1
|
Sklavenitis-Pistofidis R, Konishi Y, Heilpern-Mallory D, Wu T, Tsakmaklis N, Aranha MP, Hunter ZR, Ali AK, Tsuji J, Haradhvala NJ, Lightbody ED, Towle K, Hevenor L, Romee R, Briercheck EL, Smith EL, Liacos CI, Kastritis E, Dimopoulos MA, Treon SP, Getz G, Ghobrial IM. Single-cell RNA sequencing defines distinct disease subtypes and reveals hypo-responsiveness to interferon in asymptomatic Waldenstrom's Macroglobulinemia. Nat Commun 2025; 16:1480. [PMID: 39929803 PMCID: PMC11811135 DOI: 10.1038/s41467-025-56323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Waldenstrom's Macroglobulinemia (WM) is an IgM-secreting bone marrow (BM) lymphoma that is preceded by an asymptomatic state (AWM). To dissect tumor-intrinsic and immune mechanisms of progression, we perform single-cell RNA-sequencing on 294,206 BM tumor and immune cells from 30 patients with AWM/WM, 26 patients with Smoldering Myeloma, and 23 healthy donors. Despite their early stage, patients with AWM present extensive immune dysregulation, including in normal B cells, with disease-specific immune hallmarks. Patient T and NK cells show systemic hypo-responsiveness to interferon, which improves with interferon administration and may represent a therapeutic vulnerability. MYD88-mutant tumors show transcriptional heterogeneity, which can be distilled in a molecular classification, including a DUSP22/CD9-positive subtype, and progression signatures which differentiate IgM MGUS from overt WM and can help advance WM research and clinical practice.
Collapse
Affiliation(s)
- Romanos Sklavenitis-Pistofidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yoshinobu Konishi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Heilpern-Mallory
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ting Wu
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nicholas Tsakmaklis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle P Aranha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zachary R Hunter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alaa K Ali
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Junko Tsuji
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nicholas J Haradhvala
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Elizabeth D Lightbody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine Towle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Hevenor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Edward L Briercheck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric L Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Steven P Treon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Debureaux PE, Poulain S, Harel S, Passet M, Templé M, Friedrich C, Forgeard N, Elessa D, Plas W, Chat L, Lazarian G, Willems L, Royer B, Talbot A, Vaugeois T, Theves F, Terré A, Brignier A, Malphettes M, Krzisch D, Frenzel L, Davi F, Bravetti C, Nguyen-Khac F, Dupuis J, Cuccuini W, Bouscary D, Hermine O, Roos-Weil D, Kosmider O, Clappier E, Espéli M, Balabanian K, Arnulf B. Inflammatory Waldenström macroglobulinemia is associated with clonal hematopoiesis: a multicentric cohort. Blood 2025; 145:450-454. [PMID: 39571148 DOI: 10.1182/blood.2024025738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/23/2024] [Indexed: 01/24/2025] Open
Abstract
ABSTRACT Inflammatory form of Waldenström macroglobulinemia (iWM) predicts outcomes after immuno-chemotherapy and Bruton tyrosine kinase inhibitors, but its origin is unknown. Here, we unravel increased clonal hematopoiesis in patients with iWM (61% vs 23% in noninflammatory WM), suggesting a contribution of environmental cells to iWM.
Collapse
Affiliation(s)
- Pierre-Edouard Debureaux
- Institut de Recherche Saint-Louis, University Paris Cité, INSERM U1160, Paris, France
- OPALE Carnot Institute, Saint-Louis Hospital, Paris, France
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Stéphanie Poulain
- Hematology Laboratory, Lille Unité Mixte de Recherche en Santé Hospital, Lille, France
| | - Stéphanie Harel
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Marie Passet
- Institut de Recherche Saint-Louis, University Paris Cité, INSERM U944/Unité Mixte de Recherche 7212, Paris, France
- Hematology Laboratory, Saint-Louis Hospital, Paris, France
| | - Marie Templé
- Hematobiology Unit, Cochin Hospital, Paris, France
| | | | - Nathalie Forgeard
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Dikelele Elessa
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - William Plas
- Hematology Laboratory, Saint-Louis Hospital, Paris, France
| | - Laureen Chat
- Hematology Laboratory, Saint-Louis Hospital, Paris, France
| | | | | | - Bruno Royer
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Alexis Talbot
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Tristan Vaugeois
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Floriane Theves
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | | | | | | | - Daphné Krzisch
- Immuno-Oncology Unit, Saint-Louis Hospital, Paris, France
- Université Paris Cité, INSERM U1153, Paris, France
| | | | - Frédéric Davi
- Department of Hematology, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, Paris, France
| | | | - Florence Nguyen-Khac
- Laboratory of Cytogenetic, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, INSERM Unité Mixte de Recherche en Santé 1138, Drug Resistance in Hematological Malignancies Team, Centre de Recherche des Cordeliers, Paris, France
| | - Jehan Dupuis
- Department of Lymphoid Malignancies, Henri Mondor Hospital, Paris, France
| | - Wendy Cuccuini
- Hematology Laboratory, Saint-Louis Hospital, Paris, France
| | | | | | - Damien Roos-Weil
- Department of Hematology, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, INSERM Unité Mixte de Recherche en Santé 1138, Drug Resistance in Hematological Malignancies Team, Centre de Recherche des Cordeliers, Paris, France
| | | | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis, University Paris Cité, INSERM U944/Unité Mixte de Recherche 7212, Paris, France
- Hematology Laboratory, Saint-Louis Hospital, Paris, France
| | - Marion Espéli
- Institut de Recherche Saint-Louis, University Paris Cité, INSERM U1160, Paris, France
- OPALE Carnot Institute, Saint-Louis Hospital, Paris, France
| | - Karl Balabanian
- Institut de Recherche Saint-Louis, University Paris Cité, INSERM U1160, Paris, France
- OPALE Carnot Institute, Saint-Louis Hospital, Paris, France
| | - Bertrand Arnulf
- Department of Immuno-Hematology, Saint-Louis Hospital, Paris, France
| |
Collapse
|
3
|
Qiu L, Lin P. Lymphoplasmacytic lymphoma and Waldenström macroglobulinemia, a decade after the discovery of MYD88 L265P. Hum Pathol 2024:105708. [PMID: 39701426 DOI: 10.1016/j.humpath.2024.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
There has been remarkable progress over the past 80 years since Jan Waldenstrom first described patients with a hyperviscosity syndrome related to IgM paraprotein in 1944. The definition of Waldenstrom macroglobulinemia (WM) has evolved from a clinical syndrome to a distinct clinicopathologic entity with characteristic morphology, immunophenotype and molecular features. The landmark discovery of MYD88 mutation among most WM cases in 2012 marked the dawning of an era of molecular genomic exploration that led to a paradigm shift in clinical practice. In the current World Health Organization (WHO) classification of hematologic neoplasms, WM is included in the category of lymphoplasmacytic lymphoma (LPL) of which WM represents over 90% of cases. LPL/WM is also better defined, resolving ambiguity in many cases that would have been classified as "low-grade B-cell lymphoma with plasmacytic differentiation" a decade before. Nevertheless, challenges still face pathologists because criteria for distinguishing LPL/WM from other types of low-grade B-cell lymphoma, particularly marginal zone lymphoma (MZL), remain imperfect. In this review, we highlight the current understanding of LPL and WM brought to light by new discoveries, which in turn are increasingly translated to improved diagnosis and personalized therapy. Key concepts in the diagnosis and their clinical implications are emphasized. Controversies and challenges are also discussed.
Collapse
Affiliation(s)
- Lianqun Qiu
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei Lin
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Trojani A, Beghini A, Bossi LE, Stefanucci MR, Palumbo C, Greco A, Frustaci A, Di Camillo B, Cairoli R. Mutational Landscape of Bone Marrow CD19 and CD138 Cells in Waldenström Macroglobulinemia (WM) and IgM Monoclonal Gammopathy of Undetermined Significance (IgM MGUS). Cancer Med 2024; 13:e70525. [PMID: 39711167 DOI: 10.1002/cam4.70525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Despite recurrent and activating mutations, including MYD88, CXCR4, ARID1A, KMT2D, and CD79B were identified, the genetic basis for Waldenström's Macroglobulinemia (WM) and the risk of progression of IgM MGUS to WM remain to be fully elucidated. METHODS We investigated the mutation status of WM (n = 8), sWM (n = 7), and IgM MGUS (n = 5) patients, by performing high-throughput targeted AmpliSeq NGS on 117 target genes. Specifically, we analyzed the CD19+ cells from 15 WM/sWM patients and five IgM MGUS patients. We also analyzed the CD138+ cells from four WM/sWM patients and two IgM MGUS patients. RESULTS We detected the classic mutation MYD88L265P in 93% of WM/sWM and in 60% of IgM MGUS patients. The CXCR4S338Ter mutation was identified in 26% of WM/sWM patients, whereas it was undetectable in IgM MGUS subjects. Interestingly, we identified new mutated genes, including WNK2 somatic mutations affecting 46% of WM/sWM patients, for which a recurrent allelic variant (V1635Ter) was observed in this cohort. Moreover, sequencing evaluation revealed recurrently frameshift or missense mutations involving NFKB2 (L473Afs) in 60% of IgM MGUS and 20% of WM/sWM, PTPN13 (P1546Tfs) in 20% of IgM MGUS and 7% of WM/sWM, CARD11 (S622del) in 20% of IgM MGUS and 20% of WM/sWM, KMT2C (I823T) in all IgM MGUS and 93% of WM/sWM, and ATM in 20% of IgM MGUS and 47% of WM/sWM patients. CONCLUSION In conclusion, we uncovered new insights into the mutational landscape of WM, depicting a more complex involvement of the NF-kB pathway, and providing evidence of the recurrence of some variants (MYD88, IL17RB, NFKB2, ATM, CARD11, PTPN13, and WNK2) also in IgM MGUS.
Collapse
Affiliation(s)
| | | | | | - Marta Rachele Stefanucci
- Niguarda Hospital, Department of Hematology and Oncology, Milano, Italy
- Department of Health Sciences, University of Milano, Milano, Italy
| | - Cassandra Palumbo
- Niguarda Hospital, Department of Hematology and Oncology, Milano, Italy
| | - Antonino Greco
- A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Cairoli
- Niguarda Hospital, Department of Hematology and Oncology, Milano, Italy
| |
Collapse
|
5
|
Samsuddoha K, Homsy S, Preet M, Naher K. A Rare Case of Chronic Lymphocytic Leukemia Transforming Into Waldenström Macroglobulinemia During Ibrutinib Therapy. Cureus 2024; 16:e75274. [PMID: 39776709 PMCID: PMC11703645 DOI: 10.7759/cureus.75274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) can rarely transform into Waldenström macroglobulinemia (WM), posing diagnostic and therapeutic challenges. The diagnosis of WM requires bone marrow infiltration by lymphoplasmacytic cells and the presence of IgM gammopathy. Immunophenotypic markers include FMC7+, CD19+, CD20+, and CD138+. The MYD88 mutation is characteristic. Symptoms arise from tumor infiltration and monoclonal protein production. Here, we present a case of CLL transforming into WM during treatment with ibrutinib. Given the rarity of such a transformation, this case may serve as a valuable reference, and further investigation is needed to understand the pathology underlying this transformation.
Collapse
Affiliation(s)
- Kazi Samsuddoha
- Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Sylvester Homsy
- Hematology and Oncology, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Mohan Preet
- Hematology and Oncology, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Kamrun Naher
- Endocrinology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
6
|
Østergaard S, Munksgaard L, Nielsen TH, Hammer T, Pedersen LM, Ølgod Pedersen M, Gjerdrum LMR. Extramedullary disease in Waldenström macroglobulinemia: A population-based observational study. EJHAEM 2024; 5:1269-1273. [PMID: 39691270 PMCID: PMC11647728 DOI: 10.1002/jha2.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/23/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Extramedullary disease (EMD) is a rare manifestation of Waldenström macroglobulinemia (WM), and its clinical and prognostic implications are poorly understood. METHODS In this single-center study, we investigated the clinical significance of EMD in a cohort of 469 WM patients. RESULTS EMD was identified in 30 (6.4%) patients, with the central nervous system, kidneys, and lungs being the most frequently affected sites. The cumulative incidence of EMD was 12.6% at 15 years. Median overall survival rates at 5 and 10 years for patients with EMD were 63% and 37%, respectively. CONCLUSION Our findings indicate a persistent risk of EMD throughout the disease course, with no significant impact on long-term survival.
Collapse
Affiliation(s)
- Simon Østergaard
- Department of PathologyZealand University HospitalRoskildeDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Lars Munksgaard
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of HematologyZealand University HospitalRoskildeDenmark
| | - Torsten Holm Nielsen
- Department of HematologyZealand University HospitalRoskildeDenmark
- Department of HematologyCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
- Danish Medicines AgencyCopenhagenDenmark
| | - Troels Hammer
- Department of HematologyCopenhagen University Hospital ‐ RigshospitaletCopenhagenDenmark
| | - Lars Møller Pedersen
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of HematologyZealand University HospitalRoskildeDenmark
| | - Mette Ølgod Pedersen
- Department of PathologyZealand University HospitalRoskildeDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Lise Mette Rahbek Gjerdrum
- Department of PathologyZealand University HospitalRoskildeDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Tomkins O, D’Sa S. Review of BCL2 inhibitors for the treatment of Waldenström's macroglobulinaemia and non-IgM lymphoplasmacytic lymphoma. Front Oncol 2024; 14:1490202. [PMID: 39558954 PMCID: PMC11570586 DOI: 10.3389/fonc.2024.1490202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is a relatively rare form of indolent B-cell non-Hodgkin's lymphoma, termed Waldenström's macroglobulinaemia (WM) in the presence of an IgM paraprotein. Although traditionally treated with combination chemoimmunotherapy, the management is evolving in the era of targeted molecular therapies including Bruton's tyrosine kinase inhibitors (BTKi). However, intolerance and refractoriness to BTKi mean newer agents are required, and the prognosis of so-called quadruple-refractory patients is poor. BCL2 is an anti-apoptotic, pro-survival protein that promotes lymphoma cell survival. Inhibition of BCL2 using first-in-class agent venetoclax has already altered the treatment paradigm in other conditions, including chronic lymphocytic leukaemia (CLL). In-vivo inhibition of BCL2 has been shown to lead to apoptosis of LPL/WM cells. Five studies have published results on the use of BCL2 inhibitors in WM to date, including oblimersen sodium, venetoclax, and sonrotoclax. Fixed-duration venetoclax resulted in high response rates, but many patients relapsed following the completion of therapy. The combination of venetoclax with ibrutinib resulted in higher and relatively deep response rates, but unexpected deaths due to ventricular events mean this combination cannot be explored. Two pivotal trials are currently evaluating the use of fixed-duration venetoclax, either in combination with rituximab or pirtobrutinib, whereas another multi-arm study is studying the use of continuous sonrotoclax monotherapy for R/R WM or in fixed-duration combination with Zanubrutinib for treatment-naïve patients. The potential role of BCL2 inhibitors in WM/LPL remains under study, with many hopeful that they may provide an additional chemotherapy-free oral alternative for patients requiring treatment. In an indolent condition with existing effective treatment regimens, including CIT and cBTKi, cost-effectiveness and toxicity profile will be key, although an additional treatment modality for quadruple-refractory patients with limited treatment options is urgently required.
Collapse
Affiliation(s)
| | - Shirley D’Sa
- UCLH Centre for Waldenström’s Macroglobulinaemia and Related Conditions, Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
9
|
Patel N, Al Hadidi S, Yellapragada S. Pathophysiology and Treatments of Complications of Waldenström's Macroglobulinemia. Clin Hematol Int 2024; 6:11-18. [PMID: 39417016 PMCID: PMC11477924 DOI: 10.46989/001c.124268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 10/19/2024] Open
Abstract
Waldenstrom's macroglobulinemia (WM) or lymphoplasmacytic lymphoma is a B-cell malignancy characterized by lymphoplasmacytic cells in the bone marrow that secrete high amounts of immunoglobulin (Ig) M. The large pentameric structure of IgM leads to a variety of unique complications in WM, such as hyperviscosity syndrome, cryoglobulinemia and sensory neuropathy. Furthermore, malignant cells can infiltrate the central nervous system and lead to a variety of neurological complications, also known as Bing Neel Syndrome. Because of the unique pathophysiology of WM and these complications, their diagnostic work up and treatment regimens vary greatly. Given the rarity of the disease and their complications, there are little to no randomized controlled trials regarding treatments of these complications and, therefore, suggested treatment regimens are usually based on observational studies. In this case series, we will present three cases of WM, each with their own unique complication, and discuss the pathophysiology along with current and future treatment options for each of the complications presented.
Collapse
Affiliation(s)
| | | | - Sarvari Yellapragada
- HematologyBaylor College of Medicine
- HematologyMichael E. DeBakey VA Medical Center
- HematologyDan L Duncan Comprehensive Cancer Center
| |
Collapse
|
10
|
Marwat MKUK, Khalil K, Al Assir I. A Rare Case of Combined Direct Retinal Involvement and Suspected Bing-Neel Syndrome in a Patient With Waldenstrom's Macroglobulinemia. Cureus 2024; 16:e71871. [PMID: 39559629 PMCID: PMC11572956 DOI: 10.7759/cureus.71871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 11/20/2024] Open
Abstract
A 75-year-old male with a history of Waldenström macroglobulinemia (WM), diagnosed in 2022, presented with several months of progressive blurred vision and floaters in his right eye, impairing his ability to drive, particularly at night. The ophthalmologic evaluation revealed vitreous haemorrhage and sub-retinal pigment epithelial lesions in the superonasal and inferonasal quadrants of the right eye. A pars plana vitrectomy with vitreous biopsy was performed, which was consistent with ocular involvement by WM. The patient underwent orbital radiotherapy. Shortly after completing radiotherapy, he developed acute neurological symptoms, including involuntary movements and erratic behaviour. Based on imaging and clinical presentation, the lesion was highly suspected to represent central nervous system (CNS) involvement by WM (Bing-Neel syndrome), though a tissue diagnosis could not be obtained due to the fitness of the patient. The patient was treated with rituximab and high-dose methotrexate, but after three cycles, follow-up imaging showed progressive CNS disease. Due to his declining condition, any further could not be pursued. At the time of this report, his visual acuity in the right eye was reduced to 6/60 due to silicone oil used during the vitreoretinal surgery, and further review is awaiting. This case illustrates a very rare occurrence of combined direct ocular involvement and suspected CNS infiltration in WM, highlighting the challenges of diagnosing and treating these uncommon but serious manifestations.
Collapse
Affiliation(s)
| | - Khalid Khalil
- Ophthalmology, Cairo University Teaching Hospitals, Cairo, EGY
- Ophthalmology, Hull University Teaching Hospitals NHS Trust, Hull, GBR
| | - Imad Al Assir
- Neuroradiology, Hull University Teaching Hospitals NHS Trust, Hull, GBR
| |
Collapse
|
11
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
12
|
Bibas M, Sarosiek S, Castillo JJ. Waldenström Macroglobulinemia - A State-of-the-Art Review: Part 1: Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Risk Stratification, and Clinical Problems. Mediterr J Hematol Infect Dis 2024; 16:e2024061. [PMID: 38984103 PMCID: PMC11232678 DOI: 10.4084/mjhid.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Waldenström macroglobulinemia (WM) is an infrequent variant of lymphoma, classified as a B-cell malignancy identified by the presence of IgM paraprotein, infiltration of clonal, small lymphoplasmacytic B cells in the bone marrow, and the MYD88 L265P mutation, which is observed in over 90% of cases. The direct invasion of the malignant cells into tissues like lymph nodes and spleen, along with the immune response related to IgM, can also lead to various health complications, such as cytopenias, hyperviscosity, peripheral neuropathy, amyloidosis, and Bing-Neel syndrome. Chemoimmunotherapy has historically been considered the preferred treatment for WM, wherein the combination of rituximab and nucleoside analogs, alkylating drugs, or proteasome inhibitors has exhibited notable efficacy in inhibiting tumor growth. Recent studies have provided evidence that Bruton Tyrosine Kinase inhibitors (BTKI), either used independently or in conjunction with other drugs, have been shown to be effective and safe in the treatment of WM. The disease is considered to be non-curable, with a median life expectancy of 10 to 12 years.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCSS Rome Italy
| | - Shayna Sarosiek
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jorge J Castillo
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Rezvani H, Salari S, Borhani H, Mataji M, Azhdari Tehrani H. Bing-Neel syndrome, a rare manifestation of WM; a case report and review of literature. Clin Case Rep 2024; 12:e9034. [PMID: 38840755 PMCID: PMC11150130 DOI: 10.1002/ccr3.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 06/07/2024] Open
Abstract
Bing-Neel syndrome (BNS) is a rare manifestation in individuals suffering from Waldenström macroglobulinemia (WM). Neurological signs and symptoms in this syndrome are almost difficult to be differentiated from other common neurological manifestations of hyper-viscosity or Waldenström-associated polyneuropathy. In this paper, we report a new case of WM with concurrent BNS, then review the clinical picture and treatment of this syndrome.
Collapse
Affiliation(s)
- Hamid Rezvani
- Department of Hematology‐Medical OncologyShahid Beheshti University of Medical SciencesTehranIran
| | - Sina Salari
- Department of Hematology‐Medical OncologyShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Borhani
- Department of Hematology‐Medical OncologyShahid Beheshti University of Medical SciencesTehranIran
| | - Maedeh Mataji
- Department of Hematology‐Medical OncologyShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Azhdari Tehrani
- Department of Hematology‐Medical OncologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Tawfiq RK, Abeykoon JP, Kapoor P. Bruton Tyrosine Kinase Inhibition: an Effective Strategy to Manage Waldenström Macroglobulinemia. Curr Hematol Malig Rep 2024; 19:120-137. [PMID: 38536576 DOI: 10.1007/s11899-024-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW The treatment of Waldenström macroglobulinemia (WM) has evolved over the past decade. With the seminal discoveries of MYD88 and CXCR warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) mutations in WM cells, our understanding of the disease biology and treatment has improved. The development of a new class of agents, Bruton tyrosine kinase inhibitors (BTKi), has substantially impacted the treatment paradigm of WM. Herein, we review the current and emerging BTKi and the evidence for their use in WM. RECENT FINDINGS Clinical trials have established the role of covalent BTKi in the treatment of WM. Their efficacy is compromised among patients who harbor CXCR4WHIM mutation or MYD88WT genotype. The development of BTKC481 mutation-mediated resistance to covalent BTKi may lead to disease refractoriness. Novel, non-covalent, next-generation BTKi are emerging, and preliminary results of the early phase clinical trials show promising activity in WM, even among patients refractory to a covalent BTKi. Covalent BTK inhibitors have demonstrated meaningful outcomes in treatment-naïve (TN) and relapsed refractory (R/R) WM, particularly among those harboring the MYD88L265P mutation. The next-generation BTKi demonstrate improved selectivity, resulting in a more favorable toxicity profile. In WM, BTKi are administered until progression or the development of intolerable toxicity. Consequently, the potential for acquired resistance, the emergence of cumulative toxicities, and treatment-related financial burden are critical challenges associated with the continuous therapy approach. By circumventing BTK C481 mutations that alter the binding site to covalent BTKi, the non-covalent BTKi serve as alternative agents in the event of acquired resistance. Head-to-head comparative trials with the conventional chemoimmunotherapies are lacking. The findings of the RAINBOW trial (NCT046152), comparing the dexamethasone, rituximab, and cyclophosphamide (DRC) regimen to the first-generation, ibrutinib are awaited, but more studies are needed to draw definitive conclusions on the comparative efficacy of chemoimmunotherapy and BTKi. Complete response is elusive with BTKi, and combination regimens to improve upon the efficacy and limit the treatment duration are also under evaluation in WM.
Collapse
Affiliation(s)
- Reema K Tawfiq
- Department of Hematology-Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jithma P Abeykoon
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Prashant Kapoor
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Østergaard S, Schejbel L, Breinholt MF, Pedersen MØ, Hammer T, Munksgaard L, Nørgaard P, Høgdall E, Gjerdrum LMR, Nielsen TH. Mutational landscape in Waldenström macroglobulinemia evaluated using a next-generation sequencing lymphoma panel in routine clinical practice. Leuk Lymphoma 2024; 65:758-767. [PMID: 38340359 DOI: 10.1080/10428194.2024.2313623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Next-generation sequencing (NGS) affords comprehensive insights into the genomic landscape of lymphomas. We examined the mutational pattern in patients with Waldenström macroglobulinemia (WM) or lymphoplasmacytic lymphoma (LPL) as well as the diagnostic and clinical utility of a tailored NGS lymphoma panel. A consecutive series of 45 patients was reviewed and NGS analysis was performed as part of a routine diagnostic setup. The custom designed NGS panel assayed all coding sequences of 59 genes of known clinical significance in lymphoid neoplasms. The most frequently mutated genes were MYD88, CXCR4, BIRC3, CD79B, and ARID1A. Additional somatic mutations were detected in 17 genes with four mutations categorized as pathogenic or likely pathogenic. BIRC3 and TP53 mutations were associated with adverse clinical phenotypes. NGS performance for the MYD88L265P variant was 96% when compared to qPCR. In conclusion, targeted NGS provided important diagnostic and prognostic information in a routine clinical setting.
Collapse
Affiliation(s)
- Simon Østergaard
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Lone Schejbel
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mette Ølgod Pedersen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Troels Hammer
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Munksgaard
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Peter Nørgaard
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
- Department of Pathology, Hvidovre Hospital, Hvidovre, Denmark
| | - Estrid Høgdall
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Holm Nielsen
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Danish Medicines Agency, Copenhagen, Denmark
| |
Collapse
|
16
|
Pemov A, Kim J, Luo W, Liu J, Graham C, Jones K, DeMangel D, Freedman ND, Dumontet C, Zhu B, McMaster ML, Stewart DR. The landscape of rare genetic variants in familial Waldenström macroglobulinemia. BLOOD NEOPLASIA 2024; 1:100013. [PMID: 39036705 PMCID: PMC11258892 DOI: 10.1016/j.bneo.2024.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Waldenström macroglobulinemia (WM) is a rare hematological malignancy. Risk for WM is elevated 20-fold among first-degree relatives of patients with WM. However, the list of variants and genes that cause WM remains incomplete. In this study we analyzed exomes from 64 WM pedigrees for evidence of genetic susceptibility for this malignancy. We determined the frequency of pathogenic (P) or likely pathogenic (LP) variants among patients with WM; performed variant- and gene-level association analyses with the set of 166 WM cases and 681 unaffected controls; and examined the segregation pattern of deleterious variants among affected members in each pedigree. We identified P/LP variants in TREX1 and SAMHD1 (genes that function at the interface between innate immune response, genotoxic surveillance, and DNA repair) segregating in patients with WM from 2 pedigrees. There were additional P/LP variants in cancer-predisposing genes (eg, POT1, RECQL4, PTPN11, PMS2). In variant- and gene-level analyses, no associations were statistically significant after multiple testing correction. On a pathway level, we observed involvement of genes that play a role in telomere maintenance (q-value = 0.02), regulation of innate immune response (q-value = 0.05), and DNA repair (q-value = 0.08). Affected members of each pedigree shared multiple deleterious variants (median, n = 18), but the overlap between the families was modest. In summary, P/LP variants in highly penetrant genes constitute a modest proportion of the deleterious variants; each pedigree is largely unique in its genetic architecture, and multiple genes are likely involved in the etiology of WM.
Collapse
Affiliation(s)
- Alexander Pemov
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, National Cancer Institute, Rockville, MD
| | - Jia Liu
- Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, National Cancer Institute, Rockville, MD
| | - Cole Graham
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, National Cancer Institute, Rockville, MD
| | - Delphine DeMangel
- Department of Hematology, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch
| | - Charles Dumontet
- Department of Hematology, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, Bethesda, MD
| | - Mary L. McMaster
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
17
|
Thirumurthy SK, Bapat M, Ahmed E. A diagnostic dilemma-to operate or not to operate-a rare case report. J Surg Case Rep 2024; 2024:rjae300. [PMID: 38800507 PMCID: PMC11126338 DOI: 10.1093/jscr/rjae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
A 41-year-old male presented with a swelling in the right flank present since 2 years. Initially, it was small in size but increased in size for the past 6 months. Examination revealed a large swelling in the right flank that was soft in consistency and attached to the deeper muscle. CT scan revealed a heterogenous complex swelling with attachment to the underlying muscle. Core biopsy of the lesion was reported as undifferentiated sarcoma. After immunohistochemistry markers, the diagnosis was revised to a malignancy of a lymphomatous origin. Gene sequencing studies and extensive higher marker studies were done and a final diagnosis of plasmacytic infiltrate of uncertain clinical significance was reported. With no further diagnostic options available, the case still remains to be a diagnostic challenge as the choice of treatment between surgical resection and nonsurgical treatment with chemotherapy and/or radiation cannot be decided upon.
Collapse
Affiliation(s)
| | - Manjiri Bapat
- Department of General Surgery, NMC Royal Hospital, Al Ghuwair, Sharjah, United Arab Emirates
| | - Ehsan Ahmed
- Department of General Surgery, NMC Royal Hospital, Al Ghuwair, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Treon SP, Sarosiek S, Castillo JJ. How I use genomics and BTK inhibitors in the treatment of Waldenström macroglobulinemia. Blood 2024; 143:1702-1712. [PMID: 38211337 PMCID: PMC11103089 DOI: 10.1182/blood.2022017235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Mutations in MYD88 (95%-97%) and CXCR4 (30%-40%) are common in Waldenström macroglobulinemia (WM). TP53 is altered in 20% to 30% of patients with WM, particularly those previously treated. Mutated MYD88 activates hematopoietic cell kinase that drives Bruton tyrosine kinase (BTK) prosurvival signaling. Both nonsense and frameshift CXCR4 mutations occur in WM. Nonsense variants show greater resistance to BTK inhibitors. Covalent BTK inhibitors (cBTKi) produce major responses in 70% to 80% of patients with WM. MYD88 and CXCR4 mutation status can affect time to major response, depth of response, and/or progression-free survival (PFS) in patients with WM treated with cBTKi. The cBTKi zanubrutinib shows greater response activity and/or improved PFS in patients with WM with wild-type MYD88, mutated CXCR4, or altered TP53. Risks for adverse events, including atrial fibrillation, bleeding diathesis, and neutropenia can differ based on which BTKi is used in WM. Intolerance is also common with cBTKi, and dose reduction or switchover to another cBTKi can be considered. For patients with acquired resistance to cBTKis, newer options include pirtobrutinib or venetoclax. Combinations of BTKis with chemoimmunotherapy, CXCR4, and BCL2 antagonists are discussed. Algorithms for positioning BTKis in treatment naïve or previously treated patients with WM, based on genomics, disease characteristics, and comorbidities, are presented.
Collapse
Affiliation(s)
- Steven P. Treon
- Bing Center for Waldenström’s Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Shayna Sarosiek
- Bing Center for Waldenström’s Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jorge J. Castillo
- Bing Center for Waldenström’s Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Tam CS, Opat S, D'Sa S, Jurczak W, Lee HP, Cull G, Owen RG, Marlton P, Wahlin BE, García-Sanz R, McCarthy H, Mulligan S, Tedeschi A, Castillo JJ, Czyż J, Fernández De Larrea C, Belada D, Libby E, Matous J, Motta M, Siddiqi T, Tani M, Trněný M, Minnema MC, Buske C, Leblond V, Treon SP, Trotman J, Wu B, Yu Y, Shen Z, Chan WY, Schneider J, Allewelt H, Cohen A, Dimopoulos MA. Biomarker analysis of the ASPEN study comparing zanubrutinib with ibrutinib for patients with Waldenström macroglobulinemia. Blood Adv 2024; 8:1639-1650. [PMID: 38315878 PMCID: PMC11006814 DOI: 10.1182/bloodadvances.2023010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
ABSTRACT The phase 3 ASPEN trial (NCT03053440) compared Bruton tyrosine kinase inhibitors (BTKis), zanubrutinib and ibrutinib, in patients with Waldenström macroglobulinemia (WM). Post-hoc biomarker analysis was performed using next-generation sequencing on pretreatment bone marrow samples from 98 patients treated with zanubrutinib and 92 patients treated with ibrutinib with mutated (MUT) MYD88 and 20 patients with wild-type (WT) MYD88 treated with zanubrutinib. Of 329 mutations in 52 genes, mutations in CXCR4 (25.7%), TP53 (24.8%), ARID1A (15.7%), and TERT (9.0%) were most common. TP53MUT, ARID1AMUT, and TERTMUT were associated with higher rates of CXCR4MUT (P < .05). Patients with CXCR4MUT (frameshift or nonsense [NS] mutations) had lower very good partial response (VGPR) and complete response rates (CR; 17.0% vs 37.2%, P = .020) and longer time to response (11.1 vs 8.4 months) than patients with CXCR4WT treated with BTKis. CXCR4NS was associated with inferior progression-free survival (PFS; hazard ratio [HR], 3.39; P = .017) in patients treated with ibrutinib but not in those treated with zanubrutinib (HR, 0.67; P = .598), but VGPR + CR rates were similar between treatment groups (14.3% vs 15.4%). Compared with ibrutinib, patients with CXCR4NS treated with zanubrutinib had a favorable major response rate (MRR; 85.7% vs 53.8%; P = .09) and PFS (HR, 0.30; P = .093). In patients with TP53MUT, significantly lower MRRs were observed for patients treated with ibrutinib (63.6% vs 85.7%; P = .04) but not for those treated with zanubrutinib (80.8% vs 81.9%; P = .978). In TP53MUT, compared with ibrutinib, patients treated with zanubrutinib had higher VGPR and CR (34.6% vs 13.6%; P < .05), numerically improved MRR (80.8% vs 63.6%; P = .11), and longer PFS (not reached vs 44.2 months; HR, 0.66; P = .37). Collectively, patients with WM with CXCR4MUT or TP53MUT had worse prognosis compared with patients with WT alleles, and zanubrutinib led to better clinical outcomes.
Collapse
Affiliation(s)
- Constantine S. Tam
- Department of Haematology, Alfred Hospital and Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Stephen Opat
- Department of Haematology, Monash Health and Monash University, Clayton, VIC, Australia
| | - Shirley D'Sa
- Centre for Waldenström’s Macroglobulinemia and Associated Disorders, University College London Hospital Foundation Trust, London, United Kingdom
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland
| | - Hui-Peng Lee
- Department of Haematology, Flinders Medical Centre, Adelaide, SA, Australia
| | - Gavin Cull
- Department of Haematology, Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, Australia
| | - Roger G. Owen
- Haematological Malignancy Diagnostic Service, St James University Hospital, Leeds, United Kingdom
| | - Paula Marlton
- Department of Haematology, Princess Alexandra Hospital and University of Queensland, Brisbane, QLD, Australia
| | - Björn E. Wahlin
- Department of Hematology, Karolinska Universitetssjukhuset and Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ramón García-Sanz
- Department of Hematology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Helen McCarthy
- Department of Haematology, Royal Bournemouth and Christchurch Hospital, Bournemouth, United Kingdom
| | - Stephen Mulligan
- Department of Haematology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jorge J. Castillo
- Bing Center for Waldenstrom Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Jarosław Czyż
- Department of Hematology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | | | - David Belada
- Department of Internal Medicine – Haematology, University Hospital and Faculty of Medicine, Hradec Králové, Czech Republic
| | - Edward Libby
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Marina Motta
- Department of Hematology, AO Spedali Civili di Brescia, Lombardia, Italy
| | - Tanya Siddiqi
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Monica Tani
- U.O. Ematologia, Dipartimento Oncologia e Ematologia, Ospedale Civile Santa Maria delle Croci, AUSL Ravenna, Italy
| | - Marek Trněný
- Všeobecná fakultní nemocnice v Praze, Prague, Czechia
| | - Monique C. Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christian Buske
- Comprehensive Cancer Center Ulm, Universitätsklinikum Ulm, Ulm, Baden-Württemberg, Germany
| | - Véronique Leblond
- Service d'Hématologie Clinique, Sorbonne University, Pitié Salpêtrière Hospital, Paris, France
| | - Steven P. Treon
- Bing Center for Waldenstrom Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Judith Trotman
- Department of Hematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Binghao Wu
- BeiGene USA, Inc, San Mateo, CA
- BeiGene Co, Ltd, Shanghai, China
| | - Yiling Yu
- BeiGene USA, Inc, San Mateo, CA
- BeiGene Co, Ltd, Shanghai, China
| | - Zhirong Shen
- BeiGene USA, Inc, San Mateo, CA
- BeiGene Co, Ltd, Shanghai, China
| | - Wai Y. Chan
- BeiGene USA, Inc, San Mateo, CA
- BeiGene Co, Ltd, Shanghai, China
| | | | | | - Aileen Cohen
- BeiGene USA, Inc, San Mateo, CA
- BeiGene Co, Ltd, Shanghai, China
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
López C, Fischer A, Rosenwald A, Siebert R, Ott G, Kurz KS. Genetic alterations in mature B- and T-cell lymphomas - a practical guide to WHO-HAEM5. MED GENET-BERLIN 2024; 36:59-73. [PMID: 38835967 PMCID: PMC11006337 DOI: 10.1515/medgen-2024-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The identification of recurrent genomic alterations in tumour cells has a significant role in the classification of mature B- and T-cell lymphomas. Following the development of new technologies, such as next generation sequencing and the improvement of classical technologies such as conventional and molecular cytogenetics, a huge catalogue of genomic alterations in lymphoid neoplasms has been established. These alterations are relevant to refine the taxonomy of the classification of lymphomas, to scrutinize the differential diagnosis within different lymphoma entities and to help assessing the prognosis and clinical management of the patients. Consequently, here we describe the key genetic alterations relevant in mature B- and T-cell lymphomas.
Collapse
Affiliation(s)
- Cristina López
- Universität Würzburg Institut für Pathologie Würzburg Germany
| | - Anja Fischer
- Universität Ulm und Universitätsklinikum Ulm Institut für Humangenetik Ulm Germany
| | - Andreas Rosenwald
- Robert-Bosch-Krankenhaus Abteilung für Klinische Pathologie Stuttgart Germany
| | - Reiner Siebert
- Robert-Bosch-Krankenhaus Abteilung für Klinische Pathologie Stuttgart Germany
| | - German Ott
- Universität Ulm und Universitätsklinikum Ulm Institut für Humangenetik Ulm Germany
| | - Katrin S Kurz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Molecular Pathology Laboratory Barcelona Spain
| |
Collapse
|
21
|
Castillo JJ, Branagan AR, Sermer D, Flynn CA, Meid K, Little M, Stockman K, White T, Canning A, Guerrera ML, Kofides A, Liu S, Liu X, Richardson K, Tsakmaklis N, Patterson CJ, Hunter ZR, Treon SP, Sarosiek S. Ibrutinib and venetoclax as primary therapy in symptomatic, treatment-naïve Waldenström macroglobulinemia. Blood 2024; 143:582-591. [PMID: 37971194 PMCID: PMC10873534 DOI: 10.1182/blood.2023022420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT Concurrent Bruton tyrosine kinase and BCL2 inhibition has not yet been investigated in Waldenström macroglobulinemia (WM). We performed an investigator-initiated trial of ibrutinib and venetoclax in symptomatic treatment-naïve patients with MYD88-mutated WM. Patients received ibrutinib 420 mg once daily (cycle 1), followed by a ramp-up of venetoclax to 400 mg daily (cycle 2). The combination was then administered for 22 additional 4-week cycles. The attainment of very good partial response (VGPR) was the primary end point. Forty-five patients were enrolled in this study. The median baseline characteristics were as follows: age 67 years, serum IgM 43 g/L, and hemoglobin 102 g/L. Seventeen patients (38%) carried CXCR4 mutations. Nineteen patients (42%) achieved VGPR. Grade 3 or higher adverse events included neutropenia (38%), mucositis (9%), and tumor lysis syndrome (7%). Atrial fibrillation occurred in 3 (9%), and ventricular arrhythmia in 4 (9%) patients that included 2 grade 5 events. With a median follow-up of 24.4 months, the 24-month progression-free survival (PFS) and overall survival (OS) rates were 76% and 96%, respectively, and were not impacted by CXCR4 mutations. The median time on therapy was 10.2 months, and the median time after the end of therapy (EOT) was 13.3 months. Eleven of the 12 progression events occurred after EOT, and the 12-month PFS rates after EOT were 79%; 93% if VGPR was attained, and 69% for other patients (P = .12). Ibrutinib and venetoclax induced high VGPR rates and durable responses after EOT, although they were associated with a higher-than-expected rate of ventricular arrhythmia in patients with WM, leading to early study treatment termination. This trial was registered at www.clinicaltrials.gov as #NCT04273139.
Collapse
Affiliation(s)
- Jorge J. Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Andrew R. Branagan
- Department of Medicine, Harvard Medical School, Boston, MA
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - David Sermer
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Catherine A. Flynn
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Kirsten Meid
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Megan Little
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Katherine Stockman
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Timothy White
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Alexa Canning
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Maria L. Guerrera
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Amanda Kofides
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Shirong Liu
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Xia Liu
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Kris Richardson
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Nicholas Tsakmaklis
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | | | - Zachary R. Hunter
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Steven P. Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Bravo-Perez C, Gurnari C. A tower of babel of acronyms? The shadowlands of MGUS/MBL/CHIP/TCUS. Semin Hematol 2024; 61:43-50. [PMID: 38350765 DOI: 10.1053/j.seminhematol.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
With the advent of outperforming and massive laboratory tools, such as multiparameter flow cytometry and next-generation sequencing, hematopoietic cell clones with putative abnormalities for a variety of blood malignancies have been appreciated in otherwise healthy individuals. These conditions do not fulfill the criteria of their presumed cancer counterparts, and thus have been recognized as their precursor states. This is the case of monoclonal gammopathy of unknown significance (MGUS), the first blood premalignancy state described, preceding multiple myeloma (MM) or Waldenström macroglobulinemia (WM). However, in the last 2 decades, an increasing list of clonopathies has been recognized, including monoclonal B cell lymphocytosis (MBL), which antecedes chronic lymphocytic leukemia (CLL), clonal hematopoiesis of indeterminate potential (CHIP) for myeloid neoplasms (MN), and T-cell clones of uncertain significance (TCUS) for T-cell large chronic lymphocytic leukemia (LGLL). While for some of these entities diagnostic boundaries are precisely set, for others these are yet to be fully defined. Moreover, despite mostly considered of "uncertain significance," they have not only appeared to predispose to malignancy, but also to be capable of provoking set of immunological and cardiovascular complications that may require specialized management. The clinical implications of the aberrant clones, together with the extensive knowledge generated on the pathogenetic events driving their evolution, raises the question whether earlier interventions may alter the natural history of the disease. Herein, we review this Tower of Babel of acronyms pinpointing diagnostic definitions, differential diagnosis, and the role of genomic profiling of these precursor states, as well as potential interventional strategies.
Collapse
Affiliation(s)
- Carlos Bravo-Perez
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER - Instituto de Salud Carlos III, Murcia, Spain
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
23
|
Bagratuni T, Aktypi F, Theologi O, Sakkou M, Verrou KM, Mavrianou‐Koutsoukou N, Patseas D, Liacos C, Skourti S, Papadimou A, Taouxi K, Theodorakakou F, Kollias G, Sfikakis P, Terpos E, Dimopoulos MA, Kastritis E. Single-cell analysis of MYD88 L265P and MYD88 WT Waldenström macroglobulinemia patients. Hemasphere 2024; 8:e27. [PMID: 38435423 PMCID: PMC10878187 DOI: 10.1002/hem3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/07/2023] [Indexed: 03/05/2024] Open
Abstract
Waldenström macroglobulinemia (WM) is characterized by the expansion of clonal lymphoplasmacytic cells; the MYD88L265P somatic mutation is found in >90% of patients, but malignant B cells may still display intra-clonal heterogeneity. To assess clonal heterogeneity in WM, we generated and performed single-cell RNA sequencing of CD19+ sorted cells from five patients with MYD88 L265P and two patients with MYD88 WT genotype as well as two healthy donors. We identified distinct transcriptional patterns in the clonal subpopulations not only between the two genetically distinct WM subgroups but also among MYD88 L265P patients, which affected the B cell composition in the different subgroups. Comparison of clonal and normal/polyclonal B cells within each patient sample enabled the identification of patient-specific transcriptional changes. We identified gene signatures active in a subset of MYD88L265P patients, while other signatures were active in MYD88 WT patients. Finally, gene expression analysis showed common transcriptional features between patients compared to the healthy control but also differentially expressed genes between MYD88 L265P and MYD88 WT patients involved in distinct pathways, including NFκΒ, BCL2, and BTK. Overall, our data highlight the intra-tumor clonal heterogeneity in WM with potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Tina Bagratuni
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Foteini Aktypi
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ourania Theologi
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Maria Sakkou
- School of Medicine, Center of New Biotechnologies & Precision MedicineNational and Kapodistrian University of AthensAthensGreece
- Department of PhysiologyNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Biomedical Sciences Research Center (BSRC) ‘Alexander Fleming’Institute for BioinnovationVariGreece
| | - Kleio Maria Verrou
- School of Medicine, Center of New Biotechnologies & Precision MedicineNational and Kapodistrian University of AthensAthensGreece
- Joint Rheumatology ProgramNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Nefeli Mavrianou‐Koutsoukou
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Dimitrios Patseas
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Christine Liacos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Stamatia Skourti
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Alexandra Papadimou
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Kostantina Taouxi
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Georgios Kollias
- School of Medicine, Center of New Biotechnologies & Precision MedicineNational and Kapodistrian University of AthensAthensGreece
- Department of PhysiologyNational and Kapodistrian University of Athens Medical SchoolAthensGreece
- Biomedical Sciences Research Center (BSRC) ‘Alexander Fleming’Institute for BioinnovationVariGreece
| | - Petros Sfikakis
- School of Medicine, Center of New Biotechnologies & Precision MedicineNational and Kapodistrian University of AthensAthensGreece
- Joint Rheumatology ProgramNational and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
24
|
Alzghoul H, Haider A, Mukhtar F, Khuddus N. Bing-Neel syndrome: a rare neurological complication of Waldenström macroglobulinaemia. BMJ Case Rep 2024; 17:e255268. [PMID: 38182164 PMCID: PMC10773308 DOI: 10.1136/bcr-2023-255268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Bing-Neel syndrome (BNS) is a very rare manifestation of Waldenström macroglobulinaemia (WM), in which lymphoplasmacytic cells invade the central nervous system. The clinical presentation includes symptoms of headaches, visual floaters, neuropathy, seizures and gait abnormalities. Here, we describe an elderly woman, who presented with complaints of visual floaters, progressive neuropathy and cognitive changes. Workup including a bone marrow biopsy confirmed the diagnosis of WM. Shortly afterwards, the patient experienced a seizure leading to hospitalisation, which revealed a right frontal lobe lesion on brain MRI. A biopsy of the lesion showed a small B cell lymphoma positive for an MYD88 mutation, confirming BNS. The patient was initially treated with ibrutinib, before transitioning to zanubrutinib. However, she developed disease progression necessitating radiotherapy with lenalidomide and rituximab maintenance therapy, which achieved remission. This case sheds light on the diagnosis and management of a very rare complication of a rare disease.
Collapse
Affiliation(s)
- Hamza Alzghoul
- Internal Medicine, University of Central Florida College of Medicine, Gainesville, Florida, USA
- Internal Medicine, North Florida Regional Medical Center, Gainesville, Florida, USA
| | - Asad Haider
- Internal Medicine, University of Central Florida College of Medicine, Gainesville, Florida, USA
- Internal Medicine, North Florida Regional Medical Center, Gainesville, Florida, USA
| | - Faisal Mukhtar
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Nausheen Khuddus
- Ophthalmology, North Florida Regional Medical Center, Gainesville, Florida, USA
| |
Collapse
|
25
|
Sarosiek S, Castillo JJ. Waldenström Macroglobulinemia: Targeted Agents Taking Center Stage. Drugs 2024; 84:17-25. [PMID: 38055179 DOI: 10.1007/s40265-023-01974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
With the worldwide approval of the oral covalent Bruton tyrosine kinase (BTK) inhibitors ibrutinib and zanubrutinib for treating patients with Waldenström macroglobulinemia (WM), targeted agents have certainly taken center stage in the therapeutic landscape of WM. This review discusses the biological and clinical data supporting current and up-and-coming targeted agents in WM. Bruton tyrosine kinase inhibitors induce fast, deep, and durable responses in patients with WM, comparable to chemoimmunotherapy; however, there is a glaring absence of comparative studies between these regimens. The high response and progression-free survival rate and the ease of administration of BTK inhibitors must be balanced against their specific adverse-event profile with unique toxicity (e.g., bleeding and cardiac arrhythmia) and the indefinite duration of the therapy. Novel targeted agents of interest include BCL2 antagonists (e.g., venetoclax and sonrotoclax) and non-covalent BTK inhibitors (e.g., pirtobrutinib and nemtabrutinib), among others. The therapeutic landscape of patients with WM will benefit from the robust participation of patients in clinical trials.
Collapse
Affiliation(s)
- Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 221, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 221, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
27
|
Hayashi K, Koyama D, Sato Y, Fukatsu M, Ikezoe T. Lymphoplasmacytic lymphoma presenting cold agglutinin syndrome: Clonal expansion of KMT2D and IGHV4-34 mutations after COVID-19. Br J Haematol 2023; 203:e110-e113. [PMID: 37697431 DOI: 10.1111/bjh.19106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Affiliation(s)
- Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yuki Sato
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
28
|
Kapoor P, Rajkumar SV. Current approach to Waldenström macroglobulinemia. Blood Rev 2023; 62:101129. [PMID: 37659912 PMCID: PMC10841191 DOI: 10.1016/j.blre.2023.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Waldenström macroglobulinemia (WM) is a unique CD20+, B-cell non-Hodgkin lymphoma, characterized by lymphoplasmacytic infiltration of the bone marrow and circulating monoclonal immunoglobulin M. The clinical manifestations and outcomes of patients are highly variable. High-level evidence supports integration of monoclonal anti-CD20 antibody, rituximab, to the chemotherapy backbone to treat WM. However, its contemporary management has become more nuanced, with deeper understanding of the pathophysiology and incorporation of Bruton's tyrosine kinase (BTK) inhibitors to the treatment paradigm. Prior knowledge of the patients' MYD88L265P and CXCR4 mutation status may aid in the treatment decision-making. Currently, the two frequently utilized approaches include fixed-duration chemoimmunotherapy and BTK inhibitor-based continuous treatment until progression. Randomized trials comparing these two vastly divergent approaches are lacking. Recent studies demonstrating efficacy of B cell lymphoma-2 (BCL2) inhibitors and non-covalent BTK inhibitors in patients, previously exposed to a covalent BTK inhibitor, are a testament to the rapidly expanding options against WM.
Collapse
|
29
|
Berendsen MR, van Bladel DA, Hesius E, Berganza Irusquieta C, Rijntjes J, van Spriel AB, van der Spek E, Pruijt JF, Kroeze LI, Hebeda KM, Croockewit S, Stevens WB, van Krieken JHJ, Groenen PJ, van den Brand M, Scheijen B. Clonal Relationship and Mutation Analysis in Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia Associated With Diffuse Large B-cell Lymphoma. Hemasphere 2023; 7:e976. [PMID: 37928625 PMCID: PMC10621888 DOI: 10.1097/hs9.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) occasionally develop diffuse large B-cell lymphoma (DLBCL). This mostly results from LPL/WM transformation, although clonally unrelated DLBCL can also arise. LPL/WM is characterized by activating MYD88L265P (>95%) and CXCR4 mutations (~30%), but the genetic drivers of transformation remain to be identified. Here, in thirteen LPL/WM patients who developed DLBCL, the clonal relationship of LPL and DLBCL together with mutations contributing to transformation were investigated. In 2 LPL/WM patients (15%), high-throughput sequencing of immunoglobulin gene rearrangements showed evidence of >1 clonal B-cell population in LPL tissue biopsies. In the majority of LPL/WM patients, DLBCL presentations were clonally related to the dominant clone in LPL, providing evidence of transformation. However, in 3 patients (23%), DLBCL was clonally unrelated to the major malignant B-cell clone in LPL, of which 2 patients developed de novo DLBCL. In this study cohort, LPL displayed MYD88L265P mutation in 8 out of eleven patients analyzed (73%), while CXCR4 mutations were observed in 6 cases (55%). MYD88WT LPL biopsies present in 3 patients (27%) were characterized by CD79B and TNFAIP3 mutations. Upon transformation, DLBCL acquired novel mutations targeting BTG1, BTG2, CD79B, CARD11, TP53, and PIM1. Together, we demonstrate variable clonal B-cell dynamics in LPL/WM patients developing DLBCL, and the occurrence of clonally unrelated DLBCL in about one-quarter of LPL/WM patients. Moreover, we identified commonly mutated genes upon DLBCL transformation, which together with preserved mutations already present in LPL characterize the mutational landscape of DLBCL occurrences in LPL/WM patients.
Collapse
Affiliation(s)
| | - Diede A.G. van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Hesius
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jos Rijntjes
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B. van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Johannes F.M. Pruijt
- Department of Hematology, Jeroen Bosch Hospital, ‘s-Hertogenbosch, The Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra Croockewit
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wendy B.C. Stevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Parrondo RD, Iqbal M, Von Roemeling R, Von Roemeling C, Tun HW. IRAK-4 inhibition: emavusertib for the treatment of lymphoid and myeloid malignancies. Front Immunol 2023; 14:1239082. [PMID: 37954584 PMCID: PMC10637517 DOI: 10.3389/fimmu.2023.1239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.
Collapse
Affiliation(s)
- Ricardo D. Parrondo
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Madiha Iqbal
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | | | | | - Han W. Tun
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| |
Collapse
|
31
|
Nalin A, Zhao Q, Voorhees T, Bond D, Sawalha Y, Hanel W, Sigmund A, Annunzio K, Alinari L, Baiocchi R, Maddocks K, Jones D, Christian B, Epperla N. Impact of circulating lymphoma cells at diagnosis on outcomes in patients with Waldenstrom macroglobulinemia. Front Oncol 2023; 13:1264387. [PMID: 37781209 PMCID: PMC10533994 DOI: 10.3389/fonc.2023.1264387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Given the paucity of data surrounding the prognostic relevance of circulating lymphoma (CL) in Waldenström macroglobulinemia (WM), we sought to evaluate the impact of CL at diagnosis on outcomes in patients with WM. Patients were divided into CL+ and CL- based on the results of flow cytometry. The endpoints included assessing progression-free survival (PFS), overall survival (OS), and diagnosis-to-treatment interval (DTI) between the two groups. Among the 308 patients with WM, 69 met the eligibility criteria with 42 and 27 in CL+ and CL- groups, respectively. The two groups were well balanced in regard to all the baseline characteristics. The ORR was numerically higher in the CL+ group compared to the CL-group (81% versus 61%, respectively), however, the CR+VGPR rates were similar between the two groups. The median PFS was not significantly different between the two groups (6.3 years in the CL- group versus not reached [NR] in the CL+ group) regardless of the first-line therapy. There was no significant difference in median OS between the CL- and CL+ groups (13 years versus NR). Although the median DTI was shorter in the CL+ group compared to CL- group, the significance was lost in the multivariable analysis. In this study (largest-to-date) evaluating the impact of CL on outcomes in patients with newly diagnosed WM, we did not find the prognostic utility of CL in WM. Future studies should explore the correlation of CL with other biological factors that impact the outcomes in WM patients.
Collapse
Affiliation(s)
- Ansel Nalin
- Department of Medicine, The Ohio State University, Columbus, OH, United States
| | - Qiuhong Zhao
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Timothy Voorhees
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - David Bond
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Yazeed Sawalha
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Walter Hanel
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Audrey Sigmund
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kaitlin Annunzio
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Lapo Alinari
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Robert Baiocchi
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kami Maddocks
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Dan Jones
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Beth Christian
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Narendranath Epperla
- Division of Hematology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Guenther A, Tierens A, Malecka A, Delabie J. The Histopathology of Cold Agglutinin Disease-Associated B-Cell Lymphoproliferative Disease. Am J Clin Pathol 2023; 160:229-237. [PMID: 37253147 DOI: 10.1093/ajcp/aqad048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVES Primary cold agglutinin disease is a type of autoimmune hemolytic anemia caused by circulating antibodies against I antigen, a carbohydrate expressed on most cells, including red blood cells. The underlying disease has been characterized in recent years as a distinct B-cell lymphoproliferative disease of the bone marrow, occurring mostly in the elderly. The disease has been now been included as a separate entity in the most recent classifications of mature B-cell neoplasms. METHODS A review of the characteristics of cold agglutinin disease is provided, with an emphasis on the pathology features. RESULTS A detailed description of the histopathology, immunophenotype, and genetics of cold agglutinin disease is provided and compared to other B-cell lymphoproliferative diseases in the bone marrow with similar features. CONCLUSIONS Recognition of the pathology features of cold agglutinin disease allows to distinguish it from other diseases, especially lymphoplasmacytic lymphoma and marginal zone lymphoma.
Collapse
Affiliation(s)
- Angela Guenther
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Canada
| | - Anne Tierens
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Canada
| | | | - Jan Delabie
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Abstract
Owing to the indolent nature of Waldenström macroglobulinemia, most patients experience a prolonged life expectancy, although many lines of therapy will likely be required to maintain disease control. Despite the currently available therapies, most patients will develop intolerance or resistance to multiple treatments. Therefore, new therapeutic options are being developed with a focus on targeted agents, such as novel Bruton tyrosine kinase (BTK) inhibitors and BTK degraders, as well as C-X-C chemokine receptor type 4, mucosa-associated lymphoid tissue translocation protein 1, and interleukin-1 receptor-associated kinase 4.
Collapse
Affiliation(s)
- Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
García-Sanz R, García-Álvarez M, Medina A, Askari E, González-Calle V, Casanova M, de la Torre-Loizaga I, Escalante-Barrigón F, Bastos-Boente M, Bárez A, Vidaña-Bedera N, Alonso JM, Sarasquete ME, González M, Chillón MC, Alcoceba M, Jiménez C. Clonal architecture and evolutionary history of Waldenström's macroglobulinemia at the single-cell level. Dis Model Mech 2023; 16:dmm050227. [PMID: 37493341 PMCID: PMC10461465 DOI: 10.1242/dmm.050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
To provide insight into the subclonal architecture and co-dependency patterns of the alterations in Waldenström's macroglobulinemia (WM), we performed single-cell mutational and protein profiling of eight patients. A custom panel was designed to screen for mutations and copy number alterations at the single-cell level in samples taken from patients at diagnosis (n=5) or at disease progression (n=3). Results showed that in asymptomatic WM at diagnosis, MYD88L265P was the predominant clonal alteration; other events, if present, were secondary and subclonal to MYD88L265P. In symptomatic WM, clonal diversity was more evident, uncovering combinations of alterations that synergized to promote clonal expansion and dominance. At disease progression, a dominant clone was observed, sometimes accompanied by other less complex minor clones, which could be consistent with a clonal selection process. Clonal diversity was also reduced, probably due to the effect of treatment. Finally, we combined protein expression with mutational analysis to map somatic genotype with the immunophenotype. Our findings provide a comprehensive view of the clonality of tumor populations in WM and how clonal complexity can evolve and impact disease progression.
Collapse
Affiliation(s)
- Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - María García-Álvarez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Alejandro Medina
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Elham Askari
- Hematology Department, Fundación Jiménez Díaz, Centro de Investigación Biomédica en Red-Cáncer, Madrid 28040, Spain
| | - Verónica González-Calle
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - María Casanova
- Hematology Department, Hospital Costa del Sol, Marbella 29603, Spain
| | - Igor de la Torre-Loizaga
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | | | - Miguel Bastos-Boente
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Abelardo Bárez
- Hematology Department, Complejo Asistencial de Ávila, Ávila 05071, Spain
| | - Nerea Vidaña-Bedera
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - José María Alonso
- Hematology Department, Complejo Asistencial Universitario de Palencia, Palencia 34005, Spain
| | - María Eugenia Sarasquete
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Marcos González
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - María Carmen Chillón
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Miguel Alcoceba
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| |
Collapse
|
35
|
Moreno DF, Fernández de Larrea C. Clinical Implications of Genomic Profile in Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:659-670. [PMID: 37211494 DOI: 10.1016/j.hoc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the increasing availability of sequencing techniques and new polymerase chain reaction-based methods, data regarding the genomic profile of Waldenström macroglobulinemia (WM) are being continuously analyzed and reproduced. MYD88 and CXCR4 mutations are highly prevalent in all the stages of WM, including the early IgM monoclonal gammopathy of undetermined significance or a more advanced stage, such as smoldering WM. Thus, there is a need to define genotypes before starting either standard treatment regimens or clinical trials. Here, we review the genomic profile of WM and its clinical implications while focusing on recent advances.
Collapse
Affiliation(s)
- David F Moreno
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain; Institut D'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Spain.
| | - Carlos Fernández de Larrea
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain; Institut D'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Spain.
| |
Collapse
|
36
|
Buske C, Palomba ML. Future Directions in the Frontline Management of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:719-725. [PMID: 37270384 DOI: 10.1016/j.hoc.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite substantial progress in the clinical management of Waldenström's Macroglobulinemia (WM) and the emergence of chemotherapy-free approaches such as BTK inhibitors, WM is still a disease in which current treatments fail to cure and are in part associated with significant toxicities, compromising treatment outcome and quality of life. Thus, the vision for future front-line therapy should be to develop regimens which combine improved efficacy and excellent applicability with a low toxicity profile. Conventional immunochemotherapy such as bendamustine-rituximab is highly active but limited by hematotoxicity and long-lasting immunosuppression. Thus, further intensification of this treatment concept will most likely not be successful. Chemotherapy-free approaches such as BTK inhibitors have already changed the treatment landscape in WM, but still have major limitations such as the need for non-fixed duration treatment. Most probably, the combination of non-chemotherapy based, targeted approaches with different modes of action will ensure that we at least come closer to our vision of achieving functional cure in WM in the near future.
Collapse
Affiliation(s)
- Christian Buske
- University Hospital Ulm, Institute for Experimental Cancer Research, Albert - Einstein Allee 11, Ulm 89081, Germany.
| | - Maria Lia Palomba
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
37
|
Bustoros M, Gribbin C, Castillo JJ, Furman R. Biomarkers of Progression and Risk Stratification in Asymptomatic Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:e1-e13. [PMID: 37574332 DOI: 10.1016/j.hoc.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Waldenström macroglobulinemia is an indolent IgM-secreting B-cell lymphoplasmacytic lymphoma that is preceded by an asymptomatic stage. Clinical and molecular features have been used in risk models to predict progression rates in different asymptomatic subgroups. Risk models used both disease-specific and nonspecific biomarkers for asymptomatic patients. Recently, models that incorporate continuous variables rather than distinct cutoffs have emerged to more accurately predict the risk of progression. Integrating genetic alterations to the clinical models is a promising approach that could improve risk stratification and management of asymptomatic patients.
Collapse
Affiliation(s)
- Mark Bustoros
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA.
| | - Caitlin Gribbin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard Furman
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
38
|
García-Sanz R, Hunter ZR, Poulain S, Varettoni M, Owen RG. New developments in the diagnosis and characterization of Waldenström's macroglobulinemia. Expert Rev Hematol 2023; 16:835-847. [PMID: 37905549 DOI: 10.1080/17474086.2023.2270779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Waldenström's macroglobulinemia (WM) is defined as a lymphoplasmacytic lymphoma (LPL) with immunoglobulin M (IgM) monoclonal gammopathy and morphologic evidence of bone marrow infiltration by LPL. Immunophenotyping and genotyping provide a firm pathological basis for diagnosis and are particularly valuable in differential diagnosis between WM and related diseases. Emerging technologies in mutational analysis present new opportunities, but challenges remain around standardization of methodologies and reporting of mutational data across centers. AREAS COVERED The review provides an overview of the diagnosis of WM, with a particular focus on the role of immunophenotyping and genotyping. EXPERT OPINION Demonstration of LPL with a bone marrow biopsy is essential to reach a definitive diagnosis of WM. However, MYD88L265P and a typical WM immunophenotypic profile are valuable for the differential diagnosis of WM and related diseases, such as marginal zone lymphoma, multiple myeloma, and chronic lymphocytic leukemia. These methodologies must be utilized across centers and with appropriate standards followed in the evaluation and reporting of sensitivities and specificities. The diagnostic and/or prognostic value of mutations in genes such as CXCR4 and TP53 that are currently not routinely evaluated in the diagnosis of WM should be explored.
Collapse
Affiliation(s)
- Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Zachary R Hunter
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stéphanie Poulain
- Service d'Hématologie Cellulaire, CHRU de Lille, University of Lille, Lille, France
| | - Marzia Varettoni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roger G Owen
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| |
Collapse
|
39
|
Markou AN, Bagratuni T, Tsakiri C, Tserpeli V, Skourti S, Mavrianou Koutsoukou N, Papadimou A, Terpos E, Kastritis E, Lianidou E, Dimopoulos MA. Highly Sensitive Detection Method of CXCR4 Tumor Hotspot Mutations by Drop-Off Droplet Digital PCR in Patients with IgM Monoclonal Gammopathies. J Mol Diagn 2023; 25:502-512. [PMID: 37088135 DOI: 10.1016/j.jmoldx.2023.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
CXCR4 mutations impact disease presentation and treatment outcomes in Waldenström macroglobulinemia. Current techniques used for CXCR4 mutation detection have a number of limitations. The aim of the present study was to develop and analytically validate a novel droplet digital PCR (ddPCR) assay for the simultaneous detection of five of the most common CXCR4 mutations in bone marrow (BM). In silico novel primers and probes designed for simultaneous detection of five hotspot mutations of CXCR4 were first performed. Experimental conditions were optimized, and the assay was analytically validated. The developed assay was further applied in 95 BM samples from patients with IgM gammopathy, 7 BM samples from patients with non-IgM gammopathy and 12 PBMCs from healthy donors, whereas a direct comparison study of Sanger sequencing and allele-specific PCR was performed by using 95 and 39 identical patient tumor DNA samples, respectively. The drop-off ddPCR assay is a robust, cost-effective, highly sensitive, and highly specific screening tool for CXCR4 mutations. Of 95 patients with IgM gammopathy samples, 27 had at least one CXCR4 mutation in their BM samples. With Sanger sequencing, 12 of the 95 samples tested positive, whereas the direct comparison of the developed assay with allele-specific PCR revealed substantial agreement. The clinical performance of the developed assay will be prospectively evaluated in a large number of patients, and the applicability of this assay will be further evaluated.
Collapse
Affiliation(s)
- Athina N Markou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Tsakiri
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatia Skourti
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Mavrianou Koutsoukou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Papadimou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
40
|
Dammacco F, Lauletta G, Vacca A. The wide spectrum of cryoglobulinemic vasculitis and an overview of therapeutic advancements. Clin Exp Med 2023; 23:255-272. [PMID: 35348938 PMCID: PMC8960698 DOI: 10.1007/s10238-022-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Immunoglobulins that reversibly precipitate at temperatures below 37 °C are called cryoglobulins (CGs). Cryoglobulinemia often manifests as cryoglobulinemic vasculitis (CV), whose symptoms range in severity from purpuric eruptions to life-threatening features. The majority of CV patients are infected with hepatitis C virus (HCV), whereas lymphoproliferative disorders or connective tissue diseases (CTD) are commonly diagnosed among patients with CV of non-infectious origin. In the absence of detectable associated disease, cryoglobulinemia is classified as "essential" (EMC). All HCV-positive CV patients should be given direct-acting antiviral agents (DAAs) that are consistently able to induce a sustained virologic response (SVR). Glucocorticoids (GCs) can mitigate CV-associated vasculitis, but they have no role as maintenance therapy. Cyclophosphamide restrains the hyperactive phase(s) of the disease and the post-apheresis rebound of newly synthesized CGs. Its use has been largely replaced by rituximab (RTX) in patients unresponsive to DAAs, patients progressing to B-cell non-Hodgkin lymphoma (B-NHL) and patients in whom CV persists or reappears after clearance of HCV. Therapeutic apheresis is an emergency treatment for CV patients with hyperviscosity syndrome. HCV-positive CV patients are at an increased risk of developing NHL, but the achievement of SVR can effectively prevent HCV-related NHL or induce the remission of an already established lymphoma, even without chemotherapy. The treatment of patients with IgM or IgG monoclonal cryoglobulins and an underlying immunoproliferative disorder is based on the regimens adopted for patients with the same B-cell malignancies but without circulating CGs. For patients with CTD, GCs plus alkylating agents or RTX are similarly effective as first-line therapy and in the relapse/refractory setting. In patients with EMC, treatment should consist of GCs plus RTX, with the dose of GCs tapered as soon as possible to reduce the risk of infectious complications.
Collapse
Affiliation(s)
- Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Gianfranco Lauletta
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
41
|
Awata-Shiraiwa M, Yokohama A, Kanai Y, Gotoh N, Kasamatsu T, Handa H, Saitoh T, Murakami H, Hirato J, Ikota H, Tsukamoto N. Waldenström Macroglobulinemia and Non-IgM-Type Lymphoplasmacytic Lymphoma Are Genetically Similar. Acta Haematol 2023; 146:384-390. [PMID: 36917966 DOI: 10.1159/000530100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Waldenström macroglobulinemia (WM) represents a subset of lymphoplasmacytic lymphoma (LPL) with the immunoglobulin (Ig)M paraprotein. MYD88 L265P and CXCR4 mutations are common mutations in WM patients, and mutations in ARID1A and KMT2D (MLL2) have also been reported. However, little information has been accumulated on genetic changes in LPL with other paraproteins like IgG. METHODS We therefore aimed to evaluate genetic differences between WM and LPL with non-IgM paraprotein (non-IgM-type LPL) using targeted next-generation sequencing (NGS) in 20 Japanese patients (10 with WM, 10 with non-IgM-type LPL). RESULTS Mutations were detected in ARID1A (10%), CXCR4 (20%), MYD88 (90%), and KMT2D (0%) for WM patients and in ARID1A (10%), CXCR4 (20%), MYD88 (70%), and KMT2D (10%) for non-IgM-type LPL patients. No significant differences were identified. No mutations were detected in NOTCH2, PRDM1, CD274 (PD-L1), PDCD1LG2 (PD-L2), RAG2, MYBBP1A, TP53, or CD79B. DISCUSSION Mutant allele frequency in MYD88 L265P did not differ significantly between WM and non-IgM-type LPL. Most mutations detected by NGS were subclonal following MYD88 L265P, although one non-IgM-type LPL patient harbored only CXCR4 S338X mutation. Our NGS analyses reveal genetic characteristics in LPL patients and suggest genetic similarities between these two subsets of LPL, WM and non-IgM-type.
Collapse
Affiliation(s)
- Maaya Awata-Shiraiwa
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- Gunma University of Health and Welfare, Maebashi, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Japan
| | - Yukihiro Kanai
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Saitoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- Gunma University of Health and Welfare, Maebashi, Japan
| | - Junko Hirato
- Clinical Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital, Maebashi, Japan
| | | |
Collapse
|
42
|
Tam CS, Kapoor P, Castillo JJ, Buske C, Ansell SM, Branagan AR, Kimby E, Li Y, Palomba ML, Qiu L, Shadman M, Abeykoon JP, Sarosiek S, Vos J, Yi S, Stephens D, Roos-Weil D, Roccaro AM, Morel P, Munshi NC, Anderson KC, San-Miguel J, Garcia-Sanz R, Dimopoulos MA, Treon SP, Kersten MJ. Report of consensus panel 7 from the 11th international workshop on Waldenström macroglobulinemia on priorities for novel clinical trials. Semin Hematol 2023; 60:118-124. [PMID: 37099031 DOI: 10.1053/j.seminhematol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/27/2023]
Abstract
Recent advances in the understanding of Waldenström macroglobulinemia (WM) biology have impacted the development of effective novel agents and improved our knowledge of how the genomic background of WM may influence selection of therapy. Consensus Panel 7 (CP7) of the 11th International Workshop on WM was convened to examine the current generation of completed and ongoing clinical trials involving novel agents, consider updated data on WM genomics, and make recommendations on the design and prioritization of future clinical trials. CP7 considers limited duration and novel-novel agent combinations to be the priority for the next generation of clinical trials. Evaluation of MYD88, CXCR4 and TP53 at baseline in the context of clinical trials is crucial. The common chemoimmunotherapy backbones, bendamustine-rituximab (BR) and dexamethasone, rituximab and cyclophosphamide (DRC), may be considered standard-of-care for the frontline comparative studies. Key unanswered questions include the definition of frailty in WM; the importance of attaining a very good partial response or better (≥VGPR), within stipulated time frame, in determining survival outcomes; and the optimal treatment of WM populations with special needs.
Collapse
Affiliation(s)
- C S Tam
- Alfred Health, Monash University, Melbourne, Victoria, Australia.
| | | | - J J Castillo
- Harvard Medical School, Dana Farber Cancer Institute, Boston. MA
| | - C Buske
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | | | | | - E Kimby
- Karolinska Institut, Stockholm, Sweden
| | - Y Li
- Baylor College of Medicine, Houston, TX
| | - M L Palomba
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - L Qiu
- National National Clinical Medical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - M Shadman
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| | | | - S Sarosiek
- Harvard Medical School, Dana Farber Cancer Institute, Boston. MA
| | - Jmi Vos
- Department of Hematology, Cancer Center Amsterdam/LYMMCARE, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Yi
- National National Clinical Medical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - D Stephens
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | - D Roos-Weil
- Sorbonne University, Hematology Unit, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | - P Morel
- Hematologie Clinique et Therapie Cellulaire, University Hospital Amiens Picardie, University of Picardie Jules Verne, France
| | - N C Munshi
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - K C Anderson
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - J San-Miguel
- Clinica Universidad de Navarra, CCUN, CIMA, IDISNA, CIBERONC, Navarra, Spain
| | - R Garcia-Sanz
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca, CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| | - M A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - S P Treon
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - M J Kersten
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
43
|
Slack GW. Diagnostic, Prognostic, and Predictive Role of Next-Generation Sequencing in Mature Lymphoid Neoplasms. Surg Pathol Clin 2023; 16:433-442. [PMID: 37149368 DOI: 10.1016/j.path.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Lymphoma is a clinically and biologically heterogeneous disease. Next-generation sequencing (NGS) has expanded our understanding of this heterogeneity at the genetic level, refining disease classification, defining new entities, and providing additional information that can be used in diagnosis and management. This review highlights some of the NGS findings in lymphoma and how they can be used as genetic biomarkers to aid diagnosis and prognosis and guide therapy.
Collapse
|
44
|
Garcia-Sanz R, Varettoni M, Jiménez C, Ferrero S, Poulain S, San-Miguel JF, Guerrera ML, Drandi D, Bagratuni T, McMaster M, Roccaro AM, Roos-Weil D, Leiba M, Li Y, Qiu L, Hou J, De Larrea CF, Castillo JJ, Dimopoulos M, Owen RG, Treon SP, Hunter ZR. Report of Consensus Panel 3 from the 11th International workshop on Waldenström's Macroglobulinemia: Recommendations for molecular diagnosis in Waldenström's Macroglobulinemia. Semin Hematol 2023; 60:90-96. [PMID: 37099028 DOI: 10.1053/j.seminhematol.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/27/2023]
Abstract
Apart from the MYD88L265P mutation, extensive information exists on the molecular mechanisms in Waldenström's Macroglobulinemia and its potential utility in the diagnosis and treatment tailoring. However, no consensus recommendations are yet available. Consensus Panel 3 (CP3) of the 11th International Workshop on Waldenström's Macroglobulinemia (IWWM-11) was tasked with reviewing the current molecular necessities and best way to access the minimum data required for a correct diagnosis and monitoring. Key recommendations from IWWM-11 CP3 included: (1) molecular studies are warranted for patients in whom therapy is going to be started; such studies should also be done in those whose bone marrow (BM) material is sampled based on clinical issues; (2) molecular studies considered essential for these situations are those that clarify the status of 6q and 17p chromosomes, and MYD88, CXCR4, and TP53 genes. These tests in other situations, and/or other tests, are considered optional; (3) independently of the use of more sensitive and/or specific techniques, the minimum requirements are allele specific polymerase chain reaction for MYD88L265P and CXCR4S338X using whole BM, and fluorescence in situ hybridization for 6q and 17p and sequencing for CXCR4 and TP53 using CD19+ enriched BM; (4) these requirements refer to all patients; therefore, sample should be sent to specialized centers.
Collapse
Affiliation(s)
- Ramón Garcia-Sanz
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain.
| | - Marzia Varettoni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Cristina Jiménez
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| | - Simone Ferrero
- Unit of Hematology, Department of Biotechnology & Health Sciences, University of Torino, Torino, Italy
| | - Stephanie Poulain
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, UMR9020 CNRS-U1277 INSERM, University of Lille, and ONCOLILLE Cancer Institute, CANTHER Laboratory, Lille, France
| | - Jesus F San-Miguel
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, Lille, France
| | - Maria L Guerrera
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - Daniela Drandi
- Unit of Hematology, Department of Biotechnology & Health Sciences, University of Torino, Torino, Italy
| | - Tina Bagratuni
- Bing Center for Waldenström's Macroglobulinemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mary McMaster
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aldo M Roccaro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Damien Roos-Weil
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Merav Leiba
- Sorbonne Université, Hematology Unit, Pitié-Salpêtrière Hospital, Assitance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Yong Li
- Assuta Ashdod University Hospital, Faculty of Health Science, Ben-Gurion University of the Negev, Negev, Israel
| | - Luigi Qiu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jian Hou
- National Clinical Research Center for Blood Diseases, Blood Disease Hospital and Institute of Hematology), Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Jorge J Castillo
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - M Dimopoulos
- Bing Center for Waldenström's Macroglobulinemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - R G Owen
- Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain; St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - S P Treon
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - Z R Hunter
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| |
Collapse
|
45
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
46
|
Castillo JJ, Buske C, Trotman J, Sarosiek S, Treon SP. Bruton tyrosine kinase inhibitors in the management of Waldenström macroglobulinemia. Am J Hematol 2023; 98:338-347. [PMID: 36415104 PMCID: PMC10107762 DOI: 10.1002/ajh.26788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Bruton tyrosine kinase (BTK) inhibitors have taken a central role in the management of patients with Waldenström macroglobulinemia and are the only agents approved by the Food and Drug Administration (FDA) to treat these patients. Although associated with high rates of durable responses, unmet needs with BTK inhibitor therapy include indefinite duration therapy, high cost, scarcity of complete responses, and lower rates and shorter duration of response in patients with CXCR4 mutations. Herein, we review the data supporting the use of covalent BTK inhibitors, selected management issues, clinical trials with covalent BTK inhibitor combination regimens, and up-and-coming non-covalent BTK inhibitors.
Collapse
Affiliation(s)
- Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Buske
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Judith Trotman
- Department of Haematology, Concord Repatriation General Hospital, Faculty of Medicine, University of Sydney, Concord, Australia
| | - Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Smyth E, Cheah CY, Seymour JF. Management of indolent B-cell Lymphomas: A review of approved and emerging targeted therapies. Cancer Treat Rev 2023; 113:102510. [PMID: 36634434 DOI: 10.1016/j.ctrv.2023.102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
The indolent B-cell non-Hodgkin lymphomas (B-NHL) comprise a heterogenous group of lymphoproliferative disorders characterized by slow growth kinetics and a relapsing/remitting course. Management has, until recently, been uniform across all indolent B-NHL subtypes. Improving insight into pathophysiological and molecular features of each disease has led to development of several targeted therapies. Consequently, each subtype must now be considered an individual entity. In this review, we consider the three commonest indolent B-NHLs: follicular lymphoma, marginal zone lymphoma and Waldenstrom's macroglobulinemia and review in detail the data on approved and emerging targeted therapeutic agents for each B-NHL subtype.
Collapse
Affiliation(s)
- Elizabeth Smyth
- Department of Hematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Chan Y Cheah
- Department of Hematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| | - John F Seymour
- Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, Victoria, Australia; University of Melbourne, Victoria, Australia.
| |
Collapse
|
48
|
Amaador K, Kersten MJ, Minnema MC, Vos JMI. Treatment of relapsed and refractory Waldenstrom Macroglobulinemia. Leuk Lymphoma 2023; 64:30-41. [PMID: 36282673 DOI: 10.1080/10428194.2022.2131423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Waldenström's Macroglobulinemia (WM) is a rare type of indolent non-Hodgkin lymphoma (NHL) that remains incurable. Several effective agents such as monoclonal antibodies (in combination with chemotherapy), Bruton's tyrosine kinase inhibitors, proteasome inhibitors, and BCL2 inhibitors are (becoming) available for the treatment of relapsed and refractory WM. There is however no consensus on a preferred treatment in the relapsed setting. Choice of therapy in relapsed WM should be individualized by taking several treatment and patients characteristics into account, such as treatment duration, toxicity, age, comorbidities and MYD88L265P and CXCR4 mutational status. Due to better understanding of WM biology and the arrival of novel anti-lymphoma agents, the therapeutic options are increasing. Non-cytotoxic and fixed duration regimens, such as those explored in other indolent NHLs should be the focus of future clinical trials in WM.
Collapse
Affiliation(s)
- Karima Amaador
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marie J Kersten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Josephine M I Vos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Moreno DF, López-Guerra M, Paz S, Oliver-Caldés A, Mena MP, Correa JG, Battram AM, Osuna M, Rivas-Delgado A, Rodríguez-Lobato LG, Cardús O, Tovar N, Cibeira MT, Jiménez-Segura R, Bladé J, Rosiñol L, Colomer D, Fernández de Larrea C. Prognostic impact of MYD88 and CXCR4 mutations assessed by droplet digital polymerase chain reaction in IgM monoclonal gammopathy of undetermined significance and smouldering Waldenström macroglobulinaemia. Br J Haematol 2023; 200:187-196. [PMID: 36210485 PMCID: PMC10092069 DOI: 10.1111/bjh.18502] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 01/14/2023]
Abstract
Waldenström macroglobulinaemia (WM) is characterized by recurrent somatic mutations in MYD88 and CXCR4 genes. However, limitations arise when analysing these mutations in IgM monoclonal gammopathy of undetermined significance (MGUS) or smouldering WM (SWM) given the lower tumour load. Here, we used droplet digital polymerase chain reaction (ddPCR) to analyse MYD88 L265P and CXCR4 S338* mutations (C1013G and C1013A) in unsorted bone marrow (BM) or cell-free DNA (cfDNA) samples from 101 IgM MGUS and 69 SWM patients. ddPCR was more sensitive to assess MYD88 L265P compared to allele-specific PCR, especially in IgM MGUS (64% vs 39%). MYD88 mutation burden correlated with other laboratory biomarkers, particularly BM infiltration (r = 0.8; p < 0.001). CXCR4 C1013G was analysed in MYD88-mutated samples with available genomic DNA and was detected in 19/54 (35%) and 18/42 (43%) IgM MGUS and SWM cases respectively, also showing correlation with BM involvement (r = 0.9; p < 0.001). ddPCR also detected 8 (38%) and 10 (63%) MYD88-mutated cfDNA samples in IgM MGUS and SWM respectively. Moreover, high BM mutation burden (≥8% MYD88 and ≥2% CXCR4) was associated with an increased risk of progression to symptomatic WM. We show the clinical applicability of ddPCR to assess MYD88 and CXCR4 in IgM MGUS and SWM and provide a molecular-based risk classification.
Collapse
Affiliation(s)
- David F Moreno
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mónica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Paz
- Hematopathology Unit, Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Aina Oliver-Caldés
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mari-Pau Mena
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan G Correa
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anthony M Battram
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miguel Osuna
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfredo Rivas-Delgado
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Oriol Cardús
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Natalia Tovar
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - María Teresa Cibeira
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Raquel Jiménez-Segura
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Joan Bladé
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Rosiñol
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carlos Fernández de Larrea
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
50
|
Bouclet F, Krzisch D, Leblond V, Tomowiak C, Laribi K, Ysebaert L, Tournilhac O, Dartigeas C, Leprêtre S, Jondreville L. [Waldenström disease: News and perspectives in 2022]. Bull Cancer 2023; 110:88-100. [PMID: 36229266 DOI: 10.1016/j.bulcan.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
Waldenström's disease is a B-cell neoplasm characterized by the accumulation of lymphoplasmacytic cells (LPCs) in the bone marrow, and more rarely in the lymph nodes and the spleen, which produce a monoclonal immunoglobulin M (IgM) protein. The diagnosis requires the identification of LPCs in the bone marrow, using specific markers in flow cytometry. The MYD88L265P mutation is found in 95% of cases and the CXCR4 mutation in 30-40% of cases. These markers must be sought because they have a diagnostic and prognostic role, and they might become predictive in the future. The clinical presentation is very variable, and includes anomalies related to the bone marrow infiltration of the LPCs (such as anemia), but also anomalies of the physico-chemical and/or immunological activity of the overproduced IgM (hyperviscosity, AL amyloidosis, cryoglobulinemia, anti-MAG neuropathies, etc.). Prognostic scores (IPSSWM) now make it possible to understand the prognosis of symptomatic WM requiring appropriate treatment. The therapeutic management depends on many parameters, such as the specific clinical presentation, the speed of evolution and of course the age and comorbidities. Immuno-chemotherapy is often the 1st line treatment (rituximab-cyclophosphamide-dexamethasone (RCD) or bendamustine-rituximab (BR)) but the role of targeted therapies is becoming preponderant. Bruton tyrosine kinase inhibitors (BTKi) are used today in first relapse. Other therapeutic perspectives will certainly allow us tomorrow to better understand this incurable chronic disease, such as new generations of BTKi, BCL2 inhibitors, anti-CXCR4, bi-specific antibodies, and CAR-T cells.
Collapse
Affiliation(s)
- Florian Bouclet
- Centre Henri Becquerel, department of clinical haematology, 76038 Rouen, France
| | - Daphné Krzisch
- AP-HP, Sorbonne université, hôpital Pitié-Salpêtrière, Paris, France
| | - Véronique Leblond
- AP-HP, Sorbonne université, hôpital Pitié-Salpêtrière, Paris, France
| | | | | | - Loïc Ysebaert
- Institut universitaire du cancer de toulouse (IUCT) - Oncopole, Toulouse, France
| | | | | | - Stéphane Leprêtre
- Centre Henri Becquerel, department of clinical haematology, 76038 Rouen, France; Centre Henri Becquerel and Normandie university UNIROUEN, Inserm U1245 and department of hematology, Rouen, France.
| | | | | |
Collapse
|