1
|
Ochodnicka-Mackovicova K, van Keimpema M, Spaargaren M, van Noesel CJM, Guikema JEJ. DNA damage-induced p53 downregulates expression of RAG1 through a negative feedback loop involving miR-34a and FOXP1. J Biol Chem 2024:107922. [PMID: 39454960 DOI: 10.1016/j.jbc.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B-cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels. This feedback loop involves ataxia telangiectasia mutated (ATM) activation, subsequent stabilization of p53, and modulation of microRNA-34a (miR-34a) levels, which is one of the p53 targets. Notably, this loop incorporates transcription factor forkhead box P1 (FOXP1) as a downstream effector. The absence of p53 resulted in an increased proportion of IgM+ cells prompted to upregulate RAG1/2 and to undergo Ig light chain (Igl) recombination. Similar results were obtained in primary pre-B cells with depleted levels of miR-34a. We propose that in pre-B cells undergoing Ig gene recombination, the DNA breaks activate a p53/miR-34a/FOXP1-mediated negative-feedback loop that contributes to the rapid downregulation of RAG. This regulation limits the RAG-dependent DNA damage, thereby protecting the stability of the genome during V(D)J rearrangement in developing B cells.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Martine van Keimpema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target & Therapy Discovery, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands.
| |
Collapse
|
2
|
Satitsuksanoa P, van de Veen W, Tan G, Lopez JF, Wirz O, Jansen K, Sokolowska M, Mirer D, Globinska A, Boonpiyathad T, Schneider SR, Barletta E, Spits H, Chang I, Babayev H, Tahralı İ, Deniz G, Yücel EÖ, Kıykım A, Boyd SD, Akdis CA, Nadeau K, Akdis M. Allergen-specific B cell responses in oral immunotherapy-induced desensitization, remission, and natural outgrowth in cow's milk allergy. Allergy 2024. [PMID: 38989779 DOI: 10.1111/all.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Antigen-specific memory B cells play a key role in the induction of desensitization and remission to food allergens in oral immunotherapy and in the development of natural tolerance (NT). Here, we characterized milk allergen Bos d 9-specific B cells in oral allergen-specific immunotherapy (OIT) and in children spontaneously outgrowing cow's milk allergy (CMA) due to NT. METHODS Samples from children with CMA who received oral OIT (before, during, and after), children who naturally outgrew CMA (NT), and healthy individuals were received from Stanford biobank. Bos d 9-specific B cells were isolated by flow cytometry and RNA-sequencing was performed. Protein profile of Bos d 9-specific B cells was analyzed by proximity extension assay. RESULTS Increased frequencies of circulating milk allergen Bos d 9-specific B cells were observed after OIT and NT. Milk-desensitized subjects showed the partial acquisition of phenotypic features of remission, suggesting that desensitization is an earlier stage of remission. Within these most significantly expressed genes, IL10RA and TGFB3 were highly expressed in desensitized OIT patients. In both the remission and desensitized groups, B cell activation-, Breg cells-, BCR-signaling-, and differentiation-related genes were upregulated. In NT, pathways associated with innate immunity characteristics, development of marginal zone B cells, and a more established suppressor function of B cells prevail that may play a role in long-term tolerance. The analyses of immunoglobulin heavy chain genes in specific B cells demonstrated that IgG2 in desensitization, IgG1, IgA1, IgA2, IgG4, and IgD in remission, and IgD in NT were predominating. Secreted proteins from allergen-specific B cells revealed higher levels of regulatory cytokines, IL-10, and TGF-β after OIT and NT. CONCLUSION Allergen-specific B cells are essential elements in regulating food allergy towards remission in OIT-received and naturally resolved individuals.
Collapse
Affiliation(s)
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Functional Genomics Center Zürich, ETH Zürich, Zürich, Switzerland
| | - Juan-Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Oliver Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Swiss Institute of Bioinformatics, Laussane, Switzerland
| | - Hergen Spits
- Department of Experimental Immunology, Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, California, USA
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - İlhan Tahralı
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esra Özek Yücel
- Division of Pediatrics, Department of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayca Kıykım
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, California, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| |
Collapse
|
3
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
4
|
Kim PM, Nejati R, Lu P, Thakkar D, Mackrides N, Dupoux V, Nakhoda S, Baldwin DA, Pei J, Dave SS, Wang YL, Wasik MA. Leukemic presentation and progressive genomic alterations of MCD/C5 diffuse large B-cell lymphoma (DLBCL). Cold Spring Harb Mol Case Stud 2023; 9:a006283. [PMID: 37730436 PMCID: PMC10815299 DOI: 10.1101/mcs.a006283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.
Collapse
Affiliation(s)
- Patricia M Kim
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Pin Lu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | - Nicholas Mackrides
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Vanessa Dupoux
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Shazia Nakhoda
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Don A Baldwin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Sandeep S Dave
- Duke University, Durham, North Carolina 27708, USA
- Data Driven Bioscience, Durham, North Carolina 27707, USA
| | - Y Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
| |
Collapse
|
5
|
Chen Z, Wang T, Li C, Zhang W, Huang W, Xue J, Wang J, Li S. FOXP1-GINS1 axis promotes DLBCL proliferation and directs doxorubicin resistance. J Cancer 2023; 14:2289-2300. [PMID: 37576391 PMCID: PMC10414051 DOI: 10.7150/jca.85906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
GINS1 is overexpressed in several types of cancers including leukemia and linked to poor outcomes. However, GINS1 remains poorly investigated in DLBCL (diffuse large B-cell lymphoma). This project aimed to explore the expression, functions and regulation of GINS1 in DLBCL. In this study, through analysis of clinical specimens from DLBCL patients, we uncovered that GINS1 was upregulated in DLBCL. By EMSA, ChIP and luciferase reporter assays, it was found that FOXP1 transcriptionally activated GINS1 expression by directly binding to the promoter region of the GINS1 gene. Western blotting and RT-PCR also revealed that GINS1 expression positively correlated with FOXP1 in human DLBCL specimens and cell lines. In an in vivo xenograft lymphoma mouse model, the FOXP1/GINS1 regulatory axis was also validated. Moreover, with CCK8 cell proliferation assays and colony formation assay, elevated GINS1 expression was found to be associated with doxorubicin resistance in lymphoma cells. Our findings showed that the FOXP1-GINS1 axis played a critical role in DLBCL development and doxorubicin resistance, and targeting the FOXP1-GINS1 axis could be a potential therapeutic approach for DLBCL treatment.
Collapse
Affiliation(s)
- Zhenfa Chen
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Ting Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Cui Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Wei Zhang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jun Xue
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jundong Wang
- Department of ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Recent Advances in the Genetic of MALT Lymphomas. Cancers (Basel) 2021; 14:cancers14010176. [PMID: 35008340 PMCID: PMC8750177 DOI: 10.3390/cancers14010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Mucosa-associated lymphoid tissue (MALT) lymphoma is the most common subtype of marginal zone lymphomas. These B-cell neoplasms may arise from many organs and usually have an indolent behavior. Recurrent chromosomal translocations and cytogenetic alterations are well characterized, some of them being associated to specific sites. Through next-generation sequencing technologies, the mutational landscape of MALT lymphomas has been explored and available data to date show that there are considerable variations in the incidence and spectrum of mutations among MALT lymphoma of different sites. Interestingly, most of these mutations affect several common pathways and some of them are potentially targetable. Gene expression profile and epigenetic studies have also added new information, potentially useful for diagnosis and treatment. This article provides a comprehensive review of the genetic landscape in MALT lymphomas. Abstract Mucosa-associated lymphoid tissue (MALT) lymphomas are a diverse group of lymphoid neoplasms with B-cell origin, occurring in adult patients and usually having an indolent clinical behavior. These lymphomas may arise in different anatomic locations, sharing many clinicopathological characteristics, but also having substantial variances in the aetiology and genetic alterations. Chromosomal translocations are recurrent in MALT lymphomas with different prevalence among different sites, being the 4 most common: t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). Several chromosomal numerical abnormalities have also been described, but probably represent secondary genetic events. The mutational landscape of MALT lymphomas is wide, and the most frequent mutations are: TNFAIP3, CREBBP, KMT2C, TET2, SPEN, KMT2D, LRP1B, PRDM1, EP300, TNFRSF14, NOTCH1/NOTCH2, and B2M, but many other genes may be involved. Similar to chromosomal translocations, certain mutations are enriched in specific lymphoma types. In the same line, variation in immunoglobulin gene usage is recognized among MALT lymphoma of different anatomic locations. In the last decade, several studies have analyzed the role of microRNA, transcriptomics and epigenetic alterations, further improving our knowledge about the pathogenic mechanisms in MALT lymphoma development. All these advances open the possibility of targeted directed treatment and push forward the concept of precision medicine in MALT lymphomas.
Collapse
|
7
|
Wigton EJ, Mikami Y, McMonigle RJ, Castellanos CA, Wade-Vallance AK, Zhou SK, Kageyama R, Litterman A, Roy S, Kitamura D, Dykhuizen EC, Allen CD, Hu H, O’Shea JJ, Ansel KM. MicroRNA-directed pathway discovery elucidates an miR-221/222-mediated regulatory circuit in class switch recombination. J Exp Med 2021; 218:e20201422. [PMID: 34586363 PMCID: PMC8485858 DOI: 10.1084/jem.20201422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/12/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) regulate cell fate decisions by post-transcriptionally tuning networks of mRNA targets. We used miRNA-directed pathway discovery to reveal a regulatory circuit that influences Ig class switch recombination (CSR). We developed a system to deplete mature, activated B cells of miRNAs, and performed a rescue screen that identified the miR-221/222 family as a positive regulator of CSR. Endogenous miR-221/222 regulated B cell CSR to IgE and IgG1 in vitro, and miR-221/222-deficient mice exhibited defective IgE production in allergic airway challenge and polyclonal B cell activation models in vivo. We combined comparative Ago2-HITS-CLIP and gene expression analyses to identify mRNAs bound and regulated by miR-221/222 in primary B cells. Interrogation of these putative direct targets uncovered functionally relevant downstream genes. Genetic depletion or pharmacological inhibition of Foxp1 and Arid1a confirmed their roles as key modulators of CSR to IgE and IgG1.
Collapse
Affiliation(s)
- Eric J. Wigton
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryan J. McMonigle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carlos A. Castellanos
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Adam K. Wade-Vallance
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Simon K. Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Robin Kageyama
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Adam Litterman
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Suparna Roy
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Dermatology, University of California, San Francisco, San Francisco, CA
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN
| | - Christopher D.C. Allen
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
8
|
Tjiam MC, Fernandez S, French MA. Characterising the Phenotypic Diversity of Antigen-Specific Memory B Cells Before and After Vaccination. Front Immunol 2021; 12:738123. [PMID: 34650561 PMCID: PMC8505969 DOI: 10.3389/fimmu.2021.738123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
The diversity of B cell subsets and their contribution to vaccine-induced immunity in humans are not well elucidated but hold important implications for rational vaccine design. Prior studies demonstrate that B cell subsets distinguished by immunoglobulin (Ig) isotype expression exhibit divergent activation-induced fates. Here, the antigen-specific B cell response to tetanus toxoid (TTd) booster vaccination was examined in healthy adults, using a dual-TTd tetramer staining flow cytometry protocol. Unsupervised analyses of the data revealed that prior to vaccination, IgM-expressing CD27+ B cells accounted for the majority of TTd-binding B cells. 7 days following vaccination, there was an acute expansion of TTd-binding plasmablasts (PB) predominantly expressing IgG, and a minority expressing IgA or IgM. Frequencies of all PB subsets returned to baseline at days 14 and 21. TTd-binding IgG+ and IgA+ memory B cells (MBC) exhibited a steady and delayed maximal expansion compared to PB, peaking in frequencies at day 14. In contrast, the number of TTd-binding IgM+IgD+CD27+ B cells and IgM-only CD27+ B cells remain unchanged following vaccination. To examine TTd-binding capacity of IgG+ MBC and IgM+IgD+CD27+ B cells, surface TTd-tetramer was normalised to expression of the B cell receptor-associated CD79b subunit. CD79b-normalised TTd binding increased in IgG+ MBC, but remained unchanged in IgM+IgD+CD27+ B cells, and correlated with the functional affinity index of plasma TTd-specific IgG antibodies, following vaccination. Finally, frequencies of activated (PD-1+ICOS+) circulating follicular helper T cells (cTFH), particularly of the CXCR3-CCR6- cTFH2 cell phenotype, at their peak expansion, strongly predicted antigen-binding capacity of IgG+ MBC. These data highlight the phenotypic and functional diversity of the B cell memory compartment, in their temporal kinetics, antigen-binding capacities and association with cTFH cells, and are important parameters for consideration in assessing vaccine-induced immune responses.
Collapse
Affiliation(s)
- M Christian Tjiam
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Sonia Fernandez
- Division of Immunology, PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Martyn A French
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
9
|
Crickx E, Chappert P, Sokal A, Weller S, Azzaoui I, Vandenberghe A, Bonnard G, Rossi G, Fadeev T, Storck S, Fadlallah J, Meignin V, Rivière E, Audia S, Godeau B, Michel M, Weill JC, Reynaud CA, Mahévas M. Rituximab-resistant splenic memory B cells and newly engaged naive B cells fuel relapses in patients with immune thrombocytopenia. Sci Transl Med 2021; 13:13/589/eabc3961. [PMID: 33853929 DOI: 10.1126/scitranslmed.abc3961] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
Rituximab (RTX), an antibody targeting CD20, is widely used as a first-line therapeutic strategy in B cell-mediated autoimmune diseases. However, a large proportion of patients either do not respond to the treatment or relapse during B cell reconstitution. Here, we characterize the cellular basis responsible for disease relapse in secondary lymphoid organs in humans, taking advantage of the opportunity offered by therapeutic splenectomy in patients with relapsing immune thrombocytopenia. By analyzing the B and plasma cell immunoglobulin gene repertoire at bulk and antigen-specific single-cell level, we demonstrate that relapses are associated with two responses coexisting in germinal centers and involving preexisting mutated memory B cells that survived RTX treatment and naive B cells generated upon reconstitution of the B cell compartment. To identify distinctive characteristics of the memory B cells that escaped RTX-mediated depletion, we analyzed RTX refractory patients who did not respond to treatment at the time of B cell depletion. We identified, by single-cell RNA sequencing (scRNA-seq) analysis, a population of quiescent splenic memory B cells that present a unique, yet reversible, RTX-shaped phenotype characterized by down-modulation of B cell-specific factors and expression of prosurvival genes. Our results clearly demonstrate that these RTX-resistant autoreactive memory B cells reactivate as RTX is cleared and give rise to plasma cells and further germinal center reactions. Their continued surface expression of CD19 makes them efficient targets for current anti-CD19 therapies. This study thus identifies a pathogenic contributor to autoimmune diseases that can be targeted by available therapeutic agents.
Collapse
Affiliation(s)
- Etienne Crickx
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France.,Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Pascal Chappert
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France.,Inovarion, 75005 Paris, France
| | - Aurélien Sokal
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Sandra Weller
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Imane Azzaoui
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Guillaume Bonnard
- INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| | - Geoffrey Rossi
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Tatiana Fadeev
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Sébastien Storck
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Jehane Fadlallah
- Service d'immunologie clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, 75010 Paris, France
| | - Véronique Meignin
- Service d'anatomopathologie, Hôpital Saint-Louis (AP-HP), 75010 Paris, France
| | - Etienne Rivière
- Service de médecine interne, Hôpital Haut-Lévêque, 33604 Pessac, France
| | - Sylvain Audia
- Service de médecine interne, Hôpital du Bocage, 21000 Dijon, France
| | - Bertrand Godeau
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France
| | - Matthieu Mahévas
- Institut Necker-Enfants Malades, INSERM U1151/CNRS UMS8253, Université Paris Descartes, Sorbonne Paris Cité, 75993 Paris Cedex 14, France. .,Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, 94000 Créteil, France.,INSERM U955, Université Paris Est Créteil (UPEC), 94000 Créteil, France
| |
Collapse
|
10
|
King HW, Orban N, Riches JC, Clear AJ, Warnes G, Teichmann SA, James LK. Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci Immunol 2021; 6:6/56/eabe6291. [PMID: 33579751 DOI: 10.1126/sciimmunol.abe6291] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Protective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre-germinal center state primed to undergo class switch recombination and dissect how antibody class-dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function. Our analyses reveal the dynamic cellular states that shape human B cell-mediated immunity and highlight how antibody isotype may play a role during their antibody-based selection.
Collapse
Affiliation(s)
- Hamish W King
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK. .,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nara Orban
- Barts Health Ear, Nose and Throat Service, Royal London Hospital, London E1 1BB, UK
| | - John C Riches
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.,Francis Crick Institute, London NW1 1AT, UK
| | - Andrew J Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gary Warnes
- Flow Cytometry Core Facility, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0EH, UK
| | - Louisa K James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
11
|
Morales-Martinez M, Lichtenstein A, Vega MI. Function of Deptor and its roles in hematological malignancies. Aging (Albany NY) 2021; 13:1528-1564. [PMID: 33412518 PMCID: PMC7834987 DOI: 10.18632/aging.202462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very important in its study. Because of this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Alan Lichtenstein
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - Mario I Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
12
|
Dhenni R, Phan TG. The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses. Immunol Rev 2020; 296:62-86. [PMID: 32472583 DOI: 10.1111/imr.12862] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Memory B cells (Bmem) provide an active second layer of defense against re-infection by pathogens that have bypassed the passive first layer provided by neutralizing antibodies. Here, we review recent progress in our understanding of Bmem heterogeneity in terms of their origin (germinal center-dependent vs center-independent), phenotype (canonical vs atypical vs age-associated B cells), trafficking (recirculating vs tissue-resident), and fate (plasma cell vs germinal center differentiation). The development of transgenic models and intravital imaging technologies has made it possible to track the cellular dynamics of Bmem reactivation by antigen, their interactions with follicular memory T cells, and differentiation into plasma cells in subcapsular proliferative foci in the lymph nodes of immune animals. Such in situ studies have reinforced the importance of geography in shaping the outcome of the secondary antibody response. We also review the evidence for Bmem reactivation and differentiation into short-lived plasma cells in the pathogenesis of disease flares in relapsing-remitting autoimmune diseases. Elucidating the mechanisms that control the Bmem fate decision to differentiate into plasma cells or germinal center B cells will aid future efforts to more precisely engineer fit-for-purpose vaccines as well as to treat antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Rama Dhenni
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Agostinelli C, Akarca AU, Ramsay A, Rizvi H, Rodriguez-Justo M, Pomplun S, Proctor I, Sabattini E, Linch D, Daw S, Pittaluga S, Pileri SA, Jaffe ES, Quintanilla-Martinez L, Marafioti T. Novel markers in pediatric-type follicular lymphoma. Virchows Arch 2019; 475:771-779. [PMID: 31686194 PMCID: PMC6881426 DOI: 10.1007/s00428-019-02681-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to review the histopathological, phenotypic, and molecular characteristics of pediatric-type follicular lymphoma (PTFL) and to assess the diagnostic value of novel immunohistochemical markers in distinguishing PTFL from follicular hyperplasia (FH). A total of 13 nodal PTFLs were investigated using immunohistochemistry, fluorescence in situ hybridization (FISH), and PCR and were compared with a further 20 reactive lymph nodes showing FH. Morphologically, PTFL cases exhibited a follicular growth pattern with irregular lymphoid follicles in which the germinal centers were composed of numerous blastoid cells showing a starry-sky appearance. Immunohistochemistry highlighted preserved CD10 (13/13) and BCL6 (13/13) staining, CD20 (13/13) positivity, a K light chain predominance (7/13), and partial BCL2 expression in 6/13 cases (using antibodies 124, E17, and SP66). The germinal center (GC)–associated markers stathmin and LLT-1 were positive in most of the cases (12/13 and 12/13, respectively). Interestingly, FOXP-1 was uniformly positive in PTFL (12/13 cases) in contrast to reactive GCs in FH, where only a few isolated positive cells were observed. FISH revealed no evidence of BCL2, BCL6, or MYC rearrangements in the examined cases. By PCR, clonal immunoglobulin gene rearrangements were detected in 100% of the tested PTFL cases. Our study confirmed the unique morphological and immunophenotypic features of PTFL and suggests that FOXP-1 can represent a novel useful diagnostic marker in the differential diagnosis between PTFL and FH.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Ayse U Akarca
- Department of Pathology, University College London, London, UK
| | - Alan Ramsay
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Hasan Rizvi
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Manuel Rodriguez-Justo
- Department of Pathology, University College London, London, UK.,Department of Cellular Pathology, University College Hospital London, London, UK
| | - Sabine Pomplun
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Ian Proctor
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Elena Sabattini
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - David Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Stephen Daw
- Children and Young People's Cancer Service, University College Hospital London, London, UK
| | - Stefania Pittaluga
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | - Stefano A Pileri
- Division of Haematopathology, European Institute of Oncology, University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Elaine S Jaffe
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | | | - Teresa Marafioti
- Department of Pathology, University College London, London, UK. .,Department of Cellular Pathology, University College Hospital London, London, UK.
| |
Collapse
|
14
|
Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nat Rev Immunol 2019; 18:703-715. [PMID: 30177790 DOI: 10.1038/s41577-018-0048-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphocytes have evolved to react rapidly and robustly to changes in their local environment by using transient adaptations and by regulating their terminal differentiation programmes. Forkhead box transcription factors (FTFs) can direct leukocyte-specific responses, and their functional diversification promotes a high degree of context-dependent specification. Many, often antagonistic, FTFs have overlapping expression patterns and can thereby compete for binding to the same chromosomal target sequences. Multiple molecular mechanisms also connect extracellular signals to the expression and functionality of specific FTFs and, in this way, fine-tune their activity. Through these diverse mechanisms, FTFs can function as context-dependent rheostats responding to diverse environmental stimuli. Focusing on the various mechanisms by which their functional activity is modulated, as well as on their mechanisms of action, we discuss how specific FTFs control lymphocyte function, allowing for the establishment and maintenance of immune homeostasis.
Collapse
|
15
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
16
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood 2019; 133:2401-2412. [PMID: 30975638 DOI: 10.1182/blood.2018889931] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.
Collapse
|
18
|
Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T. Generation of memory B cells and their reactivation. Immunol Rev 2019; 283:138-149. [PMID: 29664566 DOI: 10.1111/imr.12640] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Imogen Moran
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tri Giang Phan
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
19
|
Marcelis L, Tousseyn T, Sagaert X. MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development. Curr Top Microbiol Immunol 2019; 421:77-106. [PMID: 31123886 DOI: 10.1007/978-3-030-15138-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma, or extranodal marginal zone lymphoma of MALT, is an indolent B-cell non-Hodgkin lymphoma linked with preexisting chronic inflammation. The stomach is the most commonly affected organ and the MALT lymphoma pathogenesis is clearly associated with Helicobacter pylori gastroduodenitis. Inflammation induces the lymphoid infiltrates in extranodal sites, where the lymphoma then subsequently develops. Genetic aberrations arise through the release of reactive oxygen species (ROS), H. pylori-induced endonucleases, and other effects. The involvement of nuclear factor kappa B (NF-κB) pathway activation, a critical regulator of pro-inflammatory responses, further highlights the role of inflammation in gastric MALT lymphoma. The NF-κB pathway regulates key elements of normal lymphocyte function, including the transcription of proliferation-promoting and anti-apoptotic genes. Aberrant constitutive activation of NF-κB signaling can lead to autoimmunity and malignancy. NF-κB pathway activation can happen through both the canonical and non-canonical pathways and can be caused by multiple genetic aberrations such as t(11;18)(q12;q21), t(1;14)(p22;q32), and t(14;18)(q32;q21) translocations, chronic inflammation and even directly by H. pylori-associated mechanisms. Gastric MALT lymphoma is considered one of the best models of how inflammation initiates genetic events that lead to oncogenesis, determines tumor biology, dictates clinical behavior and leads to viable therapeutic targets. The purpose of this review is to present gastric MALT lymphoma as an outstanding example of the close pathogenetic link between chronic inflammation and tumor development and to describe how this information can be integrated into daily clinical practice.
Collapse
Affiliation(s)
- Lukas Marcelis
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium
| | - Xavier Sagaert
- Translational Cell and Tissue Research Lab, Department of Imaging and Pathology, KU Leuven, Louvain, Belgium.
- Department of Pathology, UZ Leuven, University Hospitals, Louvain, Belgium.
- , O&N IV Herestraat 49 - bus 7003 24, 3000, Louvain, Belgium.
| |
Collapse
|
20
|
Neu KE, Guthmiller JJ, Huang M, La J, Vieira MC, Kim K, Zheng NY, Cortese M, Tepora ME, Hamel NJ, Rojas KT, Henry C, Shaw D, Dulberger CL, Pulendran B, Cobey S, Khan AA, Wilson PC. Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination. J Clin Invest 2018; 129:93-105. [PMID: 30457979 DOI: 10.1172/jci121341] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however, our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this, we developed the Spec-seq framework, which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here, we present the first application of the Spec-seq framework, which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However, we did find enhanced transcriptional similarity between clonally related B cells, as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine-positive plasmablasts are largely similar, whereas IgA vaccine-negative cells appear to be transcriptionally distinct from conventional, terminally differentiated, antigen-induced peripheral blood plasmablasts.
Collapse
Affiliation(s)
- Karlynn E Neu
- The Committee on Immunology.,The Department of Medicine, Section of Rheumatology
| | | | - Min Huang
- The Department of Medicine, Section of Rheumatology
| | - Jennifer La
- The Department of Pathology, Molecular Pathogenesis and Molecular Medicine, and
| | - Marcos C Vieira
- The Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Kangchon Kim
- The Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | | | - Mario Cortese
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | | | | | - Carole Henry
- The Department of Medicine, Section of Rheumatology
| | - Dustin Shaw
- The Committee on Immunology.,The Department of Medicine, Section of Rheumatology
| | - Charles L Dulberger
- The Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, Illinois, USA
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Sarah Cobey
- The Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Aly A Khan
- Toyota Technological Institute at Chicago, Chicago, Illinois, USA
| | - Patrick C Wilson
- The Committee on Immunology.,The Department of Medicine, Section of Rheumatology
| |
Collapse
|
21
|
miR-150 downregulation contributes to the high-grade transformation of follicular lymphoma by upregulating FOXP1 levels. Blood 2018; 132:2389-2400. [PMID: 30213873 DOI: 10.1182/blood-2018-06-855502] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Follicular lymphoma (FL) is a common indolent B-cell malignancy with a variable clinical course. An unfavorable event in its course is histological transformation to a high-grade lymphoma, typically diffuse large B-cell lymphoma. Recent studies show that genetic aberrations of MYC or its overexpression are associated with FL transformation (tFL). However, the precise molecular mechanisms underlying tFL are unclear. Here we performed the first profiling of expression of microRNAs (miRNAs) in paired samples of FL and tFL and identified 5 miRNAs as being differentially expressed. We focused on one of these miRNAs, namely miR-150, which was uniformly downmodulated in all examined tFLs (∼3.5-fold), and observed that high levels of MYC are responsible for repressing miR-150 in tFL by binding in its upstream region. This MYC-mediated repression of miR-150 in B cells is not dependent on LIN28A/B proteins, which influence the maturation of miR-150 precursor (pri-miR-150) in myeloid cells. We also demonstrated that low miR-150 levels in tFL lead to upregulation of its target, namely FOXP1 protein, which is a known positive regulator of cell survival, as well as B-cell receptor and NF-κB signaling in malignant B cells. We revealed that low levels of miR-150 and high levels of its target, FOXP1, are associated with shorter overall survival in FL and suggest that miR-150 could serve as a good biomarker measurable in formalin-fixed paraffin-embedded tissue. Overall, our study demonstrates the role of the MYC/miR-150/FOXP1 axis in malignant B cells as a determinant of FL aggressiveness and its high-grade transformation.
Collapse
|
22
|
Moran I, Nguyen A, Khoo WH, Butt D, Bourne K, Young C, Hermes JR, Biro M, Gracie G, Ma CS, Munier CML, Luciani F, Zaunders J, Parker A, Kelleher AD, Tangye SG, Croucher PI, Brink R, Read MN, Phan TG. Memory B cells are reactivated in subcapsular proliferative foci of lymph nodes. Nat Commun 2018; 9:3372. [PMID: 30135429 PMCID: PMC6105623 DOI: 10.1038/s41467-018-05772-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Vaccine-induced immunity depends on the generation of memory B cells (MBC). However, where and how MBCs are reactivated to make neutralising antibodies remain unknown. Here we show that MBCs are prepositioned in a subcapsular niche in lymph nodes where, upon reactivation by antigen, they rapidly proliferate and differentiate into antibody-secreting plasma cells in the subcapsular proliferative foci (SPF). This novel structure is enriched for signals provided by T follicular helper cells and antigen-presenting subcapsular sinus macrophages. Compared with contemporaneous secondary germinal centres, SPF have distinct single-cell molecular signature, cell migration pattern and plasma cell output. Moreover, SPF are found both in human and mouse lymph nodes, suggesting that they are conserved throughout mammalian evolution. Our data thus reveal that SPF is a seat of immunological memory that may be exploited to rapidly mobilise secondary antibody responses and improve vaccine efficacy.
Collapse
Affiliation(s)
- Imogen Moran
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Weng Hua Khoo
- Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - Danyal Butt
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,Biologics Research and Development, Teva Pharmaceuticals, Macquarie Park, NSW, 2113, Australia
| | - Katherine Bourne
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Clara Young
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Gary Gracie
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - C Mee Ling Munier
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia
| | - Fabio Luciani
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, 2052, Australia
| | - John Zaunders
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia.,St Vincent's Hospital Sydney Centre for Applied Medical Research, Sydney, Australia
| | - Andrew Parker
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anthony D Kelleher
- The Kirby Institute for Infection and Immunity in Society, UNSW, Sydney, NSW, 2052, Australia.,St Vincent's Hospital Sydney Centre for Applied Medical Research, Sydney, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Peter I Croucher
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.,Division of Bone Biology, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia
| | - Mark N Read
- School of Life and Environmental Sciences and the Charles Perkins Centre, University of Sydney, Sydney, NSW, 2052, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 2010, Australia.
| |
Collapse
|
23
|
Wong KK, Gascoyne DM, Soilleux EJ, Lyne L, Spearman H, Roncador G, Pedersen LM, Møller MB, Green TM, Banham AH. FOXP2-positive diffuse large B-cell lymphomas exhibit a poor response to R-CHOP therapy and distinct biological signatures. Oncotarget 2018; 7:52940-52956. [PMID: 27224915 PMCID: PMC5288160 DOI: 10.18632/oncotarget.9507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
FOXP2 shares partially overlapping normal tissue expression and functionality with FOXP1; an established diffuse large B-cell lymphoma (DLBCL) oncogene and marker of poor prognosis. FOXP2 is expressed in the plasma cell malignancy multiple myeloma but has not been studied in DLBCL, where a poor prognosis activated B-cell (ABC)-like subtype display partially blocked plasma cell differentiation. FOXP2 protein expression was detected in ABC-DLBCL cell lines, and in primary DLBCL samples tumoral FOXP2 protein expression was detected in both germinal center B-cell-like (GCB) and non-GCB DLBCL. In biopsies from DLBCL patients treated with immunochemotherapy (R-CHOP), ≥ 20% nuclear tumoral FOXP2-positivity (n = 24/158) correlated with significantly inferior overall survival (OS: P = 0.0017) and progression-free survival (PFS: P = 0.0096). This remained significant in multivariate analysis against either the international prognostic index score or the non-GCB DLBCL phenotype (P < 0.05 for both OS and PFS). Expression of BLIMP1, a marker of plasmacytic differentiation that is commonly inactivated in ABC-DLBCL, did not correlate with patient outcome or FOXP2 expression in this series. Increased frequency of FOXP2 expression significantly correlated with FOXP1-positivity (P = 0.0187), and FOXP1 co-immunoprecipitated FOXP2 from ABC-DLBCL cells indicating that these proteins can co-localize in a multi-protein complex. FOXP2-positive DLBCL had reduced expression of HIP1R (P = 0.0348), which is directly repressed by FOXP1, and exhibited distinct patterns of gene expression. Specifically in ABC-DLBCL these were associated with lower expression of immune response and T-cell receptor signaling pathways. Further studies are warranted to investigate the potential functional cooperativity between FOXP1 and FOXP2 in repressing immune responses during the pathogenesis of high-risk DLBCL.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Duncan M Gascoyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Elizabeth J Soilleux
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Linden Lyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hayley Spearman
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giovanna Roncador
- Monoclonal Antibody Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Lars M Pedersen
- Department of Haematology, Roskilde Hospital, Roskilde, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Alison H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
24
|
Hipp N, Symington H, Pastoret C, Caron G, Monvoisin C, Tarte K, Fest T, Delaloy C. IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression. Nat Commun 2017; 8:1443. [PMID: 29129929 PMCID: PMC5682283 DOI: 10.1038/s41467-017-01475-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/19/2017] [Indexed: 01/23/2023] Open
Abstract
Plasma cell differentiation is a tightly regulated process that requires appropriate T cell helps to reach the induction threshold. To further understand mechanisms by which T cell inputs regulate B cell fate decision, we investigate the minimal IL-2 stimulation for triggering human plasma cell differentiation in vitro. Here we show that the timed repression of BACH2 through IL-2-mediated ERK/ELK1 signalling pathway directs plasma cell lineage commitment. Enforced BACH2 repression in activated B cells unlocks the plasma cell transcriptional program and induces their differentiation into immunoglobulin M-secreting cells. RNA-seq and ChIP-seq results further identify BACH2 target genes involved in this process. An active regulatory region within the BACH2 super-enhancer, under ELK1 control and differentially regulated upon B-cell activation and cellular divisions, helps integrate IL-2 signal. Our study thus provides insights into the temporal regulation of BACH2 and its targets for controlling the differentiation of human naive B cells. T cells help B cells to differentiate into antibody-producing plasma cells. Here the authors show that T cells produce interleukin-2 to activate ERK/ELK1 and suppress BACH2 expression by modulating the BACH2 super-enhancer, thereby altering BACH2 downstream transcription programs for plasma cell differentiation.
Collapse
Affiliation(s)
- Nicolas Hipp
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Hannah Symington
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Cédric Pastoret
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Gersende Caron
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Céline Monvoisin
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Karin Tarte
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Immunologie, Thérapie Cellulaire et Hématopoïèse (ITeCH), Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Thierry Fest
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France. .,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France.
| | - Céline Delaloy
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.
| |
Collapse
|
25
|
Nataf S. Autoimmunity as a Driving Force of Cognitive Evolution. Front Neurosci 2017; 11:582. [PMID: 29123465 PMCID: PMC5662758 DOI: 10.3389/fnins.2017.00582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, Bank of Tissues and Cells, Institut National de la Santé et de la Recherche Médicale 1060, INRA 1397, INSA Lyon, Lyon University Hospital (Hospices Civils de Lyon), Université Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
26
|
He JS, Subramaniam S, Narang V, Srinivasan K, Saunders SP, Carbajo D, Wen-Shan T, Hidayah Hamadee N, Lum J, Lee A, Chen J, Poidinger M, Zolezzi F, Lafaille JJ, Curotto de Lafaille MA. IgG1 memory B cells keep the memory of IgE responses. Nat Commun 2017; 8:641. [PMID: 28935935 PMCID: PMC5608722 DOI: 10.1038/s41467-017-00723-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/23/2017] [Indexed: 02/03/2023] Open
Abstract
The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80+CD73+ and CD80-CD73-, contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80+CD73+ high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.
Collapse
Affiliation(s)
- Jin-Shu He
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Sharrada Subramaniam
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | | | - Sean P Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University School of Medicine, 550 First Ave, New York, 10016, USA
| | - Daniel Carbajo
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Tsao Wen-Shan
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Nur Hidayah Hamadee
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Andrea Lee
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore
- Galderma R&D, Les Templiers, 2400 route des Colles, Sophia Antipolis, 06410, Biot, France
| | - Juan J Lafaille
- Skirball Institute and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, 10016, USA
| | - Maria A Curotto de Lafaille
- Singapore Immunology Network (SIgN), 8A Biomedical Grove, Singapore, 138648, Singapore.
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University School of Medicine, 550 First Ave, New York, 10016, USA.
| |
Collapse
|
27
|
Valor LM, Rodríguez-Bayona B, Ramos-Amaya AB, Brieva JA, Campos-Caro A. The transcriptional profiling of human in vivo-generated plasma cells identifies selective imbalances in monoclonal gammopathies. PLoS One 2017; 12:e0183264. [PMID: 28817638 PMCID: PMC5560601 DOI: 10.1371/journal.pone.0183264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Plasma cells (PC) represent the heterogeneous final stage of the B cells (BC) differentiation process. To characterize the transition of BC into PC, transcriptomes from human naïve BC were compared to those of three functionally-different subsets of human in vivo-generated PC: i) tonsil PC, mainly consisting of early PC; ii) PC released to the blood after a potent booster-immunization (mostly cycling plasmablasts); and, iii) bone marrow CD138+ PC that represent highly mature PC and include the long-lived PC compartment. This transcriptional transition involves subsets of genes related to key processes for PC maturation: the already known protein processing, apoptosis and homeostasis, and of new discovery including histones, macromolecule assembly, zinc-finger transcription factors and neuromodulation. This human PC signature is partially reproduced in vitro and is conserved in mouse. Moreover, the present study identifies genes that define PC subtypes (e.g., proliferation-associated genes for circulating PC and transcriptional-related genes for tonsil and bone marrow PC) and proposes some putative transcriptional regulators of the human PC signatures (e.g., OCT/POU, XBP1/CREB, E2F, among others). Finally, we also identified a restricted imbalance of the present PC transcriptional program in monoclonal gammopathies that correlated with PC malignancy.
Collapse
Affiliation(s)
- Luis M. Valor
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Beatriz Rodríguez-Bayona
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Ana B. Ramos-Amaya
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - José A. Brieva
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Antonio Campos-Caro
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
- * E-mail:
| |
Collapse
|
28
|
Ushmorov A, Wirth T. FOXO in B-cell lymphopoiesis and B cell neoplasia. Semin Cancer Biol 2017; 50:132-141. [PMID: 28774833 DOI: 10.1016/j.semcancer.2017.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022]
Abstract
FOX O family transcription factors are important for differentiation and function of multiple cell types. In B lymphocytes they play a critical role. The activity of FOXOs is directly regulated both by signaling from B cell receptor (BCR) and cytokine receptors. FOXO1 action controls the transition between differentiation stages of B cell development. In comparison to other FOXO family members, FOXO1 plays a superior role in the regulation of early stages of B-cell differentiation. Although being known as a negative regulator of cell proliferation and therefore potential tumor suppressor, FOXO1 is downregulated only in Hodgkin lymphoma (HL) subtypes. In non-Hodgkin lymphoma (NHL) entities its expression is maintained at significant levels, raising the question on the role of FOXO-transcription factors in the proliferation and survival programs in the process of B cell differentiation as well as their contribution to the oncogenic programs of B-cell lymphomas. In particular, we discuss molecular mechanisms that might determine the switch between pro-apoptotic and pro-survival effects of FOXO1 and their interplay with specific differentiation programs.
Collapse
Affiliation(s)
- Alexey Ushmorov
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
29
|
Romero M, Gapihan G, Castro-Vega LJ, Acevedo A, Wang L, Li ZW, El Bouchtaoui M, Di Benedetto M, Ratajczak P, Feugeas JP, Thieblemont C, Saavedra C, Janin A. Primary mediastinal large B-cell lymphoma: transcriptional regulation by miR-92a through FOXP1 targeting. Oncotarget 2017; 8:16243-16258. [PMID: 27806315 PMCID: PMC5369960 DOI: 10.18632/oncotarget.12988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023] Open
Abstract
Background Primary mediastinal large B-cell lymphoma (PMBL) shares pathological features with diffuse large B-cell lymphoma (DLBCL), and molecular features with classical Hodgkin lymphoma (cHL). The miR-17∼92 oncogenic cluster, located at chromosome 13q31, is a region that is amplified in DLBCL. Methods Here we compared the expression of each member of the miR-17∼92 oncogenic cluster in samples from 40 PMBL patients versus 20 DLBCL and 20 cHL patients, and studied the target genes linked to deregulated miRNA in PMBL. Results We found a higher level of miR-92a in PMBL than in DLBCL, but not in cHL. A combination of in silico prediction and transcriptomic analyses enabled us to identify FOXP1 as a main miR-92a target gene in PMBL, a result so far not established. This was confirmed by 3UTR, and RNA and protein expressions in transduced cell lines. In vivo studies using the transduced cell lines in mice enabled us to demonstrate a tumor suppressor effect of miR-92a and an oncogenic effect of FOXP1. A higher expression of miR-92a and the down-regulation of FOXP1 mRNA and protein expression were also found in human samples of PMBL, while miR-92a expression was low and FOXP1 was high in DLBCL. Conclusions We concluded to a post-transcriptional regulation by miR-92a through FOXP1 targeting in PMBL, with a clinico-pathological relevance for better characterisation of PMBL.
Collapse
Affiliation(s)
- Martha Romero
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France.,Hospital-Universitario-Fundación-Santa-Fe-de-Bogotá, Pathology-Department, Bogotá, Colombia
| | - Guillaume Gapihan
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France
| | | | - Andrés Acevedo
- Hospital-Universitario-Fundación-Santa-Fe-de-Bogotá, Pathology-Department, Bogotá, Colombia
| | - Li Wang
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,Pôle-Recherches Sino-Français en Science du Vivant Génomique, Molecular-Pathology, Shanghai, China
| | - Zhao Wei Li
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,Pôle-Recherches Sino-Français en Science du Vivant Génomique, Molecular-Pathology, Shanghai, China
| | - Morad El Bouchtaoui
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France
| | - Mélanie Di Benedetto
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France
| | - Philippe Ratajczak
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France
| | - Jean-Paul Feugeas
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1137, Paris, France
| | | | - Carlos Saavedra
- Hospital-Universitario-Fundación-Santa-Fe-de-Bogotá, Pathology-Department, Bogotá, Colombia
| | - Anne Janin
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France.,AP-HP-Hôpital Saint-Louis, Pathology-Department-Paris, Paris, France
| |
Collapse
|
30
|
Li P, Wang B, Cao D, Liu Y, Zhang Q, Wang X. Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:32-40. [PMID: 28669662 DOI: 10.1016/j.cbpb.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
Abstract
PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression.
Collapse
Affiliation(s)
- Peizhen Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Dandan Cao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China.
| |
Collapse
|
31
|
DEPTOR maintains plasma cell differentiation and favorably affects prognosis in multiple myeloma. J Hematol Oncol 2017; 10:92. [PMID: 28420429 PMCID: PMC5395780 DOI: 10.1186/s13045-017-0461-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/31/2017] [Indexed: 11/24/2022] Open
Abstract
Background The B cell maturation process involves multiple steps, which are controlled by relevant pathways and transcription factors. The understanding of the final stages of plasma cell (PC) differentiation could provide new insights for therapeutic strategies in multiple myeloma (MM). Here, we explore the role of DEPTOR, an mTOR inhibitor, in the terminal differentiation of myeloma cells, and its potential impact on patient survival. Methods The expression level of DEPTOR in MM cell lines and B cell populations was measured by real-time RT-PCR, and/or Western blot analysis. DEPTOR protein level in MM patients was quantified by capillary electrophoresis immunoassay. RNA interference was used to downregulate DEPTOR in MM cell lines. Results DEPTOR knockdown in H929 and MM1S cell lines induced dedifferentiation of myeloma cells, as demonstrated by the upregulation of PAX5 and BCL6, the downregulation of IRF4, and a clear reduction in cell size and endoplasmic reticulum mass. This effect seemed to be independent of mTOR signaling, since mTOR substrates were not affected by DEPTOR knockdown. Additionally, the potential for DEPTOR to be deregulated in MM by particular miRNAs was investigated. The ectopic expression of miR-135b and miR-642a in myeloma cell lines substantially diminished DEPTOR protein levels, and caused dedifferentiation of myeloma cells. Interestingly, the level of expression of DEPTOR protein in myeloma patients was highly variable, the highest levels being associated with longer progression-free survival. Conclusions Our results demonstrate for the first time that DEPTOR expression is required to maintain myeloma cell differentiation and that high level of its expression are associated with better outcome. Primary samples used in this study correspond to patients entered into GEM2010 trial (registered at www.clinicaltrials.gov as #NCT01237249, 4 November 2010). Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0461-8) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Phan TG, Tangye SG. Memory B cells: total recall. Curr Opin Immunol 2017; 45:132-140. [PMID: 28363157 DOI: 10.1016/j.coi.2017.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/27/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Immunological memory is a cornerstone of adaptive immune responses in higher vertebrates. The remarkable ability to generate memory cells following Ag exposure, in the context of natural infection or immunization, provides long-lived protection against infectious diseases, often for the hosts' lifetime. Indeed, the generation of memory B cells and long-lived plasma cells underpins the success of most vaccines. The concept of immunological memory is not new-it was first proposed nearly 2500 years ago. While our understanding of the complexities of humoral and cell-mediated memory continues to evolve, important aspects of this process remain unresolved. Here, we will provide an overview of recent advances in B-cell memory in mice and humans, and in health and disease.
Collapse
Affiliation(s)
- Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of NSW, Australia.
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of NSW, Australia.
| |
Collapse
|
33
|
Du MQ. MALT lymphoma: Genetic abnormalities, immunological stimulation and molecular mechanism. Best Pract Res Clin Haematol 2017; 30:13-23. [DOI: 10.1016/j.beha.2016.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
|
34
|
PUMILIO/FOXP1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells. Blood 2017; 129:2493-2506. [PMID: 28232582 DOI: 10.1182/blood-2016-10-747436] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) have emerged as important regulators of invertebrate adult stem cells, but their activities remain poorly appreciated in mammals. Using a short hairpin RNA strategy, we demonstrate here that the 2 mammalian RBPs, PUMILIO (PUM)1 and PUM2, members of the PUF family of posttranscriptional regulators, are essential for hematopoietic stem/progenitor cell (HSPC) proliferation and survival in vitro and in vivo upon reconstitution assays. Moreover, we found that PUM1/2 sustain myeloid leukemic cell growth. Through a proteomic approach, we identified the FOXP1 transcription factor as a new target of PUM1/2. Contrary to its canonical repressive activity, PUM1/2 rather promote FOXP1 expression by a direct binding to 2 canonical PUM responsive elements present in the FOXP1-3' untranslated region (UTR). Expression of FOXP1 strongly correlates with PUM1 and PUM2 levels in primary HSPCs and myeloid leukemia cells. We demonstrate that FOXP1 by itself supports HSPC and leukemic cell growth, thus mimicking PUM activities. Mechanistically, FOXP1 represses the expression of the p21-CIP1 and p27-KIP1 cell cycle inhibitors. Enforced FOXP1 expression reverses shPUM antiproliferative and proapoptotic activities. Altogether, our results reveal a novel regulatory pathway, underscoring a previously unknown and interconnected key role of PUM1/2 and FOXP1 in regulating normal HSPC and leukemic cell growth.
Collapse
|
35
|
O'Connor D, Clutterbuck EA, Thompson AJ, Snape MD, Ramasamy MN, Kelly DF, Pollard AJ. High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine. Genome Med 2017; 9:11. [PMID: 28137280 PMCID: PMC5282650 DOI: 10.1186/s13073-017-0400-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/05/2017] [Indexed: 12/25/2022] Open
Abstract
Background Neisseria meningitidis is a globally important cause of meningitis and septicaemia. Twelve capsular groups of meningococci are known, and quadrivalent vaccines against four of these (A, C, W and Y) are available as plain-polysaccharide and protein-polysaccharide conjugate vaccines. Here we apply contemporary methods to describe B-cell responses to meningococcal polysaccharide and conjugate vaccines. Methods Twenty adults were randomly assigned to receive either a meningococcal plain-polysaccharide or conjugate vaccine; one month later all received the conjugate vaccine. Blood samples were taken pre-vaccination and 7, 21 and 28 days after vaccination; B-cell responses were assessed by ELISpot, serum bactericidal assay, flow cytometry and gene expression microarray. Results Seven days after an initial dose of either vaccine, a gene expression signature characteristic of plasmablasts was detectable. The frequency of newly generated plasma cells (CXCR3+HLA-DR+) and the expression of transcripts derived from IGKC and IGHG2 correlated with immunogenicity. Notably, using an independent dataset, the expression of glucosamine (N-acetyl)-6-sulfatase was found to reproducibly correlate with the magnitude of immune response. Transcriptomic and flow cytometric data revealed depletion of switched memory B cells following plain-polysaccharide vaccine. Conclusions These data describe distinct gene signatures associated with the production of high-avidity antibody and a plain-polysaccharide-specific signature, possibly linked to polysaccharide-induced hyporesponsiveness. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0400-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel O'Connor
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Churchill Hospital, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Elizabeth A Clutterbuck
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Churchill Hospital, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amber J Thompson
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Churchill Hospital, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Matthew D Snape
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Churchill Hospital, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maheshi N Ramasamy
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Churchill Hospital, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dominic F Kelly
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Churchill Hospital, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Churchill Hospital, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
36
|
van Keimpema M, Grüneberg LJ, Schilder-Tol EJM, Oud MECM, Beuling EA, Hensbergen PJ, de Jong J, Pals ST, Spaargaren M. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells. Haematologica 2016; 102:573-583. [PMID: 27909217 PMCID: PMC5394978 DOI: 10.3324/haematol.2016.156455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5′-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients.
Collapse
Affiliation(s)
- Martine van Keimpema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Leonie J Grüneberg
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Esther J M Schilder-Tol
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Monique E C M Oud
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Esther A Beuling
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Johann de Jong
- Division of Molecular Carcinogenesis, Netherlands Cancer institute, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Academic Medical Center, Leiden University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of mature B-cell lymphoma. While the majority of patients are cured with immunochemotherapy incorporating the anti-CD20 monoclonal antibody rituximab (R-CHOP), relapsed and refractory patients still have a dismal prognosis. DLBCL subtypes including an aggressive activated B-cell-like (ABC) and a more favorable prognosis germinal center-like (GCB) DLBCL have been identified by gene expression profiling and are characterized by distinct genetic abnormalities and oncogenic pathways. This identification of novel molecular targets is now enabling clinical trials to evaluate more effective personalized approaches to DLBCL therapy. The forkhead transcription factor FOXP1 is highly expressed in the ABC-DLBCL gene signature and has been extensively studied within the context of DLBCL for more than a decade. Here, we review the significance of FOXP1 in the pathogenesis of DLBCL, summarizing data supporting its utility as a prognostic and subtyping marker, its targeting by genetic aberrations, the importance of specific isoforms, and emerging data demonstrating a functional role in lymphoma biology. FOXP1 is one of the critical transcription factors whose deregulated expression makes important contributions to DLBCL pathogenesis. Thus, FOXP1 warrants further study as a potential theranostic in ABC-DLBCL.
Collapse
Affiliation(s)
- Duncan M Gascoyne
- a Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine , University of Oxford , Oxford , UK
| | - Alison H Banham
- a Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
38
|
Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1. Proc Natl Acad Sci U S A 2016; 113:E577-86. [PMID: 26787899 DOI: 10.1073/pnas.1524677113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High expression of the forkhead box P1 (FOXP1) transcription factor distinguishes the aggressive activated B cell (ABC) diffuse large B-cell lymphoma (DLBCL) subtype from the better prognosis germinal center B-cell (GCB)-DLBCL subtype and is highly correlated with poor outcomes. A genetic or functional role for FOXP1 in lymphomagenesis, however, remains unknown. Here, we report that sustained FOXP1 expression is vital for ABC-DLBCL cell-line survival. Genome-wide analyses revealed direct and indirect FOXP1 transcriptional enforcement of ABC-DLBCL hallmarks, including the classical NF-κB and MYD88 (myeloid differentiation primary response gene 88) pathways. FOXP1 promoted gene expression underlying transition of the GCB cell to the plasmablast--the transient B-cell stage targeted in ABC-DLBCL transformation--by antagonizing pathways distinctive of GCB-DLBCL, including that of the GCB "master regulator," BCL6 (B-cell lymphoma 6). Cell-line derived FOXP1 target genes that were highly correlated with FOXP1 expression in primary DLBCL accurately segregated the corresponding clinical subtypes of a large cohort of primary DLBCL isolates and identified conserved pathways associated with ABC-DLBCL pathology.
Collapse
|
39
|
|