1
|
Atkinson HM, Stevic I, Berry LR, Chan AKC. Effect of endothelium on the anticoagulant activity of a covalent antithrombin-heparin complex. Sci Rep 2024; 14:22335. [PMID: 39333740 PMCID: PMC11436636 DOI: 10.1038/s41598-024-72458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
We developed a covalent antithrombin-heparin complex (ATH) with superior In vivo anticoagulant efficacy compared to non-covalent antithrombin (AT) + unfractionated heparin (H). Previous in vitro studies of ATH, investigating the mechanisms behind its efficacy, were done in the absence of endothelium. Since the endothelial surface modulates hemostasis, we investigated its impact on the in vitro anticoagulant properties of ATH and AT+H. Discontinuous second order rate constant enzyme inhibition assays, fibrin formation, and plasma clot generation were performed in the presence of ATH or AT+H, with and without endothelium present. ATH had an increased rate of direct inhibition of IIa and Xa, and increased inhibition of IIa-induced fibrin formation, compared to AT+H. When compared at equal anti-Xa levels, ATH was less effective than AT+H at catalyzing inhibition of plasma clot generation. These results were found in both the presence and absence of endothelium. Endothelium decreased the rate of IIa inhibition, and reduced clot time in IIa-induced fibrin formation and plasma clot generation assays, for both ATH and AT+H. Endothelium did not impact the activity of ATH differently to AT+H. This supports the growing body of evidence suggesting ATH may be a beneficial anticoagulant for potential clinical use.
Collapse
Affiliation(s)
- Helen M Atkinson
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Ivan Stevic
- Pathology and Laboratory Medicine, London Health Sciences Centre and Western University, London, ON, Canada
| | - Leslie R Berry
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Anthony K C Chan
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada.
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.
- Thrombosis and Atherosclerosis Research Institute (TaARI), DBCVSRI, Hamilton General Hospital, 237 Barton St. E., Hamilton, ON, L8L 2X2, Canada.
| |
Collapse
|
2
|
Stalker TJ. Procoagulant membranes during hemostasis. Blood 2024; 144:1036-1037. [PMID: 39235800 DOI: 10.1182/blood.2024025430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
|
3
|
Ballard-Kordeliski A, Lee RH, O'Shaughnessy EC, Kim PY, Jones SR, Pawlinski R, Flick MJ, Paul DS, Mackman N, Adalsteinsson DA, Bergmeier W. 4D intravital imaging studies identify platelets as the predominant cellular procoagulant surface in a mouse hemostasis model. Blood 2024; 144:1116-1126. [PMID: 38820498 PMCID: PMC11406176 DOI: 10.1182/blood.2023022608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT Interplay between platelets, coagulation factors, endothelial cells (ECs), and fibrinolytic factors is necessary for effective hemostatic plug formation. This study describes a 4-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components in mice with high spatiotemporal resolution. Fibrin accumulation after laser-induced vascular injury was observed at the platelet plug-EC interface, controlled by the antagonistic balance between fibrin generation and breakdown. We observed less fibrin accumulation in mice expressing low levels of tissue factor or F12-/-mice compared with controls, whereas increased fibrin accumulation, including on the vasculature adjacent to the platelet plug, was observed in plasminogen-deficient mice or wild-type mice treated with tranexamic acid. Phosphatidylserine (PS), a membrane lipid critical for the assembly of coagulation factors, was first detected at the platelet plug-EC interface, followed by exposure across the endothelium. Impaired PS exposure resulted in a significant reduction in fibrin accumulation in cyclophilin D-/-mice. Adoptive transfer studies demonstrated a key role for PS exposure on platelets, and to a lesser degree on ECs, in fibrin accumulation during hemostatic plug formation. Together, these studies suggest that (1) platelets are the functionally dominant procoagulant cellular surface, and (2) plasmin is critical for limiting fibrin accumulation at the site of a forming hemostatic plug.
Collapse
Affiliation(s)
- Abigail Ballard-Kordeliski
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Robert H Lee
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ellen C O'Shaughnessy
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Summer R Jones
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew J Flick
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David S Paul
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nigel Mackman
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David A Adalsteinsson
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
4
|
Fager AM, Ellsworth P, Key NS, Monroe DM, Hoffman M. Emicizumab promotes factor Xa generation on endothelial cells. J Thromb Haemost 2024; 22:1605-1615. [PMID: 38460838 DOI: 10.1016/j.jtha.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Until recently, the treatment of hemophilia A relied on factor (F)VIII replacement. However, up to one-third of patients with severe hemophilia A develop neutralizing alloantibodies that render replacement therapies ineffective. The development of emicizumab, a bispecific antibody that partially mimics FVIIIa, has revolutionized the treatment of these patients. However, the use of an activated prothrombin complex concentrate [FEIBA (Takeda)] to treat breakthrough bleeding in patients on emicizumab has been associated with thrombotic complications including a unique microangiopathy. OBJECTIVES We hypothesized that the thrombotic complications observed with the combination of emicizumab and FEIBA might be due to excessive expression of procoagulant activity on the surface of endothelial cells. METHODS We examined the ability of emicizumab to promote FX activation on endothelial cells using 2 cell culture models. RESULTS We found that endothelial cells readily support emicizumab-mediated activation of FX by FIXa. The level of FXa generation depends on the concentration of available FIXa. The addition of FEIBA to emicizumab increased FXa generation in a dose-dependent manner on endothelial cells in both models. The rate of FXa generation was further enhanced by endothelial cell activation. However, unlike emicizumab, we found limited FXa generation in the presence of FVIII(a), which followed a significant lag time and was not dependent on FIXa concentration under these conditions. CONCLUSION Emicizumab promotes FXa generation on the surface of endothelial cells, which is markedly enhanced in the presence of FEIBA. These findings demonstrate a potential mechanism for the thrombotic complications seen with the combined use of emicizumab and FEIBA.
Collapse
Affiliation(s)
- Ammon M Fager
- Hematology/Oncology Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Patrick Ellsworth
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel S Key
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dougald M Monroe
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maureane Hoffman
- Pathology and Laboratory Medicine Service, Department of Veterans Affairs Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Zhou J, Rico MC, Rauova L, Poncz M, Essex DW. Thioredoxin-related transmembrane protein 1 negatively regulates coagulation and phosphatidylserine exposure. Res Pract Thromb Haemost 2024; 8:102472. [PMID: 39036672 PMCID: PMC11260325 DOI: 10.1016/j.rpth.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/23/2024] Open
Abstract
Background Five secreted platelet protein disulfide isomerases (PDIs) and 1 transmembrane PDI regulate platelet function and thrombosis. Thioredoxin-related transmembrane protein 1 (TMX1) was the first member of the PDI family found to negatively regulate platelet aggregation and platelet accumulation in vivo. The effect of TMX1 on coagulation is unknown. Objectives To determine the effect of TMX1 on coagulation. Methods TMX1-/- mice were used to study platelet accumulation and fibrin deposition in vivo in the laser-induced thrombosis injury model. Annexin V deposition at the site of vascular injury was studied using conditional TMX1 knockout mice. Annexin V binding to platelets was studied using human platelets, anti-TMX1 antibodies, and TMX1-deficient platelets. Results TMX1-/- mice had increased fibrin deposition that was reversed with infusion of recombinant TMX1. Infusion of recombinant TMX1 inhibited platelet accumulation and fibrin deposition in wild-type mice and inhibited fibrin deposition in β3-null mice. Platelet accumulation is absent in β3-null mice, suggesting that TMX1 inhibits coagulation independently of platelets. Annexin V binding was increased in activated human platelets incubated with an anti-TMX1 antibody and mouse platelets lacking TMX1. Addition of recombinant TMX1 decreased annexin V binding to platelets. Annexin V binding was increased at the site of vascular injury in Tie2-Cre/TMX1fl/fl mice deficient in endothelial cell TMX1. Conclusion TMX1 decreases coagulation at the site of vascular injury and negatively regulates phosphatidylserine exposure on endothelial cells and platelets.
Collapse
Affiliation(s)
- Junsong Zhou
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
- Division of Hematology, Department of Medicine, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mario C. Rico
- Division of Hematology, Department of Medicine, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David W. Essex
- Division of Hematology, Department of Medicine, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Ballard-Kordeliski A, Lee RH, O'Shaughnessy EC, Kim PY, Jones S, Mackman N, Flick MJ, Paul DS, Adalsteinsson D, Bergmeier W. 4D intravital imaging studies identify platelets as the predominant cellular procoagulant surface in a mouse model of hemostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554449. [PMID: 37662350 PMCID: PMC10473702 DOI: 10.1101/2023.08.25.554449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Interplay between platelets, coagulation/fibrinolytic factors, and endothelial cells (ECs) is necessary for effective hemostatic plug formation. This study describes a novel four-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components with high spatiotemporal resolution. Fibrin accumulation following laser-induced endothelial ablation was observed at the EC-platelet plug interface, controlled by the antagonistic balance between fibrin generation and breakdown. Phosphatidylserine (PS) was first detected in close physical proximity to the fibrin ring, followed by exposure across the endothelium. Impaired PS exposure in cyclophilinD -/- mice resulted in a significant reduction in fibrin accumulation. Adoptive transfer and inhibitor studies demonstrated a key role for platelets, but not ECs, in fibrin generation during hemostatic plug formation. Inhibition of fibrinolysis with tranexamic acid (TXA) led to increased fibrin accumulation in WT mice, but not in cyclophilinD -/- mice or WT mice treated with antiplatelet drugs. These studies implicate platelets as the functionally dominant procoagulant surface during hemostatic plug formation. In addition, they suggest that impaired fibrin formation due to reduced platelet procoagulant activity is not reversed by TXA treatment.
Collapse
|
7
|
Kaczmarek R, Piñeros AR, Patterson PE, Bertolini TB, Perrin GQ, Sherman A, Born J, Arisa S, Arvin MC, Kamocka MM, Martinez MM, Dunn KW, Quinn SM, Morris JJ, Wilhelm AR, Kaisho T, Munoz-Melero M, Biswas M, Kaplan MH, Linnemann AK, George LA, Camire RM, Herzog RW. Factor VIII trafficking to CD4+ T cells shapes its immunogenicity and requires several types of antigen-presenting cells. Blood 2023; 142:290-305. [PMID: 37192286 PMCID: PMC10375270 DOI: 10.1182/blood.2022018937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Annie R. Piñeros
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Paige E. Patterson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Thais B. Bertolini
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - George Q. Perrin
- Department of Pediatrics, University of Florida, Gainesville, FL
| | | | - Jameson Born
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Sreevani Arisa
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew C. Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Malgorzata M. Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Michelle M. Martinez
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Kenneth W. Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sean M. Quinn
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Johnathan J. Morris
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amelia R. Wilhelm
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Maite Munoz-Melero
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Moanaro Biswas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia K. Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey A. George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Rodney M. Camire
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Roland W. Herzog
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
8
|
Schmaier AA, Anderson PF, Chen SM, El-Darzi E, Aivasovsky I, Kaushik MP, Sack KD, Hartzell HC, Parikh SM, Flaumenhaft R, Schulman S. TMEM16E regulates endothelial cell procoagulant activity and thrombosis. J Clin Invest 2023; 133:e163808. [PMID: 36951953 PMCID: PMC10231993 DOI: 10.1172/jci163808] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/22/2023] [Indexed: 03/24/2023] Open
Abstract
Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS). PS can be rapidly externalized to the outer cell membrane leaflet by phospholipid "scramblases," such as TMEM16F. TMEM16F-dependent PS externalization is well characterized in platelets. In contrast, how ECs externalize phospholipids to support coagulation is not understood. We employed a focused genetic screen to evaluate the contribution of transmembrane phospholipid transport on EC procoagulant activity. We identified 2 TMEM16 family members, TMEM16F and its closest paralog, TMEM16E, which were both required to support coagulation on ECs via PS externalization. Applying an intravital laser-injury model of thrombosis, we observed, unexpectedly, that PS externalization was concentrated at the vessel wall, not on platelets. TMEM16E-null mice demonstrated reduced vessel-wall-dependent fibrin formation. The TMEM16 inhibitor benzbromarone prevented PS externalization and EC procoagulant activity and protected mice from thrombosis without increasing bleeding following tail transection. These findings indicate the activated endothelial surface is a source of procoagulant phospholipid contributing to thrombus formation. TMEM16 phospholipid scramblases may be a therapeutic target for thrombotic cardiovascular disease.
Collapse
Affiliation(s)
- Alec A. Schmaier
- Division of Cardiovascular Medicine and
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Kelsey D. Sack
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samir M. Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Agbani EO, Hers I, Poole AW. Platelet procoagulant membrane dynamics: a key distinction between thrombosis and hemostasis? Blood Adv 2023; 7:1615-1619. [PMID: 36574232 PMCID: PMC10173732 DOI: 10.1182/bloodadvances.2022008122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ejaife O. Agbani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alastair W. Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Ivanciu L, Arruda VR, Camire RM. Factor IXa variants resistant to plasma inhibitors enhance clot formation in vivo. Blood 2023; 141:2022-2032. [PMID: 36724452 PMCID: PMC10163311 DOI: 10.1182/blood.2022018083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Factor IXa (FIXa) plays a pivotal role in coagulation by contributing to FX activation via the intrinsic pathway. Although antithrombin (AT) and other plasma inhibitors are thought to regulate FIXa procoagulant function, the impact of FIXa inhibition on thrombin generation and clot formation in vivo remains unclear. Here, we generated FIXa variants with altered reactivity to plasma inhibitors that target the FIXa active site but maintain procoagulant function when bound to its cofactor, FVIIIa. We found that selected FIXa variants (eg, FIXa-V16L) have a prolonged activity half-life in the plasma due, in part, to AT resistance. Studies using hemophilia B mice have shown that delayed FIXa inhibition has a major impact on reducing the bleeding phenotype and promoting thrombus formation following administration of FIX protein. Overall, these results demonstrate that the regulation of FIXa inhibition contributes in a major way to the spatial and temporal control of coagulation at the site of vascular injury. Our findings provide novel insights into the physiological regulation of FIXa, enhance our understanding of thrombus formation in vivo via the intrinsic pathway, and suggest that altering FIXa inhibition could have therapeutic benefits.
Collapse
Affiliation(s)
- Lacramioara Ivanciu
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Valder R. Arruda
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rodney M. Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Chen Y, Phoon PHY, Hwang NC. Heparin Resistance During Cardiopulmonary Bypass in Adult Cardiac Surgery. J Cardiothorac Vasc Anesth 2022; 36:4150-4160. [PMID: 35927191 PMCID: PMC9225936 DOI: 10.1053/j.jvca.2022.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
The use of heparin for anticoagulation has changed the face of cardiac surgery by allowing a bloodless and motionless surgical field throughout the introduction of cardiopulmonary bypass (CPB). However, heparin is a drug with complex pharmacologic properties that can cause significant interpatient differences in terms of responsiveness. Heparin resistance during CPB is a weighty issue due to the catastrophic consequences stemming from inadequate anticoagulation, and the treatment of it necessitates a rationalized stepwise approach due to the multifactorial contributions toward this entity. The widespread use of activated clotting time (ACT) as a measurement of anticoagulation during CPB is examined, as it may be a false indicator of heparin resistance. Heparin resistance also has been repeatedly reported in patients infected with COVID-19, which deserves further exploration in this pandemic era. This review aims to examine the variability in heparin potency, underlying mechanisms, and limitations of using ACT for monitoring, as well as provide a framework towards the current management of heparin resistance.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Anaesthesiology, Singapore General Hospital, Singapore,Department of Cardiothoracic Anesthesia, National Heart Centre, Singapore
| | - Priscilla Hui Yi Phoon
- Department of Anaesthesiology, Singapore General Hospital, Singapore,Department of Cardiothoracic Anesthesia, National Heart Centre, Singapore
| | - Nian Chih Hwang
- Department of Anaesthesiology, Singapore General Hospital, Singapore; Department of Cardiothoracic Anesthesia, National Heart Centre, Singapore.
| |
Collapse
|
12
|
Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv 2022; 7:60-72. [PMID: 35849711 PMCID: PMC9827038 DOI: 10.1182/bloodadvances.2021006870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Prior reports indicate that the convex membrane curvature of phosphatidylserine (PS)-containing vesicles enhances formation of binding sites for factor Va and lactadherin. Yet, the relationship of convex curvature to localization of these proteins on cells remains unknown. We developed a membrane topology model, using phospholipid bilayers supported by nano-etched silica substrates, to further explore the relationship between curvature and localization of coagulation proteins. Ridge convexity corresponded to maximal curvature of physiologic membranes (radii of 10 or 30 nm) and the troughs had a variable concave curvature. The benchmark PS probe lactadherin exhibited strong differential binding to the ridges, on membranes with 4% to 15% PS. Factor Va, with a PS-binding motif homologous to lactadherin, also bound selectively to the ridges. Bound factor Va supported coincident binding of factor Xa, localizing prothrombinase complexes to the ridges. Endothelial cells responded to prothrombotic stressors and stimuli (staurosporine, tumor necrosis factor-α [TNF- α]) by retracting cell margins and forming filaments and filopodia. These had a high positive curvature similar to supported membrane ridges and selectively bound lactadherin. Likewise, the retraction filaments and filopodia bound factor Va and supported assembly of prothrombinase, whereas the cell body did not. The perfusion of plasma over TNF-α-stimulated endothelia in culture dishes and engineered 3-dimensional microvessels led to fibrin deposition at cell margins, inhibited by lactadherin, without clotting of bulk plasma. Our results indicate that stressed or stimulated endothelial cells support prothrombinase activity localized to convex topological features at cell margins. These findings may relate to perivascular fibrin deposition in sepsis and inflammation.
Collapse
|
13
|
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood 2022; 139:3463-3473. [PMID: 35427420 PMCID: PMC9203702 DOI: 10.1182/blood.2022015807] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | | | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
14
|
Soule EE, Yu H, Olson L, Naqvi I, Kumar S, Krishnaswamy S, Sullenger BA. Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples. Cell Chem Biol 2022; 29:215-225.e5. [PMID: 35114109 PMCID: PMC8808741 DOI: 10.1016/j.chembiol.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.
Collapse
Affiliation(s)
- Erin E. Soule
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyra Olson
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Ibtehaj Naqvi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shekhar Kumar
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sriram Krishnaswamy
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruce A. Sullenger
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA,Corresponding author
| |
Collapse
|
15
|
Sanrattana W, Smits S, Barendrecht AD, van Kleef ND, El Otmani H, Zivkovic M, Roest M, Renné T, Clark CC, de Maat S, Maas C. Targeted SERPIN (TaSER): A dual-action antithrombotic agent that targets platelets for SERPIN delivery. J Thromb Haemost 2022; 20:353-365. [PMID: 34653316 PMCID: PMC9298318 DOI: 10.1111/jth.15554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Occlusive thrombi are not homogeneous in composition. The core of a thrombus is rich in activated platelets and fibrin while the outer shell contains resting platelets. This core is inaccessible to plasma proteins. We produced a fusion protein (targeted SERPIN-TaSER), consisting of a function-blocking VH H against glycoprotein Ibα (GPIbα) and a thrombin-inhibiting serine protease inhibitor (SERPIN; α1-antitrypsin 355 AIAR358 ) to interfere with platelet-driven thrombin formation. AIM To evaluate the antithrombotic properties of TaSER. METHODS Besides TaSER, we generated three analogous control variants with either a wild-type antitrypsin subunit, a non-targeting control VH H, or their combination. We investigated TaSER and controls in protease activity assays, (platelet-dependent) thrombin generation assays, and by western blotting. The effects of TaSER on platelet activation and von Willebrand factor (VWF) binding were studied by fluorescence-activated cell sorting, in agglutination studies, and in ATP secretion experiments. We studied the influence of TaSER in whole blood (1) on platelet adhesion on VWF, (2) aggregate formation on collagen, and (3) thrombus formation (after recalcification) on collagen and tissue factor. RESULTS TaSER binds platelets and inhibits thrombin activity on the platelet surface. It blocks VWF binding and disassembles platelet agglutinates. TaSER delays tissue factor-triggered thrombin generation and ATP secretion in platelet-rich plasma in a targeted manner. In flow studies, TaSER interferes with platelet adhesion and aggregate formation due to GPIbα blockade and limits thrombus formation due to targeted inhibition of platelet-dependent thrombin activity. CONCLUSION The synergy between the individual properties of TaSER makes it a highly effective antithrombotic agent with possible clinical implications.
Collapse
Affiliation(s)
- Wariya Sanrattana
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Simone Smits
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Arjan D. Barendrecht
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Nadine D. van Kleef
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Hinde El Otmani
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Minka Zivkovic
- Van CreveldkliniekUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mark Roest
- Synapse Research InstituteMaastrichtThe Netherlands
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Center for Thrombosis and Hemostasis (CTH)Johannes Gutenberg University Medical CenterMainzGermany
| | - Chantal C. Clark
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Steven de Maat
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Coen Maas
- CDL ResearchUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
16
|
Revollo L, Merrill-Skoloff G, De Ceunynck K, Dilks JR, Guo S, Bordoli MR, Peters CG, Noetzli L, Ionescu A, Rosen V, Italiano JE, Whitman M, Flaumenhaft R. The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood 2022; 139:104-117. [PMID: 34329392 PMCID: PMC8718620 DOI: 10.1182/blood.2020010342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
Affiliation(s)
- Leila Revollo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - James R Dilks
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mattia R Bordoli
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Christian G Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Leila Noetzli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Joseph E Italiano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
|
18
|
An engineered activated factor V for the prevention and treatment of acute traumatic coagulopathy and bleeding in mice. Blood Adv 2021; 6:959-969. [PMID: 34861695 PMCID: PMC8945312 DOI: 10.1182/bloodadvances.2021005257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
superFVa arrests severe bleeding and prevents the development of ATC after trauma. superFVa therapy restores functional hemostasis when initiated after onset of ATC caused by traumatic bleeding.
Acute traumatic coagulopathy (ATC) occurs in approximately 30% of patients with trauma and is associated with increased mortality. Excessive generation of activated protein C (APC) and hyperfibrinolysis are believed to be driving forces for ATC. Two mouse models were used to investigate whether an engineered activated FV variant (superFVa) that is resistant to inactivation by APC and contains a stabilizing A2-A3 domain disulfide bond can reduce traumatic bleeding and normalize hemostasis parameters in ATC. First, ATC was induced by the combination of trauma and shock. ATC was characterized by activated partial thromboplastin time (APTT) prolongation and reductions of factor V (FV), factor VIII (FVIII), and fibrinogen but not factor II and factor X. Administration of superFVa normalized the APTT, returned FV and FVIII clotting activity levels to their normal range, and reduced APC and thrombin-antithrombin (TAT) levels, indicating improved hemostasis. Next, a liver laceration model was used where ATC develops as a consequence of severe bleeding. superFVa prophylaxis before liver laceration reduced bleeding and prevented APTT prolongation, depletion of FV and FVIII, and excessive generation of APC. Thus, prophylactic administration of superFVa prevented the development of ATC. superFVa intervention started after the development of ATC stabilized bleeding, reversed prolonged APTT, returned FV and FVIII levels to their normal range, and reduced TAT levels that were increased by ATC. In summary, superFVa prevented ATC and traumatic bleeding when administered prophylactically, and superFVa stabilized bleeding and reversed abnormal hemostasis parameters when administered while ATC was in progress. Thus, superFVa may be an attractive strategy to intercept ATC and mitigate traumatic bleeding.
Collapse
|
19
|
|
20
|
Borst S, Nations CC, Klein JG, Pavani G, Maguire JA, Camire RM, Drazer MW, Godley LA, French DL, Poncz M, Gadue P. Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model. Stem Cell Reports 2021; 16:1458-1467. [PMID: 34019812 PMCID: PMC8190596 DOI: 10.1016/j.stemcr.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/29/2022] Open
Abstract
Inherited thrombocytopenia results in low platelet counts and increased bleeding. Subsets of these patients have monoallelic germline mutations in ETV6 or RUNX1 and a heightened risk of developing hematologic malignancies. Utilizing CRISPR-Cas9, we compared the in vitro phenotype of hematopoietic progenitor cells and megakaryocytes derived from induced pluripotent stem cell (iPSC) lines harboring mutations in either ETV6 or RUNX1. Both mutant lines display phenotypes consistent with a platelet-bleeding disorder. Surprisingly, these cellular phenotypes were largely distinct. The ETV6-mutant iPSCs yield more hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are immature and less responsive to agonist stimulation. On the contrary, RUNX1-mutant iPSCs yield fewer hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are more responsive to agonist stimulation. However, both mutant iPSC lines display defects in proplatelet formation. Our work highlights that, while patients harboring germline ETV6 or RUNX1 mutations have similar clinical phenotypes, the molecular mechanisms may be distinct.
Collapse
Affiliation(s)
- Sara Borst
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Joshua G Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rodney M Camire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mortimer Poncz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Deguchi H, Morla S, Griffin JH. Novel blood coagulation molecules: Skeletal muscle myosin and cardiac myosin. J Thromb Haemost 2021; 19:7-19. [PMID: 32920971 PMCID: PMC7819347 DOI: 10.1111/jth.15097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Essentials Striated muscle myosins can promote prothrombin activation by FXa or FVa inactivation by APC. Cardiac myosin and skeletal muscle myosin are pro-hemostatic in murine tail cut bleeding models. Infused cardiac myosin exacerbates myocardial injury caused by myocardial ischemia reperfusion. Skeletal muscle myosin isoforms that circulate in human plasma can be grouped into 3 phenotypes. ABSTRACT: Two striated muscle myosins, namely skeletal muscle myosin (SkM) and cardiac myosin (CM), may potentially contribute to physiologic mechanisms for regulation of thrombosis and hemostasis. Thrombin is generated from activation of prothrombin by the prothrombinase (IIase) complex comprising factor Xa, factor Va, and Ca++ ions located on surfaces where these factors are assembled. We discovered that SkM and CM, which are abundant motor proteins in skeletal and cardiac muscles, can provide a surface for thrombin generation by the prothrombinase complex without any apparent requirement for phosphatidylserine or lipids. These myosins can also provide a surface that supports the inactivation of factor Va by activated protein C/protein S, resulting in negative feedback downregulation of thrombin generation. Although the physiologic significance of these reactions remains to be established for humans, substantive insights may be gleaned from murine studies. In mice, exogenously infused SkM and CM can promote hemostasis as they are capable of reducing tail cut bleeding. In a murine myocardial ischemia-reperfusion injury model, exogenously infused CM exacerbates myocardial infarction damage. Studies of human plasmas show that SkM antigen isoforms of different MWs circulate in human plasma, and they can be used to identify three plasma SkM phenotypes. A pilot clinical study showed that one SkM isoform pattern appeared to be linked to isolated pulmonary embolism. These discoveries enable multiple preclinical and clinical studies of SkM and CM, which should provide novel mechanistic insights with potential translational relevance for the roles of CM and SkM in the pathobiology of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Grover SP, Bendapudi PK, Yang M, Merrill-Skoloff G, Govindarajan V, Mitrophanov AY, Flaumenhaft R. Injury measurements improve interpretation of thrombus formation data in the cremaster arteriole laser-induced injury model of thrombosis. J Thromb Haemost 2020; 18:3078-3085. [PMID: 33456401 PMCID: PMC7805486 DOI: 10.1111/jth.15059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The cremaster arteriole laser-induced injury model is a powerful technique with which to investigate the molecular mechanisms that drive thrombus formation. This model is capable of direct visualization and quantification of accumulation of thrombus constituents, including both platelets and fibrin. However, a large degree of variability in platelet accumulation and fibrin formation is observed between thrombi. Strategies to understand this variability will enhance performance and standardization of the model. We determined whether ablation injury size contributes to variation in platelet accumulation and fibrin formation and, if so, whether incorporating ablation injury size into measurements reduces variation. Methods Thrombus formation was initiated by laser-induced injury of cremaster arterioles of mice (n=59 injuries). Ablation injuries within the vessel wall were consistently identified and quantified by measuring the length of vessel wall injury observed immediately following laser-induced disruption. Platelet accumulation and fibrin formation as detected by fluorescently-labeled antibodies were captured by digital intra-vital microscopy. Results Laser-induced disruption of the vessel wall resulted in ablation injuries of variable length (18-95 μm) enabling interrogation of the relationship between injury severity and thrombus dynamics. Strong positive correlations were observed between vessel injury length and both platelet and fibrin when the data are transformed as area under the curve (Spearman r = 0.80 and 0.76 respectively). Normalization of area under the curve measurements by injury length reduced intraclass coefficients of variation among thrombi and improved hypothesis testing when comparing different data sets. Conclusions Measurement of vessel wall injury length provides a reliable and robust marker of injury severity. Injury length can effectively normalize measurements of platelet accumulation and fibrin formation improving data interpretation and standardization.
Collapse
Affiliation(s)
- Steven P Grover
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Oncology and Hematology and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pavan K Bendapudi
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay Govindarajan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Alexander Y Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Sokol J, Nehaj F, Ivankova J, Mokan M, Lisa L, Zolkova J, Vadelova L, Mokan M, Stasko J. Impact of Edoxaban on Thrombin-Dependent Platelet Aggregation. Clin Appl Thromb Hemost 2020; 26:1076029620948585. [PMID: 33054412 PMCID: PMC7573709 DOI: 10.1177/1076029620948585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Edoxaban, a direct factor Xa inhibitor (FXa), is the fourth direct oral anticoagulant (DOAC) approved for clinical use. As the main adverse event is bleeding, it is relevant whether edoxaban has additional effects on platelet function. We aimed to assess in vitro aggregation in patients with atrial fibrillation (AF) receiving edoxaban. We evaluated 20 AF patients treated with edoxaban. We assessed light transmittance platelet aggregation (LTA) with 100 nmol/L γ-thrombin. The LTA was performed at 2 time-points. The thrombin-induced platelet aggregation was significantly lower 2 hours after edoxaban was taken compared to baseline measurement (27.25% ± 30.8% vs. 60.35% ± 33.3%). In addition, we also performed 16 subanalyses in order to identify the differences in the outcome of different comorbidities, age, dosage, liver and kidney function tests, and concomitant treatment. Results of the subgroup analyses were consistent with the findings of the main analysis; there was no apparent heterogeneity across the prespecified subgroups. The thrombin-induced platelet aggregation is reduced in non-valvular AF patients receiving edoxaban.
Collapse
Affiliation(s)
- Juraj Sokol
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Frantisek Nehaj
- First Department of Internal Medicine, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Jela Ivankova
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Michal Mokan
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lisa
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Jana Zolkova
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Lubica Vadelova
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Marian Mokan
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| | - Jan Stasko
- Department of Haematology and Transfusion Medicine, National Centre of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, 112842Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
24
|
Schulman S, El-Darzi E, Florido MH, Friesen M, Merrill-Skoloff G, Brake MA, Schuster CR, Lin L, Westrick RJ, Cowan CA, Flaumenhaft R, Ouwehand WH, Peerlinck K, Freson K, Turro E, Furie B. A coagulation defect arising from heterozygous premature termination of tissue factor. J Clin Invest 2020; 130:5302-5312. [PMID: 32663190 PMCID: PMC7524505 DOI: 10.1172/jci133780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of blood coagulation in vivo and the only blood coagulation factor for which a human genetic defect has not been described. As there are no routine clinical assays that capture the contribution of endogenous TF to coagulation initiation, the extent to which reduced TF activity contributes to unexplained bleeding is unknown. Using whole genome sequencing, we identified a heterozygous frameshift variant (p.Ser117HisfsTer10) in F3, the gene encoding TF, causing premature termination of TF (TFshort) in a woman with unexplained bleeding. Routine hematological laboratory evaluation of the proposita was normal. CRISPR-edited human induced pluripotent stem cells recapitulating the variant were differentiated into vascular smooth muscle and endothelial cells that demonstrated haploinsufficiency of TF. The variant F3 transcript is eliminated by nonsense-mediated decay. Neither overexpression nor addition of exogenous recombinant TFshort inhibited factor Xa or thrombin generation, excluding a dominant-negative mechanism. F3+/- mice provide an animal model of TF haploinsufficiency and exhibited prolonged bleeding times, impaired thrombus formation, and reduced survival following major injury. Heterozygous TF deficiency is present in at least 1 in 25,000 individuals and could limit coagulation initiation in undiagnosed individuals with abnormal bleeding but a normal routine laboratory evaluation.
Collapse
Affiliation(s)
- Sol Schulman
- Division of Hemostasis and Thrombosis
- Division of Hematology and Oncology, and
| | | | - Mary H.C. Florido
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Max Friesen
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | | | - Marisa A. Brake
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | | | - Lin Lin
- Division of Hemostasis and Thrombosis
| | - Randal J. Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Chad A. Cowan
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | | | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals (detailed in the Supplemental Acknowledgments)
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, and
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ernest Turro
- NIHR BioResource, Cambridge University Hospitals (detailed in the Supplemental Acknowledgments)
- Department of Haematology, University of Cambridge, and
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | |
Collapse
|
25
|
Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol 2020; 10:200161. [PMID: 33050789 PMCID: PMC7653352 DOI: 10.1098/rsob.200161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe fibrotic and thrombotic events permeate the healthcare system, causing suffering for millions of patients with inflammatory disorders. As late-state consequences of chronic inflammation, fibrosis and thrombosis are the culmination of pathological interactions of activated endothelium, neutrophils and platelets after vessel injury. Coupling of these three cell types ensures a pro-coagulant, cytokine-rich environment that promotes the capture, activation and proliferation of circulating immune cells and recruitment of key pro-fibrotic cell types such as myofibroblasts. As the first responders to sterile inflammatory injury, it is important to understand how endothelial cells, neutrophils and platelets help create this environment. There has been a growing interest in this intersection over the past decade that has helped shape the development of therapeutics to target these processes. Here, we review recent insights into how neutrophils, platelets and endothelial cells guide the development of pathological vessel repair that can also result in underlying tissue fibrosis. We further discuss recent efforts that have been made to translate this knowledge into therapeutics and provide perspective as to how a compound or combination therapeutics may be most efficacious when tackling fibrosis and thrombosis that is brought upon by chronic inflammation.
Collapse
Affiliation(s)
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, CA, USA
| |
Collapse
|
26
|
Østerud B. Commentary on "Therapeutic doses of recombinant factor VIIa in hemophilia generates thrombin in platelet-dependent and -independent mechanisms". J Thromb Haemost 2020; 18:1853-1854. [PMID: 32749057 DOI: 10.1111/jth.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Bjarne Østerud
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
27
|
Keshava S, Pendurthi UR, Esmon CT, Rao LVM. Therapeutic doses of recombinant factor VIIa in hemophilia generates thrombin in platelet-dependent and -independent mechanisms. J Thromb Haemost 2020; 18:1911-1921. [PMID: 32359012 PMCID: PMC7415704 DOI: 10.1111/jth.14881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND In hemophilia bypass therapy, a platelet-dependent mechanism is believed to be primarily responsible for recombinant factor VIIa (rFVIIa)'s hemostatic effect. rFVIIa may also possibly interact with other cells through its binding to endothelial cell protein C receptor (EPCR) or cell surface phospholipids. OBJECTIVES We aim to investigate the relative contribution of platelet-dependent and platelet-independent mechanisms in rFVIIa-mediated thrombin generation in hemophilic conditions at the injury site. METHODS Platelets were depleted in acquired and genetic hemophilia mice using anti-platelet antibodies. The mice were subjected to the saphenous vein injury, and the hemostatic effect of pharmacological concentrations of rFVIIa was evaluated by measuring thrombin generation at the injury site. RESULTS Administration of anti-mouse CD42 antibodies to mice depleted platelets by more than 95%. As expected, hemophilia mice, compared with wild-type mice, generated only a small fraction of thrombin at the injury site. The depletion of platelets in hemophilia mice further reduced thrombin generation. However, when pharmacological doses of rFVIIa were administered to hemophilia mice, substantial amounts of thrombin were generated even in the platelet-depleted hemophilia mice. No differences in thrombin generation were detected among FVIII-/- , EPCR-deficient FVIII-/- , and EPCR-overexpressing FVIII-/- mice depleted of platelets or not. Evaluation of platelets by flow cytometry as well as immunoblot analysis showed no detectable expression of EPCR. CONCLUSIONS Our data suggest that pharmacological concentrations of rFVIIa generate thrombin in hemophilia in both platelet-dependent and platelet-independent mechanisms.
Collapse
Affiliation(s)
- Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| |
Collapse
|
28
|
Heeb MJ, Fernández JA, Yamashita A, McDowell OR, Guo Z, Mosnier LO, Deguchi H, Griffin JH. Activated protein C anticoagulant activity is enhanced by skeletal muscle myosin. Haematologica 2020; 105:e424-e427. [PMID: 31857364 PMCID: PMC7395292 DOI: 10.3324/haematol.2019.242982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
29
|
Assembly of alternative prothrombinase by extracellular histones initiate and disseminate intravascular coagulation. Blood 2020; 137:103-114. [PMID: 32722805 DOI: 10.1182/blood.2019002973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Thrombin generation is pivotal to both physiological blood clot formation and pathological development of disseminated intravascular coagulation (DIC). In critical illness, extensive cell damage can release histones into the circulation, which can increase thrombin generation and cause DIC, but the molecular mechanism is not clear. Typically, thrombin is generated by the prothrombinase complex, comprising activated factor X (FXa), activated co-factor V (FVa) and phospholipids to cleave prothrombin in the presence of calcium. In this study, we found that in the presence of extracellular histones, an alternative prothrombinase could form without FVa and phospholipids. Histones directly bind to prothrombin fragments F1 and F2 specifically, to facilitate FXa cleavage of prothrombin to release active thrombin, unlike FVa which requires phospholipid surfaces to anchor the classical prothrombinase complex. In vivo, histone infusion into mice induced DIC, which was significantly abrogated when prothrombin fragments F1+F2 were infused prior to histones, to act as decoy. In a cohort of intensive care unit (ICU) patients with sepsis (n=144), circulating histone levels were significantly elevated in patients with DIC. These data suggest that histone-induced alternative prothrombinase without phospholipid anchorage may disseminate intravascular coagulation, and reveal a new molecular mechanism of thrombin generation and DIC development. In addition, histones significantly reduced the requirement for FXa in the coagulation cascade to enable clot formation in Factor VIII and IX-deficient plasma, as well as in Factor VIII-deficient mice. In conclusion, this study highlights a novel mechanism in coagulation with therapeutic potential in both targeting systemic coagulation activation as well as in correcting coagulation factor deficiency.
Collapse
|
30
|
Pang A, Cheng N, Cui Y, Bai Y, Hong Z, Delaney MK, Zhang Y, Chang C, Wang C, Liu C, Plata PL, Zakharov A, Kabirov K, Rehman J, Skidgel RA, Malik AB, Liu Y, Lyubimov A, Gu M, Du X. High-loading Gα 13-binding EXE peptide nanoparticles prevent thrombosis and protect mice from cardiac ischemia/reperfusion injury. Sci Transl Med 2020; 12:eaaz7287. [PMID: 32669423 PMCID: PMC8061427 DOI: 10.1126/scitranslmed.aaz7287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Inefficient delivery is a major obstacle to the development of peptide-based drugs targeting the intracellular compartment. We recently showed that selectively inhibiting integrin outside-in signaling using a peptide (mP6) derived from the Gα13-binding ExE motif within the integrin β3 cytoplasmic domain had antithrombotic effects. Here, we engineered lipid-stabilized, high-loading peptide nanoparticles (HLPN), in which a redesigned ExE peptide (M3mP6) constituted up to 70% of the total nanoparticle molarity, allowing efficient in vivo delivery. We observed that M3mP6 HLPN inhibited occlusive thrombosis more potently than a clopidogrel/aspirin combination without adverse effects on hemostasis in rodents. Furthermore, M3mP6 HLPN synergized with P2Y12 receptor inhibitors or the clopidogrel/aspirin combination in preventing thrombosis, without exacerbating hemorrhage. M3mP6 HLPN also inhibited intravascular coagulation more potently than the P2Y12 inhibitor cangrelor. Postischemia injection of M3mP6 HLPN protected the heart from myocardial ischemia-reperfusion injury in a mouse model. This study demonstrates an efficient in vivo peptide delivery strategy for a therapeutic that not only efficaciously prevented thrombosis with minimal bleeding risk but also protected from myocardial ischemia-reperfusion injury in mice.
Collapse
Affiliation(s)
- Aiming Pang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yujie Cui
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - M Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Dupage Medical Technology Inc., Willowbrook, IL 60527, USA
| | - Yaping Zhang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Claire Chang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Can Wang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chang Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paola Leon Plata
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander Zakharov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kasim Kabirov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Asrar B Malik
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Aleksander Lyubimov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Minyi Gu
- Dupage Medical Technology Inc., Willowbrook, IL 60527, USA
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
31
|
Abstract
A confluence of technological advances in genetic manipulation and molecular-based fluorescence imaging has led to the widespread adoption of laser injury models to study hemostasis and thrombosis in mice. In all animal models of hemostasis and thrombosis, detailing the nature of experimentally induced vascular injury is paramount in enabling appropriate interpretation of experimental results. A careful appraisal of the literature shows that direct laser-induced injury can result in variable degrees of vascular damage. This review will compare and contrast models of laser injury utilized in the field, with an emphasis on the mechanism and extent of injury, the use of laser injury in different vascular beds and the molecular mechanisms regulating the response to injury. All of these topics will be discussed in the context of how distinct applications of laser injury models may be viewed as representing thrombosis and/or hemostasis.
Collapse
Affiliation(s)
- Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
32
|
Nehaj F, Sokol J, Ivankova J, Mokan M, Mokan M, Stasko J. Edoxaban affects TRAP-dependent platelet aggregation. J Thromb Thrombolysis 2020; 49:578-583. [PMID: 32221807 DOI: 10.1007/s11239-020-02093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Petzold T, Thienel M, Dannenberg L, Mourikis P, Helten C, Ayhan A, M'Pembele R, Achilles A, Trojovky K, Konsek D, Zhang Z, Regenauer R, Pircher J, Ehrlich A, Lüsebrink E, Nicolai L, Stocker TJ, Brandl R, Röschenthaler F, Strecker J, Saleh I, Spannagl M, Mayr CH, Schiller HB, Jung C, Gerdes N, Hoffmann T, Levkau B, Hohlfeld T, Zeus T, Schulz C, Kelm M, Polzin A. Rivaroxaban Reduces Arterial Thrombosis by Inhibition of FXa-Driven Platelet Activation via Protease Activated Receptor-1. Circ Res 2019; 126:486-500. [PMID: 31859592 DOI: 10.1161/circresaha.119.315099] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE A reduced rate of myocardial infarction has been reported in patients with atrial fibrillation treated with FXa (factor Xa) inhibitors including rivaroxaban compared with vitamin K antagonists. At the same time, low-dose rivaroxaban has been shown to reduce mortality and atherothrombotic events in patients with coronary artery disease. Yet, the mechanisms underlying this reduction remain unknown. OBJECTIVE In this study, we hypothesized that rivaroxaban's antithrombotic potential is linked to a hitherto unknown rivaroxaban effect that impacts on platelet reactivity and arterial thrombosis. METHODS AND RESULTS In this study, we identified FXa as potent, direct agonist of the PAR-1 (protease-activated receptor 1), leading to platelet activation and thrombus formation, which can be inhibited by rivaroxaban. We found that rivaroxaban reduced arterial thrombus stability in a mouse model of arterial thrombosis using intravital microscopy. For in vitro studies, atrial fibrillation patients on permanent rivaroxaban treatment for stroke prevention, respective controls, and patients with new-onset atrial fibrillation before and after first intake of rivaroxaban (time series analysis) were recruited. Platelet aggregation responses, as well as thrombus formation under arterial flow conditions on collagen and atherosclerotic plaque material, were attenuated by rivaroxaban. We show that rivaroxaban's antiplatelet effect is plasma dependent but independent of thrombin and rivaroxaban's anticoagulatory capacity. CONCLUSIONS Here, we identified FXa as potent platelet agonist that acts through PAR-1. Therefore, rivaroxaban exerts an antiplatelet effect that together with its well-known potent anticoagulatory capacity might lead to reduced frequency of atherothrombotic events and improved outcome in patients.
Collapse
Affiliation(s)
- Tobias Petzold
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Manuela Thienel
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Lisa Dannenberg
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Philipp Mourikis
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Carolin Helten
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Aysel Ayhan
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - René M'Pembele
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Alina Achilles
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Kajetan Trojovky
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Daniel Konsek
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Zhe Zhang
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Ron Regenauer
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Joachim Pircher
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Andreas Ehrlich
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Enzo Lüsebrink
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Leo Nicolai
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Thomas J Stocker
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Richard Brandl
- St Mary's Square Institute for Vascular Surgery and Phlebology, Munich (R.B.)
| | - Franz Röschenthaler
- German Heart Center, Institute for Laboratory Medicine, Technical University Munich (F.R.)
| | - Jan Strecker
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Inas Saleh
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Michael Spannagl
- Anesthesiology and Transfusion Medicine, Cell Therapeutics and Hemostaseology (M.S.), Ludwig-Maximilians-University Munich, Germany
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Munich, Germany, Member of the German Center for Lung Research (DZL) (C.H.M., H.B.S.)
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Munich, Germany, Member of the German Center for Lung Research (DZL) (C.H.M., H.B.S.)
| | - Christian Jung
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Norbert Gerdes
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Till Hoffmann
- Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center Düsseldorf (T. Hoffmann)
| | - Bodo Levkau
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen (B.L.)
| | - Thomas Hohlfeld
- Cardiovascular Research Institute Düsseldorf (CARID), Institute of Pharmacology and Clinical Pharmacology, Medical Faculty of the Heinrich Heine University Düsseldorf (T. Hohlfeld)
| | - Tobias Zeus
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Christian Schulz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Malte Kelm
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Amin Polzin
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| |
Collapse
|
34
|
Garabet L, Henriksson CE, Lozano ML, Ghanima W, Bussel J, Brodin E, Fernández-Pérez MP, Martínez C, González-Conejero R, Mowinckel MC, Sandset PM. Markers of endothelial cell activation and neutrophil extracellular traps are elevated in immune thrombocytopenia but are not enhanced by thrombopoietin receptor agonists. Thromb Res 2019; 185:119-124. [PMID: 31805421 DOI: 10.1016/j.thromres.2019.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Patients with immune thrombocytopenia (ITP) are at increased risk of thrombosis, which seems to be further enhanced by treatment with thrombopoietin-receptor-agonists (TPO-RAs). The underlying mechanisms of thrombosis in ITP are not fully understood. Endothelial cell activation and neutrophil extracellular traps (NETs) play important roles in thrombosis, however, their roles in ITP itself, or in TPO-RA-treatment, have not yet been fully explored. We aimed to investigate whether endothelial cell activation and NETs are involved in the hypercoagulable state of ITP, and whether TPO-RA-treatment enhances endothelial cell activation and NET formation. MATERIAL AND METHODS We measured markers of endothelial cell activation including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and thrombomodulin in 21 ITP patients, and E-selectin in 18 ITP patients. Markers of NET formation, citrullinated histone H3-DNA (H3Cit-DNA) and cell-free DNA (cfDNA), were measured in 15 ITP patients. All markers were measured before, and 2 and 6 weeks after initiation of TPO-RA-treatment in ITP patients, and in matched controls. RESULTS Higher levels of ICAM-1, thrombomodulin, and H3Cit-DNA were found in ITP patients, both before and after TPO-RA-treatment, compared with controls. No differences were found for VCAM-1, E-selectin or cfDNA. TPO-RA-treatment did not further increase markers of endothelial cell activation or NET formation. CONCLUSIONS This study showed that ITP patients have increased endothelial cell activation and NET formation, both of which may contribute to the intrinsic hypercoagulable state of ITP. TPO-RA-treatment, however, did not further increase endothelial cell activation or NET formation indicating that other drug-associated prothrombotic mechanisms are involved.
Collapse
Affiliation(s)
- Lamya Garabet
- Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Norway; Department of Research, Østfold Hospital Trust, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Carola E Henriksson
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Norway
| | - María Luisa Lozano
- Hospital JM Morales Meseguer, Centro Regional de Hemodonacion, IMIB-Arrixaca, Murcia, Spain; Grupo de investigación CB15/00055 del Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Waleed Ghanima
- Department of Research, Østfold Hospital Trust, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - James Bussel
- New York Presbyterian Hospital, Weill Cornell, United States
| | - Ellen Brodin
- Department of Haematology, Akershus University Hospital, Norway
| | | | - Constantino Martínez
- Hospital JM Morales Meseguer, Centro Regional de Hemodonacion, IMIB-Arrixaca, Murcia, Spain
| | | | - Marie-Christine Mowinckel
- Research Institute of Internal Medicine, Oslo University Hospital, Norway; Department of Haematology, Oslo University Hospital, Norway
| | - Per Morten Sandset
- Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway; Department of Haematology, Oslo University Hospital, Norway
| |
Collapse
|
35
|
Agbani EO, Hers I, Poole AW. Letter by Agbani et al Regarding Article, "Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface". Arterioscler Thromb Vasc Biol 2019; 39:e287-e289. [PMID: 31770030 DOI: 10.1161/atvbaha.119.313468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ejaife O Agbani
- From the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada (E.O.A.)
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| |
Collapse
|
36
|
Crawley JTB, Zalli A, Monkman JH, Petri A, Lane DA, Ahnstrӧm J, Salles‐Crawley II. Defective fibrin deposition and thrombus stability in Bambi -/- mice are mediated by elevated anticoagulant function. J Thromb Haemost 2019; 17:1935-1949. [PMID: 31351019 PMCID: PMC6899896 DOI: 10.1111/jth.14593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bone morphogenetic and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein related to the type I transforming growth factor- β (TGF-β) receptor family that is present on both platelets and endothelial cells (ECs). Bambi-deficient mice exhibit reduced hemostatic function and thrombus stability characterized by an increased embolization. OBJECTIVE We aimed to delineate how BAMBI influences endothelial function and thrombus stability. METHODS Bambi-deficient mice were subjected to the laser-induced thrombosis model where platelet and fibrin accumulation was evaluated. Expression of thrombomodulin and tissue factor pathway inhibitor (TFPI) was also assessed in these mice. RESULTS Thrombus instability in Bambi-/- mice was associated with a profound defect in fibrin deposition. Injection of hirudin into Bambi+/+ mice prior to thrombus formation recapitulated the Bambi-/- thrombus instability phenotype. In contrast, hirudin had no additional effect upon thrombus formation in Bambi-/- mice. Deletion of Bambi in ECs resulted in mice with defective thrombus stability caused by decreased fibrin accumulation. Increased levels of the anticoagulant proteins TFPI and thrombomodulin were detected in Bambi-/- mouse lung homogenates. Endothelial cells isolated from Bambi-/- mouse lungs exhibited enhanced ability to activate protein C due to elevated thrombomodulin levels. Blocking thrombomodulin and TFPI in vivo fully restored fibrin accumulation and thrombus stability in Bambi-/- mice. CONCLUSIONS We demonstrate that endothelial BAMBI influences fibrin generation and thrombus stability by modulating thrombomodulin and TFPI anticoagulant function of the endothelium; we also highlight the importance of these anticoagulant proteins in the laser-induced thrombosis model.
Collapse
Affiliation(s)
- James T. B. Crawley
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Argita Zalli
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - James H. Monkman
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Anastasis Petri
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - David A. Lane
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Josefin Ahnstrӧm
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | | |
Collapse
|
37
|
Lillicrap D. Thrombolytic Potential of N-Acetylcysteine: Evidence for Significant Benefit in Mitigating Arterial Thrombosis. Circulation 2019; 136:661-663. [PMID: 28808146 DOI: 10.1161/circulationaha.117.029313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- David Lillicrap
- From Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
38
|
Brass LF, Tomaiuolo M, Welsh J, Poventud-Fuentes I, Zhu L, Diamond SL, Stalker TJ. Hemostatic Thrombus Formation in Flowing Blood. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
The evolving understanding of factor VIII binding sites and implications for the treatment of hemophilia A. Blood Rev 2019; 33:1-5. [DOI: 10.1016/j.blre.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022]
|
40
|
Whitley MJ, Henke D, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie S, Shaw C, Edelstein L, Bray PF. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y 12 inhibition. J Thromb Haemost 2018; 16:2501-2514. [PMID: 30347494 PMCID: PMC6289679 DOI: 10.1111/jth.14318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Essentials The rs773902 SNP results in differences in platelet protease-activated receptor (PAR4) function. The functional consequences of rs773902 were analyzed in human platelets and stroke patients. rs773902 affects thrombin-induced platelet function, PAR4 desensitization, stroke association. Enhanced PAR4 Thr120 effects on platelet function are blocked by ticagrelor. SUMMARY: Background F2RL3 encodes protease-activated receptor (PAR) 4 and harbors an A/G single-nucleotide polymorphism (SNP) (rs773902) with racially dimorphic allelic frequencies. This SNP mediates an alanine to threonine substitution at residue 120 that alters platelet PAR4 activation by the artificial PAR4-activation peptide (PAR4-AP) AYPGKF. Objectives To determine the functional effects of rs773902 on stimulation by a physiological agonist, thrombin, and on antiplatelet antagonist activity. Methods Healthy human donors were screened and genotyped for rs773902. Platelet function in response to thrombin was assessed without and with antiplatelet antagonists. The association of rs773902 alleles with stroke was assessed in the Stroke Genetics Network study. Results As compared with rs773902 GG donors, platelets from rs773902 AA donors had increased aggregation in response to subnanomolar concentrations of thrombin, increased granule secretion, and decreased sensitivity to PAR4 desensitization. In the presence of PAR1 blockade, this genotype effect was abolished by higher concentrations of or longer exposure to thrombin. We were unable to detect a genotype effect on thrombin-induced PAR4 cleavage, dimerization, and lipid raft localization; however, rs773902 AA platelets required a three-fold higher level of PAR4-AP for receptor desensitization. Ticagrelor, but not vorapaxar, abolished the PAR4 variant effect on thrombin-induced platelet aggregation. A significant association of modest effect was detected between the rs773902 A allele and stroke. Conclusion The F2RL3 rs773902 SNP alters platelet reactivity to thrombin; the allelic effect requires P2Y12 , and is not affected by gender. Ticagrelor blocks the enhanced reactivity of rs773902 A platelets. PAR4 encoded by the rs773902 A allele is relatively resistant to desensitization and may contribute to stroke risk.
Collapse
Affiliation(s)
- M. J. Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - D.M. Henke
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - A. Ghazi
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - M. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Michelle Stoller
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - L. M. Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - E. Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - J. Vesci
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - M. Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - S.E. McKenzie
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - C.A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - L.C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - Paul F. Bray
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
41
|
Tomaiuolo M, Brass LF, Stalker TJ. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin 2018; 6:1-12. [PMID: 27886814 DOI: 10.1016/j.iccl.2016.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemostasis requires tightly regulated interaction of the coagulation system, platelets, blood cells, and vessel wall components at a site of vascular injury. Dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is robust. Studies have elucidated the major molecular signaling pathways responsible for platelet activation and aggregation. Antithrombotic agents targeting these pathways are in clinical use. This review summarizes research examining mechanisms by which these multiple platelet signaling pathways are integrated at a site of vascular injury to produce an optimal hemostatic response.
Collapse
Affiliation(s)
- Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Lawrence F Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Pang A, Cui Y, Chen Y, Cheng N, Delaney MK, Gu M, Stojanovic-Terpo A, Zhu C, Du X. Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release, and coagulation. Blood 2018; 132:533-543. [PMID: 29853537 PMCID: PMC6073322 DOI: 10.1182/blood-2017-05-785253] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
It is currently unclear why agonist-stimulated platelets require shear force to efficiently externalize the procoagulant phospholipid phosphatidylserine (PS) and release PS-exposed microvesicles (MVs). We reveal that integrin outside-in signaling is an important mechanism for this requirement. PS exposure and MV release were inhibited in β3-/- platelets or by integrin antagonists. The impaired MV release and PS exposure in β3-/- platelets were rescued by expression of wild-type β3 but not a Gα13 binding-deficient β3 mutant (E733EE to AAA), which blocks outside-in signaling but not ligand binding. Inhibition of Gα13 or Src also diminished agonist/shear-dependent PS exposure and MV release, further indicating a role for integrin outside-in signaling. PS exposure in activated platelets was induced by application of pulling force via an integrin ligand, which was abolished by inhibiting Gα13-integrin interaction, suggesting that Gα13-dependent transmission of mechanical signals by integrins induces PS exposure. Inhibition of Gα13 delayed coagulation in vitro. Furthermore, inhibition or platelet-specific knockout of Gα13 diminished laser-induced intravascular fibrin formation in arterioles in vivo. Thus, β3 integrins serve as a shear sensor activating the Gα13-dependent outside-in signaling pathway to facilitate platelet procoagulant function. Pharmacological targeting of Gα13-integrin interaction prevents occlusive thrombosis in vivo by inhibiting both coagulation and platelet thrombus formation.
Collapse
Affiliation(s)
- Aiming Pang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Yujie Cui
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yunfeng Chen
- Woodruff School of Mechanical Engineering and
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Ni Cheng
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - M Keegan Delaney
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
- Dupage Medical Technology, Inc., Willowbrook, IL; and
| | - Minyi Gu
- Dupage Medical Technology, Inc., Willowbrook, IL; and
| | | | - Cheng Zhu
- Woodruff School of Mechanical Engineering and
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
43
|
Mirramezani M, Herbig BA, Stalker TJ, Nettey L, Cooper M, Weisel JW, Diamond SL, Sinno T, Brass LF, Shadden SC, Tomaiuolo M. Platelet packing density is an independent regulator of the hemostatic response to injury. J Thromb Haemost 2018; 16:973-983. [PMID: 29488682 PMCID: PMC6709675 DOI: 10.1111/jth.13986] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 02/01/2023]
Abstract
Essentials Platelet packing density in a hemostatic plug limits molecular movement to diffusion. A diffusion-dependent steep thrombin gradient forms radiating outwards from the injury site. Clot retraction affects the steepness of the gradient by increasing platelet packing density. Together, these effects promote hemostatic plug core formation and inhibit unnecessary growth. SUMMARY Background Hemostasis studies performed in vivo have shown that hemostatic plugs formed after penetrating injuries are characterized by a core of highly activated, densely packed platelets near the injury site, covered by a shell of less activated and loosely packed platelets. Thrombin production occurs near the injury site, further activating platelets and starting the process of platelet mass retraction. Tightening of interplatelet gaps may then prevent the escape and exchange of solutes. Objectives To reconstruct the hemostatic plug macro- and micro-architecture and examine how platelet mass contraction regulates solute transport and solute concentration in the gaps between platelets. Methods Our approach consisted of three parts. First, platelet aggregates formed in vitro under flow were analyzed using scanning electron microscopy to extract data on porosity and gap size distribution. Second, a three-dimensional (3-D) model was constructed with features matching the platelet aggregates formed in vitro. Finally, the 3-D model was integrated with volume and morphology measurements of hemostatic plugs formed in vivo to determine how solutes move within the platelet plug microenvironment. Results The results show that the hemostatic mass is characterized by extremely narrow gaps, porosity values even smaller than previously estimated and stagnant plasma velocity. Importantly, the concentration of a chemical species released within the platelet mass increases as the gaps between platelets shrink. Conclusions Platelet mass retraction provides a physical mechanism to establish steep chemical concentration gradients that determine the extent of platelet activation and account for the core-and-shell architecture observed in vivo.
Collapse
Affiliation(s)
- M Mirramezani
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - B A Herbig
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, Philadelphia, PA, USA
| | - T J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Nettey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Cooper
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - S L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, Philadelphia, PA, USA
| | - T Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, Philadelphia, PA, USA
| | - L F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - M Tomaiuolo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Higgins SJ, De Ceunynck K, Kellum JA, Chen X, Gu X, Chaudhry SA, Schulman S, Libermann TA, Lu S, Shapiro NI, Christiani DC, Flaumenhaft R, Parikh SM. Tie2 protects the vasculature against thrombus formation in systemic inflammation. J Clin Invest 2018; 128:1471-1484. [PMID: 29360642 DOI: 10.1172/jci97488] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
Disordered coagulation contributes to death in sepsis and lacks effective treatments. Existing markers of disseminated intravascular coagulation (DIC) reflect its sequelae rather than its causes, delaying diagnosis and treatment. Here we show that disruption of the endothelial Tie2 axis is a sentinel event in septic DIC. Proteomics in septic DIC patients revealed a network involving inflammation and coagulation with the Tie2 antagonist, angiopoietin-2 (Angpt-2), occupying a central node. Angpt-2 was strongly associated with traditional DIC markers including platelet counts, yet more accurately predicted mortality in 2 large independent cohorts (combined N = 1,077). In endotoxemic mice, reduced Tie2 signaling preceded signs of overt DIC. During this early phase, intravital imaging of microvascular injury revealed excessive fibrin accumulation, a pattern remarkably mimicked by Tie2 deficiency even without inflammation. Conversely, Tie2 activation normalized prothrombotic responses by inhibiting endothelial tissue factor and phosphatidylserine exposure. Critically, Tie2 activation had no adverse effects on bleeding. These results mechanistically implicate Tie2 signaling as a central regulator of microvascular thrombus formation in septic DIC and indicate that circulating markers of the Tie2 axis could facilitate earlier diagnosis. Finally, interventions targeting Tie2 may normalize coagulation in inflammatory states while averting the bleeding risks of current DIC therapies.
Collapse
Affiliation(s)
- Sarah J Higgins
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiuying Chen
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| | - Xuesong Gu
- Bioinformatics, and Systems Biology Center, Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and
| | - Sharjeel A Chaudhry
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Towia A Libermann
- Bioinformatics, and Systems Biology Center, Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and
| | - Shulin Lu
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David C Christiani
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School and the Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| |
Collapse
|
45
|
Structure of prothrombin in the closed form reveals new details on the mechanism of activation. Sci Rep 2018; 8:2945. [PMID: 29440720 PMCID: PMC5811608 DOI: 10.1038/s41598-018-21304-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The clotting factor prothrombin exists in equilibrium between closed and open conformations, but the physiological role of these forms remains unclear. As for other allosteric proteins, elucidation of the linkage between molecular transitions and function is facilitated by reagents stabilized in each of the alternative conformations. The open form of prothrombin has been characterized structurally, but little is known about the architecture of the closed form that predominates in solution under physiological conditions. Using X-ray crystallography and single-molecule FRET, we characterize a prothrombin construct locked in the closed conformation through an engineered disulfide bond. The construct: (i) provides structural validation of the intramolecular collapse of kringle-1 onto the protease domain reported recently; (ii) documents the critical role of the linker connecting kringle-1 to kringle-2 in stabilizing the closed form; and (iii) reveals novel mechanisms to shift the equilibrium toward the open conformation. Together with functional studies, our findings define the role of closed and open conformations in the conversion of prothrombin to thrombin and establish a molecular framework for prothrombin activation that rationalizes existing phenotypes associated with prothrombin mutations and points to new strategies for therapeutic intervention.
Collapse
|
46
|
A microengineered vascularized bleeding model that integrates the principal components of hemostasis. Nat Commun 2018; 9:509. [PMID: 29410404 PMCID: PMC5802762 DOI: 10.1038/s41467-018-02990-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 01/12/2023] Open
Abstract
Hemostasis encompasses an ensemble of interactions among platelets, coagulation factors, blood cells, endothelium, and hemodynamic forces, but current assays assess only isolated aspects of this complex process. Accordingly, here we develop a comprehensive in vitro mechanical injury bleeding model comprising an "endothelialized" microfluidic system coupled with a microengineered pneumatic valve that induces a vascular "injury". With perfusion of whole blood, hemostatic plug formation is visualized and "in vitro bleeding time" is measured. We investigate the interaction of different components of hemostasis, gaining insight into several unresolved hematologic issues. Specifically, we visualize and quantitatively demonstrate: the effect of anti-platelet agent on clot contraction and hemostatic plug formation, that von Willebrand factor is essential for hemostasis at high shear, that hemophilia A blood confers unstable hemostatic plug formation and altered fibrin architecture, and the importance of endothelial phosphatidylserine in hemostasis. These results establish the versatility and clinical utility of our microfluidic bleeding model.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This report examines the mechanism(s) by which each protein of the contact activation system - factor XII (FXII), high-molecular-weight kininogen, and prekallikrein - influences thrombosis risk. RECENT FINDINGS FXII generates thrombin through contact activation via interaction with artificial surfaces as on medical instruments such as indwelling catheters, mechanical valves, stents, and ventricular assist devices. Inhibition of FXIIa-mediated contact activation prevents thrombosis under contact activation circumstances without affecting hemostasis. Current studies suggest that high-molecular-weight kininogen deficiency parallels that of FXII and inhibits contact activation. Prekallikrein inhibition contributes to thrombosis prevention by contact activation inhibition in the nylon monofilament model of transient middle cerebral artery occlusion. However, in arterial thrombosis models where reactive oxygen species are generated, prekallikrein deficiency results in downregulation of vessel wall tissue factor generation with reduced thrombin generation. Exploiting this latter prekallikrein pathway for thrombosis risk reduction provides a general, overall reduced tissue factor, antithrombotic pathway without risk for bleeding. SUMMARY These investigations indicate that the proteins of the contact activation and kallikrein/kinin systems influence thrombosis risk by several mechanisms and understanding of these pathway provides insight into several novel targets to prevent thrombosis without increase in bleeding risk.
Collapse
|
48
|
DeAngelis GA, Khot R, Haskal ZJ, Maitland HS, Northup PG, Shah NL, Caldwell SH. Reply to: “Re: Bleeding Risk and Management in Interventional Procedures in Chronic Liver Disease”. J Vasc Interv Radiol 2017; 28:1337-1338. [DOI: 10.1016/j.jvir.2017.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022] Open
|
49
|
Lisman T. Re: Bleeding Risk and Management in Interventional Procedures in Chronic Liver Disease. J Vasc Interv Radiol 2017; 28:1336-1337. [DOI: 10.1016/j.jvir.2017.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/24/2022] Open
|
50
|
ICAM-1-targeted thrombomodulin mitigates tissue factor-driven inflammatory thrombosis in a human endothelialized microfluidic model. Blood Adv 2017; 1:1452-1465. [PMID: 29296786 DOI: 10.1182/bloodadvances.2017007229] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/02/2017] [Indexed: 12/14/2022] Open
Abstract
Diverse human illnesses are characterized by loss or inactivation of endothelial thrombomodulin (TM), predisposing to microvascular inflammation, activation of coagulation, and tissue ischemia. Single-chain antibody fragment (scFv)/TM) fusion proteins, previously protective against end-organ injury in murine models of inflammation, are attractive candidates to treat inflammatory thrombosis. However, animal models have inherent differences in TM and coagulation biology, are limited in their ability to resolve and control endothelial biology, and do not allow in-depth testing of "humanized" scFv/TM fusion proteins, which are necessary for translation to the clinical domain. To address these challenges, we developed a human whole-blood, microfluidic model of inflammatory, tissue factor (TF)-driven coagulation that features a multichannel format for head-to-head comparison of therapeutic approaches. In this model, fibrin deposition, leukocyte adhesion, and platelet adhesion and aggregation showed a dose-dependent response to tumor necrosis factor-α activation and could be quantified via real-time microscopy. We used this model to compare hTM/R6.5, a humanized, intracellular adhesion molecule 1 (ICAM-1)-targeted scFv/TM biotherapeutic, to untargeted antithrombotic agents, including soluble human TM (shTM), anti-TF antibodies, and hirudin. The targeted hTM/R6.5 more effectively inhibited TF-driven coagulation in a protein C (PC)-dependent manner and demonstrated synergy with supplemental PC. These results support the translational prospects of ICAM-targeted scFv/TM and illustrate the utility of the microfluidic system as a platform to study humanized therapeutics at the interface of endothelium and whole blood under flow.
Collapse
|