1
|
Zhang X, Dai S, Li L, Wang P, Dong M. UL16‑binding protein 1 is a significant prognostic and diagnostic marker for breast cancer. Oncol Lett 2025; 29:15. [PMID: 39492940 PMCID: PMC11526324 DOI: 10.3892/ol.2024.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024] Open
Abstract
The aim of the present study was to investigate the association between UL16 binding protein 1 (ULBP1) and the prognosis of patients with and immune cell infiltration in breast cancer (BRCA). The mRNA data of BRCA and immune-related genes were extracted from The Cancer Genome Atlas and were analyzed using bioinformatics tools. Subsequently, the results obtained by bioinformatics were validated through the collection of clinical patient data at the Zibo Central hospital (Zibo, China). The difference in the expression of the ULBP1 gene between BRCA tissues and normal precancerous tissues was analyzed, followed by validation using immunohistochemistry. By combining clinical data from patients with BRCA, the prognostic and diagnostic significance of the ULBP1 gene in patients with BRCA was analyzed. Gene enrichment analysis was conducted to gain insight into the molecular mechanisms underlying the regulatory role of ULBP1 in BRCA by analyzing its related functions and signaling pathways. Furthermore, single sample gene set enrichment analysis (ssGSEA) and Spearman's correlation analysis were performed to explore the correlation between ULBP1 as a target gene related with tumor immune cell infiltration. The data revealed that ULBP1 is a target gene associated with immunity and the prognosis of patients with BRCA. Patients with BRCA with a high expression of ULBP1 had a poorer prognosis. ULBP1 expression correlated with progesterone receptor expression, estrogen receptor expression and histological type in patients with BRCA; thus, it may serve as an independent predictor for the overall survival rate of patients. Functional enrichment analysis revealed a significant co-expression between ULBP1 and ULBP2, ULBP3, retinoic acid early transcript 1K, as well as a significant enrichment of pathways associated with carcinogenesis and immune suppression. ssGSEA and Spearman's correlation analysis demonstrated significant correlations between ULBP1 expression and tumor immune cells, as well as immune checkpoints. Overall, the present study demonstrated that ULBP1 was associated with BRCA immunity and might serve as a prognostic and diagnostic biomarker for patients with BRCA. In addition, it might also be a potential target for the immunotherapy of BRCA.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong 266023, P.R. China
- Department of Orthopedics, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Shuhong Dai
- Department of Cardiology, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Liang Li
- Department of Orthopedics, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Pengyun Wang
- Department of Orthopedics, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong 266023, P.R. China
| |
Collapse
|
2
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
3
|
D’Silva SZ, Singh M, Pinto AS. NK cell defects: implication in acute myeloid leukemia. Front Immunol 2023; 14:1112059. [PMID: 37228595 PMCID: PMC10203541 DOI: 10.3389/fimmu.2023.1112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex disease with rapid progression and poor/unsatisfactory outcomes. In the past few years, the focus has been on developing newer therapies for AML; however, relapse remains a significant problem. Natural Killer cells have strong anti-tumor potential against AML. This NK-mediated cytotoxicity is often restricted by cellular defects caused by disease-associated mechanisms, which can lead to disease progression. A stark feature of AML is the low/no expression of the cognate HLA ligands for the activating KIR receptors, due to which these tumor cells evade NK-mediated lysis. Recently, different Natural Killer cell therapies have been implicated in treating AML, such as the adoptive NK cell transfer, Chimeric antigen receptor-modified NK (CAR-NK) cell therapy, antibodies, cytokine, and drug treatment. However, the data available is scarce, and the outcomes vary between different transplant settings and different types of leukemia. Moreover, remission achieved by some of these therapies is only for a short time. In this mini-review, we will discuss the role of NK cell defects in AML progression, particularly the expression of different cell surface markers, the available NK cell therapies, and the results from various preclinical and clinical trials.
Collapse
Affiliation(s)
- Selma Z. D’Silva
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Meenakshi Singh
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Andrea S. Pinto
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
4
|
Liu M, Du M, Yu J, Qian Z, Gao Y, Pan W, Zhao X, Wang M, Li H, Zheng J, Huang Q, Wang LM, Xiao H. CEBPA mutants down-regulate AML cell susceptibility to NK-mediated lysis by disruption of the expression of NKG2D ligands, which can be restored by LSD1 inhibition. Oncoimmunology 2022; 11:2016158. [PMID: 35003895 PMCID: PMC8741297 DOI: 10.1080/2162402x.2021.2016158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NK group 2, member D (NKG2D) is one of the most critical activating receptors expressed by natural killer (NK) cells. There is growing evidence that acute myeloid leukemia (AML) cells may evade NK cell-mediated cell lysis by expressing low or no ligands for NKG2D (NKG2D-Ls). We hypothesized that CCAAT/enhancer-binding protein α (C/EBPα), one of the most studied lineage-specific transcription factors in hematopoiesis, might influence the expression of NKG2D-Ls. To test this hypothesis, we first examined the endogenous expression of wild-type C/EBPα (C/EBPα-p42) in human AML cell lines and demonstrated that its expression level was highly relevant to the sensitivity of AML cells to NK cell cytotoxicity. Induction of C/EBPα-p42 in the low endogenous CEBPA-expressing AML cell line increased the sensitivity to NK-induced lysis. Moreover, decreased expression of C/EBPα-p42 by RNA interference in AML cells abrogated NK-mediated cytotoxicity. We further showed that the increase in NK susceptibility caused by C/EBPα-p42 occurred through up-regulation of the NKG2D-Ls ULBP2/5/6 in AML cells. More importantly, chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing captured C/EBPα motif signatures at the enhancer regions of the ULBP 2/5/6 genes. Whilst, the AML-associated C/EBPα C-terminal mutant and N-terminal truncated mutant (C/EBPα-p30) diminished ULBP2/5/6 transcription. Finally, we identified that histone demethylase lysine-specific demethylase 1 (LSD1) inhibition can restore the expression of ULBPs via induction of CEBPA expression in AML cells, which may represent a novel therapeutic strategy for CEBPA-mutated AML. Abbreviations: C/EBPα: CCAAT/enhancer-binding protein α; TF: Transcription factor; AML: Acute myeloid leukemia; TAD: Transactivation domain; FS: Frameshift; NK: Natural killer; NKG2D: NK group 2, member D; NKG2D-Ls: Ligands for NKG2D; MHC: Major histocompatibility complex; MICA: MHC class I-related chain A; ULBP: UL16-binding protein; STAT3: Signal transducer and activator of transcription 3; LSD1: Lysine-specific demethylase 1; Ab: Antibody; PBMC: Peripheral blood mononuclear cell; PBS: Phosphate-buffered saline; CFSE: Carboxyfluorescein diacetate succinimidyl ester; PI: Propidium iodide; shRNA: Short hairpin RNA; ChIP: Chromatin immunoprecipitation; BM: Binding motif; HCNE: Highly conserved noncoding element; TSS: Transcription start site; HMA: Hypomethylating agent; AZA: Azacitidine/5-azacytidine; DAC: Decitabine/5-aza-29-deoxycytidine; 2-PCPA: Tranylcypromine; RBP: RNA-binding protein; MSI2: MUSASHI-2; HDACi: Inhibitor of histone deacetylases; VPA: Valproate; DNMTi: DNA methyl transferase inhibitor; SCLC: Small cell lung cancer
Collapse
Affiliation(s)
- Meng Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Mengbao Du
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Zijun Qian
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Yang Gao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Wenjue Pan
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Xiujie Zhao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Mowang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Huimin Li
- Undergraduate School, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Jiaqi Zheng
- Undergraduate School, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Qianshuo Huang
- Undergraduate School, Zhejiang University School of Medicine, Hangzhou, P R China
| | - Li-Mengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P R China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P R China.,Institute of Hematology, Zhejiang University, Hangzhou, P R China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P R China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, P R China.,Institute of Hematology, Zhejiang University, Hangzhou, P R China
| |
Collapse
|
5
|
Alves E, McLeish E, Blancafort P, Coudert JD, Gaudieri S. Manipulating the NKG2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Front Immunol 2021; 12:712722. [PMID: 34456921 PMCID: PMC8397441 DOI: 10.3389/fimmu.2021.712722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
The activating immune receptor natural killer group member D (NKG2D) and its cognate ligands represent a fundamental surveillance system of cellular distress, damage or transformation. Signaling through the NKG2D receptor-ligand axis is critical for early detection of viral infection or oncogenic transformation and the presence of functional NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many viruses and tumors have developed mechanisms to evade NKG2D recognition via transcriptional, post-transcriptional or post-translational interference with NKG2D-L, supporting the concept that circumventing immune evasion of the NKG2D receptor-ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the lack of specificity of current NKG2D-targeting therapies has not allowed for the precise manipulation required to optimally harness NKG2D-mediated immunity. However, with the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-specific gene editing and regulation. Here, we give a brief overview of the NKG2D receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated and dysregulated during viral infection and oncogenesis. Moreover, we explore the potential for CRISPR-based technologies to provide novel therapeutic avenues to improve and maximize NKG2D-mediated immunity.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jerome D. Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Novel immunomodulatory properties of low dose cytarabine entrapped in a mannosylated cationic liposome. Int J Pharm 2021; 606:120849. [PMID: 34216770 DOI: 10.1016/j.ijpharm.2021.120849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Cancer treatment remains unsatisfactory with high rates of recurrence and metastasis. Immunomodulatory agents capable of promoting cellular antitumor immunity while inhibiting the local immunosuppressive tumor microenvironment could greatly improve cancer treatment. We have developed a multi-targeted mannosylated cationic liposome delivery system containing muramyl dipeptide (DS) and low doses of the chemotherapeutic agent cytarabine (Ara-C). Immunomodulation of primary immune cells and immortalized cancer cell lines by Ara-C/DS was assessed by measuring cytokine levels and surface marker expression. As a proof of concept, the generation of targeted cellular immunity was investigated in the context of responses to viral antigens. This report is the first demonstrating that Ara-C combined with DS can modulate immune responses and revert immunosuppression as evidenced by increased IFN-γ and IL-12p40 without changes in IL-10 in peripheral blood mononuclear cells, and increased CD80 and decreased CD163 on immunosuppressive macrophages. Furthermore, Ara-C/DS increased MHC class I expression on cancer cells while increasing the production of antigen-specific IFN-γ+ CD8+ T cells in viral peptide-challenged lymphocytes from both humans and vaccinated mice. Taken together, these results are the first to document immunomodulatory properties of Ara-C linked with recognition of antigens and potentially the generation of antitumor immune memory.
Collapse
|
9
|
Ruan GT, Wang S, Zhu LC, Liao XW, Wang XK, Liao C, Yan L, Xie HL, Gong YZ, Gan JL, Gao F. Investigation and verification of the clinical significance and perspective of natural killer group 2 member D ligands in colon adenocarcinoma. Aging (Albany NY) 2021; 13:12565-12586. [PMID: 33909599 PMCID: PMC8148460 DOI: 10.18632/aging.202935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
This study investigated and verified the diagnostic and prognostic values of natural killer group 2 member D ligand (NKG2DL) genes in colon adenocarcinoma (COAD). We downloaded NKG2DLs expression data and corresponding clinical parameters from The Cancer Genome Atlas (TCGA) and used bioinformatics techniques to investigate the values of NKG2DLs in COAD. Then, we used the GSE40967 cohort to verify the prognostic value of NKG2DLs. Finally, we verified the ULBP2 expression level in tissues, and also investigated the diagnostic and prognostic values of ULBP2 in COAD. The diagnostic receiver operating characteristic curves showed that ULBP1, ULBP2, ULBP3, and RAET1L had high diagnostic values in COAD [Area Under Curve (AUC) > 0.9]. In TCGA cohort, the univariate and multivariate survival analyses suggested that ULBP2 was correlated with the prognosis of COAD recurrence-free survival (RFS) and overall survival (OS). In GSE40967 cohort, ULBP2 was associated with CC RFS and OS. Reverse transcription-quantitative polymerase chain reaction and immunohistochemistry results showed that ULBP2 was highly expressed in COAD tumor tissues (P < 0.05) and both had diagnostic values (AUC > 0.7). Validated survival analysis showed that the high expression of ULBP2 had a worse prognosis in COAD OS and RFS. Thus, ULBP2 might be an independent diagnostic and prognostic biomarker of COAD.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling Yan
- Department of Thoracic Surgery, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Lun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Zhen Gong
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia-Liang Gan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
10
|
Kim N, Kim MY, Choi WS, Yi E, Lee HJ, Kim HS. GSK-3α Inhibition in Drug-Resistant CML Cells Promotes Susceptibility to NK Cell-Mediated Lysis in an NKG2D- and NKp30-Dependent Manner. Cancers (Basel) 2021; 13:cancers13081802. [PMID: 33918810 PMCID: PMC8070516 DOI: 10.3390/cancers13081802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase that has gained considerable interest as a therapeutic target for cancer due to its key involvement in growth arrest and apoptosis of tumor cells. Moreover, GSK-3, especially GSK-3β, limits the activation of NK cells, key innate effectors in cancer immunosurveillance, triggered by diverse activating receptors. However, the role of GSK-3 in the regulation of activating ligands on target cells that confer susceptibility to NK cells remains unclear and is the aim of this study. Here, we provide evidence that GSK-3α primarily restrains the expression of ligands for activating receptors such as NKG2D, NKp30 but not DNAM-1, thereby reducing target susceptibility to NK cells. Thus, our results suggest a distinct role of GSK-3 isoforms in target cells vs NK cells for regulating NK cell reactivity and GSK-3α inhibition as a relevant strategy to enhance target susceptibility to NK cells. Abstract Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Mi Yeon Kim
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
| | - Woo Seon Choi
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
| | - Hyo Jung Lee
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
| | - Hun Sik Kim
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-3010-2207
| |
Collapse
|
11
|
Hsiao TH, Wang RC, Lu TJ, Shih CH, Su YC, Tsai JR, Jhan PP, Lia CS, Chuang HN, Chang KH, Teng CL. Chemoresponse of de novo Acute Myeloid Leukemia to "7+3" Induction can Be Predicted by c-Myc-facilitated Cytogenetics. Front Pharmacol 2021; 12:649267. [PMID: 33897436 PMCID: PMC8061304 DOI: 10.3389/fphar.2021.649267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Identifying patients with de novo acute myeloid leukemia (AML) who will probably respond to the “7 + 3” induction regimen remains an unsolved clinical challenge. This study aimed to identify whether c-Myc could facilitate cytogenetics to predict a “7 + 3” induction chemoresponse in de novo AML. Methods: We stratified 75 untreated patients (24 and 51 from prospective and retrospective cohorts, respectively) with de novo AML who completed “7 + 3” induction into groups with and without complete remission (CR). We then compared Myc-associated molecular signatures between the groups in the prospective cohort after gene set enrichment analysis. The expression of c-Myc protein was assessed by immunohistochemical staining. We defined high c-Myc-immunopositivity as > 40% of bone marrow myeloblasts being c-Myc (+). Results: Significantly more Myc gene expression was found in patients who did not achieve CR by “7 + 3” induction than those who did (2439.92 ± 1868.94 vs. 951.60 ± 780.68; p = 0.047). Expression of the Myc gene and c-Myc protein were positively correlated (r = 0.495; p = 0.014). Although the non-CR group did not express more c-Myc protein than the CR group (37.81 ± 25.13% vs. 29.04 ± 19.75%; p = 0.151), c-Myc-immunopositivity could be a surrogate to predict the “7 + 3” induction chemoresponse (specificity: 81.63%). More importantly, c-Myc-immunopositivity facilitated cytogenetics to predict a “7 + 3” induction chemoresponse by increasing specificity from 91.30 to 95.92%. Conclusion: The “7 + 3” induction remains the standard of care for de novo AML patients, especially for those without a high c-Myc-immunopositivity and high-risk cytogenetics. However, different regimens might be considered for patients with high c-Myc-immunopositivity or high-risk cytogenetics.
Collapse
Affiliation(s)
- Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ren Ching Wang
- Department of Pathology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hung Shih
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Chen Su
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jia-Rong Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Pei Jhan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cai-Sian Lia
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,General Education Center, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chieh-Lin Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Guo R, Lü M, Cao F, Wu G, Gao F, Pang H, Li Y, Zhang Y, Xing H, Liang C, Lyu T, Du C, Li Y, Guo R, Xie X, Li W, Liu D, Song Y, Jiang Z. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomark Res 2021; 9:15. [PMID: 33648605 PMCID: PMC7919996 DOI: 10.1186/s40364-021-00265-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. METHODS Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. RESULTS We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. CONCLUSION Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengdie Lü
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Fujiao Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guanghua Wu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haili Pang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Liang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianxin Lyu
- The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, Henan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Gómez García LM, Escudero A, Mestre C, Fuster Soler JL, Martínez AP, Vagace Valero JM, Vela M, Ruz B, Navarro A, Fernández L, Fernández A, Leivas A, Martínez-López J, Ferreras C, De Paz R, Blanquer M, Galán V, González B, Corral D, Sisinni L, Mirones I, Balas A, Vicario JL, Valle P, Borobia AM, Pérez-Martínez A. Phase 2 Clinical Trial of Infusing Haploidentical K562-mb15-41BBL-Activated and Expanded Natural Killer Cells as Consolidation Therapy for Pediatric Acute Myeloblastic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:328-337.e1. [PMID: 33610500 DOI: 10.1016/j.clml.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) accounts for approximately 20% of pediatric leukemia cases; 30% of these patients experience relapse. The antileukemia properties of natural killer (NK) cells and their safety profile have been reported in AML therapy. We proposed a phase 2, open, prospective, multicenter, nonrandomized clinical trial for the adoptive infusion of haploidentical K562-mb15-41BBL-activated and expanded NK (NKAE) cells as a consolidation strategy for children with favorable and intermediate risk AML in first complete remission after chemotherapy (NCT02763475). PATIENTS AND METHODS Before the NKAE cell infusion, patients underwent a lymphodepleting regimen. After the NKAE cell infusion, patients were administered low doses (1 × 106/IU/m2) of subcutaneous interleukin-2. The primary study endpoint was AML relapse-free survival. We needed to include 35 patients to demonstrate a 50% reduction in relapses. RESULTS Seven patients (median age, 7.4 years; range, 0.78-15.98 years) were administered 13 infusions of NKAE cells, with a median of 36.44 × 106 cells/kg (range, 6.92 × 106 to 193.2 × 106 cells/kg). We observed chimerism in 4 patients (median chimerism, 0.065%; range, 0.05-0.27%). After a median follow-up of 33 months, the disease of 6 patients (85.7%) remained in complete remission. The 3-year overall survival was 83.3% (95% confidence interval, 68.1-98.5), and the cumulative 3-year relapse rate was 28.6% (95% confidence interval, 11.5-45.7). The study was terminated early because of low patient recruitment. CONCLUSION This study emphasizes the difficulties in recruiting patients for cell therapy trials, though NKAE cell infusion is safe and feasible. However, we cannot draw any conclusions regarding efficacy because of the small number of included patients and insufficient biological markers.
Collapse
Affiliation(s)
| | - Adela Escudero
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Carmen Mestre
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Jose L Fuster Soler
- Pediatric Hematology-Oncology Unit, University Clinic Hospital Virgen de la Arrixaca, El Palmar, Spain
| | - Antonia Pascual Martínez
- Pediatric Hematology Unit, Maternal and Children Hospital, Regional University Hospital of Málaga, Málaga, Spain
| | - Jose M Vagace Valero
- Pediatric Hematology Department, Maternal Pediatric Hospital, University Hospital Complex of Badajoz, Badajoz, Spain
| | - María Vela
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Beatriz Ruz
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Alfonso Navarro
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Lucia Fernández
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Adrián Fernández
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Alejandra Leivas
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Joaquin Martínez-López
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Raquel De Paz
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Miguel Blanquer
- Pediatric Hematology-Oncology Unit, University Clinic Hospital Virgen de la Arrixaca, El Palmar, Spain
| | - Victor Galán
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Berta González
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Dolores Corral
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Isabel Mirones
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Balas
- Histocompatibility and HLA Typing Laboratory, Transfusion Center of the Community of Madrid, Madrid, Spain
| | - José Luis Vicario
- Histocompatibility and HLA Typing Laboratory, Transfusion Center of the Community of Madrid, Madrid, Spain
| | - Paula Valle
- Clinical Pharmacology Department, La Paz University Hospital, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain; Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain; Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain; Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Veneziani I, Infante P, Ferretti E, Melaiu O, Battistelli C, Lucarini V, Compagnone M, Nicoletti C, Castellano A, Petrini S, Ognibene M, Pezzolo A, Di Marcotullio L, Bei R, Moretta L, Pistoia V, Fruci D, Barnaba V, Locatelli F, Cifaldi L. Nutlin-3a Enhances Natural Killer Cell-Mediated Killing of Neuroblastoma by Restoring p53-Dependent Expression of Ligands for NKG2D and DNAM-1 Receptors. Cancer Immunol Res 2021; 9:170-183. [PMID: 33303573 DOI: 10.1158/2326-6066.cir-20-0313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
In this study, we explored whether Nutlin-3a, a well-known, nontoxic small-molecule compound antagonizing the inhibitory interaction of MDM2 with the tumor suppressor p53, may restore ligands for natural killer (NK) cell-activating receptors (NK-AR) on neuroblastoma cells to enhance the NK cell-mediated killing. Neuroblastoma cell lines were treated with Nutlin-3a, and the expression of ligands for NKG2D and DNAM-1 NK-ARs and the neuroblastoma susceptibility to NK cells were evaluated. Adoptive transfer of human NK cells in a xenograft neuroblastoma-bearing NSG murine model was assessed. Two data sets of neuroblastoma patients were explored to correlate p53 expression with ligand expression. Luciferase assays and chromatin immunoprecipitation analysis of p53 functional binding on PVR promoter were performed. Primary neuroblastoma cells were also treated with Nutlin-3a, and neuroblastoma spheroids obtained from one high-risk patient were assayed for NK-cell cytotoxicity. We provide evidence showing that the Nutlin-3a-dependent rescue of p53 function in neuroblastoma cells resulted in (i) increased surface expression of ligands for NK-ARs, thus rendering neuroblastoma cell lines significantly more susceptible to NK cell-mediated killing; (ii) shrinkage of human neuroblastoma tumor masses that correlated with overall survival upon adoptive transfer of NK cells in neuroblastoma-bearing mice; (iii) and increased expression of ligands in primary neuroblastoma cells and boosting of NK cell-mediated disaggregation of neuroblastoma spheroids. We also found that p53 was a direct transcription factor regulating the expression of PVR ligand recognized by DNAM-1. Our findings demonstrated an immunomodulatory role of Nutlin-3a, which might be prospectively used for a novel NK cell-based immunotherapy for neuroblastoma.
Collapse
Affiliation(s)
- Irene Veneziani
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Elisa Ferretti
- Department of Experimental Medicine, University of Genoa, Genova, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Cecilia Battistelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Mirco Compagnone
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Carmine Nicoletti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Aurora Castellano
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy, Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Lucia Di Marcotullio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Pistoia
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Vincenzo Barnaba
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Cellular and Molecular Immunology Unit, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Loredana Cifaldi
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata," Rome, Italy
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, Zeng Y. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021; 137:111299. [PMID: 33508619 DOI: 10.1016/j.biopha.2021.111299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a crucial activating receptor in the immune recognition and eradication of abnormal cells by natural killer (NK) cells, and T lymphocytes. NKG2D can transmit activation signals and activate the immune system by recognizing the NKG2D ligands (NKG2D-L) on acute myeloid leukemia (AML) cells. Downregulation of NKG2D-L in AML can circumvent resistance to chemotherapy and immune recognition. Considering this effect, the exploration of targeting the NKG2D/NKG2D-L axis is considered to have tremendous potential for the discovery of novel biomacromolecule antibodies and pharmacological modulators in AML. This review was to outline the impact of NKG2D/NKG2D-L axis on intrinsic immunosurveillance and the development of AML. Furthermore, the NKG2D/NKG2D-L axis related modulators and progress in preclinical and clinical trials was also to be reviewed.
Collapse
Affiliation(s)
- Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Huan Zhang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Min Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Guorui Peng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Yanqiu He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Na Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yingjian Zeng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
16
|
He Y, Xu L, Feng J, Wu K, Zhao Y, Huang H. HDAC Inhibitor LBH589 Suppresses the Proliferation but Enhances the Antileukemic Effect of Human γδT Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:623-630. [PMID: 33005729 PMCID: PMC7515977 DOI: 10.1016/j.omto.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
γδT cells have potent effects on hematological malignancies, and their functions can be regulated by anti-tumor agents. Histone deacetylase inhibitors (HDACis) not only have antileukemic activity on leukemia but also affect immune cells during therapeutic application. In this in vitro study, we showed that LBH589, a pan-HDACi, impaired the proliferation of human γδT cells, as well as their proportions in peripheral blood mononuclear cells (PBMCs). At the specific concentration, LBH589 induced significant antileukemic activity of γδT cells against the HL-60 cells and Kasumi cells in a dose-dependent manner. However, the expression levels of activating receptor and molecules, as well as interferon-γ (IFN-γ) expression on γδT cells, were not affected by LBH589. After treatment with LBH589 for indicated times, extracellular-regulated protein kinase (ERK), Akt, and c-Jun N-terminal kinase (JNK) signaling pathways in γδT cells were not activated. In contrast, a stronger expression of Notch was observed and sustained for 72 h. Inhibition of Notch signaling by FLI-06, the γ-secretase inhibitor, significantly reversed the enhanced antileukemic ability of γδT cells induced by LBH589. For the first time, our investigations demonstrate that LBH589 can inhibit proliferation of γδT cells but facilitate their antileukemic effects via activation of Notch signaling.
Collapse
Affiliation(s)
- Ying He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Zhejiang Provincial People’s Hospital, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Kangni Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Corresponding author: Yanmin Zhao, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Corresponding author: He Huang, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
17
|
Call SG, Duren RP, Panigrahi AK, Nguyen L, Freire PR, Grimm SL, Coarfa C, Conneely OM. Targeting Oncogenic Super Enhancers in MYC-Dependent AML Using a Small Molecule Activator of NR4A Nuclear Receptors. Sci Rep 2020; 10:2851. [PMID: 32071334 PMCID: PMC7029036 DOI: 10.1038/s41598-020-59469-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic reprogramming in Acute Myeloid Leukemia (AML) leads to the aberrant activation of super enhancer (SE) landscapes that drive the expression of key oncogenes, including the oncogenic MYC pathway. These SEs have been identified as promising therapeutic targets, and have given rise to a new class of drugs, including BET protein inhibitors, which center on targeting SE activity. NR4A nuclear receptors are tumor suppressors of AML that function in part through transcriptional repression of the MYC-driven oncogenic program via mechanisms that remain unclear. Here we show that NR4A1, and the NR4A inducing drug dihydroergotamine (DHE), regulate overlapping gene expression programs in AML and repress transcription of a subset of SE-associated leukemic oncogenes, including MYC. NR4As interact with an AML-selective SE cluster that governs MYC transcription and decommissions its activation status by dismissing essential SE-bound coactivators including BRD4, Mediator and p300, leading to loss of p300-dependent H3K27 acetylation and Pol 2-dependent eRNA transcription. DHE shows similar efficacy to the BET inhibitor JQ1 at repressing SE-dependent MYC expression and AML growth in mouse xenografts. Thus, DHE induction of NR4As provides an alternative strategy to BET inhibitors to target MYC dependencies via suppression of the AML-selective SE governing MYC expression.
Collapse
Affiliation(s)
- S Greg Call
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology PhD Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan P Duren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Integrative Molecular and Biomedical Sciences PhD Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Loc Nguyen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pablo R Freire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology PhD Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Jiang J, Wang J, Yue M, Cai X, Wang T, Wu C, Su H, Wang Y, Han M, Zhang Y, Zhu X, Jiang P, Li P, Sun Y, Xiao W, Feng H, Qing G, Liu H. Direct Phosphorylation and Stabilization of MYC by Aurora B Kinase Promote T-cell Leukemogenesis. Cancer Cell 2020; 37:200-215.e5. [PMID: 32049046 PMCID: PMC7321798 DOI: 10.1016/j.ccell.2020.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/15/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Deregulation of MYC plays an essential role in T cell acute lymphoblastic leukemia (T-ALL), yet the mechanisms underlying its deregulation remain elusive. Herein, we identify a molecular mechanism responsible for reciprocal activation between Aurora B kinase (AURKB) and MYC. AURKB directly phosphorylates MYC at serine 67, counteracting GSK3β-directed threonine 58 phosphorylation and subsequent FBXW7-mediated proteasomal degradation. Stabilized MYC, in concert with T cell acute lymphoblastic leukemia 1 (TAL1), directly activates AURKB transcription, constituting a positive feedforward loop that reinforces MYC-regulated oncogenic programs. Therefore, inhibitors of AURKB induce prominent MYC degradation concomitant with robust leukemia cell death. These findings reveal an AURKB-MYC regulatory circuit that underlies T cell leukemogenesis, and provide a rationale for therapeutic targeting of oncogenic MYC via AURKB inhibition.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Jingchao Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ming Yue
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tianci Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Chao Wu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hexiu Su
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yanwu Wang
- Department of Histology and Embryology, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology and Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology and Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Collaborative Innovation Center for Cancer Medicine, Beijing 100084, China
| | - Peng Li
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yonghua Sun
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Guoliang Qing
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Furfaro AL, Ottonello S, Loi G, Cossu I, Piras S, Spagnolo F, Queirolo P, Marinari UM, Moretta L, Pronzato MA, Mingari MC, Pietra G, Nitti M. HO-1 downregulation favors BRAF V600 melanoma cell death induced by Vemurafenib/PLX4032 and increases NK recognition. Int J Cancer 2019; 146:1950-1962. [PMID: 31376303 DOI: 10.1002/ijc.32611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023]
Abstract
Heme oxygenase 1 (HO-1) plays a pivotal role in preventing cell damage. Indeed, through the antioxidant, antiapoptotic and anti-inflammatory properties of its metabolic products, it favors cell adaptation against different stressors. However, HO-1 induction has also been related to the gain of resistance to therapy in different types of cancers and its involvement in cancer immune-escape has been hypothesized. We have investigated the role of HO-1 expression in Vemurafenib-treated BRAFV600 melanoma cells in modulating their susceptibility to NK cell-mediated recognition. Different cell lines, isolated in house from melanoma patients, have been exposed to 1-10 μM PLX4032, which efficiently reduced ERK phosphorylation. In three lines, Vemurafenib was able to induce only a limited decrease in cell viability, while HO-1 expression was upregulated. HO-1 silencing/inhibition was able to induce a further significant reduction of Vemurafenib-treated melanoma viability. Moreover, while NK cell degranulation and killing activity were decreased upon interaction with melanoma exposed to Vemurafenib, HO-1 silencing was able to completely restore NK cell ability to degranulate and kill. Furthermore, melanoma cell treatment with Vemurafenib downregulated the expression of ligands of NKp30 and NKG2D activating receptors, and HO-1 silencing/inhibition was able to restore their expression. Our results indicate that HO-1 downregulation can both improve the efficacy of Vemurafenib on melanoma cells and favor melanoma susceptibility to NK cell-mediated recognition and killing.
Collapse
Affiliation(s)
- Anna L Furfaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Selene Ottonello
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,CEBR, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Giulia Loi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Irene Cossu
- UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sabrina Piras
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesco Spagnolo
- UO Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Queirolo
- UO Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | - Maria A Pronzato
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria C Mingari
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,CEBR, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,UOC Immunologia IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
Lee YS, Heo W, Son CH, Kang CD, Park YS, Bae J. Upregulation of Myc promotes the evasion of NK cell‑mediated immunity through suppression of NKG2D ligands in K562 cells. Mol Med Rep 2019; 20:3301-3307. [PMID: 31432134 PMCID: PMC6755160 DOI: 10.3892/mmr.2019.10583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
c-Myc is a characteristic oncogene with dual functions in cell proliferation and apoptosis. Since the overexpression of the c-Myc proto-oncogene is a common event in the development and growth of various human types of cancer, the present study investigated whether oncogenic c-Myc can alter natural killer (NK) cell-mediated immunity through the expression of associated genes, using PCR, western blotting and flow cytometry assays. Furthermore, whether c-Myc could influence the expression levels of natural killer group 2 member D (NKG2D) ligands, which are well known NK activation molecules, as well as NK cell-mediated immunity, was investigated. c-Myc was inhibited by 10058-F4 treatment and small interfering RNA transfection. Upregulation of c-Myc was achieved by transfection with a pCMV6-myc vector. The inhibition of c-Myc increased MHC class I polyeptide-related sequence B and UL16 binding protein 1 expressions among NKG2D ligands, and the overexpression of c-Myc suppressed the expression of all NKG2D ligands, except MHC class I polyeptide-related sequence A. Furthermore, the alteration of c-Myc activity altered the susceptibility of K562 cells to NK cells. These results suggested that the overexpression of c-Myc may contribute to the immune escape of cancer cells and cell proliferation. Combined treatment with NK-based cancer immunotherapy and inhibition of c-Myc may achieve improved therapeutic results.
Collapse
Affiliation(s)
- Young-Shin Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Woong Heo
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Cheol-Hun Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Gijang, Busan 46033, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Gijang, Busan 46033, Republic of Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| |
Collapse
|
21
|
Holubova M, Leba M, Gmucova H, Caputo VS, Jindra P, Lysak D. Improving the Clinical Application of Natural Killer Cells by Modulating Signals Signal from Target Cells. Int J Mol Sci 2019; 20:ijms20143472. [PMID: 31311121 PMCID: PMC6679089 DOI: 10.3390/ijms20143472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 11/30/2022] Open
Abstract
Relapsed acute myeloid leukemia (AML) is a significant post-transplant complication lacking standard treatment and associated with a poor prognosis. Cellular therapy, which is already widely used as a treatment for several hematological malignancies, could be a potential treatment alternative. Natural killer (NK) cells play an important role in relapse control but can be inhibited by the leukemia cells highly positive for HLA class I. In order to restore NK cell activity after their ex vivo activation, NK cells can be combined with conditioning target cells. In this study, we tested NK cell activity against KG1a (AML cell line) with and without two types of pretreatment—Ara-C treatment that induced NKG2D ligands (increased activating signal) and/or blocking of HLA–KIR (killer-immunoglobulin-like receptors) interaction (decreased inhibitory signal). Both treatments improved NK cell killing activity. Compared with target cell killing of NK cells alone (38%), co-culture with Ara-C treated KG1a target cells increased the killing to 80%. Anti-HLA blocking antibody treatment increased the proportion of dead KG1a cells to 53%. Interestingly, the use of the combination treatment improved the killing potential to led to the death of 85% of KG1a cells. The combination of Ara-C and ex vivo activation of NK cells has the potential to be a feasible approach to treat relapsed AML after hematopoietic stem cell transplantation.
Collapse
MESH Headings
- Cell Line, Tumor
- Cells, Cultured
- Clinical Trials as Topic
- Cytarabine/pharmacology
- Humans
- Immunosuppressive Agents/pharmacology
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- Receptors, KIR/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen 323 00, Czech Republic.
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen 301 00, Czech Republic
| | - Hana Gmucova
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen 304 60, Czech Republic
| | - Valentina S Caputo
- Centre for Haematology, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen 304 60, Czech Republic
| | - Daniel Lysak
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen 304 60, Czech Republic
| |
Collapse
|
22
|
Yu Q, Wang P, Yang L, Wu Z, Li S, Xu Y, Wu B, Ma A, Gan X, Xu R. Novel synthetic tosyl chloride-berbamine regresses lethal MYC-positive leukemia by targeting CaMKIIγ/Myc axis. Biomed Pharmacother 2019; 117:109134. [PMID: 31247466 DOI: 10.1016/j.biopha.2019.109134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023] Open
Abstract
Proto-oncogene Myc, a key transcription factor, is frequently deregulated in human leukemia with aggressive and poor clinical outcome, but the development of MYC inhibitors remains challenging due to MYC helix-loop-helix topology lacking druggable domains. Here we describe a novel oral active small molecule analog of berbamine, tosyl chloride-berbamine (TCB), that efficiently eliminates MYC-positive leukemia in vitro and in vivo. Mechanistically, TCB potently reduced MYC protein by inhibiting CaMKIIγ, a critical enzyme that stabilizes MYC protein, and induces apoptosis of MYC-positive leukemia cells. In vivo, oral administration of TCB markedly eliminated lethal MYC-positive acute lymphoblastic leukemia (ALL) with well tolerability in orthotopic mouse model. Our studies identify CaMKIIγ/Myc axis as a valid target for developing small molecule-based new therapies for treating MYC-mediated leukemia and demonstrate that TCB is an orally active analog of berbamine that kills MYC-positive leukemia cells.
Collapse
Affiliation(s)
- Qingfeng Yu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ping Wang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Linlin Yang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhaoxing Wu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Shu Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ying Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Bowen Wu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - An Ma
- Zhejiang Academy of Medical Sciences, Hangzhou, 310012, China
| | - Xiaoxian Gan
- Zhejiang Academy of Medical Sciences, Hangzhou, 310012, China
| | - Rongzhen Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Institute of Hematology, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
23
|
Veneziani I, Fruci D, Compagnone M, Pistoia V, Rossi P, Cifaldi L. The BET-bromodomain inhibitor JQ1 renders neuroblastoma cells more resistant to NK cell-mediated recognition and killing by downregulating ligands for NKG2D and DNAM-1 receptors. Oncotarget 2019; 10:2151-2160. [PMID: 31040907 PMCID: PMC6481332 DOI: 10.18632/oncotarget.26736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Low expression of ligands for NK cell-activating receptors contributes to neuroblastoma (NB) aggressiveness. Recently, we demonstrated that the expression of MYCN, a poor prognosis marker in NB, inversely correlates with that of activating ligands. This indicates that MYCN expression level can predict the susceptibility of NB cells to NK cell-mediated immunotherapy and that its downregulation can be exploited as a novel therapeutic strategy to induce the expression of activating ligands. Here we evaluated the effect of the BET-bromodomain inhibitor JQ1 on the expression of ligands for NK cell-activating receptors in NB cell lines. Although downmodulating MYCN, JQ1 impaired the expression of ligands for NK cell-activating receptors, rendering NB cell lines more resistant to NK cell-mediated killing. The downregulation of activating ligands was due to JQ1-mediated impaired functions of both c-MYC and p53, two transcription factors known to regulate the expression of ULBP1-3 ligands for NKG2D activating receptor. Moreover JQ1 strongly downregulated the levels of ROS, a stress-induced signaling event associated with the induction of ligands for NK cell-activating receptors. These results suggest that the use of JQ1 should be discourage in combination with NK cell-based immunotherapy in a perspective chemotherapeutic treatment of NB. Thus, further investigations, exploiting molecular strategies aimed to boost the NK cell-mediated killing of NB cells, are warranted.
Collapse
Affiliation(s)
- Irene Veneziani
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Doriana Fruci
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mirco Compagnone
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Pistoia
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
24
|
Cytarabine-Resistant FLT3-ITD Leukemia Cells are Associated with TP53 Mutation and Multiple Pathway Alterations-Possible Therapeutic Efficacy of Cabozantinib. Int J Mol Sci 2019; 20:ijms20051230. [PMID: 30862120 PMCID: PMC6429333 DOI: 10.3390/ijms20051230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Internal tandem duplication of FLT3 juxtamembrane domain (FLT3-ITD)-positive acute myeloid leukemia (AML) leads to poor clinical outcomes after chemotherapy. We aimed to establish a cytarabine-resistant line from FLT3-ITD-positive MV4-11 (MV4-11-P) cells and examine the development of resistance. The FLT3-ITD mutation was retained in MV4-11-R; however, the protein was underglycosylated and less phosphorylated in these cells. Moreover, the phosphorylation of ERK1/2, Akt, MEK1/2 and p53 increased in MV4-11-R. The levels of Mcl-1 and p53 proteins were also elevated in MV4-11-R. A p53 D281G mutant emerged in MV4-11-R, in addition to the pre-existing R248W mutation. MV4-11-P and MV4-11-R showed similar sensitivity to cabozantinib, sorafenib, and MK2206, whereas MV4-11-R showed resistance to CI-1040 and idarubicin. MV4-11-R resistance may be associated with inhibition of Akt phosphorylation, but not ERK phosphorylation, after exposure to these drugs. The multi-kinase inhibitor cabozantinib inhibited FLT3-ITD signaling in MV4-11-R cells and MV4-11-R-derived tumors in mice. Cabozantinib effectively inhibited tumor growth and prolonged survival time in mice bearing MV4-11-R-derived tumors. Together, our findings suggest that Mcl-1 and Akt phosphorylation are potential therapeutic targets for p53 mutants and that cabozantinib is an effective treatment in cytarabine-resistant FLT3-ITD-positive AML.
Collapse
|
25
|
Willem C, Makanga DR, Guillaume T, Maniangou B, Legrand N, Gagne K, Peterlin P, Garnier A, Béné MC, Cesbron A, Le Bourgeois A, Chevallier P, Retière C. Impact of KIR/HLA Incompatibilities on NK Cell Reconstitution and Clinical Outcome after T Cell–Replete Haploidentical Hematopoietic Stem Cell Transplantation with Posttransplant Cyclophosphamide. THE JOURNAL OF IMMUNOLOGY 2019; 202:2141-2152. [DOI: 10.4049/jimmunol.1801489] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
|
26
|
Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia. Leukemia 2018; 33:931-944. [PMID: 30291336 DOI: 10.1038/s41375-018-0279-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance may be due to the survival of leukemia stem cells (LSCs) that are quiescent and not responsive to chemotherapy or lie on the intrinsic or acquired resistance of the specific pool of AML cells. Here, we found, among well-established LSC markers, only CD123 and CD47 are correlated with AML cell chemosensitivities across cell lines and patient samples. Further study reveals that percentages of CD123+CD47+ cells significantly increased in chemoresistant lines compared to parental cell lines. However, stemness signature genes are not significantly increased in resistant cells. Instead, gene changes are enriched in cell cycle and cell survival pathways. This suggests CD123 may serve as a biomarker for chemoresistance, but not stemness of AML cells. We further investigated the role of epigenetic factors in regulating the survival of chemoresistant leukemia cells. Epigenetic drugs, especially histone deacetylase inhibitors (HDACis), effectively induced apoptosis of chemoresistant cells. Furthermore, HDACi Romidepsin largely reversed gene expression profile of resistant cells and efficiently targeted and removed chemoresistant leukemia blasts in xenograft AML mouse model. More interestingly, Romidepsin preferentially targets CD123+ cells, while chemotherapy drug Ara-C mainly targeted fast-growing, CD123- cells. Therefore, Romidepsin alone or in combination with Ara-C may be a potential treatment strategy for chemoresistant patients.
Collapse
|
27
|
Chen B, Lee JB, Kang H, Minden MD, Zhang L. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy. J Exp Clin Cancer Res 2018; 37:88. [PMID: 29690909 PMCID: PMC5916833 DOI: 10.1186/s13046-018-0756-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Background While conventional chemotherapy is effective at eliminating the bulk of leukemic cells, chemotherapy resistance in acute myeloid leukemia (AML) is a prevalent problem that hinders conventional therapies and contributes to disease relapse, and ultimately patient death. We have recently shown that allogeneic double negative T cells (DNTs) are able to target the majority of primary AML blasts in vitro and in patient-derived xenograft models. However, some primary AML blast samples are resistant to DNT cell therapy. Given the differences in the modes of action of DNTs and chemotherapy, we hypothesize that DNT therapy can be used in combination with conventional chemotherapy to further improve their anti-leukemic effects and to target chemotherapy-resistant disease. Methods Drug titration assays and flow-based cytotoxicity assays using ex vivo expanded allogeneic DNTs were performed on multiple AML cell lines to identify therapy-resistance. Primary AML samples were also tested to validate our in vitro findings. Further, a xenograft model was employed to demonstrate the feasibility of combining conventional chemotherapy and adoptive DNT therapy to target therapy-resistant AML. Lastly, blocking assays with neutralizing antibodies were employed to determine the mechanism by which chemotherapy increases the susceptibility of AML to DNT-mediated cytotoxicity. Results Here, we demonstrate that KG1a, a stem-like AML cell line that is resistant to DNTs and chemotherapy, and chemotherapy-resistant primary AML samples both became more susceptible to DNT-mediated cytotoxicity in vitro following pre-treatment with daunorubicin. Moreover, chemotherapy treatment followed by adoptive DNT cell therapy significantly decreased bone marrow engraftment of KG1a in a xenograft model. Mechanistically, daunorubicin increased the expression of NKG2D and DNAM-1 ligands on KG1a; blocking of these pathways attenuated DNT-mediated cytotoxicity. Conclusions Our results demonstrate the feasibility and benefit of using DNTs as an immunotherapy after the administration of conventional chemotherapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0756-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Branson Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Saikia M, Retnakumari AP, Anwar S, Anto NP, Mittal R, Shah S, Pillai KS, Balachandran VS, Peter V, Thomas R, Anto RJ. Heteronemin, a marine natural product, sensitizes acute myeloid leukemia cells towards cytarabine chemotherapy by regulating farnesylation of Ras. Oncotarget 2018; 9:18115-18127. [PMID: 29719594 PMCID: PMC5915061 DOI: 10.18632/oncotarget.24771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022] Open
Abstract
Cytarabine is a conventionally used chemotherapeutic agent for treating acute myeloid leukemia (AML). However, chemoresistance, toxic side-effects and poor patient survival rates retard the efficacy of its performance. The current study deals with the chemosensitization of AML cells using heteronemin, a marine natural product towards cytarabine chemotherapy. Heteronemin could effectively sensitize HL-60 cells towards sub-toxic concentration of cytarabine resulting in synergistic toxicity as demonstrated by MTT assay and [3H] thymidine incorporation studies, while being safe towards healthy blood cells. Flow cytometry for Annexin-V/PI and immunoblotting for caspase cleavage proved that the combination induces enhancement in apoptosis. Heteronemin being a farnesyl transferase inhibitor (FTI) suppressed cytarabine-induced, farnesyl transferase-mediated activation of Ras, as assessed by Ras pull-down assay. Upon pre-treating cells with a commercial FTI, L-744,832, the synergism was completely lost in the combination, confirming the farnesyl transferase inhibitory activity of heteronemin as assessed by thymidine incorporation assay. Heteronemin effectively down-regulated cytarabine-induced activation of MAPK, AP-1, NF-κB and c-myc, the down-stream targets of Ras signaling, which again validated the role of Ras in regulating the synergism. Hence we believe that the efficacy of cytarabine chemotherapy can be improved to a significant extent by combining sub-toxic concentrations of cytarabine and heteronemin.
Collapse
Affiliation(s)
- Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Archana P Retnakumari
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shabna Anwar
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Nikhil P Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rashmi Mittal
- Department of Biotechnology, Maharishi Markandeshwar University, Haryana, India
| | - Shabna Shah
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Kavya S Pillai
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Scholar, University of Kerala, India
| | - Vinod S Balachandran
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Vidya Peter
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Reeba Thomas
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
29
|
Bolouri H, Farrar JE, Triche T, Ries RE, Lim EL, Alonzo TA, Ma Y, Moore R, Mungall AJ, Marra MA, Zhang J, Ma X, Liu Y, Liu Y, Auvil JMG, Davidsen TM, Gesuwan P, Hermida LC, Salhia B, Capone S, Ramsingh G, Zwaan CM, Noort S, Piccolo SR, Kolb EA, Gamis AS, Smith MA, Gerhard DS, Meshinchi S. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med 2018; 24:103-112. [PMID: 29227476 PMCID: PMC5907936 DOI: 10.1038/nm.4439] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children's Oncology Group (COG) AML trials. The COG-National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases. In contrast, somatic structural variants, including new gene fusions and focal deletions of MBNL1, ZEB2 and ELF1, were disproportionately prevalent in young individuals as compared to adults. Conversely, mutations in DNMT3A and TP53, which were common in adults, were conspicuously absent from virtually all pediatric cases. New mutations in GATA2, FLT3 and CBL and recurrent mutations in MYC-ITD, NRAS, KRAS and WT1 were frequent in pediatric AML. Deletions, mutations and promoter DNA hypermethylation convergently impacted Wnt signaling, Polycomb repression, innate immune cell interactions and a cluster of zinc finger-encoding genes associated with KMT2A rearrangements. These results highlight the need for and facilitate the development of age-tailored targeted therapies for the treatment of pediatric AML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jason E Farrar
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Timothy Triche
- Jane Anne Nohl Division of Hematology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emilia L Lim
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Todd A Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Children's Oncology Group, Monrovia, California, USA
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jinghui Zhang
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xiaotu Ma
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yu Liu
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yanling Liu
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Tanja M Davidsen
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Leandro C Hermida
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stephen Capone
- Jane Anne Nohl Division of Hematology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Giridharan Ramsingh
- Jane Anne Nohl Division of Hematology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Christian Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Sanne Noort
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, Utah, USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Alan S Gamis
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
30
|
Esteso G, Guerra S, Valés-Gómez M, Reyburn HT. Innate immune recognition of double-stranded RNA triggers increased expression of NKG2D ligands after virus infection. J Biol Chem 2017; 292:20472-20480. [PMID: 28986447 PMCID: PMC5733586 DOI: 10.1074/jbc.m117.818393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Self/non-self-discrimination by the innate immune system relies on germline-encoded, non-rearranging receptors expressed by innate immune cells recognizing conserved pathogen-associated molecular patterns. The natural killer group 2D (NKG2D) receptor is a potent immune-activating receptor that binds human genome-encoded ligands, whose expression is negligible in normal tissues, but increased in stress and disease conditions for reasons that are incompletely understood. Here it is not clear how the immune system reconciles receptor binding of self-proteins with self/non-self-discrimination to avoid autoreactivity. We now report that increased expression of NKG2D ligands after virus infection depends on interferon response factors activated by the detection of viral double-stranded RNA by pattern-recognition receptors (RIG-I/MDA-5) and that NKG2D ligand up-regulation can be blocked by the expression of viral dsRNA-binding proteins. Thus, innate immunity-mediated recognition of viral nucleic acids triggers the infected cell to release interferon for NK cell recruitment and to express NKG2D ligands to become more visible to the immune system. Finally, the observation that NKG2D-ligand induction is a consequence of signaling by pattern-recognition receptors that have been selected over evolutionary time to be highly pathogen-specific explains how the risks of autoreactivity in this system are minimized.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Cell Line
- Cells, Cultured
- Cricetinae
- DEAD Box Protein 58/chemistry
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Gene Expression Regulation
- Gene Expression Regulation, Viral
- Genes, Reporter
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1/chemistry
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Lentivirus/immunology
- Lentivirus/physiology
- Ligands
- Mutation
- NK Cell Lectin-Like Receptor Subfamily K/agonists
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- RNA/metabolism
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Immunologic
- Recombinant Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Gloria Esteso
- From the Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid and
| | - Susana Guerra
- the Department of Preventive Medicine and Public Health, Universidad Autónoma, 28029 Madrid, Spain
| | - Mar Valés-Gómez
- From the Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid and
| | - Hugh T Reyburn
- From the Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid and
| |
Collapse
|
31
|
Hassani SN, Rezaeeyan H, Ghodsi A, Saki N. Restoration of natural killer cell cytotoxicity in the suppressive tumor microenvironment: novel approaches to treat AML. J Hematop 2017. [DOI: 10.1007/s12308-017-0306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, Gilham DE, Sentman CL, Agaugue S. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol 2017; 13:1593-1605. [PMID: 28613086 DOI: 10.2217/fon-2017-0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.
Collapse
Affiliation(s)
- Benjamin Demoulin
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - W James Cook
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | - David J Graber
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Marie-Louise Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Caroline Lonez
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - David E Gilham
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - Charles L Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Sophie Agaugue
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| |
Collapse
|
33
|
Berraondo P, Labiano S, Minute L, Etxeberria I, Vasquez M, Sanchez-Arraez A, Teijeira A, Melero I. Cellular immunotherapies for cancer. Oncoimmunology 2017. [PMID: 28638729 DOI: 10.1080/2162402x.2017.1306619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lessons learned over decades on the use of gene and cell therapies have found clinical applicability in the field of cancer immunotherapy. On December 16th, 2016 a symposium was held in Pamplona (Spain) to analyze and discuss the critical points for the clinical success of adoptive cell transfer strategies in cancer immunotherapy. Cellular immunotherapy is being currently exploited for the development of new cancer vaccines using ex vivo manipulated dendritic cells or to enhance the number of effector cells, transferring reinvigorated NK cells or T cells. In this meeting report, we summarize the main topics covered and provide an overview of the field of cellular immunotherapy.
Collapse
Affiliation(s)
- Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Sara Labiano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Luna Minute
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alvaro Sanchez-Arraez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.,Servicio de Inmunología e Inmunoterapia, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
34
|
Brandetti E, Veneziani I, Melaiu O, Pezzolo A, Castellano A, Boldrini R, Ferretti E, Fruci D, Moretta L, Pistoia V, Locatelli F, Cifaldi L. MYCN is an immunosuppressive oncogene dampening the expression of ligands for NK-cell-activating receptors in human high-risk neuroblastoma. Oncoimmunology 2017; 6:e1316439. [PMID: 28680748 PMCID: PMC5486189 DOI: 10.1080/2162402x.2017.1316439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor occurring in childhood. Amplification of the MYCN oncogene is associated with poor prognosis. Downregulation on NB cells of ligands recognized by Natural Killer (NK) cell-activating receptors, involved in tumor cell recognition and lysis, may contribute to tumor progression and relapse. Here, we demonstrate that in human NB cell lines MYCN expression inversely correlates with that of ligands recognized by NKG2D and DNAM1 activating receptors in human NB cell lines. In the MYCN-inducible Tet-21/N cell line, downregulation of MYCN resulted in enhanced expression of the activating ligands MICA, ULBPs and PVR, which rendered tumor cells more susceptible to recognition and lysis mediated by NK cells. Conversely, a MYCN non-amplified NB cell line transfected with MYCN showed an opposite behavior compared with control cells. Consistent with these findings, an inverse correlation was detected between the expression of MYCN and that of ligands for NK-cell-activating receptors in 12 NB patient specimens both at mRNA and protein levels. Taken together, these results provide the first demonstration that MYCN acts as an immunosuppressive oncogene in NB cells that negatively regulates the expression of ligands for NKG2D and DNAM-1 NK-cell-activating receptors. Our study provides a clue to exploit MYCN expression levels as a biomarker to predict the efficacy of NK-cell-based immunotherapy in NB patients.
Collapse
Affiliation(s)
- Elisa Brandetti
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,School of Medicine, Programme in Immunology and Advanced Biotechnology, "Tor Vergata" University of Rome, Rome, Italy
| | - Irene Veneziani
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Molecular Medicine, PhD Programme in Immunological, Heamatological and Rheumatological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Ombretta Melaiu
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Aurora Castellano
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Renata Boldrini
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Ferretti
- Laboratory of Oncology Giannina Gaslini Institute, Genoa, Italy
| | - Doriana Fruci
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Pistoia
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Loredana Cifaldi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
35
|
Choi I, Yoon SR, Park SY, Kim H, Jung SJ, Kang YL, Lee JH, Lee JH, Kim DY, Lee JL, Park HS, Choi EJ, Lee YS, Kang YA, Jeon M, Seol M, Baek S, Yun SC, Kim HJ, Lee KH. Donor-Derived Natural Killer Cell Infusion after Human Leukocyte Antigen-Haploidentical Hematopoietic Cell Transplantation in Patients with Refractory Acute Leukemia. Biol Blood Marrow Transplant 2016; 22:2065-2076. [PMID: 27530969 DOI: 10.1016/j.bbmt.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
The optimum method of donor natural killer cell infusion (DNKI) after allogeneic hematopoietic cell transplantation (HCT) remains unclear. Fifty-one patients (age range, 19 years to 67 years) with refractory acute leukemia underwent HLA-haploidentical HCT and underwent DNKI on days 6, 9, 13, and 20 of HCT. Median DNKI doses were .5, .5, 1.0, and 2.0 × 108/kg cells, respectively. During DNKI, 33 of the 45 evaluated patients (73%) developed fever (>38.3°C) along with weight gain (median, 13%; range, 2% to 31%) and/or hyperbilirubinemia (median, 6.2 mg/dL; range, 1.0 mg/dL to 35.1 mg/dL); the toxicity was reversible in 90% of patients. After transplantation, we observed cumulative incidences of neutrophil engraftment (≥500/µL), grade 2 to 4 acute graft-versus-host disease (GVHD), chronic GVHD, and nonrelapse mortality of 84%, 28%, 30%, and 16%, respectively. The leukemia complete remission rate was 57% at 1 month after HCT and 3-year cumulative incidence of leukemia progression was 75%. When analyzed together with our historical cohort of 40 patients with refractory acute leukemia who underwent haploidentical HCT and DNKI on days 14 and 21 only, higher expression of NKp30 (>90%) on donor NK cells was an independent predictor of higher complete remission (hazard ratio, 5.59) and less leukemia progression (hazard ratio, .57). Additional DNKI on days 6 and 9 was not associated with less leukemia progression (75% versus 55%).
Collapse
Affiliation(s)
- Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Soo-Yeon Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hanna Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sol-Ji Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - You-Lee Kang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Je-Hwan Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Jung-Hee Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Dae-Young Kim
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Jae-Lyun Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Han-Seung Park
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Eun-Ji Choi
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Young-Shin Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Young-A Kang
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Mijin Jeon
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Miee Seol
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Seunghyun Baek
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Sung-Cheol Yun
- Department of Clinical Epidemiology and Biostatistics, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Kyoo-Hyung Lee
- Hematology and Oncology Sections, Department of Internal Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Textor S, Bossler F, Henrich KO, Gartlgruber M, Pollmann J, Fiegler N, Arnold A, Westermann F, Waldburger N, Breuhahn K, Golfier S, Witzens-Harig M, Cerwenka A. The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells. Oncoimmunology 2016; 5:e1116674. [PMID: 27622013 DOI: 10.1080/2162402x.2015.1116674] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/01/2015] [Accepted: 11/01/2015] [Indexed: 01/22/2023] Open
Abstract
Natural Killer (NK) cells are innate effector cells that are able to recognize and eliminate tumor cells through engagement of their surface receptors. NKp30 is a potent activating NK cell receptor that elicits efficient NK cell-mediated target cell killing. Recently, B7-H6 was identified as tumor cell surface expressed ligand for NKp30. Enhanced B7-H6 mRNA levels are frequently detected in tumor compared to healthy tissues. To gain insight in the regulation of expression of B7-H6 in tumors, we investigated transcriptional mechanisms driving B7-H6 expression by promoter analyses. Using luciferase reporter assays and chromatin immunoprecipitation we mapped a functional binding site for Myc, a proto-oncogene overexpressed in certain tumors, in the B7-H6 promoter. Pharmacological inhibition or siRNA/shRNA-mediated knock-down of c-Myc or N-Myc significantly decreased B7-H6 expression on a variety of tumor cells including melanoma, pancreatic carcinoma and neuroblastoma cell lines. In tumor cell lines from different origin and primary tumor tissues of hepatocellular carcinoma (HCC), lymphoma and neuroblastoma, mRNA levels of c-Myc positively correlated with B7-H6 expression. Most importantly, upon inhibition or knock-down of c-Myc in tumor cells impaired NKp30-mediated degranulation of NK cells was observed. Thus, our data imply that Myc driven tumors could be targets for cancer immunotherapy exploiting the NKp30/B7-H6 axis.
Collapse
Affiliation(s)
- Sonja Textor
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Felicitas Bossler
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | | | | | - Julia Pollmann
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Nathalie Fiegler
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Annette Arnold
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | | | - Nina Waldburger
- Institute of Pathology, University Hospital Heidelberg , Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg , Heidelberg, Germany
| | - Sven Golfier
- Bayer HealthCare Pharmaceuticals , Berlin, Germany
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| |
Collapse
|
37
|
Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol 2016; 103:62-77. [PMID: 27247119 DOI: 10.1016/j.critrevonc.2016.04.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/13/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
|
38
|
González B, Bueno D, Rubio P, San Román S, Plaza D, Sastre A, García-Miguel P, Fernández L, Valentín J, Martínez I, Pérez-Martínez A. An immunological approach to acute myeloid leukaemia. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.anpede.2015.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Dulphy N, Chrétien AS, Khaznadar Z, Fauriat C, Nanbakhsh A, Caignard A, Chouaib S, Olive D, Toubert A. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells. Front Immunol 2016; 7:94. [PMID: 27014273 PMCID: PMC4783386 DOI: 10.3389/fimmu.2016.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells.
Collapse
Affiliation(s)
- Nicolas Dulphy
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne-Sophie Chrétien
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | - Zena Khaznadar
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Fauriat
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | | | - Anne Caignard
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Immunité et Cancer, INSERM, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, CNRS, UMR7258 , Marseille , France
| | - Antoine Toubert
- UMRS-1160, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; U 1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
40
|
[An immunological approach to acute myeloid leukaemia]. An Pediatr (Barc) 2016; 84:195-202. [PMID: 26776165 DOI: 10.1016/j.anpedi.2015.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Acute myeloid leukaemia (AML) is the second haematological malignancy in the paediatric population, and one of the leading causes of childhood cancer mortality. Survival is currently around 60%, with no improvement in last decades, suggesting that new therapeutic approaches are needed. The anti-leukaemia effect mediated by the lymphocytes and natural killer (NK) cells of the immune system has been established in haematopoietic stem cell transplantation, and also as adoptive immunotherapy after consolidation chemotherapy schemes. PATIENTS AND METHODS A retrospective study was conducted on the clinical characteristics of patients diagnosed and treated for AML in our centre during 1996-2014. The mean fluorescence intensities of HLA-I, MICA/B and ULBP1-4, ligands for NK cell receptors, were also analysed in ten new diagnosed leukaemia cases, five myeloid and five lymphoid. RESULTS A total of 67 patients were used in this analysis. With a median follow up of 25 months, the event-free survival was 62% (95% CI: 55-67). Secondary AML, non-M3 phenotype, and the absence of favourable cytogenetic markers had a lower survival. The probability of relapse was 38% (95% CI: 31-45). The expression of HLA-I and ULBP-4 was significantly lower in myeloid than in lymphoid blast cells. CONCLUSIONS Our clinical results are similar to those described in the literature. Survival did not significantly change in recent decades, and the likelihood of relapse remains high. Myeloid blasts might be more susceptible to the cytotoxicity of NK cells through their lower expression of HLA-I. NK therapy strategies in minimal disease situation could be effective, as reported by other groups.
Collapse
|
41
|
Nanbakhsh A, Visentin G, Olive D, Janji B, Mussard E, Dessen P, Meurice G, Zhang Y, Louache F, Bourhis JH, Chouaib S. miR-181a modulates acute myeloid leukemia susceptibility to natural killer cells. Oncoimmunology 2015; 4:e996475. [PMID: 26587335 DOI: 10.1080/2162402x.2014.996475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
Although daunorubicin (DNR) is the most widely used anthracycline to treat acute myeloid leukemia (AML), resistance to this drug remains a critical problem. The aim of this study was to investigate the relationship between AML resistance to daunorubicin and susceptibility to natural killer (NK) cell-mediated cell lysis, and the putative expression of miRs. For this purpose, we used the parental AML cell lines U-937 and KG-1 and their equivalent resistant U937(R) and KG-1(R) cell lines. We demonstrate for the first time that the acquisition of resistance to DNR by the parental cell lines resulted in the acquisition of cross-resistance to NK cell-mediated cytotoxicity. miR microarray analysis revealed that this cross-resistance was associated with miR-181a downregulation and the subsequent regulation of MAP3K10 and MAP2K1 tyrosine kinases and the BCL-2 (BCL-2 and MCL-1) family. Overexpression of miR-181a in AML blasts resulted in the attenuation of their resistance to DNR and to NK-cell-mediated killing. These data point to a determinant role of miR-181a in the sensitization of leukemic resistant cells to DNR and NK cells and suggest that miR-181a may provide a promising option for the treatment of immuno- and chemo-resistant blasts.
Collapse
Affiliation(s)
| | | | - Daniel Olive
- Centre de Cancérologie de Marseille; INSERM; Institut Paoli-Calmettes ; Marseille, France
| | - Bassam Janji
- Laboratory of Experimental Hemato-Oncology. CRP-Santé ,; Luxembourg City, Luxembourg
| | | | - Philippe Dessen
- Functional Genomic Unit; Gustave Roussy Campus ; Villejuif, France
| | | | - Yanyan Zhang
- INSERM; Gustave Roussy Campus ; Villejuif, France
| | | | - Jean-Henri Bourhis
- INSERM; Gustave Roussy Campus ; Villejuif, France ; Department of Hematology & Bone Marrow Transplantation, Gustave Roussy Campus ; Villejuif, France
| | | |
Collapse
|
42
|
Luo H, Chen Z, Wang S, Zhang R, Qiu W, Zhao L, Peng C, Xu R, Chen W, Wang HW, Chen Y, Yang J, Zhang X, Zhang S, Chen D, Wu W, Zhao C, Cheng G, Jiang T, Lu D, You Y, Liu N, Wang H. c-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain 2015; 138:3654-72. [PMID: 26450587 DOI: 10.1093/brain/awv287] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Resistance to temozolomide poses a major clinical challenge in glioblastoma multiforme treatment, and the mechanisms underlying the development of temozolomide resistance remain poorly understood. Enhanced DNA repair and mutagenesis can allow tumour cells to survive, contributing to resistance and tumour recurrence. Here, using recurrent temozolomide-refractory glioblastoma specimens, temozolomide-resistant cells, and resistant-xenograft models, we report that loss of miR-29c via c-Myc drives the acquisition of temozolomide resistance through enhancement of REV3L-mediated DNA repair and mutagenesis in glioblastoma. Importantly, disruption of c-Myc/miR-29c/REV3L signalling may have dual anticancer effects, sensitizing the resistant tumours to therapy as well as preventing the emergence of acquired temozolomide resistance. Our findings suggest a rationale for targeting the c-Myc/miR-29c/REV3L signalling pathway as a promising therapeutic approach for glioblastoma, even in recurrent, treatment-refractory settings.
Collapse
Affiliation(s)
- Hui Luo
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengxin Chen
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Wang
- 2 Department of Haematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenjin Qiu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Zhao
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenghao Peng
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ran Xu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wanghao Chen
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Wei Wang
- 3 Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yuanyuan Chen
- 4 Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo 00015, Italy
| | - Jingmin Yang
- 5 State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiaotian Zhang
- 6 Department of Molecular Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuyu Zhang
- 7 School of Radiation Medicine and Protection, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Dan Chen
- 8 Department of Immunology, Genetics and Pathology, Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenting Wu
- 9 Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Chunsheng Zhao
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gang Cheng
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Jiang
- 10 Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing 100050, China 11 Chinese Glioma Cooperative Group (CGCG)
| | - Daru Lu
- 5 State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yongping You
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China 11 Chinese Glioma Cooperative Group (CGCG)
| | - Ning Liu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China 11 Chinese Glioma Cooperative Group (CGCG)
| | - Huibo Wang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China 11 Chinese Glioma Cooperative Group (CGCG)
| |
Collapse
|
43
|
Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris JH, Noman MZ, Chouaib S. Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Front Immunol 2015; 6:482. [PMID: 26441986 PMCID: PMC4585210 DOI: 10.3389/fimmu.2015.00482] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells, a key component of the innate immunity, are recognized as potent anticancer mediators. Extensive studies have been detailed on how NK cells get activated and recognize cancer cells. In contrast, few studies have been focused on how tumor microenvironment-mediated immunosubversion and immunoselection of tumor-resistant variants may impair NK cell function. Accumulating evidences indicate that several cell subsets (macrophages, myeloid-derived suppressive cells, T regulatory cells, dendritic cells, cancer-associated fibroblasts, and tumor cells), their secreted factors, as well as metabolic components (i.e., hypoxia) have immunosuppressive roles in the tumor microenvironment and are able to condition NK cells to become anergic. In this review, we will describe how NK cells react with different stromal cells in the tumor microenvironment. This will be followed by a discussion on the role of hypoxic stress in the regulation of NK cell functions. The aim of this review is to provide a better understanding of how the tumor microenvironment impairs NK cell functions, thereby limiting the use of NK cell-based therapy, and we will attempt to suggest more efficient tools to establish a more favorable tumor microenvironment to boost NK cell cytotoxicity and control tumor progression.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Linda Ziani
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jerome Thiery
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jean-Henri Bouhris
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France ; Department of Hematology and Bone Marrow Transplantation, Gustave Roussy Campus , Villejuif , France
| | - Muhammad Zaeem Noman
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| |
Collapse
|
44
|
|