed on NK cells and to a lesser extent on T lymphocytes. Although the KIR NK cell repertoire was well explored in haploidentical Hematopoietic Stem Cell Transplantation (HSCT), KIR T cell compartment remains to be investigated in this context. In this study, the investigation of NK receptors on T lymphocytes during immune reconstitution after T-cell-replete haploidentical HSCT with Post-Transplant Cyclophosphamide (PTCy) has shown a significant increase of KIR2DL2/3+ T cell frequency at day 25. This was especially observed at day 30 in recipients who relapsed. IL-15 but not IL-12 increased in vitro KIR+ T cell expansion suggesting that the raised IL-15 serum concentration observed after PTCy in haploidentical HSCT might increase KIR+ T cell frequency. Moreover, investigations from healthy blood donors showed a higher inhibiting effect of KIR2DL3 on CMV specific T cell response against allogeneic than autologous C1+ target cells. The association of KIR+ T cell subset with relapse may suggest that inhibitory KIR2DL2/3 limit anti-leukemic effect of specific T lymphocytes at this early step of immune reconstitution. Further phenotypic and mechanistic investigations on this cell subset from a broader cohort of HSCT recipients should clarify its potential implication in relapse occurrence. Our results demonstrate that KIR-HLA interactions known to modulate NK cell functions also modulate T cell immune responses in the context of allogeneic HSCT.
Collapse
Affiliation(s)
- Gaëlle David
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", 44000, Nantes, France
| | - Catherine Willem
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", 44000, Nantes, France
| | - Nolwenn Legrand
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", 44000, Nantes, France
| | - Zakia Djaoud
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France
| | - Pierre Mérieau
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France
| | - Alexandre Walencik
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France
- LabEx Transplantex, Université de Strasbourg, 67000, Strasbourg, France
| | - Thierry Guillaume
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", 44000, Nantes, France
- Hematology Clinic, CHU, 44000, Nantes, France
| | - Katia Gagne
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", 44000, Nantes, France
- LabEx Transplantex, Université de Strasbourg, 67000, Strasbourg, France
| | - Patrice Chevallier
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", 44000, Nantes, France
- Hematology Clinic, CHU, 44000, Nantes, France
| | - Christelle Retière
- Etablissement Français du Sang-Pays de la Loire, Blood Bank, 34 boulevard Jean Monnet, 44011, Nantes Cedex 01, France.
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44000, Nantes, France.
- LabEx IGO "Immunotherapy, Graft, Oncology", 44000, Nantes, France.
| |
Collapse
|
33
|
Méndez-Lagares G, Chin N, Chang WW, Lee J, Rosás-Umbert M, Kieu HT, Merriam D, Lu W, Kim S, Adamson L, Brander C, Luciw PA, Barry PA, Hartigan-O’Connor DJ. Cytomegalovirus mediates expansion of IL-15-responsive innate-memory cells with SIV killing function. J Clin Invest 2021; 131:148542. [PMID: 34153005 PMCID: PMC8321572 DOI: 10.1172/jci148542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Interindividual immune variability is driven predominantly by environmental factors, including exposure to chronic infectious agents such as cytomegalovirus (CMV). We investigated the effects of rhesus CMV (RhCMV) on composition and function of the immune system in young macaques. Within months of infection, RhCMV was associated with impressive changes in antigen presenting cells, T cells, and NK cells-and marked expansion of innate-memory CD8+ T cells. These cells express high levels of NKG2A/C and the IL-2 and IL-15 receptor beta chain, CD122. IL-15 was sufficient to drive differentiation of the cells in vitro and in vivo. Expanded NKG2A/C+CD122+CD8+ T cells in RhCMV-infected macaques, but not their NKG2-negative counterparts, were endowed with cytotoxicity against class I-deficient K562 targets and prompt IFN-γ production in response to stimulation with IL-12 and IL-18. Because RhCMV clone 68-1 forms the viral backbone of RhCMV-vectored SIV vaccines, we also investigated immune changes following administration of RhCMV 68-1-vectored SIV vaccines. These vaccines led to impressive expansion of NKG2A/C+CD8+ T cells with capacity to inhibit SIV replication ex vivo. Thus, CMV infection and CMV-vectored vaccination drive expansion of functional innate-like CD8 cells via host IL-15 production, suggesting that innate-memory expansion could be achieved by other vaccine platforms expressing IL-15.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Ning Chin
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - W.L. William Chang
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Jaewon Lee
- Graduate Group in Immunology, and
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | | | - Hung T. Kieu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - David Merriam
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Wenze Lu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Sungjin Kim
- Department of Medical Microbiology and Immunology
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Lourdes Adamson
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paul A. Luciw
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Peter A. Barry
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
34
|
Marin WM, Dandekar R, Augusto DG, Yusufali T, Heyn B, Hofmann J, Lange V, Sauter J, Norman PJ, Hollenbach JA. High-throughput Interpretation of Killer-cell Immunoglobulin-like Receptor Short-read Sequencing Data with PING. PLoS Comput Biol 2021; 17:e1008904. [PMID: 34339413 PMCID: PMC8360517 DOI: 10.1371/journal.pcbi.1008904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/12/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) complex on chromosome 19 encodes receptors that modulate the activity of natural killer cells, and variation in these genes has been linked to infectious and autoimmune disease, as well as having bearing on pregnancy and transplant outcomes. The medical relevance and high variability of KIR genes makes short-read sequencing an attractive technology for interrogating the region, providing a high-throughput, high-fidelity sequencing method that is cost-effective. However, because this gene complex is characterized by extensive nucleotide polymorphism, structural variation including gene fusions and deletions, and a high level of homology between genes, its interrogation at high resolution has been thwarted by bioinformatic challenges, with most studies limited to examining presence or absence of specific genes. Here, we present the PING (Pushing Immunogenetics to the Next Generation) pipeline, which incorporates empirical data, novel alignment strategies and a custom alignment processing workflow to enable high-throughput KIR sequence analysis from short-read data. PING provides KIR gene copy number classification functionality for all KIR genes through use of a comprehensive alignment reference. The gene copy number determined per individual enables an innovative genotype determination workflow using genotype-matched references. Together, these methods address the challenges imposed by the structural complexity and overall homology of the KIR complex. To determine copy number and genotype determination accuracy, we applied PING to European and African validation cohorts and a synthetic dataset. PING demonstrated exceptional copy number determination performance across all datasets and robust genotype determination performance. Finally, an investigation into discordant genotypes for the synthetic dataset provides insight into misaligned reads, advancing our understanding in interpretation of short-read sequencing data in complex genomic regions. PING promises to support a new era of studies of KIR polymorphism, delivering high-resolution KIR genotypes that are highly accurate, enabling high-quality, high-throughput KIR genotyping for disease and population studies.
Collapse
Affiliation(s)
- Wesley M. Marin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Danillo G. Augusto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Tasneem Yusufali
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | | | | | | | | | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
35
|
Daniel L, Tassery M, Lateur C, Thierry A, Herbelin A, Gombert JM, Barbarin A. Allotransplantation Is Associated With Exacerbation of CD8 T-Cell Senescence: The Particular Place of the Innate CD8 T-Cell Component. Front Immunol 2021; 12:674016. [PMID: 34367138 PMCID: PMC8334557 DOI: 10.3389/fimmu.2021.674016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Immunosenescence is a physiological process that is associated with changes in the immune system, particularly among CD8 T-cells. Recent studies have hypothesized that senescent CD8 T-cells are produced with chronologic age by chronic stimulation, leading to the acquisition of hallmarks of innate-like T-cells. While conventional CD8 T-cells are quite well characterized, CD8 T-cells sharing features of NK cells and memory CD8 T-cells, are a newly described immune cell population. They can be distinguished from conventional CD8 T-cells by their combined expression of panKIR/NKG2A and Eomesodermin (E), a unique phenotype closely associated with IFN-γ production in response to innate stimulation. Here, we first provided new evidence in favor of the innate character of panKIR/NKG2A(+) E(+) CD8 T-cells in normal subjects, documenting their position at an intermediate level in the innateness gradient in terms of both innate IFN-γ production and diminished mitochondrial mass. We also revealed that CD8 E(+) panKIR/NKG2A(+) T-cells, hereafter referred to as Innate E(+) CD8 T-cells, exhibit increased senescent (CD27(-) CD28(-)) phenotype, compared to their conventional memory counterparts. Surprisingly, this phenomenon was not dependent on age. Given that inflammation related to chronic viral infection is known to induce NK-like marker expression and a senescence phenotype among CD8 T-cells, we hypothesized that innate E(+) CD8 T-cells will be preferentially associated with exacerbated cellular senescence in response to chronic alloantigen exposure or CMV infection. Accordingly, in a pilot cohort of stable kidney allotransplant recipients, we observed an increased frequency of the Innate E(+) CD8 T-cell subset, together with an exacerbated senescent phenotype. Importantly, this phenotype cannot be explained by age alone, in clear contrast to their conventional memory counterparts. The senescent phenotype in CD8 T-cells was further increased in cytomegalovirus (CMV) positive serology transplant recipients, suggesting that transplantation and CMV, rather than aging by itself, may promote an exacerbated senescent phenotype of innate CD8 T-cells. In conclusion, we proposed that kidney transplantation, via the setting of inflammatory stimuli of alloantigen exposure and CMV infection, may exogenously age the CD8 T-cell compartment, especially its innate component. The physiopathological consequences of this change in the immune system remain to be elucidated.
Collapse
Affiliation(s)
- Lauren Daniel
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Marion Tassery
- Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - Clara Lateur
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Antoine Thierry
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - André Herbelin
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1082, Poitiers, France.,CHU de Poitiers, Poitiers, France
| |
Collapse
|
36
|
Ahn R, Vukcevic D, Motyer A, Nititham J, Squire DM, Hollenbach JA, Norman PJ, Ellinghaus E, Nair RP, Tsoi LC, Oksenberg J, Foerster J, Lieb W, Weidinger S, Franke A, Elder JT, Jorgenson E, Leslie S, Liao W. Large-Scale Imputation of KIR Copy Number and HLA Alleles in North American and European Psoriasis Case-Control Cohorts Reveals Association of Inhibitory KIR2DL2 With Psoriasis. Front Immunol 2021; 12:684326. [PMID: 34177931 PMCID: PMC8231283 DOI: 10.3389/fimmu.2021.684326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) regulate immune responses in NK and CD8+ T cells via interaction with HLA ligands. KIR genes, including KIR2DS1, KIR3DL1, and KIR3DS1 have previously been implicated in psoriasis susceptibility. However, these previous studies were constrained to small sample sizes, in part due to the time and expense required for direct genotyping of KIR genes. Here, we implemented KIR*IMP to impute KIR copy number from single-nucleotide polymorphisms (SNPs) on chromosome 19 in the discovery cohort (n=11,912) from the PAGE consortium, University of California San Francisco, and the University of Dundee, and in a replication cohort (n=66,357) from Kaiser Permanente Northern California. Stratified multivariate logistic regression that accounted for patient ancestry and high-risk HLA alleles revealed that KIR2DL2 copy number was significantly associated with psoriasis in the discovery cohort (p ≤ 0.05). The KIR2DL2 copy number association was replicated in the Kaiser Permanente replication cohort. This is the first reported association of KIR2DL2 copy number with psoriasis and highlights the importance of KIR genetics in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Richard Ahn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Damjan Vukcevic
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Allan Motyer
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne Nititham
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - David McG. Squire
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Jill A. Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Paul J. Norman
- Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, San Francisco, CA, United States
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Jorge Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - John Foerster
- College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - James T. Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Ann Arbor Veterans Affairs Hospital, Dermatology, Ann Arbor, MI, United States
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente, Oakland, CA, United States
| | - Stephen Leslie
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
37
|
Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine 2021; 68:103409. [PMID: 34049248 PMCID: PMC8170103 DOI: 10.1016/j.ebiom.2021.103409] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
The failure of T cells to eradicate tumour cells in the tumour microenvironment is mainly due to the dysfunction of T cells. Senescent T cells, with defects in proliferation and effector functions, accumulate in ageing, chronic viral infections, and autoimmune disorders where antigen stimulation persists. Increasing evidence suggests that inducing T cell senescence is a key strategy used by malignant tumours to evade immune surveillance. In this review, we summarize the general features, functional regulation, and signalling network of senescent T cells in tumour development and highlight their potential as prognostic biomarkers in multiple cancer treatments, including chemotherapy, radiotherapy, and immunotherapy. Moreover, we discuss possible therapeutic strategies for preventing or rejuvenating senescence in tumour-specific T cells. Understanding these critical issues may provide novel strategies to enhance cancer immunotherapy.
Collapse
|
38
|
Tao S, Kichula KM, Harrison GF, Farias TDJ, Palmer WH, Leaton LA, Hajar CGN, Zefarina Z, Edinur HA, Zhu F, Norman PJ. The combinatorial diversity of KIR and HLA class I allotypes in Peninsular Malaysia. Immunology 2021; 162:389-404. [PMID: 33283280 PMCID: PMC7968402 DOI: 10.1111/imm.13289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Genelle F. Harrison
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ticiana Della Justina Farias
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - William H. Palmer
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | | | - Zulkafli Zefarina
- School of Medical SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Hisham Atan Edinur
- School of Health SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Faming Zhu
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
39
|
Kovalenko EI, Zvyagin IV, Streltsova MA, Mikelov AI, Erokhina SA, Telford WG, Sapozhnikov AM, Lebedev YB. Surface NKG2C Identifies Differentiated αβT-Cell Clones Expanded in Peripheral Blood. Front Immunol 2021; 11:613882. [PMID: 33664730 PMCID: PMC7921799 DOI: 10.3389/fimmu.2020.613882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
T cells that express CD56 in peripheral blood of healthy humans represent a heterogeneous and poorly studied subset. In this work, we analyzed this subset for NKG2C expression. In both CD56+ and CD56- subsets most of the NKG2C+ T cells had a phenotype of highly differentiated CD8+ TEMRA cells. The CD56+NKG2C+ T cells also expressed a number of NK cell receptors, such as NKG2D, CD16, KIR2DL2/DL3, and maturation marker CD57 more often than the CD56-NKG2C+CD3+ cells. TCR β-chain repertoire of the CD3+CD56+NKG2C+ cell fraction was limited by the prevalence of one or several clonotypes which can be found within the most abundant clonotypes in total or CD8+ T cell fraction TCRβ repertoire. Thus, NKG2C expression in highly differentiated CD56+ T cells was associated with the most expanded αβ T cell clones. NKG2C+ T cells produced almost no IFN-γ in response to stimulation with HCMV pp65-derived peptides. This may be partially due to the high content of CD45RA+CD57+ cells in the fraction. CD3+NKG2C+ cells showed signs of activation, and the frequency of this T-cell subset in HCMV-positive individuals was positively correlated with the frequency of NKG2C+ NK cells that may imply a coordinated in a certain extent development of the NKG2C+ T and NK cell subsets under HCMV infection.
Collapse
Affiliation(s)
- Elena I. Kovalenko
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ivan V. Zvyagin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria A. Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Artem I. Mikelov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofya A. Erokhina
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - William G. Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alexander M. Sapozhnikov
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Yury B. Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
40
|
Legrand N, David G, Rodallec A, Gaultier A, Salmon D, Cesbron A, Wittkop L, Raffi F, Gendzekhadze K, Retière C, Allavena C, Gagne K. Influence of HLA-C environment on the spontaneous clearance of hepatitis C in European HIV-HCV co-infected individuals. Clin Exp Immunol 2021; 204:107-124. [PMID: 33314121 DOI: 10.1111/cei.13562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell functions are regulated by diverse inhibitory and activating receptors, including killer cell immunoglobulin-like receptors (KIR), which interact with human leukocyte antigen (HLA) class I molecules. Some KIR/HLA genetic combinations were reported associated with spontaneous clearance (SC) of hepatitis C virus (HCV) but with discordant results, possibly reflecting KIR and/or HLA gene polymorphism according to populations. KIR/HLA genetic combinations associated with both an exhaustive NK and T cell repertoire were investigated in a cohort of HIV-HCV co-infected individuals with either SC (n = 68) or chronic infection (CI, n = 163) compared to uninfected blood donors [controls (Ctrl), n = 100]. Multivariate analysis showed that the HLA C2C2 environment was associated with SC only in European HIV-HCV co-infected individuals [odds ratio (OR) = 4·30, 95% confidence interval = 1·57-12·25, P = 0·005]. KIR2D+ NK cell repertoire and potential of degranulation of KIR2DL1/S1+ NK cells were similar in the SC European cohort compared to uninfected individuals. In contrast, decreased frequencies of KIR2DS1+ and KIR2DL2+ NK cells were detected in the CI group of Europeans compared to SC and a decreased frequency of KIR2DL1/S1+ NK cells compared to controls. Regarding T cells, higher frequencies of DNAX accessory molecule-1 (DNAM-1)+ and CD57+ T cells were observed in SC in comparison to controls. Interestingly, SC subjects emphasized increased frequencies of KIR2DL2/L3/S2+ T cells compared to CI subjects. Our study underlines that the C2 environment may activate efficient KIR2DL1+ NK cells in a viral context and maintain a KIR2DL2/L3/S2+ mature T cell response in the absence of KIR2DL2 engagement with its cognate ligands in SC group of HCV-HIV co-infected European patients.
Collapse
Affiliation(s)
- N Legrand
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France
| | - G David
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France
| | - A Rodallec
- Department of Virology, CHU Nantes Hotel Dieu, Nantes, France
| | - A Gaultier
- Department of Biostatistics, CHU Hotel Dieu, Nantes, France
| | - D Salmon
- AP-HP Department of Infectious Diseases, Université Paris Descartes, Paris, France
| | | | - L Wittkop
- INSERM UMR1219, Université de Bordeaux ISPED, Bordeaux, France
| | - F Raffi
- Department of Infectious Diseases, Nantes, France
| | - K Gendzekhadze
- Division of Hematology and Bone Marrow Transplantation, Duarte, CA, USA
| | - C Retière
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO, Nantes, France
| | - C Allavena
- Department of Infectious Diseases, Nantes, France
| | - K Gagne
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO, Nantes, France.,LabEx Transplantex, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Shytikov D, Rohila D, Li D, Wang P, Jiang M, Zhang M, Xu Q, Lu L. Functional Characterization of Ly49 +CD8 T-Cells in Both Normal Condition and During Anti-Viral Response. Front Immunol 2021; 11:602783. [PMID: 33488602 PMCID: PMC7817614 DOI: 10.3389/fimmu.2020.602783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
The role of Ly49+CD8 T-cells in the immune system is not clear. Previously, several papers suggested Ly49+CD8 T-cells as immunosuppressors, while multiple studies also suggested their role as potent participants of the immune response. The mechanism of Ly49 expression on CD8 T-cells is also not clear. We investigated phenotype, functions, and regulation of Ly49 expression on murine CD8 T-cells in both normal state and during LCMV infection. CD8 T-cells express different Ly49 receptors compared with NK-cells. In intact mice, Ly49+CD8 T-cells have a phenotype similar to resting central memory CD8 T-cells and do not show impaired proliferation and cytokine production. Conventional CD8 T-cells upregulate Ly49 receptors during TCR-induced stimulation, and IL-2, as well as IL-15, affect it. At the same time, Ly49+CD8 T-cells change the Ly49 expression profile dramatically upon re-stimulation downregulating inhibitory and upregulating activating Ly49 receptors. We observed the expression of Ly49 receptors on the virus-specific CD8 T-cells during LCMV infection, especially marked in the early stages, and participation of Ly49+CD8 T-cells in the anti-viral response. Thus, CD8 T-cells acquire Ly49 receptors during the T-cell activation and show dynamic regulation of Ly49 receptors during stimulation.
Collapse
Affiliation(s)
- Dmytro Shytikov
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deepak Rohila
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Li
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Jiang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingxu Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Xu
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
44
|
Macías-Barragán J, Montoya-Buelna M, Enciso-Vargas M, Alvarado-Ruíz L, Oceguera-Contreras E, Guerra-Renteria AS, Graciano-Machuca O. Assessment of the Relationship between Clinical Variants of Psoriasis and Killer Immunoglobulin-like Receptor ( KIR) Genes: A Systematic Review with Meta-analysis. Immunol Invest 2020; 51:480-495. [PMID: 33115277 DOI: 10.1080/08820139.2020.1840582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Psoriasis (Ps) is an autoimmune dermatosis. Previous studies have shown an association between KIR genes and susceptibility to some clinical variants of Ps. Therefore, we conducted an exhaustive systematic review with meta-analysis to evaluate the relationship between KIR genes and susceptibility to clinical variants of Ps in the overall population and according to ethnicity. METHODS According to PRISMA guidelines, we performed a systematic review through PubMed and Web of Science to identify relevant available scientific publications about KIR genes and Ps. The quality of the studies was evaluated using the Newcastle-Ottawa scale. Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using random and fixed effect models for the analyzed genes. Heterogeneity was tested using Cochran's Q-Statistic and I2, and the risk of bias was tested using the Begg test and Egger linear regression. RESULTS A total of 10 case-control studies were included, comprising a variable number of KIR typified genes and psoriasis vulgaris (PsV) as the main clinical variant studied. In the total pooled results, the KIR2DS1 gene (OR = 1.518, p = .010, 95%CI: 1.105 to 2.086) was related to higher susceptibility to PsV, while the KIR2DS4 (OR = 0.563, p = .005, 95%CI: 0.376 to 0.842) and KIR3DL1 (OR = 0.602, p = .040, 95%CI: 0.370 to 0.977) genes were related to protection against PsV. CONCLUSION This meta-analysis demonstrates that subjects that carry the KIR2DS1 gene could have a potential risk factor for the development of PsV. Conversely, KIR2DS4 and 3DL1 genes appear to confer protection against PsV.
Collapse
Affiliation(s)
- José Macías-Barragán
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México
| | - Margarita Montoya-Buelna
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, UDG, Guadalajara, México
| | - Moisés Enciso-Vargas
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, UDG, Ocotlán, México
| | - Liliana Alvarado-Ruíz
- Escuela de Ciencias de la Salud, Campus Zapopan, Universidad del Valle de México, Zapopan, México
| | - Edén Oceguera-Contreras
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México
| | - Aracely Suggey Guerra-Renteria
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México.,Escuela de Ciencias de la Salud, Campus Zapopan, Universidad del Valle de México, Zapopan, México
| | - Omar Graciano-Machuca
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México
| |
Collapse
|
45
|
Bruijnesteijn J, de Groot NG, Bontrop RE. The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Front Immunol 2020; 11:582804. [PMID: 33013938 PMCID: PMC7516082 DOI: 10.3389/fimmu.2020.582804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The activity and function of natural killer (NK) cells are modulated through the interactions of multiple receptor families, of which some recognize MHC class I molecules. The high level of MHC class I polymorphism requires their ligands either to interact with conserved epitopes, as is utilized by the NKG2A receptor family, or to co-evolve with the MHC class I allelic variation, which task is taken up by the killer cell immunoglobulin-like receptor (KIR) family. Multiple molecular mechanisms are responsible for the diversification of the KIR gene system, and include abundant chromosomal recombination, high mutation rates, alternative splicing, and variegated expression. The combination of these genetic mechanisms generates a compound array of diversity as is reflected by the contraction and expansion of KIR haplotypes, frequent birth of fusion genes, allelic polymorphism, structurally distinct isoforms, and variegated expression, which is in contrast to the mainly allelic nature of MHC class I polymorphism in humans. A comparison of the thoroughly studied human and macaque KIR gene repertoires demonstrates a similar evolutionarily conserved toolbox, through which selective forces drove and maintained the diversified nature of the KIR gene cluster. This hypothesis is further supported by the comparative genetics of KIR haplotypes and genes in other primate species. The complex nature of the KIR gene system has an impact upon the education, activity, and function of NK cells in coherence with an individual’s MHC class I repertoire and pathogenic encounters. Although selection operates on an individual, the continuous diversification of the KIR gene system in primates might protect populations against evolving pathogens.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
46
|
Gao F, Ye Y, Gao Y, Huang H, Zhao Y. Influence of KIR and NK Cell Reconstitution in the Outcomes of Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:2022. [PMID: 32983145 PMCID: PMC7493622 DOI: 10.3389/fimmu.2020.02022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells play a significant role in immune tolerance and immune surveillance. Killer immunoglobin-like receptors (KIRs), which recognize human leukocyte antigen (HLA) class I molecules, are particularly important for NK cell functions. Previous studies have suggested that, in the setting of hematopoietic stem cell transplantation (HSCT), alloreactive NK cells from the donor could efficiently eliminate recipient tumor cells and the residual immune cells. Subsequently, several clinical models were established to determine the optimal donors who would exhibit a graft-vs. -leukemia (GVL) effect without developing graft-vs. -host disease (GVHD). In addition, hypotheses about specific beneficial receptor-ligand pairs and KIR genes have been raised and the favorable effects of alloreactive NK cells are being investigated. Moreover, with a deeper understanding of the process of NK cell reconstitution post-HSCT, new factors involved in this process and the defects of previous models have been observed. In this review, we summarize the most relevant literatures about the impact of NK cell alloreactivity on transplant outcomes and the factors affecting NK cell reconstitution.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yang Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
47
|
Kasakovski D, Zeng X, Lai J, Yu Z, Yao D, Chen S, Zha X, Li Y, Xu L. Characterization of
KIR
+
NKG2A
+ Eomes−
NK
‐like
CD8
+ T cells and their decline with age in healthy individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:467-475. [PMID: 32830898 DOI: 10.1002/cyto.b.21945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Dimitri Kasakovski
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Zhi Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated HospitalJinan University Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
- The Clinical Medicine Postdoctoral Research StationJinan University Guangzhou China
| |
Collapse
|
48
|
Granier C, Gey A, Roncelin S, Weiss L, Paillaud E, Tartour E. Immunotherapy in older patients with cancer. Biomed J 2020; 44:260-271. [PMID: 33041248 PMCID: PMC8358190 DOI: 10.1016/j.bj.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Ageing implicates a remodeling of our immune system, which is a consequence of the physiological senescence of our cells and tissues coupled with environmental factors and chronic antigen exposure. An immune system that senesces includes more differentiated cells with accumulation of highly differentiated CD4 and CD8 T cells. The pool of naive T cells decreases with the exponential thymic involution induced by age. Differentiated T cells have similar, if not higher, functional capacities but scarce studies are looking at the impact of senescence among specific T cells. After a stimulation, other immune cells (monocytes, dendritic cells and NK) are functionally altered during ageing. It is as if the immune system was more efficient at the basal level, but less efficient after a stimulation in the old compared to young people, likely due to less reserve. Concerning the clinical impact, older people are more prone to certain pathogens and their clinical manifestations differ from the younger people. Severe flu and VZV reactivation are more frequent with an altered cellular response to vaccination. Vaccination failure can have detrimental consequences in people presenting frailty criteria. Old people frailty is majored by their comorbidities and diseases like cancer. Thus, chemotherapies are employed with circumspection in older patients. The use of anti-PD-1/PD-L1 immunotherapies is therefore attractive, because of less side effects with a better response compared to chemotherapy. Old persons inclusion is lacking in current studies and clinical trials. Some subgroups or pooled analyses confirm the gain in response without increased toxicities in older patients but their inclusion criteria differ from the real-life practice. Specific studies focusing on this population are needed because of the increasing cancer incidence with age and the overall ageing of the population.
Collapse
Affiliation(s)
- C Granier
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France.
| | - A Gey
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France
| | - S Roncelin
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France
| | - L Weiss
- Clinical Immunology Department, APHP, Paris, France; INSERM U976 HIPI, Paris, France; Paris Descartes Medical School, University of Paris, Paris, France
| | - E Paillaud
- Department of Geriatric, APHP, Paris Cancer Institute CARPEM, Europeen Georges Pompidou Hospital, Paris, France; Paris Est Creteil University, INSERM, IMRB, Creteil, France
| | - E Tartour
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France
| |
Collapse
|
49
|
Chen C, Wang J, He Y, He J, Zhu F. Identification of the novel
KIR3DL2*114
allele in a Chinese individual by polymerase chain reaction sequence‐based typing. HLA 2020; 95:596-598. [DOI: 10.1111/tan.13802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Chen Chen
- HLA typing laboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Jielin Wang
- HLA typing laboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Yanmin He
- HLA typing laboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Ji He
- HLA typing laboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| | - Faming Zhu
- HLA typing laboratoryBlood Center of Zhejiang Province Hangzhou China
- Key Laboratory of Blood Safety ResearchZhejiang Province Hangzhou China
| |
Collapse
|
50
|
Augusto DG, Norman PJ, Dandekar R, Hollenbach JA. Fluctuating and Geographically Specific Selection Characterize Rapid Evolution of the Human KIR Region. Front Immunol 2019; 10:989. [PMID: 31156615 PMCID: PMC6533848 DOI: 10.3389/fimmu.2019.00989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) region comprises a fast-evolving family of genes that encode receptors for natural killer (NK) cells and have crucial role in host defense. Evolution of KIR was examined in the context of the human genome. Gene-content diversity and single nucleotide polymorphisms (SNP) in the KIR genes and flanking regions were compared to >660,000 genome-wide SNPs in over 800 individuals from 52 populations of the human genome diversity panel (HGDP). KIR allelic diversity was further examined using next generation sequencing in a subset of 56 individuals. We identified the SNP rs587560 located in KIR3DL3 as a marker of KIR2DL2 and KIR2DL3 and, consequently, Cen A and Cen B haplotypes. We also show that combinations of two KIR2DL4 SNPs (rs35656676 and rs592645) distinguish KIR3DL1 from KIR3DS1 and also define the major KIR3DL1 high- and low-expressing alleles lineages. Comparing the diversity of the SNPs within the KIR region to remainder of the genome, we observed a high diversity for the centromeric KIR region consistent with balancing selection (p < 0.01); in contrast, centromeric KIR diversity is significantly reduced in East Asian populations (p < 0.01), indicating purifying selection. By analyzing SNP haplotypes in a region spanning ~500 kb that includes the KIR cluster, we observed evidence of strong positive selection in Africa for high-expressing KIR3DL1 alleles, favored over the low-expressing alleles (p < 0.01). In sharp contrast, the strong positive selection (p < 0.01) that we also observed in the telomeric KIR region in Oceanic populations tracked with a high frequency of KIR3DS1. In addition, we demonstrated that worldwide frequency of high-expression KIR3DL1 alleles was correlated with virus with virus (r = 0.64, p < 10−6) and protozoa (r = 0.69, p < 10−6) loads, which points to selection globally on KIR3DL1 high-expressing alleles attributable to pathogen exposure.
Collapse
Affiliation(s)
- Danillo G Augusto
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology, University of Colorado, Denver, CO, United States
| | - Ravi Dandekar
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|