1
|
Dostál Z, Buchtíková J, Mandrla J, Modrianský M. On the mechanism of miR-29b enhancement of etoposide toxicity in vitro. Sci Rep 2024; 14:19880. [PMID: 39191993 DOI: 10.1038/s41598-024-70856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
MicroRNA hsa-miR-29 was connected to a number of malignancies. Its target genes are many, among them Mcl-1 that is expressed in three possible isoforms, one of which is anti-apoptotic and another one pro-apoptotic. Ratio of these two isoforms appears to affect cell response to external stimuli. We have demonstrated that miR-29b enhanced etoposide toxicity in HeLa cell line by modulating this ratio of Mcl-1 isoforms. However, it is not known whether the described miR-29 effect is common to various cancer types or even have the opposite effect. This represents a significant problem for possible future applications. In this report, we demonstrate that miR-29b affects toxicity of 60 μM etoposide in cell lines derived from selected malignancies. The mechanism, however, differs among the cell lines tested. Hep G2 cells demonstrated similar effect of miR-29b on etoposide toxicity as was described in HeLa cells, i.e. modulation of Mcl-1 expression. Target protein down-regulated by miR-29b resulting in enhanced etoposide toxicity in Caco-2 cells was, however, Bcl-2 protein. Moreover, H9c2, Hek-293 and ARPE-19 cell lines selected as a representatives of non-malignant cells, showed no effect of miR-29b on etoposide toxicity. Our data suggest that miR-29b could be a common enhancer of etoposide toxicity in malignant cells due to its modulation of Bcl family proteins.
Collapse
Affiliation(s)
- Zdeněk Dostál
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jana Buchtíková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jan Mandrla
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Martin Modrianský
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Pieper NM, Schnell J, Bruecher D, Knapp S, Vogler M. Inhibition of bromodomain and extra-terminal proteins targets constitutively active NFκB and STAT signaling in lymphoma and influences the expression of the antiapoptotic proteins BCL2A1 and c-MYC. Cell Commun Signal 2024; 22:415. [PMID: 39192247 DOI: 10.1186/s12964-024-01782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.
Collapse
Affiliation(s)
- Nadja M Pieper
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Julia Schnell
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Daniela Bruecher
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Germany and Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue- Str. 9, Biozentrum, 60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, a Partnership between 10 DKFZ and University Hospital Frankfurt, Frankfurt, Germany
| | - Meike Vogler
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany.
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, a Partnership between 10 DKFZ and University Hospital Frankfurt, Frankfurt, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
3
|
Cauwelier C, de Ridder I, Bultynck G. Recent advances in canonical versus non-canonical Ca 2+-signaling-related anti-apoptotic Bcl-2 functions and prospects for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119713. [PMID: 38521468 DOI: 10.1016/j.bbamcr.2024.119713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cell fate is tightly controlled by a continuous balance between cell survival and cell death inducing mechanisms. B-cell lymphoma 2 (Bcl-2)-family members, composed of effectors and regulators, not only control apoptosis at the level of the mitochondria but also by impacting the intracellular Ca2+ homeostasis and dynamics. On the one hand, anti-apoptotic protein Bcl-2, prevents mitochondrial outer membrane permeabilization (MOMP) by scaffolding and neutralizing proapoptotic Bcl-2-family members via its hydrophobic cleft (region composed of BH-domain 1-3). On the other hand, Bcl-2 suppress pro-apoptotic Ca2+ signals by binding and inhibiting IP3 receptors via its BH4 domain, which is structurally exiled from the hydrophobic cleft by a flexible loop region (FLR). As such, Bcl-2 prevents excessive Ca2+ transfer from ER to mitochondria. Whereas regulation of both pathways requires different functional regions of Bcl-2, both seem to be connected in cancers that overexpress Bcl-2 in a life-promoting dependent manner. Here we discuss the anti-apoptotic canonical and non-canonical role, via calcium signaling, of Bcl-2 in health and cancer and evolving from this the proposed anti-cancer therapies with their shortcomings. We also argue how some cancers, with the major focus on diffuse large B-cell lymphoma (DLBCL) are difficult to treat, although theoretically prime marked for Bcl-2-targeting therapeutics. Further work is needed to understand the non-canonical functions of Bcl-2 also at organelles beyond the mitochondria, the interaction partners outside the Bcl-2 family as well as their ability to target or exploit these functions as therapeutic strategies in diseases.
Collapse
Affiliation(s)
- Claire Cauwelier
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Sun H, Tian Y, Fu Y, Lei Y, Wang Y, Yan X, Wang J. Single-molecule scale quantification reveals interactions underlying protein-protein interface: from forces to non-covalent bonds. Phys Chem Chem Phys 2023; 25:31791-31803. [PMID: 37966041 DOI: 10.1039/d3cp04351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Protein-protein interactions (PPIs) between the B-cell lymphoma 2 (Bcl-2) family are considered a major driving force in cell cycle regulation and signaling. However, how this interfacial noncovalent interaction is achieved molecularly remains poorly understood. Herein, anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (BAX) were used as models and their PPIs were explored for the first time using atomic force microscopy-based single-molecule force spectroscopy (SMFS) and in silico approaches. In addition, we used advanced analytical models, including multiple kinetic models, thermodynamic models, Poisson distributions, and contact angle molecular recognition to fully reveal the complexity of the BAX/Bcl-2 interaction interfaces. We propose that the binding kinetics between BAX/Bcl-2 are mainly mediated by specific (hydrogen bonding) and non-specific forces (hydrophobic interactions and electrostatic interactions) and show that the complicated multivalent binding interaction induces stable BAX/Bcl-2 complexes. This study enriches our understanding of the molecular mechanisms by which BAX interacts with Bcl-2. It provides valuable insights into the physical factors that need to be considered when designing PPI inhibitors.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yani Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Xinrui Yan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
5
|
Borankova K, Krchniakova M, Leck LYW, Kubistova A, Neradil J, Jansson PJ, Hogarty MD, Skoda J. Mitoribosomal synthetic lethality overcomes multidrug resistance in MYC-driven neuroblastoma. Cell Death Dis 2023; 14:747. [PMID: 37973789 PMCID: PMC10654511 DOI: 10.1038/s41419-023-06278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Mitochondria are central for cancer responses to therapy-induced stress signals. Refractory tumors often show attenuated sensitivity to apoptotic signaling, yet clinically relevant molecular actors to target mitochondria-mediated resistance remain elusive. Here, we show that MYC-driven neuroblastoma cells rely on intact mitochondrial ribosome (mitoribosome) processivity and undergo cell death following pharmacological inhibition of mitochondrial translation, regardless of their multidrug/mitochondrial resistance and stem-like phenotypes. Mechanistically, inhibiting mitoribosomes induced the mitochondrial stress-activated integrated stress response (ISR), leading to downregulation of c-MYC/N-MYC proteins prior to neuroblastoma cell death, which could be both rescued by the ISR inhibitor ISRIB. The ISR blocks global protein synthesis and shifted the c-MYC/N-MYC turnover toward proteasomal degradation. Comparing models of various neuroectodermal tumors and normal fibroblasts revealed overexpression of MYC proteins phosphorylated at the degradation-promoting site T58 as a factor that predetermines vulnerability of MYC-driven neuroblastoma to mitoribosome inhibition. Reducing N-MYC levels in a neuroblastoma model with tunable MYCN expression mitigated cell death induction upon inhibition of mitochondrial translation and functionally validated the propensity of neuroblastoma cells for MYC-dependent cell death in response to the mitochondrial ISR. Notably, neuroblastoma cells failed to develop significant resistance to the mitoribosomal inhibitor doxycycline over a long-term repeated (pulsed) selection. Collectively, we identify mitochondrial translation machinery as a novel synthetic lethality target for multidrug-resistant MYC-driven tumors.
Collapse
Affiliation(s)
- Karolina Borankova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Lionel Y W Leck
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Adela Kubistova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Patric J Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Michael D Hogarty
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
| |
Collapse
|
6
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
7
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Wang H, Zhou J, Ma X, Jiao C, Chen E, Wu Z, Zhang Y, Pan M, Cui J, Luan C, Ge J. Dexamethasone enhances venetoclax-induced apoptosis in acute myeloid leukemia cells. Med Oncol 2023; 40:193. [PMID: 37261571 DOI: 10.1007/s12032-023-02056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) therapies have been significantly improved by the development of medicines that can target BCL-2. On the other hand, non-recurrent alterations in oncogenic pathways and gene expression patterns have already been linked to therapeutic resistance to venetoclax therapy. Bone marrow mesenchymal stromal cells (BM-MSCs) support leukemic cells in preventing chemotherapy-induced apoptosis by mitochondrial transfer in leukemic microenvironment. In this study, we investigated the enhancement of the antitumor effect of BCL-2 inhibitor venetoclax by dexamethasone. In particular, dexamethasone had no significant effect on the viability of AML cells, but dexamethasone combined with venetoclax could significantly increase the apoptosis of AML cells induced by venetoclax. When AML cells were co-cultured with BM-MSCs, dexamethasone combined with venetoclax showed additional anti-tumor effect compared to venetoclax alone. Venetoclax increased reactive oxygen species level in co-cultured AML cells, contributed to transfer more mitochondria from BM-MSCs to AML cells and protect AML cells from apoptosis. Dexamethasone combined with venetoclax induced more apoptosis, but dexamethasone reduced the venetoclax-induced reactive oxygen species level in AML cells and reduced the transfer of mitochondria from BM-MSCs to AML cells. This may lead to a diminished protective effect of BM-MSCs on AML cells. Together, our findings indicated that venetoclax in combination with dexamethasone could be a promising therapy in AML.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Junjie Zhou
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoyu Ma
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Changqing Jiao
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Enbo Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhonghui Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Zhang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mengya Pan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jianling Cui
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Chengxin Luan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
9
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Kulyar MFEA, Yao W, Mo Q, Ding Y, Zhang Y, Gao J, Li K, Pan H, Nawaz S, Shahzad M, Mehmood K, Iqbal M, Akhtar M, Bhutta ZA, Waqas M, Li J, Qi D. Regulatory Role of Apoptotic and Inflammasome Related Proteins and Their Possible Functional Aspect in Thiram Associated Tibial Dyschondroplasia of Poultry. Animals (Basel) 2022; 12:ani12162028. [PMID: 36009620 PMCID: PMC9404426 DOI: 10.3390/ani12162028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.
Collapse
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jindong Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
- Correspondence: (J.L.); (D.Q.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.L.); (D.Q.)
| |
Collapse
|
11
|
Last but not least: BFL-1 as an emerging target for anti-cancer therapies. Biochem Soc Trans 2022; 50:1119-1128. [PMID: 35900226 PMCID: PMC9444066 DOI: 10.1042/bst20220153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BFL-1 is an understudied pro-survival BCL-2 protein. The expression of BFL-1 is reported in many cancers, but it is yet to be clarified whether high transcript expression also always correlates with a pro-survival function. However, recent applications of BH3-mimetics for the treatment of blood cancers identified BFL-1 as a potential resistance factor in this type of cancer. Hence, understanding the role of BFL-1 in human cancers and how its up-regulation leads to therapy resistance has become an area of great clinical relevance. In addition, deletion of the murine homologue of BFL-1, called A1, in mice showed only minimal impacts on the well-being of these animals, suggesting drugs targeting BFL-1 would exhibit limited on-target toxicities. BFL-1 therefore represents a good clinical cancer target. Currently, no effective BFL-1 inhibitors exist, which is likely due to the underappreciation of BFL-1 as a potential target in the clinic and lack of understanding of the BFL-1 protein. In this review, the roles of BFL-1 in the development of different types of cancers and drug resistant mechanisms are discussed and some recent advances in the generation of BFL-1 inhibitors highlighted.
Collapse
|
12
|
What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy? Cell Death Differ 2022; 29:1079-1093. [PMID: 35388168 DOI: 10.1038/s41418-022-00987-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
In many human cancers the control of apoptosis is dysregulated, for instance as a result of the overexpression of pro-survival BCL-2 proteins. This promotes tumorigenesis by protecting nascent neoplastic cells from stress and renders malignant cells resistant to anti-cancer agents. Therefore, several BH3 mimetic drugs targeting distinct pro-survival proteins have been developed. The BCL-2 inhibitor Venetoclax/ABT-199, has been approved for treatment of certain blood cancers and tens of thousands of patients have already been treated effectively with this drug. To advance the clinical development of MCL-1 and BCL-XL inhibitors, a more detailed understanding of their distinct and overlapping roles in the survival of malignant as well as non-transformed cells in healthy tissues is required. Here, we discuss similarities and differences in pro-survival BCL-2 protein structure, subcellular localisation and binding affinities to the pro-apoptotic BCL-2 family members. We summarise the findings from gene-targeting studies in mice to discuss the specific roles of distinct pro-survival BCL-2 family members during embryogenesis and the survival of non-transformed cells in healthy tissues in adults. Finally, we elaborate how these findings align with or differ from the observations from the clinical development and use of BH3 mimetic drugs targeting different pro-survival BCL-2 proteins.
Collapse
|
13
|
Zischler L, Cogo SC, Micheau O, Elifio-Esposito S. Evidence that BJcuL, a C-type lectin from Bothrops jararacussu venom, influences deubiquitinase activity, resulting in the accumulation of anti-apoptotic proteins in two colorectal cancer cell lines. Int J Biol Macromol 2022; 209:1205-1210. [PMID: 35461862 DOI: 10.1016/j.ijbiomac.2022.04.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
BJcuL is a snake venom C-type lectin (SVCTL) purified from the snake's venom Bothrops jararacussu. It has been previously demonstrated that BJcuL induces the accumulation of pro-apoptotic proteins of the extrinsic pathway, such as FADD and caspase-8, in the colorectal cancer cell line HT29, suggesting that the lectin may be able to enhance TRAIL-induced apoptosis. To test this hypothesis, we exposed two colorectal cancer cell lines, HT29 and HCT116, to increasing concentrations of BJcuL (1-20 μg/mL) in the presence or absence of TRAIL. Contrary to our expectations, however, BJcuL was unable to induce apoptosis in these cells, as shown by annexin-V/7AAD, clonogenic assays, and immunoblotting. Nevertheless, BJcuL was able to induce the accumulation of FADD and caspase-8, as well as anti-apoptotic proteins such as c-FLIP and survivin and poly-ubiquitinated proteins. Incubation with the deubiquitinase inhibitor WP1130 (10 μM) resulted in decreased BJcuL-induced survivin levels. Altogether, our results evince the effects of SVCTL on the ubiquitin-proteasome system in vitro for the first time. Compounds that can influence such system are important tools in the search for new therapeutic or diagnostic targets in cancer since they can elucidate the molecular mechanisms involved in determining cell fate as well as contributing to drug-development strategies in partnership with the pharmaceutical industry.
Collapse
Affiliation(s)
- L Zischler
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, 80215-901, Curitiba, Paraná, Brazil
| | - S C Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, 80215-901, Curitiba, Paraná, Brazil
| | - O Micheau
- University of Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France; INSERM, LNC UMR1231, F-21000 Dijon, France
| | - S Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, 80215-901, Curitiba, Paraná, Brazil.
| |
Collapse
|
14
|
Burt P, Cornelis R, Geißler G, Hahne S, Radbruch A, Chang HD, Thurley K. Data-Driven Mathematical Model of Apoptosis Regulation in Memory Plasma Cells. Cells 2022; 11:cells11091547. [PMID: 35563853 PMCID: PMC9102437 DOI: 10.3390/cells11091547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Memory plasma cells constitutively produce copious amounts of antibodies, imposing a critical risk factor for autoimmune disease. We previously found that plasma cell survival requires secreted factors such as APRIL and direct contact to stromal cells, which act in concert to activate NF-κB- and PI3K-dependent signaling pathways to prevent cell death. However, the regulatory properties of the underlying biochemical network are confounded by the complexity of potential interaction and cross-regulation pathways. Here, based on flow-cytometric quantification of key signaling proteins in the presence or absence of the survival signals APRIL and contact to the stromal cell line ST2, we generated a quantitative model of plasma cell survival. Our model emphasizes the non-redundant nature of the two plasma cell survival signals APRIL and stromal cell contact, and highlights a requirement for differential regulation of individual caspases. The modeling approach allowed us to unify distinct data sets and derive a consistent picture of the intertwined signaling and apoptosis pathways regulating plasma cell survival.
Collapse
Affiliation(s)
- Philipp Burt
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - Rebecca Cornelis
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
| | - Gustav Geißler
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - Stefanie Hahne
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
| | - Andreas Radbruch
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
| | - Hyun-Dong Chang
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute of Biotechnology, Department of Cytometry, Technische Universität, 10623 Berlin, Germany
- Correspondence: (H.-D.C.); (K.T.)
| | - Kevin Thurley
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: (H.-D.C.); (K.T.)
| |
Collapse
|
15
|
Svoronos AA, Campbell SG, Engelman DM. MicroRNA function can be reversed by altering target gene expression levels. iScience 2021; 24:103208. [PMID: 34755085 PMCID: PMC8560630 DOI: 10.1016/j.isci.2021.103208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Paradoxically, many microRNAs appear to exhibit entirely opposite functions when placed in different contexts. For example, miR-125b has been shown to be pro-apoptotic in some studies, but anti-apoptotic in others. To investigate this phenomenon, we combine computational modeling with experimental approaches to examine how the function of miR-125b in apoptosis varies with respect to the expression levels of its pro-apoptotic and anti-apoptotic targets. In doing so, we elucidate a general trend that miR-125b is more pro-apoptotic when its anti-apoptotic targets are overexpressed, whereas it is more anti-apoptotic when its pro-apoptotic targets are overexpressed. We show that it is possible to completely reverse miR-125b′s function in apoptosis by modifying the expression levels of its target genes. Furthermore, miR-125b′s function may also be altered by the presence of anticancer drugs. These results suggest that the function of a microRNA can vary substantially and is dependent on its target gene expression levels. Many miRNAs exhibit entirely opposite functions when placed in different contexts miR-125b can be pro- or anti-apoptotic depending on target gene expression levels The function of a miRNA can be reversed by altering target gene expression levels The presence of anticancer drugs can also alter a miRNA's function
Collapse
Affiliation(s)
- Alexander A Svoronos
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Av., P.O. Box 208114, New Haven, CT 06520, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Av., P.O. Box 208114, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies. PLoS Comput Biol 2021; 17:e1009457. [PMID: 34669701 PMCID: PMC8559965 DOI: 10.1371/journal.pcbi.1009457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/01/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
Acute administration of trastuzumab (TZB) may induce various forms of cognitive impairment. These cancer-related cognitive changes (CRCC) are regulated by an adverse biological process involving cancer stem cells (CSCs) and IL-6. Recent studies have reported that atorvastatin (ATV) may change the dynamic of cognitive impairment in a combination (TZB+ATV) therapy. In this study, we investigate the mutual interactions between cancer stem cells and the tumor cells that facilitate cognitive impairment during long term TZB therapy by developing a mathematical model that involves IL-6 and the key apoptotic regulation. These include the densities of tumor cells and CSCs, and the concentrations of intracellular signaling molecules (NFκB, Bcl-2, BAX). We apply the mathematical model to a single or combination (ATV+TZB) therapy used in the experiments to demonstrate that the CSCs can enhance CRCC by secreting IL-6 and ATV may interfere the whole regulation. We show that the model can both reproduce the major experimental observation on onset and prevention of CRCC, and suggest several important predictions to guide future experiments with the goal of the development of new anti-tumor and anti-CRCC strategies. Moreover, using this model, we investigate the fundamental mechanism of onset of cognitive impairment in TZB-treated patients and the impact of alternating therapies on the anti-tumor efficacy and intracellular response to different treatment schedules. A conventional drug, trastuzumab (TZB), was shown to be an effective weapon in killing cancer cells in brain. However, long term treatment of TZB increases the proportion of cancer stem cells (CSCs) in the tumour microenvironment (TME) and induces up-regulation of pro-tumoral molecules such as IL-6 in TME. These cancer cells then become more resistant to this chemotherapy through the IL-mediated up-regulation of NFκB and CSCs. More importantly, these changes in TME result in a serious side effect, cognitive impairment called cancer-related cognitive changes (CRCC). The detailed mechanism of CRCC is still poorly understood. However, cancer patients with chemotherapy-induced cognitive impairment can have long-term or delayed mental changes. In this study, we investigated the fundamental mechanism of CRCC in cancer patients based on experiments and a mathematical model that describes how tumor cells interact with CSCs in response to chemo drugs. In particular, we investigate how TZB-induced CSCs with modified IL-6 landscapes shape the cognitive functions in cancer patients. We showed that the combination treatment with another drug, atorvastatin (ATV), can abrogate the TZB-induced CRCC and enhance the survival probability of cancer patients by synergistic anti-tumor effect. We demonstrate that the cognitive functions and survival rates in cancer patients depend on the apoptotic signaling pathways via the critical communication and IL-6 landscapes of stimulated CTCs.
Collapse
|
17
|
Lee J, Lee D, Kim Y. Mathematical model of STAT signalling pathways in cancer development and optimal control approaches. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210594. [PMID: 34631119 PMCID: PMC8479343 DOI: 10.1098/rsos.210594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 06/10/2023]
Abstract
In various diseases, the STAT family display various cellular controls over various challenges faced by the immune system and cell death programs. In this study, we investigate how an intracellular signalling network (STAT1, STAT3, Bcl-2 and BAX) regulates important cellular states, either anti-apoptosis or apoptosis of cancer cells. We adapt a mathematical framework to illustrate how the signalling network can generate a bi-stability condition so that it will induce either apoptosis or anti-apoptosis status of tumour cells. Then, we use this model to develop several anti-tumour strategies including IFN-β infusion. The roles of JAK-STATs signalling in regulation of the cell death program in cancer cells and tumour growth are poorly understood. The mathematical model unveils the structure and functions of the intracellular signalling and cellular outcomes of the anti-tumour drugs in the presence of IFN-β and JAK stimuli. We identify the best injection order of IFN-β and DDP among many possible combinations, which may suggest better infusion strategies of multiple anti-cancer agents at clinics. We finally use an optimal control theory in order to maximize anti-tumour efficacy and minimize administrative costs. In particular, we minimize tumour volume and maximize the apoptotic potential by minimizing the Bcl-2 concentration and maximizing the BAX level while minimizing total injection amount of both IFN-β and JAK2 inhibitors (DDP).
Collapse
Affiliation(s)
- Jonggul Lee
- Pierre Louis Institute of Epidemiology and Public Health, Paris 75012, France
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Mathematical Biosciences Institute, Columbus, OH 43210, USA
- Department of Neurosurgery, Harvard Medical School & Brigham and Women’s Hospital, Boston MA 02115, USA
| |
Collapse
|
18
|
Li WT, Huang XF, Deng C, Zhang BH, Qian K, He M, Sun TL. Olanzapine Induces Inflammation and Immune Response via Activating ER Stress in the Rat Prefrontal Cortex. Curr Med Sci 2021; 41:788-802. [PMID: 34403105 DOI: 10.1007/s11596-021-2401-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Antipsychotics, in particular olanzapine, are first-line medications for schizophrenia. The prefrontal cortex (PFC) is an important region for antipsychotics' therapeutic effects. The PFC inflammatory and immune pathways are associated with schizophrenia pathogenesis. However, the effect of antipsychotics on the inflammatory and immune pathways in the PFC remains unclear. We aimed to examined the time-dependent effect of olanzapine on inflammatory and immune markers in the PFC of rats. Since the inflammatory and immune pathways are related to endoplasmic reticulum (ER) stress, we further investigated whether or not olanzapine-induced inflammation and immune responses were related to ER stress. METHODS Expression of pro-inflammatory markers including IkappaB kinase β (IKKβ), nuclear factor kappa B (NFκB), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and IL-1β, and immune-related proteins including inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14) were examined by Western blotting. RESULTS Olanzapine treatments for 1, 8 and 36 days significantly activated the inflammatory IKKβ/NFκB signaling, and increased the expression of TNF-α, IL-6, IL-1β and immune-related proteins such as iNOS, TLR4 and CD14. Olanzapine treatment for 1 day, 8 and 36 days also induced ER stress in the PFC. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate, inhibited olanzapine-induced inflammation and the immune response in the PFC. CONCLUSION These results suggested olanzapine exposure could be a factor that induces central inflammation and immunological abnormities in schizophrenia subjects. Olanzapine induces PFC inflammation and immune response, possibly via activating ER stress signaling.
Collapse
Affiliation(s)
- Wen-Ting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Deng
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bao-Hua Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Kun Qian
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Tao-Lei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
19
|
Liu T, Lam V, Thieme E, Sun D, Wang X, Xu F, Wang L, Danilova OV, Xia Z, Tyner JW, Kurtz SE, Danilov AV. Pharmacologic Targeting of Mcl-1 Induces Mitochondrial Dysfunction and Apoptosis in B-Cell Lymphoma Cells in a TP53- and BAX-Dependent Manner. Clin Cancer Res 2021; 27:4910-4922. [PMID: 34233959 DOI: 10.1158/1078-0432.ccr-21-0464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Bcl-2 has been effectively targeted in lymphoid malignancies. However, resistance is inevitable, and novel approaches to target mitochondrial apoptosis are necessary. AZD5991, a selective BH3-mimetic in clinical trials, inhibits Mcl-1 with high potency. EXPERIMENTAL DESIGN We explored the preclinical activity of AZD5991 in diffuse large B-cell lymphoma (DLBCL) and ibrutinib-resistant mantle cell lymphoma (MCL) cell lines, MCL patient samples, and mice bearing DLBCL and MCL xenografts using flow cytometry, immunoblotting, and Seahorse respirometry assay. Cas9 gene editing and ex vivo functional drug screen assays helped identify mechanisms of resistance to Mcl-1 inhibition. RESULTS Mcl-1 was expressed in DLBCL and MCL cell lines and primary tumors. Treatment with AZD5991 restricted growth of DLBCL cells independent of cell of origin and overcame ibrutinib resistance in MCL cells. Mcl-1 inhibition led to mitochondrial dysfunction as manifested by mitochondrial membrane depolarization, decreased mitochondrial mass, and induction of mitophagy. This was accompanied by impairment of oxidative phosphorylation. TP53 and BAX were essential for sensitivity to Mcl-1, and oxidative phosphorylation was implicated in resistance to Mcl-1 inhibition. Induction of prosurvival proteins (e.g., Bcl-xL) in stromal conditions that mimic the tumor microenvironment rendered protection of primary MCL cells from Mcl-1 inhibition, while BH3-mimetics targeting Bcl-2/xL sensitized lymphoid cells to AZD5991. Treatment with AZD5991 reduced tumor growth in murine lymphoma models and prolonged survival of MCL PDX mice. CONCLUSIONS Selective targeting Mcl-1 is a promising therapeutic approach in lymphoid malignancies. TP53 apoptotic network and metabolic reprogramming underlie susceptibility to Mcl-1 inhibition.
Collapse
Affiliation(s)
- Tingting Liu
- City of Hope National Medical Center, Duarte, California
| | - Vi Lam
- City of Hope National Medical Center, Duarte, California
| | - Elana Thieme
- City of Hope National Medical Center, Duarte, California
| | - Duanchen Sun
- Oregon Health and Science University, Portland, Oregon
| | - Xiaoguang Wang
- City of Hope National Medical Center, Duarte, California
| | - Fei Xu
- Oregon Health and Science University, Portland, Oregon
| | - Lili Wang
- City of Hope National Medical Center, Duarte, California
| | | | - Zheng Xia
- Oregon Health and Science University, Portland, Oregon
| | | | | | | |
Collapse
|
20
|
Masle-Farquhar E, Russell A, Li Y, Zhu F, Rui L, Brink R, Goodnow CC. Loss-of-function of Fbxo10, encoding a post-translational regulator of BCL2 in lymphomas, has no discernible effect on BCL2 or B lymphocyte accumulation in mice. PLoS One 2021; 16:e0237830. [PMID: 33914737 PMCID: PMC8084200 DOI: 10.1371/journal.pone.0237830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 11/28/2022] Open
Abstract
Regulation of the anti-apoptotic BCL2 protein determines cell survival and is frequently abnormal in B cell lymphomas. An evolutionarily conserved post-translational mechanism for over-expression of BCL2 in human B cell lymphomas and the BCL2 paralogue CED-9 in Caenorhabditis elegans results from loss-of-function mutations in human FBXO10 and its C.elegans paralogue DRE-1, a BCL2/CED-9-binding subunit of the SKP-CULLIN-FBOX (SCF) ubiquitin ligase. Here, we tested the role of FBXO10 in BCL2 regulation by producing mice with two different CRISPR/Cas9-engineered Fbxo10 mutations: an Asp54Lys (E54K) missense mutation in the FBOX domain and a Cys55SerfsTer55 frameshift (fs) truncating mutation. Mice homozygous for either mutant allele were born at the expected Mendelian frequency and appeared normal in body weight and appearance as adults. Spleen B cells from homozygous mutant mice did not have increased BCL2 protein, nor were the numbers of mature B cells or germinal centre B cells increased as would be expected if BCL2 was increased. Other lymphocyte subsets that are also regulated by BCL2 levels also displayed no difference in frequency in homozygous Fbxo10 mutant mice. These results support one of two conclusions: either FBXO10 does not regulate BCL2 in mice, or it does so redundantly with other ubiquitin ligase complexes. Possible candidates for the latter include FBXO11 or ARTS-XIAP. The difference between the role of FBXO10 in regulating BCL2 protein levels in C. elegans and in human DLBCL, relative to single-gene deficient mouse leukocytes, should be further investigated.
Collapse
Affiliation(s)
| | - Amanda Russell
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Yangguang Li
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Fen Zhu
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Lixin Rui
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Robert Brink
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Christopher C. Goodnow
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
21
|
Singh Mali R, Zhang Q, DeFilippis RA, Cavazos A, Kuruvilla VM, Raman J, Mody V, Choo EF, Dail M, Shah NP, Konopleva M, Sampath D, Lasater EA. Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. Haematologica 2021; 106:1034-1046. [PMID: 32414851 PMCID: PMC8017817 DOI: 10.3324/haematol.2019.244020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
FLT3 internal tandem duplication (FLT3-ITD) mutations account for ~25% of adult acute myeloid leukemia cases and are associated with poor prognosis. Venetoclax, a selective BCL-2 inhibitor, has limited monotherapy activity in relapsed/refractory acute myeloid leukemia with no responses observed in a small subset of FLT3-ITD+ patients. Further, FLT3-ITD mutations emerged at relapse following venetoclax monotherapy and combination therapy suggesting a potential mechanism of resistance. Therefore, we investigated the convergence of FLT3-ITD signaling on the BCL-2 family proteins and determined combination activity of venetoclax and FLT3-ITD inhibition in preclinical models. In vivo, venetoclax combined with quizartinib, a potent FLT3 inhibitor, showed greater anti-tumor efficacy and prolonged survival compared to monotherapies. In a patient-derived FLT3-ITD+ xenograft model, cotreatment with venetoclax and quizartinib at clinically relevant doses had greater anti-tumor activity in the tumor microenvironment compared to quizartinib or venetoclax alone. Use of selective BCL-2 family inhibitors further identified a role for BCL-2, BCL-XL and MCL-1 in mediating survival in FLT3-ITD+ cells in vivo and highlighted the need to target all three proteins for greatest anti-tumor activity. Assessment of these combinations in vitro revealed synergistic combination activity for quizartinib and venetoclax but not for quizartinib combined with BCL-XL or MCL-1 inhibition. FLT3-ITD inhibition was shown to indirectly target both BCL-XL and MCL-1 through modulation of protein expression, thereby priming cells toward BCL-2 dependence for survival. These data demonstrate that FLT3-ITD inhibition combined with venetoclax has impressive anti-tumor activity in FLT3-ITD+ acute myeloid leukemia preclinical models and provides strong mechanistic rational for clinical studies.
Collapse
Affiliation(s)
- Raghuveer Singh Mali
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Qi Zhang
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Anna DeFilippis
- Division of Hematology and Oncology, University of California at San Francisco, San Francisco, USA
| | - Antonio Cavazos
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Vinitha Mary Kuruvilla
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jayant Raman
- Division of Hematology and Oncology, University of California at San Francisco, San Francisco, USA
| | - Vidhi Mody
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Edna F Choo
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Monique Dail
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Neil P Shah
- Helen Diller Comprehensive Cancer Center, University of California at San Francisco, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Deepak Sampath
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Elisabeth A Lasater
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
22
|
Baek SH, Foer D, Cahill KN, Israel E, Maiorino E, Röhl A, Boyce JA, Weiss ST. Systems Approaches to Treatment Response to Imatinib in Severe Asthma: A Pilot Study. J Pers Med 2021; 11:240. [PMID: 33805900 PMCID: PMC8064376 DOI: 10.3390/jpm11040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
There is an acute need for advances in pharmacologic therapies and a better understanding of novel drug targets for severe asthma. Imatinib, a tyrosine kinase inhibitor, has been shown to improve forced expiratory volume in 1 s (FEV1) in a clinical trial of patients with severe asthma. In a pilot study, we applied systems biology approaches to epithelium gene expression from these clinical trial patients treated with imatinib to better understand lung function response with imatinib treatment. Bronchial brushings from ten imatinib-treated patient samples and 14 placebo-treated patient samples were analyzed. We used personalized perturbation profiles (PEEPs) to characterize gene expression patterns at the individual patient level. We found that strong responders-patients with greater than 20% increase in FEV1-uniquely shared multiple downregulated mitochondrial-related pathways. In comparison, weak responders (5-10% FEV1 increase), and non-responders to imatinib shared none of these pathways. The use of PEEP highlights its potential for application as a systems biology tool to develop individual-level approaches to predicting disease phenotypes and response to treatment in populations needing innovative therapies. These results support a role for mitochondrial pathways in airflow limitation in severe asthma and as potential therapeutic targets in larger clinical trials.
Collapse
Affiliation(s)
- Seung Han Baek
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| | - Dinah Foer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (E.I.); (J.A.B.)
| | - Katherine N. Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Elliot Israel
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (E.I.); (J.A.B.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Enrico Maiorino
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| | - Annika Röhl
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (E.I.); (J.A.B.)
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.H.B.); (E.M.); (A.R.); (S.T.W.)
| |
Collapse
|
23
|
Dobosz E, Wadowska M, Kaminska M, Wilamowski M, Honarpisheh M, Bryzek D, Potempa J, Jura J, Lech M, Koziel J. MCPIP-1 Restricts Inflammation via Promoting Apoptosis of Neutrophils. Front Immunol 2021; 12:627922. [PMID: 33717148 PMCID: PMC7952515 DOI: 10.3389/fimmu.2021.627922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Monocyte chemoattractant protein-induced protein-1 (MCPIP-1) is a potent inhibitor of inflammatory response to pathogens. Acting as endonuclease against transcripts of inflammatory cytokines or transcription factors MCPIP-1 can significantly reduce the cytokine storm, thus limiting the tissue damage. As the adequate resolution of inflammation depends also on the efficient clearance of accumulated neutrophils, we focused on the role of MCPIP-1 in apoptosis and retention of neutrophils. We used peritoneal neutrophils from cell-specific MCPIP-1 knockout mice and showed prolonged survival of these cells. Moreover, we confirmed that MCPIP-1-dependent degradation of transcripts of antiapoptotic genes, including BCL3, BCL2A1, BCL2L1, and for the first time MCL-1, serves as an early event in spontaneous apoptosis of primary neutrophils. Additionally, we identified previously unknown miRNAs as potential binding partners to the MCPIP-1 transcript and their regulation suggest a role in MCPIP-1 half-life and translation. These phenomena may play a role as a molecular switch that balances the MCPIP-1-dependent apoptosis. Besides that, we determined these particular miRNAs as integral components of the GM-CSF-MCPIP-1 axis. Taken together, we identified the novel anti-inflammatory role of MCPIP-1 as a regulator of accumulation and survival of neutrophils that simultaneously promotes an adequate resolution of inflammation.
Collapse
Affiliation(s)
- Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Marta Kaminska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Mateusz Wilamowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Mohsen Honarpisheh
- Ludwig-Maximilians University Hospital, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University, Munich, Germany
| | - Danuta Bryzek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| | - Maciej Lech
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland.,Ludwig-Maximilians University Hospital, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University, Munich, Germany
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow, Poland
| |
Collapse
|
24
|
Chakraborty MP, Bhattacharyya S, Roy S, Bhattacharya I, Das R, Mukherjee A. Selective targeting of the inactive state of hematopoietic cell kinase (Hck) with a stable curcumin derivative. J Biol Chem 2021; 296:100449. [PMID: 33617879 PMCID: PMC7946438 DOI: 10.1016/j.jbc.2021.100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Hck, a Src family nonreceptor tyrosine kinase (SFK), has recently been established as an attractive pharmacological target to improve pulmonary function in COVID-19 patients. Hck inhibitors are also well known for their regulatory role in various malignancies and autoimmune diseases. Curcumin has been previously identified as an excellent DYRK-2 inhibitor, but curcumin's fate is tainted by its instability in the cellular environment. Besides, small molecules targeting the inactive states of a kinase are desirable to reduce promiscuity. Here, we show that functionalization of the 4-arylidene position of the fluorescent curcumin scaffold with an aryl nitrogen mustard provides a stable Hck inhibitor (Kd = 50 ± 10 nM). The mustard curcumin derivative preferentially interacts with the inactive conformation of Hck, similar to type-II kinase inhibitors that are less promiscuous. Moreover, the lead compound showed no inhibitory effect on three other kinases (DYRK2, Src, and Abl). We demonstrate that the cytotoxicity may be mediated via inhibition of the SFK signaling pathway in triple-negative breast cancer and murine macrophage cells. Our data suggest that curcumin is a modifiable fluorescent scaffold to develop selective kinase inhibitors by remodeling its target affinity and cellular stability.
Collapse
Affiliation(s)
- Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Sudipta Bhattacharyya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Souryadip Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India.
| | - Arindam Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, India.
| |
Collapse
|
25
|
Haselager MV, Kielbassa K, Ter Burg J, Bax DJC, Fernandes SM, Borst J, Tam C, Forconi F, Chiodin G, Brown JR, Dubois J, Kater AP, Eldering E. Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood 2020; 136:2918-2926. [PMID: 32603412 DOI: 10.1182/blood.2019004326] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymph node (LN) and peripheral blood (PB) and display major shifts in Bcl-2 family members between those compartments. Specifically, Bcl-XL and Mcl-1, which are not targeted by the Bcl-2 inhibitor venetoclax, are increased in the LN. Because ibrutinib forces CLL cells out of the LN, we hypothesized that ibrutinib may thereby affect expression of Bcl-XL and Mcl-1 and sensitize CLL cells to venetoclax. We investigated expression of Bcl-2 family members in patients under ibrutinib or venetoclax treatment, combined with dissecting functional interactions of Bcl-2 family members, in an in vitro model of venetoclax resistance. In the PB, recent LN emigrants had higher Bcl-XL and Mcl-1 expression than did cells immigrating back to the LN. Under ibrutinib treatment, this distinction collapsed; significantly, the pretreatment profile reappeared in patients who relapsed on ibrutinib. However, in response to venetoclax, Bcl-2 members displayed an early increase, underlining the different modes of action of these 2 drugs. Profiling by BH3 mimetics was performed in CLL cells fully resistant to venetoclax due to CD40-mediated induction of Bcl-XL, Mcl-1, and Bfl-1. Several dual or triple combinations of BH3 mimetics were highly synergistic in restoring killing of CLL cells. Lastly, we demonstrated that proapoptotic Bim interacts with antiapoptotic Bcl-2 members in a sequential manner: Bcl-2 > Bcl-XL > Mcl-1 > Bfl-1. Combined, the data indicate that Bcl-XL is more important in venetoclax resistance than is Mcl-1 and provide biological rationale for potential synergy between ibrutinib and venetoclax.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Piperidines/administration & dosage
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Sulfonamides/administration & dosage
Collapse
Affiliation(s)
- Marco V Haselager
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Karoline Kielbassa
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Johanna Ter Burg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Danique J C Bax
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jannie Borst
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantine Tam
- Peter MacCallum Cancer Centre and St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia; and
| | - Francesco Forconi
- Cancer Sciences and Haematology Department, University of Southampton, Southampton, United Kingdom
| | - Giorgia Chiodin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julie Dubois
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P Kater
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
26
|
García-Murria MJ, Duart G, Grau B, Diaz-Beneitez E, Rodríguez D, Mingarro I, Martínez-Gil L. Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis. Nat Commun 2020; 11:6056. [PMID: 33247105 PMCID: PMC7695858 DOI: 10.1038/s41467-020-19881-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death.
Collapse
Affiliation(s)
- Maria Jesús García-Murria
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Gerard Duart
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Brayan Grau
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Elisabet Diaz-Beneitez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
27
|
Abd Ghani MF, Othman R, Nordin N. Molecular Docking Study of Naturally Derived Flavonoids with Antiapoptotic BCL-2 and BCL-XL Proteins toward Ovarian Cancer Treatment. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S676-S680. [PMID: 33828360 PMCID: PMC8021047 DOI: 10.4103/jpbs.jpbs_272_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
The naturally derived flavonoids are well known to have anticarcinogenic effects. Flavonoids could be an alternative strategy for ovarian cancer treatment, due to existing platinum-based drugs are reported to develop resistance with low survival rates. Inhibition of antiapoptotic proteins, namely B-cell lymphoma (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl), is the key target to stimulate apoptosis process in cancer cells. This study aimed to determine the binding interaction of five naturally derived flavonoids (biochanin A, myricetin, apigenin, galangin, and fisetin) with potential antiapoptotic target proteins (Bcl-2 and Bcl-xl). The molecular docking study was conducted using AutoDock Vina program. The binding affinity and the presence of hydrogen bonds between the flavonoids and target proteins were predicted. Our findings showed that all the flavonoids showed better binding affinity with Bcl-xl than that of Bcl-2 proteins. The highest binding affinity was recorded in fisetin-Bcl-xl protein complex (-8.8 kcal/mol). Meanwhile, the other flavonoids docked with Bcl-xl protein showed binding affinities, ranging from -8.0 to -8.6 kcal/mol. A total of four hydrogen bonds, four hydrophobic contacts, and one electrostatic interaction were detected in the docked fisetin-Bcl-xl complex, explaining its high binding affinity with Bcl-xl. The present results indicate that all flavonoids could potentially serve as Bcl-xl protein inhibitors, which would consequently lead to apoptotic process in ovarian cancers.
Collapse
Affiliation(s)
- Mohd Faiz Abd Ghani
- Department of Basic Medical Sciences, Faculty Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
- School of Pharmacy, KPJ Healthcare University College, Nilai, Malaysia
| | - Rozana Othman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Product Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Noraziah Nordin
- Department of Basic Medical Sciences, Faculty Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Kerkhofs M, Vervloessem T, Stopa KB, Smith VM, Vogler M, Bultynck G. DLBCL Cells with Acquired Resistance to Venetoclax Are Not Sensitized to BIRD-2 But Can Be Resensitized to Venetoclax through Bcl-XL Inhibition. Biomolecules 2020; 10:biom10071081. [PMID: 32708132 PMCID: PMC7408247 DOI: 10.3390/biom10071081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Anti-apoptotic Bcl-2-family members are frequently dysregulated in both blood and solid cancers, contributing to their survival despite ongoing oncogenic stress. Yet, such cancer cells often are highly dependent on Bcl-2 for their survival, a feature that is exploited by so-called BH3-mimetic drugs. Venetoclax (ABT-199) is a selective BH3-mimetic Bcl-2 antagonist that is currently used in the clinic for treatment of chronic lymphocytic leukemia patients. Unfortunately, venetoclax resistance has already emerged in patients, limiting the therapeutic success. Here, we examined strategies to overcome venetoclax resistance. Therefore, we used two diffuse large B-cell lymphoma (DLBCL) cell lines, Riva WT and venetoclax-resistant Riva (VR). The latter was obtained by prolonged culturing in the presence of venetoclax. We report that Riva VR cells did not become more sensitive to BIRD-2, a peptide targeting the Bcl-2 BH4 domain, and established cross-resistance towards BDA-366, a putative BH4-domain antagonist of Bcl-2. However, we found that Bcl-XL, another Bcl-2-family protein, is upregulated in Riva VR, while Mcl-1 expression levels are not different in comparison with Riva WT, hinting towards an increased dependence of Riva VR cells to Bcl-XL. Indeed, Riva VR cells could be resensitized to venetoclax by A-1155463, a selective BH3 mimetic Bcl-XL inhibitor. This is underpinned by siRNA experiments, demonstrating that lowering Bcl-XL-expression levels also augmented the sensitivity of Riva VR cells to venetoclax. Overall, this work demonstrates that Bcl-XL upregulation contributes to acquired resistance of DLBCL cancer cells towards venetoclax and that antagonizing Bcl-XL can resensitize such cells towards venetoclax.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Lab. Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg ON-I, KU Leuven, 3000 Leuven, Belgium; (M.K.); (T.V.)
| | - Tamara Vervloessem
- Lab. Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg ON-I, KU Leuven, 3000 Leuven, Belgium; (M.K.); (T.V.)
| | - Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Victoria M. Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Geert Bultynck
- Lab. Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg ON-I, KU Leuven, 3000 Leuven, Belgium; (M.K.); (T.V.)
- Correspondence:
| |
Collapse
|
29
|
17-Aminogeldanamycin Inhibits Constitutive Nuclear Factor-Kappa B (NF-κB) Activity in Patient-Derived Melanoma Cell Lines. Int J Mol Sci 2020; 21:ijms21113749. [PMID: 32466509 PMCID: PMC7312877 DOI: 10.3390/ijms21113749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma remains incurable skin cancer, and targeting heat shock protein 90 (HSP90) is a promising therapeutic approach. In this study, we investigate the effect of 17-aminogeldanamycin, a potent HSP90 inhibitor, on nuclear factor-kappa B (NF-κB) activity in BRAFV600E and NRASQ61R patient-derived melanoma cell lines. We performed time-lapse microscopy and flow cytometry to monitor changes in cell confluence and viability. The NF-κB activity was determined by immunodetection of phospho-p65 and assessment of expression of NF-κB-dependent genes by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Constitutive activity of p65/NF-κB was evident in all melanoma cell lines. Differences in its level might be associated with genetic alterations in CHUK, IL1B, MAP3K14, NFKBIE, RIPK1, and TLR4, while differences in transcript levels of NF-κB-inducible genes revealed by PCR array might result from the contribution of other regulatory mechanisms. 17-Aminogeldanamycin markedly diminished the level of phospho-p65, but the total p65 protein level was unaltered, indicating that 17-aminogeldanamycin inhibited activation of p65/NF-κB. This conclusion was supported by significantly reduced expression of selected NF-κB-dependent genes: cyclin D1 (CCND1), C-X-C motif chemokine ligand 8 (CXCL8), and vascular endothelial growth factor (VEGF), as shown at transcript and protein levels, as well as secretion of IL-8 and VEGF. Our study indicates that 17-aminogeldanamycin can be used for efficient inhibition of NF-κB activity and the simultaneous diminution of IL-8 and VEGF levels in the extracellular milieu of melanoma.
Collapse
|
30
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
31
|
Structure-Activity Relationships and Molecular Docking Analysis of Mcl-1 Targeting Renieramycin T Analogues in Patient-derived Lung Cancer Cells. Cancers (Basel) 2020; 12:cancers12040875. [PMID: 32260280 PMCID: PMC7226000 DOI: 10.3390/cancers12040875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cell leukemia 1 (Mcl-1) and B-cell lymphoma 2 (Bcl-2) proteins are promising targets for cancer therapy. Here, we investigated the structure-activity relationships (SARs) and performed molecular docking analysis of renieramycin T (RT) and its analogues and identified the critical functional groups of Mcl-1 targeting. RT have a potent anti-cancer activity against several lung cancer cells and drug-resistant primary cancer cells. RT mediated apoptosis through Mcl-1 suppression and it also reduced the level of Bcl-2 in primary cells. For SAR study, five analogues of RT were synthesized and tested for their anti-cancer and Mcl-1- and Bcl-2-targeting effects. Only two of them (TM-(-)-18 and TM-(-)-4a) exerted anti-cancer activities with the loss of Mcl-1 and partly reduced Bcl-2, while the other analogues had no such effects. Specific cyanide and benzene ring parts of RT's structure were identified to be critical for its Mcl-1-targeting activity. Computational molecular docking indicated that RT, TM-(-)-18, and TM-(-)-4a bound to Mcl-1 with high affinity, whereas TM-(-)-45, a compound with a benzene ring but no cyanide for comparison, showed the lowest binding affinity. As Mcl-1 helps cancer cells evading apoptosis, these data encourage further development of RT compounds as well as the design of novel drugs for treating Mcl-1-driven cancers.
Collapse
|
32
|
Jackson MR, Ashton M, Koessinger AL, Dick C, Verheij M, Chalmers AJ. Mesothelioma Cells Depend on the Antiapoptotic Protein Bcl-xL for Survival and Are Sensitized to Ionizing Radiation by BH3-Mimetics. Int J Radiat Oncol Biol Phys 2020; 106:867-877. [PMID: 31786278 DOI: 10.1016/j.ijrobp.2019.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE The incidence of mesothelioma continues to rise and prognosis remains dismal owing to resistance to conventional therapies and few novel treatment options. Failure to activate apoptotic cell death is a resistance mechanism that may be overcome by inhibition of antiapoptotic Bcl-2 proteins using BH3-mimetic drugs. We investigated the role of antiapoptotic proteins in the radioresistance of mesothelioma, identifying clinically relevant targets for radiosensitization and evaluating the activity of BH3-mimetics alone and in combination with radiation therapy in preclinical models. METHODS, MATERIALS AND RESULTS Mesothelioma cell lines 211H, H2052, and H226 exposed to BH3-mimetics demonstrated Bcl-xL dependence that correlated with protein expression and was confirmed by genetic knockdown. The Bcl-xL inhibitor A1331852 exhibited cytotoxic (EC50, 0.13-1.42 μmol/L) and radiosensitizing activities (sensitizer enhancement ratios, 1.3-1.8). Cytotoxicity was associated with induction of mitochondrial outer membrane permeabilization and caspase-3/7 activation. Efficacy was maintained in a 3-dimensional model in which combination therapy completely eradicated mesothelioma spheroids. Clinical applicability was confirmed by immunohistochemical analysis of Bcl-2 proteins in patient samples and radiosensitizing activity of A1331852 in primary patient-derived mesothelioma cells. CONCLUSIONS Mesothelioma cells exhibit addiction to the antiapoptotic protein Bcl-xL, and their intrinsic radioresistance can be overcome by small molecule inhibition of this novel therapeutic target.
Collapse
Affiliation(s)
- Mark R Jackson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Miranda Ashton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Anna L Koessinger
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom; Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Dick
- Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
| |
Collapse
|
33
|
MCL1 inhibition is effective against a subset of small-cell lung cancer with high MCL1 and low BCL-X L expression. Cell Death Dis 2020; 11:177. [PMID: 32152266 PMCID: PMC7063049 DOI: 10.1038/s41419-020-2379-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022]
Abstract
There have been few advances in the treatment of small-cell lung cancer (SCLC) because of the lack of targets. MCL1, a member of the anti-apoptotic BCL-2 family, may be a treatment target in several cancers, including SCLC. However, whether the expression profile of the anti-apoptotic BCL-2 family affects MCL1 inhibition strategy is unknown. A tissue microarray (TMA) was created from consecutive patients who were diagnosed with SCLC and had previously undergone surgery at Kyoto University Hospital (Kyoto, Japan) between 2001 and 2017. We used S63845, a MCL1 inhibitor, to assess the cytotoxic capacity in SCLC cell lines including a patient-derived cell line in vitro and in vivo. The combination of S63845 with navitoclax, a double BCL-XL/BCL-2 inhibitor, was also employed to examine the comprehensive inhibition of the anti-apoptotic BCL-2 family. Immunohistochemistry of a TMA from patients with surgically resected SCLC demonstrated high MCL1 expression with low BCL-XL and BCL-2 to be the most common expression profile. S63845 was effective in high MCL1- and low BCL-XL-expressing SCLC cell lines. S63845 induced BAK-dependent apoptosis in vitro, and the anti-tumor efficacy was confirmed in an in vivo model. Although knockdown of BCL-XL and BCL-2 improved the cytotoxic activity of S63845 and its combination with navitoclax increased the anti-tumor cytotoxicity, the therapeutic range of S63845 with navitoclax was narrow in in vivo studies. Our study suggests MCL1 inhibition therapy be applied for high MCL1- and low BCL-XL-expressing SCLC patients.
Collapse
|
34
|
Singh S, Shukla R. Key Signaling Pathways Engaged in Cancer Management: Current Update. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394714666180904122412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
<P>Background: Till today cancer is still challenging to treat and needs more active therapeutic approaches. Participation of complex multi-pathway cell propagation instrument is a noteworthy issue in creating active anticancer therapeutic methodologies. Immune evasions, metabolic modifications, imperfect apoptotic component, modification in upstream or downstream RAS signaling, altered nuclear factor kappa B actions, imbalanced autophagy design and distortedly controlled angiogenesis are distinguishing features of cancer. </P><P> Methods: On the basis of systemic research and analysis of the current online available database, we analyzed and reported about the key signaling pathway engaged with cancer development outlining the effectiveness of different therapeutic measures and targets that have been created or are being researched to obstruct the cancer development. </P><P> Results: A number of signaling pathways, for example, resistant, metabolism, apoptosis, RAS protein, nuclear factor kappa B, autophagy, and angiogenesis have been perceived as targets for drug treatment to control the advancement, development and administration of cancer. </P><P> Conclusion: A noteworthy challenge for future medication advancement is to detail a synthesis treatment influencing distinctive targets to enhance the treatment of cancer.</P>
Collapse
Affiliation(s)
- Sanjiv Singh
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| | - Rahul Shukla
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| |
Collapse
|
35
|
Off-pathway 3D-structure provides protection against spontaneous Asn/Asp isomerization: shielding proteins Achilles heel. Q Rev Biophys 2020; 53:e2. [PMID: 32000865 DOI: 10.1017/s003358351900009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spontaneous deamidation prompted backbone isomerization of Asn/Asp residues resulting in - most cases - the insertion of an extra methylene group into the backbone poses a threat to the structural integrity of proteins. Here we present a systematical analysis of how temperature, pH, presence of charged residues, but most importantly backbone conformation and dynamics affect isomerization rates as determined by nuclear magnetic resonance in the case of designed peptide-models. We demonstrate that restricted mobility (such as being part of a secondary structural element) may safeguard against isomerization, but this protective factor is most effective in the case of off-pathway folds which can slow the reaction by several magnitudes compared to their on-pathway counterparts. We show that the geometric descriptors of the initial nucleophilic attack of the isomerization can be used to classify local conformation and contribute to the design of stable protein drugs, antibodies or the assessment of the severity of mutations. At any –Asn/AspGly– sites in proteins a spontaneous backbone isomerization occurs within days under physiological conditions leading to various forms of proteopathy. This unwanted transformation especially harmful to long-lived proteins (e.g. hemoglobin and crystallins), can be slowed down, though never stopped, by a rigid three-dimensional protein fold, if it can delay in the conformational maze, on-pathway intermediates from occurring.
Collapse
|
36
|
Turpin J, Frumence E, Desprès P, Viranaicken W, Krejbich-Trotot P. The ZIKA Virus Delays Cell Death Through the Anti-Apoptotic Bcl-2 Family Proteins. Cells 2019; 8:cells8111338. [PMID: 31671831 PMCID: PMC6912272 DOI: 10.3390/cells8111338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) is an emerging human mosquito-transmitted pathogen of global concern, known to be associated with complications such as congenital defects and neurological disorders in adults. ZIKV infection is associated with induction of cell death. However, previous studies suggest that the virally induced apoptosis occurs at a slower rate compared to the course of viral production. In this present study, we investigated the capacity of ZIKV to delay host cell apoptosis. We provide evidence that ZIKV has the ability to interfere with apoptosis whether it is intrinsically or extrinsically induced. In cells expressing viral replicon-type constructions, we show that this control is achieved through replication. Finally, our work highlights an important role for anti-apoptotic Bcl-2 family protein in the ability of ZIKV to control apoptotic pathways, avoiding premature cell death and thereby promoting virus replication in the host-cell.
Collapse
Affiliation(s)
- Jonathan Turpin
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Etienne Frumence
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Philippe Desprès
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Wildriss Viranaicken
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| | - Pascale Krejbich-Trotot
- PIMIT, Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, Ile de La Réunion, France.
| |
Collapse
|
37
|
Robert G, Jacquel A, Auberger P. Chaperone-Mediated Autophagy and Its Emerging Role in Hematological Malignancies. Cells 2019; 8:E1260. [PMID: 31623164 PMCID: PMC6830112 DOI: 10.3390/cells8101260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) ensures the selective degradation of cellular proteins endowed with a KFERQ-like motif by lysosomes. It is estimated that 30% of all cellular proteins can be directed to the lysosome for CMA degradation, but only a few substrates have been formally identified so far. Mechanistically, the KFERQ-like motifs present in substrate proteins are recognized by the molecular chaperone Hsc70c (Heat shock cognate 71 kDa protein cytosolic), also known as HSPA8, and directed to LAMP2A, which acts as the CMA receptor at the lysosomal surface. Following linearization, the protein substrate is next transported to the lumen of the lysosomes, where it is degraded by resident proteases, mainly cathepsins and eventually recycled to sustain cellular homeostasis. CMA is induced by different stress conditions, including energy deprivation that also activates macro-autophagy (MA), that may make it difficult to decipher the relative impact of both pathways on cellular homeostasis. Besides common inducing triggers, CMA and MA might be induced as compensatory mechanisms when either mechanism is altered, as it is the often the case in different pathological settings. Therefore, CMA activation can compensate for alterations of MA and vice versa. In this context, these compensatory mechanisms, when occurring, may be targeted for therapeutic purposes. Both processes have received particular attention from scientists and clinicians, since modulation of MA and CMA may have a profound impact on cellular proteostasis, metabolism, death, differentiation, and survival and, as such, could be targeted for therapeutic intervention in degenerative and immune diseases, as well as in cancer, including hematopoietic malignancies. The role of MA in cancer initiation and progression is now well established, but whether and how CMA is involved in tumorigenesis has been only sparsely explored. In the present review, we encompass the description of the mechanisms involved in CMA, its function in the physiology and pathogenesis of hematopoietic cells, its emerging role in cancer initiation and development, and, finally, the potential therapeutic opportunity to target CMA or CMA-mediated compensatory mechanisms in hematological malignancies.
Collapse
Affiliation(s)
- Guillaume Robert
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| | - Arnaud Jacquel
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France
| | - Patrick Auberger
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| |
Collapse
|
38
|
Smith VM, Dietz A, Henz K, Bruecher D, Jackson R, Kowald L, van Wijk SJL, Jayne S, Macip S, Fulda S, Dyer MJS, Vogler M. Specific interactions of BCL-2 family proteins mediate sensitivity to BH3-mimetics in diffuse large B-cell lymphoma. Haematologica 2019; 105:2150-2163. [PMID: 31601689 PMCID: PMC7395267 DOI: 10.3324/haematol.2019.220525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023] Open
Abstract
The BCL-2-specific inhibitor, ABT-199 (venetoclax) has exhibited remarkable clinical activity in nearly all cases of chronic lymphocytic leukemia. In contrast, responses are usually much less in diffuse large B-cell lymphoma (DLBCL), despite high level expression of BCL-2 in over 40% of cases, indicating that co-expression of related anti-apoptotic BCL-2 family proteins may limit the activity of ABT-199. We have investigated the roles of BCL-2 proteins in DLBCL cells using a panel of specific BCL-2 homology 3 (BH3)-mimetics and identified subgroups of these cells that exhibited marked and specific dependency on either BCL-2, BCL-XL or MCL-1 for survival. Dependency was associated with selective sequestration of the pro-apoptotic proteins BIM, BAX and BAK by the specific anti-apoptotic BCL-2 protein which was important for cellular survival. Sensitivity to BH3-mimetics was independent of genetic alterations involving the BCL-2 family and only partially correlated with protein expression levels. Treatment with ABT-199 displaced BAX and BIM from BCL-2, subsequently leading to BAK activation and apoptosis. In contrast, apoptosis induced by inhibiting BCL-XL with A1331852 was associated with a displacement of both BAX and BAK from BCL-XL and occurred independently of BIM. Finally, the MCL-1 inhibitor S63845 induced mainly BAX-dependent apoptosis mediated by a displacement of BAK, BIM and NOXA from MCL-1. In conclusion, our study indicates that in DLBCL, the heterogeneous response to BH3-mimetics is mediated by selective interactions between BAX, BAK and anti-apoptotic BCL-2 proteins.
Collapse
Affiliation(s)
- Victoria M Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Anna Dietz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Kristina Henz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Daniela Bruecher
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Ross Jackson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Lisa Kowald
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Sandrine Jayne
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Salvador Macip
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Martin J S Dyer
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, UK
| | - Meike Vogler
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK .,Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| |
Collapse
|
39
|
Ibrahim MAA, Elwan WM, Elgendy HA. Role of Scutellarin in Ameliorating Lung Injury in a Rat Model of Bilateral Hind Limb Ischemia–Reperfusion. Anat Rec (Hoboken) 2019; 302:2070-2081. [DOI: 10.1002/ar.24175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Marwa A. A. Ibrahim
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Walaa M. Elwan
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Hanan A. Elgendy
- Anatomy and Embryology Department, Faculty of MedicineMansoura University Mansoura Egypt
| |
Collapse
|
40
|
Ramakrishnan VG, Miller KC, Macon EP, Kimlinger TK, Haug J, Kumar S, Gonsalves WI, Rajkumar SV, Kumar SK. Histone deacetylase inhibition in combination with MEK or BCL-2 inhibition in multiple myeloma. Haematologica 2019; 104:2061-2074. [PMID: 30846494 PMCID: PMC6886422 DOI: 10.3324/haematol.2018.211110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in the treatment of multiple myeloma, patients with this disease still inevitably relapse and become refractory to existing therapies. Mutations in K-RAS, N-RAS and B-RAF are common in multiple myeloma, affecting 50% of patients at diagnosis and >70% at relapse. However, targeting mutated RAS/RAF via MEK inhibition is merely cytostatic in myeloma and largely ineffective in the clinic. We examined mechanisms mediating this resistance and identified histone deacetylase inhibitors as potent synergistic partners. Combining the MEK inhibitor AZD6244 (selumetinib) with the pan-histone deacetylase inhibitor LBH589 (panobinostat) induced synergistic apoptosis in RAS/RAF mutated multiple myeloma cell lines. Interestingly, this synergy was dependent on the pro-apoptotic protein BIM. We determined that while single-agent MEK inhibition increased BIM levels, the protein remained sequestered by antiapoptotic BCL-2 family members. LBH589 dissociated BIM from MCL-1 and BCL-XL, which allowed it to bind BAX/BAK and thereby initiate apoptosis. The AZD6244/LBH589 combination was specifically active in cell lines with more BIM:MCL-1 complexes at baseline; resistant cell lines had more BIM:BCL-2 complexes. Those resistant cell lines were synergistically killed by combining the BH3 mimetic ABT-199 (venetoclax) with LBH589. Using more specific histone deacetylase inhibitors, i.e. MS275 (entinostat) and FK228 (romidepsin), and genetic methods, we determined that concomitant inhibition of histone deacetylases 1 and 2 was sufficient to synergize with either MEK or BCL-2 inhibition. Furthermore, these drug combinations effectively killed plasma cells from myeloma patients ex vivo. Given the preponderance of RAS/RAF mutations, and the fact that ABT-199 has demonstrated clinical efficacy in relapsed/refractory multiple myeloma, these drug combinations hold prom ise as biomarker-driven therapies.
Collapse
Affiliation(s)
| | | | - Elaine P Macon
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Teresa K Kimlinger
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jessica Haug
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Sanjay Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Wilson I Gonsalves
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - S Vincent Rajkumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Shaji K Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Fiskus W, Cai T, DiNardo CD, Kornblau SM, Borthakur G, Kadia TM, Pemmaraju N, Bose P, Masarova L, Rajapakshe K, Perera D, Coarfa C, Mill CP, Saenz DT, Saenz DN, Sun B, Khoury JD, Shen Y, Konopleva M, Bhalla KN. Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J 2019; 9:4. [PMID: 30647404 PMCID: PMC6333829 DOI: 10.1038/s41408-018-0165-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
First-generation bromodomain extra-terminal protein (BETP) inhibitors (BETi) (e.g., OTX015) that disrupt binding of BETP BRD4 to chromatin transcriptionally attenuate AML-relevant progrowth and prosurvival oncoproteins. BETi treatment induces apoptosis of AML BPCs, reduces in vivo AML burden and induces clinical remissions in a minority of AML patients. Clinical efficacy of more potent BETis, e.g., ABBV-075 (AbbVie, Inc.), is being evaluated. Venetoclax and A-1210477 bind and inhibit the antiapoptotic activity of BCL2 and MCL1, respectively, lowering the threshold for apoptosis. BETi treatment is shown here to perturb accessible chromatin and activity of enhancers/promoters, attenuating MYC, CDK6, MCL1 and BCL2, while inducing BIM, HEXIM1, CDKN1A expressions and apoptosis of AML cells. Treatment with venetoclax increased MCL1 protein levels, but cotreatment with ABBV-075 reduced MCL1 and Bcl-xL levels. ABBV-075 cotreatment synergistically induced apoptosis with venetoclax or A-1210477 in patient-derived, CD34+ AML cells. Compared to treatment with either agent alone, cotreatment with ABBV-075 and venetoclax was significantly more effective in reducing AML cell-burden and improving survival, without inducing toxicity, in AML-engrafted immune-depleted mice. These findings highlight the basis of superior activity and support interrogation of clinical efficacy and safety of cotreatment with BETi and BCL2 or MCL1 inhibitor in AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Binding Sites
- Biomarkers, Tumor
- Cell Line, Tumor
- Disease Models, Animal
- Drug Synergism
- Female
- Humans
- Indoles/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Pyridones/pharmacology
- Sulfonamides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianyu Cai
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Steven M Kornblau
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gautam Borthakur
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tapan M Kadia
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Naveen Pemmaraju
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lucia Masarova
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dimuthu Perera
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher P Mill
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dyana T Saenz
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David N Saenz
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Baohua Sun
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph D Khoury
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Shen
- AbbVie, Inc., North Chicago, IL, 60064, USA
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kapil N Bhalla
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the Bcl-2 Family in B Cell Lymphoma. Front Oncol 2019; 8:636. [PMID: 30671383 PMCID: PMC6331425 DOI: 10.3389/fonc.2018.00636] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Although lymphoma is a very heterogeneous group of biologically complex malignancies, tumor cells across all B cell lymphoma subtypes share a set of underlying traits that promote the development and sustain malignant B cells. One of these traits, the ability to evade apoptosis, is essential for lymphoma development. Alterations in the Bcl-2 family of proteins, the key regulators of apoptosis, is a hallmark of B cell lymphoma. Significant efforts have been made over the last 30 years to advance knowledge of the biology, molecular mechanisms, and therapeutic potential of targeting Bcl-2 family members. In this review, we will highlight the complexities of the Bcl-2 family, including our recent discovery of overexpression of the anti-apoptotic Bcl-2 family member Bcl-w in lymphomas, and describe recent advances in the field that include the development of inhibitors of anti-apoptotic Bcl-2 family members for the treatment of B cell lymphomas and their performance in clinical trials.
Collapse
Affiliation(s)
- Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sean Clark-Garvey
- Internal Medicine Residency Program, Department of Internal Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
43
|
Jin Y, You L, Kim HJ, Lee HW. Telomerase Reverse Transcriptase Contains a BH3-Like Motif and Interacts with BCL-2 Family Members. Mol Cells 2018; 41:684-694. [PMID: 29937479 PMCID: PMC6078858 DOI: 10.14348/molcells.2018.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Upregulation of human telomerase reverse transcriptase (hTERT) expression is an important factor in the cellular survival and cancer. Although growing evidence suggests that hTERT inhibits cellular apoptosis by telomere-independent functions, the mechanisms involved are not fully understood. Here, we show that hTERT contains a BH3-like motif, a short peptide sequence found in BCL-2 family proteins, and interacts with anti-apoptotic BCL-2 family proteins MCL-1 and BCL-xL, suggesting a functional link between hTERT and the mitochondrial pathway of apoptosis. Additionally, we propose that hTERT can be categorized into the atypical BH3-only proteins that promote cellular survival, possibly due to the non-canonical interaction between hTERT and antiapoptotic proteins. Although the detailed mechanisms underlying the hTERT BH3-like motif functions and interactions between hTERT and BCL-2 family proteins have not been elucidated, this work proposes a possible connection between hTERT and BCL-2 family members and reconsiders the role of the BH3-like motif as an interaction motif.
Collapse
Affiliation(s)
- Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Long You
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Hye Jeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722,
Korea
| |
Collapse
|
44
|
TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ 2018; 26:902-917. [PMID: 30042493 DOI: 10.1038/s41418-018-0169-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/20/2023] Open
Abstract
BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a short half-life due to its constitutive processing by the ubiquitin-proteasome system. This constitutes a major tumor-suppressor mechanism regulating BCL2A1 function. However, the enzymes involved in the regulation of BCL2A1 protein stability are currently unknown. Here, we provide the first insight into the regulation of BCL2A1 ubiquitination. We present evidence that TRIM28 is an E3 ubiquitin-ligase for BCL2A1. Indeed, endogenous TRIM28 and BCL2A1 bind to each other at the mitochondria and TRIM28 knock-down decreases BCL2A1 ubiquitination. We also show that TRIM17 stabilizes BCL2A1 by blocking TRIM28 from binding and ubiquitinating BCL2A1, and that GSK3 is involved in the phosphorylation-mediated inhibition of BCL2A1 degradation. BCL2A1 and its close relative MCL1 are thus regulated by common factors but with opposite outcome. Finally, overexpression of TRIM28 or knock-out of TRIM17 reduced BCLA1 protein levels and restored sensitivity of melanoma cells to BRAF-targeted therapy. Therefore, our data describe a molecular rheostat in which two proteins of the TRIM family antagonistically regulate BCL2A1 stability and modulate cell death.
Collapse
|
45
|
Timucin AC, Basaga H, Kutuk O. Selective targeting of antiapoptotic BCL-2 proteins in cancer. Med Res Rev 2018; 39:146-175. [DOI: 10.1002/med.21516] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/05/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmet Can Timucin
- Faculty of Engineering and Natural Sciences, Department of Chemical and Biological Engineering; Uskudar University; Uskudar Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program; Sabanci University; Tuzla Istanbul Turkey
| | - Huveyda Basaga
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program; Sabanci University; Tuzla Istanbul Turkey
| | - Ozgur Kutuk
- Department of Medical Genetics; Adana Medical and Research Center; School of Medicine, Baskent University; Yuregir Adana Turkey
| |
Collapse
|
46
|
Grundy M, Jones T, Elmi L, Hall M, Graham A, Russell N, Pallis M. Early changes in rpS6 phosphorylation and BH3 profiling predict response to chemotherapy in AML cells. PLoS One 2018; 13:e0196805. [PMID: 29723246 PMCID: PMC5933738 DOI: 10.1371/journal.pone.0196805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Blasts from different patients with acute myeloid leukemia (AML) vary in the agent(s) to which they are most responsive. With a myriad of novel agents to evaluate, there is a lack of predictive biomarkers to precisely assign targeted therapies to individual patients. Primary AML cells often survive poorly in vitro, thus confounding conventional cytotoxicity assays. The purpose of this work was to assess the potential of two same-day functional predictive assays in AML cell lines to predict long-term response to chemotherapy. (i) Ribosomal protein S6 (rpS6) is a downstream substrate of PI3K/akt/mTOR/ kinase and MAPK kinase pathways and its dephosphorylation is also triggered by DNA double strand breaks. Phospho-rpS6 is reliably measurable by flow cytometry and thus has the potential to function as a biomarker of responsiveness to several therapeutic agents. (ii) A cell's propensity for apoptosis can be interrogated via a functional assay termed "Dynamic BH3 Profiling" in which mitochondrial outer membrane permeabilization in drug-treated cells can be driven by pro-apoptotic BH3 domain peptides such as PUMA-BH3. The extent to which a particular cell is primed for apoptosis by the drug can be determined by measuring the amount of cytochrome C released on addition of BH3 peptide. We demonstrate that phospho-rpS6 expression and PUMA-BH3 peptide-induced cytochrome C release after 4 hours both predict long term chemoresponsiveness to tyrosine kinase inhibitors and DNA double strand break inducers in AML cell lines. We also describe changes in expression levels of the prosurvival BCL-2 family member Mcl-1 and the pro-apoptotic protein BIM after short term drug culture.
Collapse
Affiliation(s)
- Martin Grundy
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom
- * E-mail:
| | - Thomas Jones
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Liban Elmi
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Michael Hall
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Adam Graham
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Nigel Russell
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom
- Department of Haematology, Division of Cancer and Stem Cells, University of Nottingham, Nottingham, United Kingdom
| | - Monica Pallis
- Clinical Haematology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
47
|
N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2. Oncotarget 2018; 8:47709-47724. [PMID: 28537875 PMCID: PMC5564599 DOI: 10.18632/oncotarget.17711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion, NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.
Collapse
|
48
|
Aira LE, Villa E, Colosetti P, Gamas P, Signetti L, Obba S, Proics E, Gautier F, Bailly-Maitre B, Jacquel A, Robert G, Luciano F, Juin PP, Ricci JE, Auberger P, Marchetti S. The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim. Oncogene 2018; 37:2122-2136. [PMID: 29391601 DOI: 10.1038/s41388-017-0112-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 01/17/2023]
Abstract
Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.
Collapse
Affiliation(s)
| | - Elodie Villa
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | | | | | | | - Emma Proics
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Fabien Gautier
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, 8 Quai Moncousu - BP 70721, 44007, Nantes Cedex 1, France.,Institut de Cancérologie de l'Ouest, Bvd J Monod, Site René Gauducheau, 44805, Saint-Herblain, France
| | | | | | | | | | - Philippe P Juin
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d'Angers, Institut de Recherche en Santé-Université de Nantes, 8 Quai Moncousu - BP 70721, 44007, Nantes Cedex 1, France.,Institut de Cancérologie de l'Ouest, Bvd J Monod, Site René Gauducheau, 44805, Saint-Herblain, France
| | | | | | | |
Collapse
|
49
|
Dai H, Ding H, Peterson KL, Meng XW, Schneider PA, Knorr KLB, Kaufmann SH. Measurement of BH3-only protein tolerance. Cell Death Differ 2018; 25:282-293. [PMID: 29053140 PMCID: PMC5762843 DOI: 10.1038/cdd.2017.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022] Open
Abstract
The BCL2 family of proteins regulates cellular life and death decisions. Among BCL2 family members, BH3-only proteins have critical roles by neutralizing antiapoptotic family members, as well as directly activating BAX and BAK. Despite widespread occurrence of BH3-only protein upregulation in response to various stresses, this process is rarely quantified. Moreover, it is unclear whether all BH3-only proteins are equipotent at inducing cell death. Here we show that BH3-only proteins increase as much as 15- to 20-fold after various treatments and define a parameter, termed BH3-only tolerance, which measures how many copies of a particular BH3-only protein can be expressed before the majority of cells in a population undergo apoptosis. We not only assess the relative contributions of anti- and proapoptotic BCL2 family members to BH3-only tolerance, but also illustrate how the study of this parameter can be used to understand cellular sensitivity to anticancer drugs and new combinations. These observations provide a new quantitative framework for assessing apoptotic susceptibility under various conditions.
Collapse
Affiliation(s)
- Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Chinese Academy of Sciences, Hefei,China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Kevin L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Katherine L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
50
|
Najm FJ, Strand C, Donovan KF, Hegde M, Sanson KR, Vaimberg EW, Sullender ME, Hartenian E, Kalani Z, Fusi N, Listgarten J, Younger ST, Bernstein BE, Root DE, Doench JG. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol 2018; 36:179-189. [PMID: 29251726 PMCID: PMC5800952 DOI: 10.1038/nbt.4048] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/04/2017] [Indexed: 12/21/2022]
Abstract
Combinatorial genetic screening using CRISPR-Cas9 is a useful approach to uncover redundant genes and to explore complex gene networks. However, current methods suffer from interference between the single-guide RNAs (sgRNAs) and from limited gene targeting activity. To increase the efficiency of combinatorial screening, we employ orthogonal Cas9 enzymes from Staphylococcus aureus and Streptococcus pyogenes. We used machine learning to establish S. aureus Cas9 sgRNA design rules and paired S. aureus Cas9 with S. pyogenes Cas9 to achieve dual targeting in a high fraction of cells. We also developed a lentiviral vector and cloning strategy to generate high-complexity pooled dual-knockout libraries to identify synthetic lethal and buffering gene pairs across multiple cell types, including MAPK pathway genes and apoptotic genes. Our orthologous approach also enabled a screen combining gene knockouts with transcriptional activation, which revealed genetic interactions with TP53. The "Big Papi" (paired aureus and pyogenes for interactions) approach described here will be widely applicable for the study of combinatorial phenotypes.
Collapse
Affiliation(s)
- Fadi J Najm
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Christine Strand
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | | | - Mudra Hegde
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Kendall R Sanson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Emma W Vaimberg
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | | | - Ella Hartenian
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Zohra Kalani
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Nicolo Fusi
- Microsoft Research New England, Cambridge, Massachusetts, USA
| | | | - Scott T Younger
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Bradley E Bernstein
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|