1
|
Ma SB, Lin W, Campbell J, Clerici K, White D, Yeung D, Gorniak M, Fleming S, Fong CY, Agarwal R. Laboratory validation and clinical utility of next-generation sequencing-based IGH/TCR clonality testing for the monitoring of measurable residual disease in acute lymphoblastic leukaemia: real-world experience at Austin Pathology. Pathology 2024; 56:982-992. [PMID: 39025724 DOI: 10.1016/j.pathol.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/28/2024] [Indexed: 07/20/2024]
Abstract
Measurable residual disease (MRD) testing is an essential aspect of disease prognostication in acute lymphoblastic leukaemia (ALL) and informs clinical decisions. The depth of MRD clearance is highly relevant and requires assays with sufficient sensitivity. Austin Pathology is one of the few laboratories in Australia currently utilising a fully validated and National Association of Testing Authorities (NATA)-accredited ultrasensitive next-generation sequencing (NGS) platform for MRD monitoring in ALL. This technology is based on the detection of clonal rearrangement of immunoglobulin and T cell receptor genes in leukaemic cells, and is capable of achieving a limit of detection at least one to two logs below that of multiparametric flow cytometry (MFC). In this retrospective analysis, we report a clonotype detection rate of up to 85.7% at diagnosis, and a concordance rate of 78.7% in MRD results between NGS and MFC. Of the discordant samples, nearly all were NGS+/MFC-, highlighting the superior sensitivity of NGS. The enhanced sensitivity is clinically relevant, as discordant MRD results often heralded fulminant relapse, and therefore offer clinicians additional lead time and a window of opportunity to initiate pre-emptive therapy. Notwithstanding a small and heterogeneous cohort, our real-world survival data indicate an intermediate relapse risk for NGS+/MFC- patients. In light of recent approval of Medicare rebatable ALL MRD testing, we discuss how NGS can complement other techniques such as MFC in personalising management strategies. We recommend routine clonality testing by NGS at diagnosis and use a multi-modality approach for subsequent MRD monitoring.
Collapse
Affiliation(s)
- Stephen B Ma
- Austin Pathology, Heidelberg, Vic, Australia; Austin Health, Heidelberg, Vic, Australia.
| | - Wendi Lin
- Austin Pathology, Heidelberg, Vic, Australia
| | | | | | - Deborah White
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - David Yeung
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Shaun Fleming
- Alfred Health, Melbourne, Vic, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, Vic, Australia
| | | | | |
Collapse
|
2
|
Jen WY, Jabbour E, Short NJ, Issa GC, Haddad FG, Jain N, Pemmaraju N, Daver NG, Masarova L, Borthakur G, Chien K, Garris R, Kantarjian HM. A phase 2 trial of mini-hyper-CVD, blinatumomab, and ponatinib in Philadelphia positive acute lymphoblastic leukemia. Am J Hematol 2024; 99:2229-2232. [PMID: 39194286 DOI: 10.1002/ajh.27463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
Twenty adults with newly diagnosed (ND) or relapsed/refractory (RR) Ph-positive acute lymphoblastic leukemia (ALL), or chronic myeloid leukemia in lymphoid blast phase (CML-LBP), were treated with mini-hyperCVD, ponatinib, and blinatumomab. Complete molecular response was achieved in 78% of ND patients, while CR/CRi was achieved in 100% of RR and CML-LBP. The 3-year overall survival rate was 76% (95% CI, 47%-90%).
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca Garris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Lin H, Chen L, Huang R, Xue S, Sun G, Wang C, Shen S, Zhang H, Zheng Y. Philadelphia chromosome-positive or Philadelphia chromosome-like B-cell precursor acute lymphoblastic leukemia with multilineage involvement in pediatric patients: a report of two cases and literature review. Pharmacogenet Genomics 2024:01213011-990000000-00077. [PMID: 39470068 DOI: 10.1097/fpc.0000000000000554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Based on driver mutations and gene expression profiles, the International Consensus Classification currently divided the entity 'Philadelphia chromosome-positive (Ph+) B-cell precursor acute lymphoblastic leukemia (ALL)' into two subtypes: lymphoid-only and multilineage involvement (Ph+ ALL-L and -M, respectively). The similar biological characteristics of Ph-like ALL and Ph+ ALL drove us to assume that Ph-like ALL-M subtypes exist. This report presents two pediatric ALL cases (one Ph+ and one Ph-like) with minimal residual disease negativity established by multicolor flow cytometry but persistent transcript detection by quantitative PCR (qPCR) even after second-line treatment with tyrosine kinase inhibitors combined with blinatumomab immunotherapy. Using droplet digital PCR, BCR::ABL1 or TPM3::PDGFRB transcripts were identified in CD19+ cells as well as in non-CD19+ cells, suggesting the presence of a Ph+ or Ph-like ALL-M subtype originating from hematopoietic stem cells. This report provides information for better characterization, diagnosis, and treatment of these ALL subtypes.
Collapse
Affiliation(s)
- Han Lin
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
| | - Lu Chen
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
| | - Ruoyao Huang
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
| | - Shufang Xue
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
| | - Gaoyuan Sun
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
| | - Chengyi Wang
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
| | - Shuhong Shen
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
- Department of Haematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Hui Zhang
- Department of Haematology & Oncology, Fujian Children's Hospital
- Department of Haematology & Oncology, Fujian Branch of Shanghai Children's Medical Center, Fuzhou
- Department of Haematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yongzhi Zheng
- Department of Pediatric Hematology, Fujian Provincial Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
4
|
Kim R, Chalandon Y, Rousselot P, Cayuela JM, Huguet F, Balsat M, Passet M, Chevallier P, Hicheri Y, Raffoux E, Leguay T, Chantepie S, Maury S, Hayette S, Solly F, Braun T, De Prijck B, Cacheux V, Salanoubat C, Farnault L, Guibaud I, Lamarque M, Gastaud L, Lemasle E, Brissot E, Tavernier E, Bilger K, Villate A, Soulier J, Graux C, Lhéritier V, Dombret H, Boissel N, Clappier E. Significance of Measurable Residual Disease in Adult Philadelphia Chromosome-Positive ALL: A GRAAPH-2014 Study. J Clin Oncol 2024; 42:3140-3150. [PMID: 39028928 DOI: 10.1200/jco.24.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 07/21/2024] Open
Abstract
PURPOSE BCR::ABL1 quantification is widely regarded as the standard for monitoring measurable residual disease (MRD) in Philadelphia chromosome-positive (Ph+) ALL. However, recent evidence of BCR::ABL1 multilineage involvement questions the significance of BCR::ABL1 MRD. We aimed to define the prognostic role of MRD as assessed by BCR::ABL1 or lymphoid-specific immunoglobulin/T-cell receptor (IG/TR) gene markers. PATIENTS AND METHODS We conducted BCR::ABL1 and IG/TR quantification after each treatment cycle in 264 patients treated in the GRAAPH-2014 trial, which used four cycles of reduced-intensity chemotherapy with nilotinib, followed by hematopoietic stem-cell transplantation (HSCT). RESULTS Comparing BCR::ABL1 and IG/TR MRD revealed residual BCR::ABL1-positive non-ALL cells in 98 (43%) of 228 patients, defining multilineage Ph+ ALL. Despite poorer BCR::ABL1 responses, patients with multilineage Ph+ ALL had similar disease-free survival (DFS; hazard ratio [HR], 0.83 [95% CI, 0.49 to 1.41]; P = .50). Although BCR::ABL1 response failed to predict outcomes, IG/TR positivity (≥0.01%) was strongly associated with lower DFS (after cycle 2, HR, 2.49 [95% CI, 1.40 to 4.40]; P = .002; after cycle 4, HR, 4.13 [95% CI, 1.82 to 9.38]; P = .001). In multivariable analysis, both IG/TR positivity after cycle 2 and initial WBC count ≥30 × 109/L predicted poorer DFS, enabling to define a high-risk group having a 4-year DFS of 56.5% compared with 87.6% (HR, 3.72 [95% CI, 1.93 to 7.15]; P < .001). Moreover, allogeneic HSCT significantly improved DFS in the high-risk group (HR, 0.33 [95% CI, 0.18 to 0.60]; P < .001), whereas the standard-risk group had favorable outcomes regardless of allogeneic HSCT. CONCLUSION Our findings challenge the significance of BCR::ABL1 monitoring in adult Ph+ ALL and demonstrate the prognostic role of IG/TR MRD. This study provides a framework for using MRD to guide treatment strategies in adults with Ph+ ALL.
Collapse
Affiliation(s)
- Rathana Kim
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | - Yves Chalandon
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Group for Clinical Cancer Research (SAKK)
| | - Philippe Rousselot
- Hematology Department, Centre Hospitalier de Versailles, Unité mixte de recherche 1184 Commissariat à l'Energie Atomique, University Paris-Saclay, Le Chesnay, France
| | - Jean-Michel Cayuela
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- EA 3518, Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, Paris, France
| | - Françoise Huguet
- Hematology Department, Institut Universitaire de Cancer Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Marie Balsat
- Hematology Department, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Benite, France
| | - Marie Passet
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | | | - Yosr Hicheri
- Hematology Department, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Inserm, CRCM, Marseille, France
| | - Emmanuel Raffoux
- Hematology Department, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Thibaut Leguay
- Hematology Department, CHU de Bordeaux, Hôpital du Haut-Levêque, Pessac, France
| | | | - Sébastien Maury
- Hematology Department, Hôpital Henri Mondor, AP-HP, Université Paris Est Créteil UPEC, Créteil, France
| | - Sandrine Hayette
- Hematology Laboratory, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre Benite, France
| | | | - Thorsten Braun
- Hematology Department, Hôpital Avicenne, AP-HP, Bobigny, France
| | | | | | - Celia Salanoubat
- Hematology Department, CH Sud Francilien, Corbeil-Essonnes, France
| | - Laure Farnault
- Hematology Department, Hôpital Universitaire de Marseille Conception, Marseille, France
| | - Isabelle Guibaud
- Hematology Department, CH de Metz, Hôpital de Mercy, Metz, France
| | - Mathilde Lamarque
- Hematology Department, CH Emile Muller de Mulhouse, Mulhouse, France
| | - Lauris Gastaud
- Hematology Department, Centre Antoine Lacassagne, Nice, France
| | - Emilie Lemasle
- Hematology Department, Centre Henri Becquerel, Rouen, France
| | - Eolia Brissot
- Hematology Department, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | | | - Karine Bilger
- Hematology Department, CHU de Strasbourg, Hôpital Hautepierre, Strasbourg, France
| | - Alban Villate
- Hematology Department, CHU de Tours, Hôpital Bretonneau, Tours, France
| | - Jean Soulier
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | - Carlos Graux
- Hematology Department, CHU UCL Namur Godinne, Yvoir, Belgium
| | - Véronique Lhéritier
- Coordination du Groupe GRAALL, Member of the French institute Carnot OPALE (the Organisation for Partnership in Leukemia Consortium), Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Benite, France
| | - Hervé Dombret
- Hematology Department, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Nicolas Boissel
- Hematology Department, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| | - Emmanuelle Clappier
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis (IRSL), Paris, France
| |
Collapse
|
5
|
E S, Xu J, Wang SA, Tang G, Jabbour EJ, Li S, You MJ, Medeiros LJ, Yin CC. Blast phase of chronic myeloid leukemia presenting as early T-cell precursor acute lymphoblastic leukemia. Am J Clin Pathol 2024:aqae115. [PMID: 39235991 DOI: 10.1093/ajcp/aqae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVES The blasts in most cases of chronic myeloid leukemia blast phase (CML-BP) have a myeloid or precursor-B immunophenotype, with only a small subset having T-cell or natural killer-cell lineage. Patients with CML-BP having early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) are extremely rare. METHODS We report the clinicopathologic, immunophenotypic, and molecular genetic features and outcome of 3 patients with CML-BP who had ETP-ALL, with a review of the literature. RESULTS Only patient 1 had a history of chronic myeloid leukemia chronic phase. Fluorescence in situ hybridization revealed BCR::ABL1 rearrangement in cells with round nuclei (blasts) and cells with segmented nuclei (neutrophils) in cases 2 and 3, supporting a diagnosis of CML-BP rather than de novo Ph+ ETP-ALL. The blasts were positive for cytoplasmic CD3, CD7, CD33, and CD117; were negative for CD1a and CD8; and had dim CD5 expression in 2 cases. Next-generation sequencing showed a TET2 mutation in case 1 and BCOR, RUNX1, and STAG2 mutations in case 3. All patients received chemotherapy and tyrosine kinase inhibitors. Patients 2 and 3 died 33 days and 39 days, respectively, after diagnosis. Patient 1 received stem cell transplantation and was alive 14 months after blast phase. CONCLUSIONS Patients with CML-BP may have ETP-ALL. These patients usually have an aggressive clinical course, requiring intensive therapy, and may benefit from stem cell transplantation.
Collapse
Affiliation(s)
- Shuyu E
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - Jie Xu
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - Sa A Wang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - Guilin Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - Shaoying Li
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - M James You
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, US
| |
Collapse
|
6
|
Jen WY, Jabbour E, Kantarjian HM, Short NJ. SOHO State of the Art Updates and Next Questions | Novel Agents and the Diminishing Role of Allogeneic Stem Cell Transplant in B-Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:565-572. [PMID: 38538495 DOI: 10.1016/j.clml.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 08/27/2024]
Abstract
Outcomes of patients with B-acute lymphoblastic leukemia (B-ALL) have improved remarkably in the past decade. This has largely been due to the development and introduction of novel immunotherapies such as blinatumomab, inotuzumab ozogamicin, chimeric antigen receptor T (CAR-T) cells, highly potent tyrosine kinase inhibitors, and improved risk stratification, including better understanding of high risk genomic subgroups and better methods of measurable residual disease (MRD) detection. Historically, allogeneic stem cell transplant (allo-SCT) has been the consolidative treatment of choice in first complete remission for fit adults with B-ALL. However, allo-SCT is associated with significant treatment-related mortality and morbidity. Current research is directed at the incorporation of novel immunotherapies into frontline regimens to improve depth and durability of responses and ultimately increase cure rates. In this review, we will discuss the emerging role of novel immune-based treated strategies in both the frontline and relapsed/refractory settings. We present our approach to newly diagnosed patients with B-ALL and illustrate how the incorporation of novel agents and use of high-sensitivity MRD assays can abrogate the need for allo-SCT in most patients with B-ALL.
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030.
| |
Collapse
|
7
|
Schwartz MS, Muffly LS. Predicting relapse in acute lymphoblastic leukemia. Leuk Lymphoma 2024:1-7. [PMID: 39216505 DOI: 10.1080/10428194.2024.2387728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Outcomes in adult and pediatric patients with acute lymphoblastic leukemia (ALL) have improved over successive generations due to rigorously conducted clinical trials and incorporation of novel therapeutic agents. Despite these advances, approximately 20% of high-risk pediatric patients and 50% of adults with ALL will fail to achieve long-term remission with frontline chemotherapy protocols, mostly due to relapse. The ability to predict which patients with ALL are more likely to relapse allows for early intensification of therapy and/or incorporation of novel immunotherapies with the goal of relapse prevention. In this review, we outline the most robust clinical predictors of relapse in ALL with a focus on measurable residual disease (MRD) and genomics. We also discuss application of these prognostic tools in different clinical settings including frontline treatment, pre-/post-allogeneic stem cell transplant, and pre-/post-Chimeric Antigen Receptor T-cell therapy.
Collapse
Affiliation(s)
- Marc S Schwartz
- University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Lori S Muffly
- Division of Blood and Marrow Transplantation & Cellular Therapy, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
8
|
Tran V, Salafian K, Michaels K, Jones C, Reed D, Keng M, El Chaer F. MRD in Philadelphia Chromosome-Positive ALL: Methodologies and Clinical Implications. Curr Hematol Malig Rep 2024; 19:186-196. [PMID: 38888822 DOI: 10.1007/s11899-024-00736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW Measurable residual disease (MRD) is integral in the management of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). This review discusses the current methods used to evaluate MRD as well as the interpretation, significance, and incorporation of MRD in current practice. RECENT FINDINGS New molecular technologies have allowed the detection of MRD to levels as low as 10- 6. The most used techniques to evaluate MRD are multiparametric flow cytometry (MFC), quantitative reverse transcription polymerase chain reaction (RT-qPCR), and high-throughput next-generation sequencing (NGS). Each method varies in terms of advantages, disadvantages, and MRD sensitivity. MRD negativity after induction treatment and after allogeneic hematopoietic cell transplantation (HCT) is an important prognostic marker that has consistently been shown to be associated with improved outcomes. Blinatumomab, a new targeted therapy for Ph + ALL, demonstrates high efficacy in eradicating MRD and improving patient outcomes. In the relapsed/refractory setting, the use of inotuzumab ozogamicin and tisagenlecleucel has shown promise in eradicating MRD. The presence of MRD has become an important predictive measure in Ph + ALL. Current studies evaluate the use of MRD in treatment decisions, especially in expanding therapeutic options for Ph + ALL, including tyrosine kinase inhibitors, targeted antibody therapies, chimeric antigen receptor cell therapy, and HCT.
Collapse
Affiliation(s)
- Valerie Tran
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Kiarash Salafian
- Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Kenan Michaels
- Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Caroline Jones
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Daniel Reed
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Michael Keng
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Firas El Chaer
- Division of Hematology and Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Aypar U, Dilip D, Gadde R, Londono DM, Liu Y, Gao Q, Geyer MB, Derkach A, Zhang Y, Glass JL, Roshal M, Xiao W. Multilineage involvement in KMT2A-rearranged B acute lymphoblastic leukaemia: cell-of-origin, biology, and clinical implications. Histopathology 2024; 85:310-316. [PMID: 38686611 PMCID: PMC11246803 DOI: 10.1111/his.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
AIMS B lymphoblastic leukaemia/lymphoma (B-ALL) is thought to originate from Pro/Pre-B cells and the genetic aberrations largely reside in lymphoid-committed cells. A recent study demonstrated that a proportion of paediatric B-ALL patients have BCR::ABL1 fusion in myeloid cells, suggesting a chronic myeloid leukaemia (CML)-like biology in this peculiar subset of B-ALL, although it is not entirely clear if the CD19-negative precursor compartment is a source of the myeloid cells. Moreover, the observation has not yet been extended to other fusion-driven B-ALLs. METHODS AND RESULTS In this study we investigated a cohort of KMT2A-rearranged B-ALL patients with a comparison to BCR::ABL1-rearranged B-ALL by performing cell sorting via flow cytometry followed by FISH (fluorescence in situ hybridization) analysis on each of the sorted populations. In addition, RNA sequencing was performed on one of the sorted populations. These analyses showed that (1) multilineage involvement was present in 53% of BCR::ABL1 and 36% of KMT2A-rearranged B-ALL regardless of age, (2) multilineage involvement created pitfalls for residual disease monitoring, and (3) HSPC transcriptome signatures were upregulated in KMT2A-rearranged B-ALL with multilineage involvement. CONCLUSIONS In summary, multilineage involvement is common in both BCR::ABL1-rearranged and KMT2A-rearranged B-ALL, which should be taken into consideration when interpreting the disease burden during the clinical course.
Collapse
Affiliation(s)
- Umut Aypar
- Department of Pathology and Laboratory Medicine, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deepika Dilip
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramya Gadde
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dory M Londono
- Department of Pathology and Laboratory Medicine, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qi Gao
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark B Geyer
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob L Glass
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Huang YJ, Chen SH, Liu HC, Jaing TH, Yeh TC, Kuo MC, Lin TL, Chen CC, Wang SC, Chang TK, Hsiao CC, Liang DC, Shih LY. Evaluation of next-generation sequencing for measurable residual disease monitoring in three major fusion transcript subtypes of B-precursor acute lymphoblastic leukaemia. Pathology 2024; 56:681-687. [PMID: 38719770 DOI: 10.1016/j.pathol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 07/07/2024]
Abstract
The use of next-generation sequencing (NGS) for monitoring measurable residual disease (MRD) in acute lymphoblastic leukaemia (ALL) has been gaining traction. This study aimed to investigate the utility of NGS in MRD monitoring for the three major fusion transcript (FT) subtypes of B-precursor ALL (B-ALL). The MRD results for 104 bone marrow samples from 56 patients were analysed through NGS and real time quantitative reverse transcription PCR (RT-qPCR) for the three major FTs: BCR::ABL1, TCF3::PBX1, and ETV6::RUNX1. To validate the NGS approach, NGS-MRD was initially compared with allele-specific oligonucleotide-qPCR-MRD, and the coefficient of determination was good (R2=0.8158). A subsequent comparison of NGS-MRD with FT-MRD yielded a good coefficient of determination (R2=0.7690), but the coefficient varied by subtype. Specifically, the R2 was excellent for TCF3::PBX1 ALL (R2=0.9157), good for ETV6::RUNX1 ALL (R2=0.8606), and subpar for BCR::ABL1 ALL (R2=0.5763). The overall concordance between the two methods was 83.7%, and an excellent concordance rate of 95.8% was achieved for TCF3::PBX1 ALL. Major discordance, which was defined as a >1 log difference between discordant NGS-MRD and FT-MRD, occurred in 6.7% of the samples, with all but one sample being BCR::ABL1 ALL. Among the four non-transplanted patients with BCR::ABL1-MRD (+)/NGS-MRD (-), three did not relapse after long-term follow-up. Our finding indicates that NGS-MRD has a better prognostic impact than RT-qPCR-MRD in ETV6::RUNX1 and BCR::ABL1 ALL, whereas in TCF3::PBX1 ALL, both methods exhibit comparable efficacy.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Hsi-Che Liu
- Department of Hematology-Oncology, MacKay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tang-Her Jaing
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Ting-Chi Yeh
- Department of Hematology-Oncology, MacKay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Te-Kau Chang
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Chih-Cheng Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Der-Cherng Liang
- Department of Hematology-Oncology, MacKay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Kantarjian H, Short NJ, Haddad FG, Jain N, Huang X, Montalban-Bravo G, Kanagal-Shamanna R, Kadia TM, Daver N, Chien K, Alvarado Y, Garcia-Manero G, Issa GC, Garris R, Nasnas C, Nasr L, Ravandi F, Jabbour E. Results of the Simultaneous Combination of Ponatinib and Blinatumomab in Philadelphia Chromosome-Positive ALL. J Clin Oncol 2024:JCO2400272. [PMID: 39028925 DOI: 10.1200/jco.24.00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.In this analysis, we update our experience with the chemotherapy-free regimen of blinatumomab and ponatinib in 60 patients with newly diagnosed Philadelphia chromosome (Ph)-positive ALL. At a median follow-up of 24 months, the complete molecular response rate by reverse transcriptase-polymerase chain reaction was 83% (67% at the end of course one), and the rate of measurable residual disease negativity by next-generation clono-sequencing was 98% (45% at the end of course one). Only two patients underwent hematopoietic stem cell transplantation (HSCT). Seven patients relapsed: two with systemic disease, four with isolated CNS relapse, and one with extramedullary Ph-negative, CRLF2-positive pre-B ALL. The estimated 3-year overall survival rate was 91% and event-free survival rate was 77%. Three patients discontinued blinatumomab because of adverse events (related, n = 1; unrelated, n = 2) and nine discontinued ponatinib because of cerebrovascular ischemia, coronary artery stenosis, persistent rash, elevated liver function tests with drug-induced fatty liver, atrial thrombus, severe arterial occlusive disease of lower extremities, pleuro-pericardial effusion, and debilitation. In conclusion, the simultaneous combination of ponatinib and blinatumomab is a highly effective and relatively safe nonchemotherapy regimen. This regimen also reduces the need for intensive chemotherapy and HSCT in first remission in the majority of patients.
Collapse
Affiliation(s)
- Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rebecca Garris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cedric Nasnas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lewis Nasr
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Hovorkova L, Winkowska L, Skorepova J, Krumbholz M, Benesova A, Polivkova V, Alten J, Bardini M, Meyer C, Kim R, Trahair TN, Clappier E, Chiaretti S, Henderson M, Sutton R, Sramkova L, Stary J, Polakova KM, Marschalek R, Metzler M, Cazzaniga G, Cario G, Trka J, Zaliova M, Zuna J. Distinct pattern of genomic breakpoints in CML and BCR::ABL1-positive ALL: analysis of 971 patients. Mol Cancer 2024; 23:138. [PMID: 38970095 PMCID: PMC11229488 DOI: 10.1186/s12943-024-02053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The BCR::ABL1 is a hallmark of chronic myeloid leukemia (CML) and is also found in acute lymphoblastic leukemia (ALL). Most genomic breaks on the BCR side occur in two regions - Major and minor - leading to p210 and p190 fusion proteins, respectively. METHODS By multiplex long-distance PCR or next-generation sequencing technology we characterized the BCR::ABL1 genomic fusion in 971 patients (adults and children, with CML and ALL: pediatric ALL: n = 353; pediatric CML: n = 197; adult ALL: n = 166; adult CML: n = 255 patients) and designed "Break-App" web tool to allow visualization and various analyses of the breakpoints. Pearson's Chi-Squared test, Kolmogorov-Smirnov test and logistic regression were used for statistical analyses. RESULTS Detailed analysis showed a non-random distribution of breaks in both BCR regions, whereas ABL1 breaks were distributed more evenly. However, we found a significant difference in the distribution of breaks between CML and ALL. We found no association of breakpoints with any type of interspersed repeats or DNA motifs. With a few exceptions, the primary structure of the fusions suggests non-homologous end joining being responsible for the BCR and ABL1 gene fusions. Analysis of reciprocal ABL1::BCR fusions in 453 patients showed mostly balanced translocations without major deletions or duplications. CONCLUSIONS Taken together, our data suggest that physical colocalization and chromatin accessibility, which change with the developmental stage of the cell (hence the difference between ALL and CML), are more critical factors influencing breakpoint localization than presence of specific DNA motifs.
Collapse
Affiliation(s)
- Lenka Hovorkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Lucie Winkowska
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Justina Skorepova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Manuela Krumbholz
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital, Erlangen, Germany
| | - Adela Benesova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vaclava Polivkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Julia Alten
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Claus Meyer
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe-University, Frankfurt, Germany
| | - Rathana Kim
- Hematology laboratory, AP-HP, Saint-Louis hospital, Université Paris-Cité, Paris, France
| | - Toby N Trahair
- Children's Cancer Institute, Randwick, Australia
- School of Women's and Children's Health, School of Medicine, University of NSW, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Emmanuelle Clappier
- Hematology laboratory, AP-HP, Saint-Louis hospital, Université Paris-Cité, Paris, France
| | - Sabina Chiaretti
- Division of Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Michelle Henderson
- Children's Cancer Institute, Randwick, Australia
- School of Women's and Children's Health, School of Medicine, University of NSW, Sydney, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Randwick, Australia
- School of Women's and Children's Health, School of Medicine, University of NSW, Sydney, Australia
| | - Lucie Sramkova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | | | - Rolf Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe-University, Frankfurt, Germany
| | - Markus Metzler
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital, Erlangen, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Medical Genetics, School of Medicine and Surgery, Univ. Milano Bicocca, Monza, Italy
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Jan Zuna
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic.
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
13
|
Short NJ, Jabbour E, Kantarjian H. SOHO State of the Art Updates and Next Questions, Measurable Residual Disease in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:427-432. [PMID: 38485650 DOI: 10.1016/j.clml.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 06/22/2024]
Abstract
Assessment of measurable residual disease (MRD) provides important prognostic information and can inform decision-making about appropriate consolidative therapy in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Many contemporary treatment protocols for Ph+ ALL achieve high rates of MRD negativity, and several analyses suggest that allogeneic hematopoietic stem cell transplant in first remission can be safely deferred in most patients who achieve MRD negativity by PCR for BCR::ABL1 within 3 months. Given the close association between achievement of MRD negativity and favorable long-term outcomes in Ph+ ALL, MRD response rates may aid in the evaluation of novel regimens, particularly in the absence of randomized data or robust survival data. While most studies in Ph+ ALL have used PCR for BCR::ABL1 to measure MRD and correlate with outcomes, this assay has several limitations. PCR or next-generation sequencing-based assays for immunoglobin or T-cell receptor (IG/TR) gene rearrangements may provide a more accurate assessment of clinically significant MRD in Ph+ ALL, particularly in patients with multilineage involvement of BCR::ABL1. Herein, we discuss the prognostic and therapeutic role of MRD in Ph+ ALL. We review the available methods of MRD assessment in Ph+ ALL and discuss the advantages of MRD assays that track IG/TR rearrangements rather than BCR::ABL1.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Chalandon Y, Rousselot P, Chevret S, Cayuela JM, Kim R, Huguet F, Chevallier P, Graux C, Thiebaut-Bertrand A, Chantepie S, Thomas X, Vincent L, Berthon C, Hicheri Y, Raffoux E, Escoffre-Barbe M, Plantier I, Joris M, Turlure P, Pasquier F, Belhabri A, Guepin GR, Blum S, Gregor M, Lafage-Pochitaloff M, Quessada J, Lhéritier V, Clappier E, Boissel N, Dombret H. Nilotinib with or without cytarabine for Philadelphia-positive acute lymphoblastic leukemia. Blood 2024; 143:2363-2372. [PMID: 38452207 DOI: 10.1182/blood.2023023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
ABSTRACT We previously demonstrated that a reduced-intensity chemotherapy schedule can safely replace hyper-CVAD (cyclophosphamide-vincristine-doxorubicin [Adriamycin]-dexamethasone) cycle 1 when combined with imatinib in adults with Philadelphia-positive acute lymphoblastic leukemia. In the present randomized GRAAPH-2014 trial, we used nilotinib and addressed the omission of cytarabine (Ara-C) in consolidation. The primary objective was the major molecular response (MMR) rate measured by BCR::ABL1 quantification after cycle 4 (end of consolidation). All patients were eligible for allogeneic stem cell transplant (SCT), whereas those in MMR could receive autologous SCT, followed by 2-year imatinib maintenance in both cases. After the enrollment of 156 of 265 planed patients, the data and safety monitoring board decided to hold the randomization because of an excess of relapse in the investigational arm. Among the 155 evaluable patients, 76 received Ara-C during consolidation (arm A) and 79 did not (arm B). Overall, 133 patients (85%) underwent SCT, 93 allogeneic and 40 autologous. The noninferiority end point regarding MMR was reached with 71.1% (arm A) and 77.2% (arm B) of patients reaching MMR. However, the 4-year cumulative incidence of relapse was higher in arm B compared with arm A (31.3% [95% confidence interval {CI}, 21.1%-41.9%] vs 13.2% [95% CI, 6.7%-21.9%]; P = .017), which translated to a lower relapse-free survival. With a median follow-up of 3.8 years, 4-year overall survival was 79.0% (95% CI, 70.6%-89.3%) in arm A vs 73.4% (95% CI, 63.9%-84.4%) in arm B (P = .35). Despite a noninferior rate of MMR, more relapses were observed when ARA-C was omitted without impact on survival. ClinicalTrials.gov ID, NCT02611492.
Collapse
Affiliation(s)
- Yves Chalandon
- Division of Hematology, Department of Oncology, University Hospital of Geneva and Medical School, University of Geneva, Geneva, Switzerland
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Philippe Rousselot
- Division of Hematology, Centre Hospitalier de Versailles, Université Versailles Paris-Saclay, Le Chesnay, France
| | - Sylvie Chevret
- Division of Biostatistics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Jean-Michel Cayuela
- Division of Hematology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Institut de Recherche Saint-Louis, Paris, France
| | - Rathana Kim
- Division of Hematology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Institut de Recherche Saint-Louis, Paris, France
| | - Françoise Huguet
- Division of Hematology, Institut Universitaire du Cancer de Toulouse-Oncopole, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | - Carlos Graux
- Université Catholique de Louvain, Centre Hospitalier Universitaire Université Catholique Louvain Namur (Godinne), Yvoir, Belgium
| | | | - Sylvain Chantepie
- Institut d'Hématologie de Basse Normandie, Centre Hospitalier Universitaire, Caen, France
| | - Xavier Thomas
- Division of Hematology, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Bénite, France
| | - Laure Vincent
- Centre Hospitalier Universitaire de Montpellier/Département d'Hématologie Clinique, Hôpital Saint-Eloi, Montpellier, France
| | - Céline Berthon
- Division of Hematology, Hôpital Claude Huriez, Lille, France
| | | | - Emmanuel Raffoux
- Division of Hematology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Institut de Recherche Saint-Louis, Paris, France
| | | | - Isabelle Plantier
- Service d'Hématologie Clinique, Centre Hospitalier Roubaix, Roubaix, France
| | | | - Pascal Turlure
- Hematology Department, Centre Hospitalier Régional Universitaire Limoges, Limoges, France
| | - Florence Pasquier
- Institut Gustave Roussy, Département Clinique d'Hématologie, INSERM UMR1170, Villejuif, France
| | - Amine Belhabri
- Centre Léon Bérard, Département d'Oncologie Médicale, Lyon, France
| | | | - Sabine Blum
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
- Division of Hematology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michael Gregor
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
- Division of Hematology, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Marina Lafage-Pochitaloff
- Division of Hematology, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Julie Quessada
- Division of Hematology, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Véronique Lhéritier
- Group for Research on Adult Acute Lymphoblastic Leukemia, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Emmanuelle Clappier
- Division of Hematology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Institut de Recherche Saint-Louis, Paris, France
| | - Nicolas Boissel
- Division of Hematology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Institut de Recherche Saint-Louis, Paris, France
| | - Hervé Dombret
- Division of Hematology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Institut de Recherche Saint-Louis, Paris, France
| |
Collapse
|
15
|
Senapati J, Kantarjian H, Haddad FG, Short NJ, Welch MA, Jain N, Jabbour E. SOHO State of the Art Updates and Next Questions | Next Questions: Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:333-339. [PMID: 38195323 DOI: 10.1016/j.clml.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
The integration of immune and targeted therapies into the treatment of acute lymphoblastic leukemia (ALL) has significantly improved outcomes, reduced the intensity and duration of chemotherapy, and the reliance on allogeneic stem cell transplantation (SCT). In younger patients with Philadelphia chromosome (Ph)-negative ALL, treatment with Hyper-CVAD and blinatumomab +/- inotuzumab has improved the 3-year overall survival (OS) to above 85%. In older patients, using less intensive chemotherapy (mini-Hyper-CVD) in combination with inotuzumab and blinatumomab has improved the 5-year OS rate to 50%. In Ph+ ALL, the chemotherapy-free combinations of blinatumomab and ponatinib (or dasatinib) have become a new standard of care resulting in 3-year OS of 85% to 90%. Because the methotrexate-cytarabine courses were omitted in the nonchemotherapy regimens, central nervous system (CNS) relapses were noted, particularly in patients with a WBC count > 70 × 109/L, requiring to consider increasing the number of prophylactic intrathecals (from 12 to 15) and perhaps developing a CNS risk-directed high-dose systemic chemotherapy. In relapsed/refractory ALL, a dose-dense regimen integrating blinatumomab and inotuzumab with low-intensity chemotherapy followed by consolidation with chimeric antigen receptor T-cell therapy is being investigated. The detection of measurable residual disease (MRD) following ALL therapy is predictive of disease relapse. Using next-generation sequencing allows the detection of MRD at 1 × 10-6 which was shown to be superior to multiparameter flow cytometry and polymerase chain reaction in predicting relapse, and could be used to decide on the duration of therapy or need to change therapy. Herein, we review the recent updates and areas of unmet need in ALL.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mary Alma Welch
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
16
|
Short NJ, Kantarjian H, Jabbour E. Is next-generation sequencing the future of measurable residual disease assays for Philadelphia chromosome-positive acute lymphoblastic leukemia? Expert Rev Hematol 2024; 17:189-191. [PMID: 38726703 DOI: 10.1080/17474086.2024.2354922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/09/2024] [Indexed: 05/15/2024]
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Haddad FG, Jabbour E, Short NJ, Jain N, Kantarjian H. SOHO State of the Art Updates and Next Questions: Update on the Approach to Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:271-276. [PMID: 38185587 DOI: 10.1016/j.clml.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
The outcome of Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL) has improved significantly following the introduction of the BCR::ABL1 tyrosine kinase inhibitors (TKIs). The addition of newer-generation and more potent TKIs resulted in higher rates of molecular responses and better survival. Achieving a complete molecular remission (CMR; disappearance of the BCR::ABL1 transcripts) within the first 3 months of therapy is an important endpoint in newly diagnosed Ph-positive ALL that identifies patients who have an excellent long-term survival and who may not need to receive an allogeneic hematopoietic stem cell transplantation (HSCT) in first complete remission (CR). Chemotherapy-free combinations with blinatumomab plus TKIs showed encouraging results with estimated 2 to 4 year overall survival (OS) rates of 80% to 90%. Treatment with blinatumomab and ponatinib resulted in a CMR rate of 84%, a 2-year event-free survival (EFS) of 78%, and a 2-year OS rate of 90%; only 1 patient underwent HSCT. The detection of measurable residual disease (MRD) is the most important factor predicting for disease relapse. Studies have shown that the next-generation sequencing (NGS) assay is more sensitive than RT-PCR for the detection of MRD in Ph-positive ALL. Approximately 15% to 30% of patients who achieve NGS MRD negativity at a sensitivity of 1 × 10-6 may still have detectable BCR::ABL1 transcripts by RT-PCR. Achieving NGS MRD negativity can also identify patients who may have durable remissions with a low risk of relapse. Herein, we discuss the current approach to the management of adults with Ph-positive ALL, the role of HSCT, MRD monitoring, and future therapies.
Collapse
Affiliation(s)
- Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,1515 Holcombe Blvd. Box 428, Houston, Texas 77030. USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,1515 Holcombe Blvd. Box 428, Houston, Texas 77030. USA.
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,1515 Holcombe Blvd. Box 428, Houston, Texas 77030. USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,1515 Holcombe Blvd. Box 428, Houston, Texas 77030. USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,1515 Holcombe Blvd. Box 428, Houston, Texas 77030. USA
| |
Collapse
|
18
|
Choi JK, Xiao W, Chen X, Loghavi S, Elenitoba-Johnson KS, Naresh KN, Medeiros LJ, Czader M. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Acute Lymphoblastic Leukemias, Mixed-Phenotype Acute Leukemias, Myeloid/Lymphoid Neoplasms With Eosinophilia, Dendritic/Histiocytic Neoplasms, and Genetic Tumor Syndromes. Mod Pathol 2024; 37:100466. [PMID: 38460674 DOI: 10.1016/j.modpat.2024.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.
Collapse
Affiliation(s)
- John K Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kojo S Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
19
|
Bastian L, Beder T, Barz MJ, Bendig S, Bartsch L, Walter W, Wolgast N, Brändl B, Rohrandt C, Hansen BT, Hartmann AM, Iben K, Das Gupta D, Denker M, Zimmermann J, Wittig M, Chitadze G, Neumann M, Schneller F, Fiedler W, Steffen B, Stelljes M, Faul C, Schwartz S, Müller FJ, Cario G, Harder L, Haferlach C, Pfeifer H, Gökbuget N, Brüggemann M, Baldus CD. Developmental trajectories and cooperating genomic events define molecular subtypes of BCR::ABL1-positive ALL. Blood 2024; 143:1391-1398. [PMID: 38153913 PMCID: PMC11033585 DOI: 10.1182/blood.2023021752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
ABSTRACT Distinct diagnostic entities within BCR::ABL1-positive acute lymphoblastic leukemia (ALL) are currently defined by the International Consensus Classification of myeloid neoplasms and acute leukemias (ICC): "lymphoid only", with BCR::ABL1 observed exclusively in lymphatic precursors, vs "multilineage", where BCR::ABL1 is also present in other hematopoietic lineages. Here, we analyzed transcriptomes of 327 BCR::ABL1-positive patients with ALL (age, 2-84 years; median, 46 years) and identified 2 main gene expression clusters reproducible across 4 independent patient cohorts. Fluorescence in situ hybridization analysis of fluorescence-activated cell-sorted hematopoietic compartments showed distinct BCR::ABL1 involvement in myeloid cells for these clusters (n = 18/18 vs n = 3/16 patients; P < .001), indicating that a multilineage or lymphoid BCR::ABL1 subtype can be inferred from gene expression. Further subclusters grouped samples according to cooperating genomic events (multilineage: HBS1L deletion or monosomy 7; lymphoid: IKZF1-/- or CDKN2A/PAX5 deletions/hyperdiploidy). A novel HSB1L transcript was highly specific for BCR::ABL1 multilineage cases independent of HBS1L genomic aberrations. Treatment on current German Multicenter Study Group for Adult ALL (GMALL) protocols resulted in comparable disease-free survival (DFS) for multilineage vs lymphoid cluster patients (3-year DFS: 70% vs 61%; P = .530; n = 91). However, the IKZF1-/- enriched lymphoid subcluster was associated with inferior DFS, whereas hyperdiploid cases showed a superior outcome. Thus, gene expression clusters define underlying developmental trajectories and distinct patterns of cooperating events in BCR::ABL1-positive ALL with prognostic relevance.
Collapse
Affiliation(s)
- Lorenz Bastian
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Malwine J. Barz
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Sonja Bendig
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Lorenz Bartsch
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | | | - Nadine Wolgast
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Christian Rohrandt
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Björn-Thore Hansen
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina M. Hartmann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Katharina Iben
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Dennis Das Gupta
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Miriam Denker
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johannes Zimmermann
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Guranda Chitadze
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Martin Neumann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Folker Schneller
- Medical Clinic and Polyclinic of Klinikum rechts der Isar of Technical University Munich, Munich, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Steffen
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Matthias Stelljes
- Department of Medicine A–Hematology, Hemostaseology, Oncology, Pulmonology, University Hospital Muenster, Munster, Germany
| | - Christoph Faul
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Gunnar Cario
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lana Harder
- Institut für Tumorgenetik Nord, Kiel, Germany
| | | | - Heike Pfeifer
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Claudia D. Baldus
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| |
Collapse
|
20
|
Kim R, Clappier E. Uncovering new layers of Ph+ ALL biology. Blood 2024; 143:1322-1323. [PMID: 38573608 DOI: 10.1182/blood.2023023583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
|
21
|
Hu S, Jabbour EJ, Hu CY, Tang G, Wang W, Medeiros LJ, Bueso-Ramos C. Recurrent lymphoid and myeloid relapses due to treatment cessations reveal natural history of Ph-positive B-ALL and pose a diagnostic challenge. Am J Hematol 2024; 99:721-726. [PMID: 38240333 DOI: 10.1002/ajh.27210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Collin Y Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Shanmuganathan N. Accelerated-phase CML: de novo and transformed. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:459-468. [PMID: 38066863 PMCID: PMC10727052 DOI: 10.1182/hematology.2023000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Despite the dramatic improvements in outcomes for the majority of chronic myeloid leukemia (CML) patients over the past 2 decades, a similar improvement has not been observed in the more advanced stages of the disease. Blast phase CML (BP-CML), although infrequent, remains poorly understood and inadequately treated. Consequently, the key initial goal of therapy in a newly diagnosed patient with chronic phase CML continues to be prevention of disease progression. Advances in genomic investigation in CML, specifically related to BP-CML, clearly demonstrate we have only scratched the surface in our understanding of the disease biology, a prerequisite to devising more targeted and effective therapeutic approaches to prevention and treatment. Importantly, the introduction of the concept of "CML-like" acute lymphoblastic leukemia (ALL) has the potential to simplify the differentiation between BCR::ABL1-positive ALL from de novo lymphoid BP-CML, optimizing monitoring and therapeutics. The development of novel treatment strategies such as the MATCHPOINT approach for BP-CML, utilizing combination chemotherapy with fludarabine, cytarabine, and idarubicin in addition to dose-modified ponatinib, may also be an important step in improving treatment outcomes. However, identifying patients who are high risk of transformation remains a challenge, and the recent 2022 updates to the international guidelines may add further confusion to this area. Further work is required to clarify the identification and treatment strategy for the patients who require a more aggressive approach than standard chronic phase CML management.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Haematoloxgy, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Genetics and Molecular Pathology & Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| |
Collapse
|
23
|
Zuna J, Hovorkova L, Krotka J, Winkowska L, Novak Z, Sramkova L, Stary J, Trka J, Cazzaniga G, Cario G, Zaliova M. Posttreatment positivity of BCR::ABL1 in acute lymphoblastic leukemia: Should we keep track? Am J Hematol 2023; 98:E269-E271. [PMID: 37449465 DOI: 10.1002/ajh.27022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Jan Zuna
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Lenka Hovorkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justina Krotka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Lucie Winkowska
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zbynek Novak
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Lucie Sramkova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Giovanni Cazzaniga
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
24
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
25
|
van Outersterp I, van der Velden VH, Hoogeveen PG, Vaitkevičienė GE, Sonneveld E, van Haaften G, Kuiper RP, zur Stadt U, Escherich G, Boer JM, den Boer ML. ABL-class Genomic Breakpoint Q-PCR: A Patient-specific Approach for MRD Monitoring in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e967. [PMID: 37736661 PMCID: PMC10511034 DOI: 10.1097/hs9.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
| | - Vincent H.J. van der Velden
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Patricia G. Hoogeveen
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Goda E. Vaitkevičienė
- Faculty of Medicine, Vilnius University, Lithuania
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Lithuania
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group, Utrecht, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, The Netherlands
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, The Netherlands
| | - Udo zur Stadt
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Germany
| | - Gabriele Escherich
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Germany
| | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L. den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus MC - Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Burmeister T, Gröger D, Gökbuget N, Spriewald B, Starck M, Elmaagacli A, Hoelzer D, Keller U, Schwartz S. Molecular characterization of TCF3::PBX1 chromosomal breakpoints in acute lymphoblastic leukemia and their use for measurable residual disease assessment. Sci Rep 2023; 13:15167. [PMID: 37704696 PMCID: PMC10499895 DOI: 10.1038/s41598-023-42294-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The translocation t(1;19)(q23;p13) with the resulting chimeric TCF3::PBX1 gene is the third most prevalent recurrent chromosomal translocation in acute lymphoblastic leukemia and accounts for 3-5% of cases. The molecular background of this translocation has been incompletely studied, especially in adult cases. We characterized the chromosomal breakpoints of 49 patients with TCF3::PBX1 and the corresponding reciprocal PBX1::TCF3 breakpoints in 15 cases at the molecular level, thus providing an extensive molecular overview of this translocation in a well-defined study patient population. Breakpoints were found to be remarkably clustered not only in TCF3 but also in PBX1. No association with DNA repeats or putative cryptic recombination signal sequence sites was observed. A simplified detection method for breakpoint identification was developed and the feasibility of patient-specific chromosomal break sites as molecular markers for detecting measurable residual disease (MRD) was explored. A highly sensitive generic real-time PCR for MRD assessment using these breakpoint sequences was established that could serve as a useful alternative to the classical method utilizing rearranged immune gene loci. This study provides the first extensive molecular data set on the chromosomal breakpoints of the t(1;19)/TCF3::PBX1 aberration in adult ALL. Based on the obtained data a generic MRD method was developed that has several theoretical advantages, including an on average higher sensitivity and a greater stability of the molecular marker in the course of disease.
Collapse
Affiliation(s)
- Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, CVK, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Daniela Gröger
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Gökbuget
- Medical Department 2, Goethe-Universität, Frankfurt, Germany
| | - Bernd Spriewald
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Starck
- I. Medical Department, München Klinik Schwabing, Munich, Germany
| | - Ahmet Elmaagacli
- Department of Hematology, Oncology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Dieter Hoelzer
- Medical Department 2, Goethe-Universität, Frankfurt, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Hunger SP, Tran TH, Saha V, Devidas M, Valsecchi MG, Gastier-Foster JM, Cazzaniga G, Reshmi SC, Borowitz MJ, Moorman AV, Heerema NA, Carroll AJ, Martin-Regueira P, Loh ML, Raetz EA, Schultz KR, Slayton WB, Cario G, Schrappe M, Silverman LB, Biondi A. Dasatinib with intensive chemotherapy in de novo paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (CA180-372/COG AALL1122): a single-arm, multicentre, phase 2 trial. Lancet Haematol 2023; 10:e510-e520. [PMID: 37407142 DOI: 10.1016/s2352-3026(23)00088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The outcome of children with Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukaemia significantly improved with the combination of imatinib and intensive chemotherapy. We aimed to investigate the efficacy of dasatinib, a second-generation ABL-class inhibitor, with intensive chemotherapy in children with newly diagnosed Ph-positive acute lymphoblastic leukaemia. METHODS CA180-372/COG AALL1122 was a joint Children's Oncology Group (COG) and European intergroup study of post-induction treatment of Ph-positive acute lymphoblastic leukaemia (EsPhALL) open-label, single-arm, phase 2 study. Eligible patients (aged >1 year to <18 years) with newly diagnosed Ph-positive acute lymphoblastic leukaemia and performance status of at least 60% received EsPhALL chemotherapy plus dasatinib 60 mg/m2 orally once daily from day 15 of induction. Patients with minimal residual disease of at least 0·05% after induction 1B or who were positive for minimal residual disease after the three consolidation blocks were classified as high risk and allocated to receive haematopoietic stem-cell transplantation (HSCT) in first complete remission. The remaining patients were considered standard risk and received chemotherapy plus dasatinib for 2 years. The primary endpoint was the 3-year event-free survival of dasatinib plus chemotherapy compared with external historical controls. The trial was considered positive if one of the following conditions was met: superiority over chemotherapy alone in the AIEOP-BFM 2000 high-risk group; or non-inferiority (with a margin of -5%) or superiority to imatinib plus chemotherapy in the EsPhALL 2010 cohort. All participants who received at least one dose of dasatinib were included in the safety and efficacy analyses. This trial was registered with ClinicalTrials.gov, NCT01460160, and recruitment is closed. FINDINGS Between March 13, 2012, and May 27, 2014, 109 patients were enrolled at 69 sites (including 51 COG sites in the USA, Canada, and Australia, and 18 EsPhALL sites in Italy and the UK). Three patients were ineligible and did not receive dasatinib. 106 patients were treated and included in analyses (49 [46%] female and 57 [54%] male; 85 [80%] White, 13 [12%] Black or African American, five [5%] Asian, and three [3%] other races; 24 [23%] Hispanic or Latino ethnicity). All 106 treated patients reached complete remission; 87 (82%) were classified as standard risk and 19 (18%) met HSCT criteria and were classified as high risk, but only 15 (14%) received HSCT in first complete remission. The 3-year event-free survival of dasatinib plus chemotherapy was superior to chemotherapy alone (65·5% [90% Clopper-Pearson CI 57·7 to 73·7] vs 49·2% [38·0 to 60·4]; p=0·032), and was non-inferior to imatinib plus chemotherapy (59·1% [51·8 to 66·2], 90% CI of the treatment difference: -3·3 to 17·2), but not superior to imatinib plus chemotherapy (65·5% vs 59·1%; p=0·27). The most frequent grade 3-5 adverse events were febrile neutropenia (n=93) and bacteraemia (n=21). Nine remission deaths occurred, which were due to infections (n=5), transplantation-related (n=2), due to cardiac arrest (n=1), or had an unknown cause (n=1). No dasatinib-related deaths occurred. INTERPRETATION Dasatinib plus EsPhALL chemotherapy is safe and active in paediatric Ph-positive acute lymphoblastic leukaemia. 3-year event-free survival was similar to that of previous Ph-positive acute lymphoblastic leukaemia trials despite the limited use of HSCT in first complete remission. FUNDING Bristol Myers Squibb.
Collapse
Affiliation(s)
- Stephen P Hunger
- Department of Pediatrics and The Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Vaskar Saha
- Children's Cancer Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Tata Translational Cancer Research Centre, Tata Medical Center, Kolkata, India
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Maria Grazia Valsecchi
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Julie M Gastier-Foster
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA; Department of Pathology, Ohio State University College of Medicine, Columbus, OH, USA
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; Genetics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Shalini C Reshmi
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michael J Borowitz
- Department of Pathology and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nyla A Heerema
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mignon L Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Kirk R Schultz
- Pediatric Hematology-Oncology, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - William B Slayton
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
28
|
Kim JC, Chan-Seng-Yue M, Ge S, Zeng AGX, Ng K, Gan OI, Garcia-Prat L, Flores-Figueroa E, Woo T, Zhang AXW, Arruda A, Chithambaram S, Dobson SM, Khoo A, Khan S, Ibrahimova N, George A, Tierens A, Hitzler J, Kislinger T, Dick JE, McPherson JD, Minden MD, Notta F. Transcriptomic classes of BCR-ABL1 lymphoblastic leukemia. Nat Genet 2023:10.1038/s41588-023-01429-4. [PMID: 37337105 DOI: 10.1038/s41588-023-01429-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
In BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes. A later arrest was associated with lineage fidelity, durable leukemia remissions and improved patient outcomes. Each maturation arrest was marked by specific genomic events that control different transition points in B-cell development. Interestingly, these events were absent in BCR-ABL1+ preleukemic stem cells isolated from patients regardless of subtype, which supports that transcriptomic phenotypes are determined downstream of the leukemia-initialing event. Overall, our data indicate that treatment response and TKI efficacy are unexpected outcomes of the differentiation stage at which this leukemia transforms.
Collapse
Affiliation(s)
- Jaeseung C Kim
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sabrina Ge
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Karen Ng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Tristan Woo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrea Arruda
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shivapriya Chithambaram
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Amanda Khoo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Ann George
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anne Tierens
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John D McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Dekker SE, Rea D, Cayuela JM, Arnhardt I, Leonard J, Heuser M. Using Measurable Residual Disease to Optimize Management of AML, ALL, and Chronic Myeloid Leukemia. Am Soc Clin Oncol Educ Book 2023; 43:e390010. [PMID: 37311155 DOI: 10.1200/edbk_390010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, we discuss the use of measurable residual disease (MRD) in AML, ALL, and chronic myeloid leukemia (CML). Our aims were to review the different methodologies for MRD assessment; describe the clinical relevance and medical decision making on the basis of MRD; compare and contrast the usage of MRD across AML, ALL, and CML; and discuss what patients need to know about MRD as it relates to their disease status and treatment. Finally, we discuss ongoing challenges and future directions with the goal of optimizing MRD usage in leukemia management.
Collapse
Affiliation(s)
- Simone E Dekker
- Department of Medicine, Oregon Health & Science University, Portland, OR
| | - Delphine Rea
- France Intergroupe des Leucémies Myéloïdes chroniques FiLMC, Hôpital Saint-Louis APHP, Paris, France
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, Paris, France
| | - Jean-Michel Cayuela
- France Intergroupe des Leucémies Myéloïdes chroniques FiLMC, Hôpital Saint-Louis APHP, Paris, France
- Laboratoire de Biologie Moléculaire, Hôpital Saint-Louis APHP, Paris, France
| | - Isabell Arnhardt
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Jessica Leonard
- Division of Hematology-Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Comprehensive Cancer Center Lower Saxony, Hannover, Germany
| |
Collapse
|
30
|
Short NJ, Jabbour E, Macaron W, Ravandi F, Jain N, Kanagal-Shamanna R, Patel KP, Loghavi S, Haddad FG, Yilmaz M, Issa GC, Kebriaei P, Kornblau SM, Pelletier S, Flores W, Matthews J, Garris R, Kantarjian H. Ultrasensitive NGS MRD assessment in Ph+ ALL: Prognostic impact and correlation with RT-PCR for BCR::ABL1. Am J Hematol 2023. [PMID: 37183966 DOI: 10.1002/ajh.26949] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023]
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) for BCR::ABL1 is the most common and widely accepted method of measurable residual disease (MRD) assessment in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL); however, RT-PCR may not be an optimal measure of MRD in many cases of Ph+ ALL. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay (sensitivity of 10-6 ) and its correlation with RT-PCR for BCR::ABL1 in patients with Ph+ ALL. Overall, 32% of patients had a discordance between MRD assessment by RT-PCR and NGS, and 31% of patients who achieved NGS MRD negativity were PCR+ at the same timepoint. Among eight patients with long-term detectable BCR::ABL1 by PCR, six were PCR+/NGS-. These patients generally had stable PCR levels that persisted despite therapeutic interventions, and none subsequently relapsed; in contrast, patients who were PCR+/NGS+ had more variable PCR values that responded to therapeutic intervention. In a separate cohort of prospectively collected clinical samples, 11 of 65 patients (17%) with Ph+ ALL who achieved NGS MRD negativity had detectable BCR::ABL1 by PCR, and none of these patients relapsed. Relapse-free survival and overall survival were similar in patients who were PCR+/NGS- and PCR-/NGS-, suggesting that PCR for BCR::ABL1 did not provide additional prognostic information in patients who achieved NGS MRD negativity. NGS-based assessment of MRD is prognostic in Ph+ ALL and identifies patients with low-level detectable BCR::ABL1 who are unlikely to relapse nor to benefit from therapeutic interventions.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Walid Macaron
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Pelletier
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wilmer Flores
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jairo Matthews
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca Garris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
[Chinese consensus on minimal residual disease detection and interpretation of patients with acute lymphoblastic leukemia (2023)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:267-275. [PMID: 37356994 PMCID: PMC10282871 DOI: 10.3760/cma.j.issn.0253-2727.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/27/2023]
|
32
|
Zhang J, Oak J. Challenges of detecting measurable/minimal disease in acute leukemia. Semin Diagn Pathol 2023; 40:216-220. [PMID: 37150656 DOI: 10.1053/j.semdp.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
Measurable/minimal residual disease (MRD) tracking has emerged as a powerful tool for assessing treatment response and predicting outcomes in acute leukemia. However, the clinical and technological challenges associated with MRD tracking must be addressed to improve its utility in routine patient care. This review article aims to provide a summary of the different MRD methodologies used in acute leukemia. It highlights the strengths, diagnostic pitfalls, and clinical utility associated with MRD tracking in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Pathology, 300 Pasteur Drive, L235, Stanford, CA 94305, United States
| | - Jean Oak
- Department of Pathology, 300 Pasteur Drive, L235, Stanford, CA 94305, United States.
| |
Collapse
|
33
|
Sembill S, Ampatzidou M, Chaudhury S, Dworzak M, Kalwak K, Karow A, Kiani A, Krumbholz M, Luesink M, Naumann-Bartsch N, De Moerloose B, Osborn M, Schultz KR, Sedlacek P, Giona F, Zwaan CM, Shimada H, Versluijs B, Millot F, Hijiya N, Suttorp M, Metzler M. Management of children and adolescents with chronic myeloid leukemia in blast phase: International pediatric CML expert panel recommendations. Leukemia 2023; 37:505-517. [PMID: 36707619 PMCID: PMC9991904 DOI: 10.1038/s41375-023-01822-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Treatment of chronic myeloid leukemia has improved significantly with the introduction of tyrosine kinase inhibitors (TKIs), and treatment guidelines based on numerous clinical trials are available for chronic phase disease. However for CML in the blast phase (CML-BP), prognosis remains poor and treatment options are much more limited. The spectrum of treatment strategies for children and adolescents with CML-BP has largely evolved empirically and includes treatment principles derived from adult CML-BP and pediatric acute leukemia. Given this heterogeneity of treatment approaches, we formed an international panel of pediatric CML experts to develop recommendations for consistent therapy in children and adolescents with this high-risk disease based on the current literature and national standards. Recommendations include detailed information on initial diagnosis and treatment monitoring, differentiation from Philadelphia-positive acute leukemia, subtype-specific selection of induction therapy, and combination with tyrosine kinase inhibitors. Given that allogeneic hematopoietic stem cell transplantation currently remains the primary curative intervention for CML-BP, we also provide recommendations for the timing of transplantation, donor and graft selection, selection of a conditioning regimen and prophylaxis for graft-versus-host disease, post-transplant TKI therapy, and management of molecular relapse. Management according to the treatment recommendations presented here is intended to provide the basis for the design of future prospective clinical trials to improve outcomes for this challenging disease.
Collapse
Affiliation(s)
- Stephanie Sembill
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Maria Ampatzidou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Sonali Chaudhury
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Dworzak
- St. Anna Kinderspital, Department of Pediatrics, Medical University, Vienna, Austria
| | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Axel Karow
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Alexander Kiani
- Medizinische Klinik IV, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Manuela Krumbholz
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Maaike Luesink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nora Naumann-Bartsch
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Michael Osborn
- Women's and Children's Hospital and Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Kirk R Schultz
- Division of Hematology/Oncology/BMT, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Petr Sedlacek
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Christian Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- ITCC Hematological Malignancies Committee, Rotterdam, the Netherlands
| | - Hiroyuki Shimada
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Frederic Millot
- Departments of Paediatric Oncology/Haematology, Poitiers University Hospital, Poitiers, France
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology/Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - Meinolf Suttorp
- Pediatric Hemato-Oncology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Markus Metzler
- Pediatric Oncology and Hematology, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| |
Collapse
|
34
|
Della Starza I, De Novi LA, Elia L, Bellomarino V, Beldinanzi M, Soscia R, Cardinali D, Chiaretti S, Guarini A, Foà R. Optimizing Molecular Minimal Residual Disease Analysis in Adult Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:374. [PMID: 36672325 PMCID: PMC9856386 DOI: 10.3390/cancers15020374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Minimal/measurable residual disease (MRD) evaluation has resulted in a fundamental instrument to guide patient management in acute lymphoblastic leukemia (ALL). From a methodological standpoint, MRD is defined as any approach aimed at detecting and possibly quantifying residual neoplastic cells beyond the sensitivity level of cytomorphology. The molecular methods to study MRD in ALL are polymerase chain reaction (PCR) amplification-based approaches and are the most standardized techniques. However, there are some limitations, and emerging technologies, such as digital droplet PCR (ddPCR) and next-generation sequencing (NGS), seem to have advantages that could improve MRD analysis in ALL patients. Furthermore, other blood components, namely cell-free DNA (cfDNA), appear promising and are also being investigated for their potential role in monitoring tumor burden and response to treatment in hematologic malignancies. Based on the review of the literature and on our own data, we hereby discuss how emerging molecular technologies are helping to refine the molecular monitoring of MRD in ALL and may help to overcome some of the limitations of standard approaches, providing a benefit for the care of patients.
Collapse
Affiliation(s)
- Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
- GIMEMA Foundation, 00182 Rome, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Vittorio Bellomarino
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Marco Beldinanzi
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Roberta Soscia
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Deborah Cardinali
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Anna Guarini
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| |
Collapse
|
35
|
Senapati J, Jabbour E, Kantarjian H, Short NJ. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia 2023; 37:5-17. [PMID: 36309558 DOI: 10.1038/s41375-022-01736-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Abstract
The treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKIs) has been a model for cancer therapy development. Though most patients with CML have a normal quality and duration of life with TKI therapy, some patients progress to accelerated phase (AP) and blast phase (BP), both of which have a relatively poor prognosis. The rates of progression have reduced significantly from over >20% in the pre-TKI era to <5% now, largely due to refinements in CML therapy and response monitoring. Significant insights have been gained into the mechanisms of disease transformation including the role of additional cytogenetic abnormalities, somatic mutations, and other genomic alterations present at diagnosis or evolving on therapy. This knowledge is helping to optimize TKI therapy, improve prognostication and inform the development of novel combination regimens in these patients. While patients with de novo CML-AP have outcomes almost similar to CML in chronic phase (CP), those transformed from previously treated CML-CP should receive second- or third- generation TKIs and be strongly considered for allogeneic stem cell transplantation (allo-SCT). Similarly, patients with transformed CML-BP have particularly dismal outcomes with a median survival usually less than one year. Combination regimens with a potent TKI such as ponatinib followed by allo-SCT can achieve long-term survival in some transformed BP patients. Regimens including venetoclax in myeloid BP or inotuzumab ozogamicin or blinatumomab in lymphoid BP might lead to deeper and longer responses, facilitating potentially curative allo-SCT for patients with CML-BP once CP is achieved. Newer agents and novel combination therapies are further expanding the therapeutic arsenal in advanced phase CML.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
36
|
Jabbour E, Short NJ, Jain N, Huang X, Montalban-Bravo G, Banerjee P, Rezvani K, Jiang X, Kim KH, Kanagal-Shamanna R, Khoury JD, Patel K, Kadia TM, Daver N, Chien K, Alvarado Y, Garcia-Manero G, Issa GC, Haddad FG, Kwari M, Thankachan J, Delumpa R, Macaron W, Garris R, Konopleva M, Ravandi F, Kantarjian H. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial. Lancet Haematol 2023; 10:e24-e34. [PMID: 36402146 DOI: 10.1016/s2352-3026(22)00319-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Ponatinib and blinatumomab are effective therapies in patients with Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukaemia, and their combination might be a promising treatment option. In this study, we aimed to evaluate this chemotherapy-free strategy. METHODS We did a single-centre, single-arm, phase 2 study at the University of Texas MD Anderson Cancer Center, Houston, TX, USA, in patients aged 18 years or older with newly diagnosed or relapsed or refractory Ph-positive acute lymphoblastic leukaemia or chronic myeloid leukaemia in lymphoid blast phase. Patients with an ECOG performance status of 2 or less who had a total bilirubin concentration two-times the upper limit of normal (ULN) or less (≤2·4 mg/dL), alanine aminotransferase and aspartate aminotransferase concentration no more than three-times the ULN, and serum lipase and amylase concentrations no more than three-times the ULN were eligible for inclusion. Ponatinib 30 mg orally and continuous intravenous blinatumomab 28 μg over 24 h (for 28 days each cycle) were given in combination for up to five 42-day cycles, followed by ponatinib monotherapy. Patients received 12 doses of intrathecal chemotherapy as CNS prophylaxis. The primary endpoints were complete molecular response (defined as absence of a detectable BCR-ABL1 transcript by PCR at a sensitivity of 0·01%) in patients with newly diagnosed disease and overall response in patients with relapsed or refractory disease or chronic myeloid leukaemia in lymphoid blast phase. All assessments were done according to the intention-to-treat principle. The trial completed its original target accrual and was amended on March 23, 2022, to enrol an additional 30 patients, thus increasing the sample size to 90 patients. The trial is registered with ClinicalTrials.gov, NCT03263572, and it is ongoing. FINDINGS Between Feb 6, 2018, to May 6, 2022, 60 (83%) of 72 patients assessed were enrolled and received ponatinib and blinatumomab (40 [67%] patients had newly diagnosed Ph-positive acute lymphoblastic leukaemia, 14 [23%] had relapsed or refractory Ph-positive acute lymphoblastic leukaemia, and six [10%] had chronic myeloid leukaemia in lymphoid blast phase). 32 (53%) patients were men and 28 (47%) were women; 51 (85%) patients were White or Hispanic; and the median age of participants was 51 years (IQR 36-68). The median duration of follow-up for the entire cohort was 16 months (IQR 11-24). Of patients with newly diagnosed Ph-positive acute lymphoblastic leukaemia, 33 (87%) of 38 evaluable patients had a complete molecular response. 12 (92%) of 13 evaluable patients with relapsed or refractory Ph-positive acute lymphoblastic leukaemia had an overall response. 11 (79%) had a complete molecular response. Five (83%) of six patients with chronic myeloid leukaemia in lymphoid blast phase had an overall response. Two (33%) had a complete molecular response. The most common grade 3-4 adverse events that occurred in more than 5% of patients were infection (22 [37%] patients), increased amylase or lipase concentration (five [8%] patients), increased alanine aminotransferase or aspartate aminotransferase concentration (four [7%] patients), pain (four [7%] patients), and hypertension (four [7%] patients). One (2%) patient discontinued blinatumomab due to tremor. Three (5%) patients discontinued ponatinib secondary to cerebrovascular ischaemia, portal vein thrombosis, and coronary artery stenosis in one patient each. No treatment-related deaths were observed. INTERPRETATION The chemotherapy-free combination of ponatinib and blinatumomab resulted in high rates of complete molecular response in patients with newly diagnosed and relapsed or refractory Ph-positive acute lymphoblastic leukaemia. Patients with newly diagnosed Ph-positive acute lymphoblastic leukaemia could be spared the toxicities associated with chemotherapy and the need for allogeneic haematopoietic stem-cell transplantation in first response. FUNDING Takeda Oncology and Amgen.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur Patel
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yesid Alvarado
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monica Kwari
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Thankachan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo Delumpa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Walid Macaron
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Garris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Duffield AS, Mullighan CG, Borowitz MJ. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 2023; 482:11-26. [PMID: 36422706 PMCID: PMC10646822 DOI: 10.1007/s00428-022-03448-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes both revisions to subtypes previously outlined in the 2016 WHO classification and several newly described entities. The ICC classification incorporates recent clinical, cytogenetic, and molecular data, with a particular emphasis on whole transcriptome analysis and gene expression (GEX) clustering studies. B-ALL classification is modified to further subclassify BCR::ABL1-positive B-ALL and hypodiploid B-ALL. Additionally, nine new categories of B-ALL are defined, including seven that contain distinguishing gene rearrangements, as well as two new categories that are characterized by a specific single gene mutation. Four provisional entities are also included in the updated B-ALL classification, although definitive identification of these subtypes requires GEX studies. T-ALL classification is also updated to incorporate BCL11B-activating rearrangements into early T-precursor (ETP) ALL taxonomy. Additionally, eight new provisional entities are added to the T-ALL subclassification. The clinical implications of the new entities are discussed, as are practical approaches to the use of different technologies in diagnosis. The enhanced specificity of the new classification will allow for improved risk stratification and optimized treatment plans for patients with ALL.
Collapse
Affiliation(s)
- Amy S. Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
38
|
Hameed M, Alnoamani M, Marei M, Tailor I, Alshehri H, Tashkandi SA, Alswayyed A, Alrajhi AM, Zaidi SZA, Motabi I, AlShehry N, Alfayez M. De novo lymphoid blastic phase chronic myeloid leukemia: report and contemporary discussion. Hematology 2022; 27:1259-1262. [DOI: 10.1080/16078454.2022.2150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Maha Hameed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohammed Marei
- Department of Hematology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Imran Tailor
- Department of Hematology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hassan Alshehri
- Department of Hematology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Soha A. Tashkandi
- Cytogenetics Laboratory, Department of Clinical Pathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Azizah Alswayyed
- Cytogenetics Laboratory, Department of Clinical Pathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah M. Alrajhi
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Saudi Arabia
- Department of Pharmacy Practice, College of Pharmacy, AlFaisal University, Riyadh, Saudi Arabia
| | - Syed Z. A. Zaidi
- Department of Hematology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ibraheem Motabi
- Department of Hematology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nawal AlShehry
- Department of Hematology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mansour Alfayez
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Hematology, King Fahad Medical City, Riyadh, Saudi Arabia
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Zuna J, Hovorkova L, Krotka J, Koehrmann A, Bardini M, Winkowska L, Fronkova E, Alten J, Koehler R, Eckert C, Brizzolara L, Trkova M, Stuchly J, Zimmermann M, De Lorenzo P, Valsecchi MG, Conter V, Stary J, Schrappe M, Biondi A, Trka J, Zaliova M, Cazzaniga G, Cario G. Minimal residual disease in BCR::ABL1-positive acute lymphoblastic leukemia: different significance in typical ALL and in CML-like disease. Leukemia 2022; 36:2793-2801. [PMID: 35933523 DOI: 10.1038/s41375-022-01668-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Recently, we defined "CML-like" subtype of BCR::ABL1-positive acute lymphoblastic leukemia (ALL), resembling lymphoid blast crisis of chronic myeloid leukemia (CML). Here we retrospectively analyzed prognostic relevance of minimal residual disease (MRD) and other features in 147 children with BCR::ABL1-positive ALL (diagnosed I/2000-IV/2021, treated according to EsPhALL (n = 133) or other (n = 14) protocols), using DNA-based monitoring of BCR::ABL1 genomic breakpoint and clonal immunoglobulin/T-cell receptor gene rearrangements. Although overall prognosis of CML-like (n = 48) and typical ALL (n = 99) was similar (5-year-EFS 60% and 49%, respectively; 5-year-OS 75% and 73%, respectively), typical ALL presented more relapses while CML-like patients more often died in the first remission. Prognostic role of MRD was significant in the typical ALL (p = 0.0005 in multivariate analysis for EFS). In contrast, in CML-like patients MRD was not significant (p values > 0.2) and inapplicable for therapy adjustment. Moreover, in the typical ALL, risk-prediction could be further improved by considering initial hyperleukocytosis. Early distinguishing typical BCR::ABL1-positive ALL and CML-like patients is essential to enable optimal treatment approach in upcoming protocols. For the typical ALL, tyrosine-kinase inhibitors and concurrent chemotherapy with risk-directed intensity should be recommended; in the CML-like disease, no relevant prognostic feature applicable for therapy tailoring was found so far.
Collapse
Affiliation(s)
- Jan Zuna
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
- University Hospital Motol, Prague, Czech Republic.
| | - Lenka Hovorkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justina Krotka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Amelie Koehrmann
- Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michela Bardini
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - Lucie Winkowska
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Fronkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Julia Alten
- Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Rolf Koehler
- Department of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Lisa Brizzolara
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - Marie Trkova
- Centre for Medical Genetics and Reproductive Medicine GENNET, Prague, Czech Republic
| | - Jan Stuchly
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Paola De Lorenzo
- EsPhALL Trial Data Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Valsecchi
- EsPhALL Trial Data Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentino Conter
- Pediatric Hemato-Oncolgy, Fondazione MBBM/ASST-Monza, University of Milano-Bicocca, Monza, Italy
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Martin Schrappe
- Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andrea Biondi
- Pediatric Hemato-Oncolgy, Fondazione MBBM/ASST-Monza, University of Milano-Bicocca, Monza, Italy
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Giovanni Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
- Medical Genetics, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gunnar Cario
- Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
40
|
Saygin C, Cannova J, Stock W, Muffly L. Measurable residual disease in acute lymphoblastic leukemia: methods and clinical context in adult patients. Haematologica 2022; 107:2783-2793. [PMID: 36453516 PMCID: PMC9713546 DOI: 10.3324/haematol.2022.280638] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Measurable residual disease (MRD) is the most powerful independent predictor of risk of relapse and long-term survival in adults and children with acute lymphoblastic leukemia (ALL). For almost all patients with ALL there is a reliable method to evaluate MRD, which can be done using multi-color flow cytometry, quantitative polymerase chain reaction to detect specific fusion transcripts or immunoglobulin/T-cell receptor gene rearrangements, and high-throughput next-generation sequencing. While next-generation sequencing-based MRD detection has been increasingly utilized in clinical practice due to its high sensitivity, the clinical significance of very low MRD levels (<10-4) is not fully characterized. Several new immunotherapy approaches including blinatumomab, inotuzumab ozogamicin, and chimeric antigen receptor T-cell therapies have demonstrated efficacy in eradicating MRD in patients with B-ALL. However, new approaches to target MRD in patients with T-ALL remain an unmet need. As our MRD detection assays become more sensitive and expanding novel therapeutics enter clinical development, the future of ALL therapy will increasingly utilize MRD as a criterion to either intensify or modify therapy to prevent relapse or de-escalate therapy to reduce treatment-related morbidity and mortality.
Collapse
Affiliation(s)
- Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Joseph Cannova
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA,L. Muffly
| |
Collapse
|
41
|
Logan AC. Measurable Residual Disease in Acute Lymphoblastic Leukemia: How Low is Low Enough? Best Pract Res Clin Haematol 2022; 35:101407. [DOI: 10.1016/j.beha.2022.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1065] [Impact Index Per Article: 532.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Venn NC, Huang L, Hovorková L, Muskovic W, Wong M, Law T, Heatley SL, Khaw SL, Revesz T, Dalla Pozza L, Shaw PJ, Fraser C, Moore AS, Cross S, Bendak K, Norris MD, Henderson MJ, White DL, Cowley MJ, Trahair TN, Zuna J, Sutton R. Measurable residual disease analysis in paediatric acute lymphoblastic leukaemia patients with ABL-class fusions. Br J Cancer 2022; 127:908-915. [PMID: 35650277 PMCID: PMC9427854 DOI: 10.1038/s41416-022-01806-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND ABL-class fusions including NUP214-ABL1 and EBF1-PDGFRB occur in high risk acute lymphoblastic leukaemia (ALL) with gene expression patterns similar to BCR-ABL-positive ALL. Our aim was to evaluate new DNA-based measurable residual disease (MRD) tests detecting these fusions and IKZF1-deletions in comparison with conventional immunoglobulin/T-cell receptor (Ig/TCR) markers. METHODS Precise genomic breakpoints were defined from targeted or whole genome next generation sequencing for ABL-fusions and BCR-ABL1. Quantitative PCR assays were designed and used to re-measure MRD in remission bone marrow samples previously tested using Ig/TCR markers. All MRD testing complied with EuroMRD guidelines. RESULTS ABL-class patients had 46% 5year event-free survival and 79% 5year overall survival. All had sensitive fusion tests giving high concordance between Ig/TCR and ABL-class fusion results (21 patients, n = 257 samples, r2 = 0.9786, P < 0.0001) and Ig/TCR and IKZF1-deletion results (9 patients, n = 143 samples, r2 = 0.9661, P < 0.0001). In contrast, in BCR-ABL1 patients, Ig/TCR and BCR-ABL1 tests were discordant in 32% (40 patients, n = 346 samples, r2 = 0.4703, P < 0.0001) and IKZF1-deletion results were closer to Ig/TCR (25 patients, n = 176, r2 = 0.8631, P < 0.0001). CONCLUSIONS MRD monitoring based on patient-specific assays detecting gene fusions or recurrent assays for IKZF1-deletions is feasible and provides good alternatives to Ig/TCR tests to monitor MRD in ABL-class ALL.
Collapse
Affiliation(s)
- Nicola C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Libby Huang
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Lenka Hovorková
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP-Childhood Leukaemia Investigation Prague, Prague, Czech Republic
| | - Walter Muskovic
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Marie Wong
- Computational Biology, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Tamara Law
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Susan L Heatley
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Seong Lin Khaw
- Children's Cancer Centre, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Tom Revesz
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Clinical Haematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Luciano Dalla Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Peter J Shaw
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Andrew S Moore
- Paediatric Oncology, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Siobhan Cross
- Children's Haematology/Oncology Centre Christchurch Hospital, Christchurch, New Zealand
| | - Katerina Bendak
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Murray D Norris
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Michelle J Henderson
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Deborah L White
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Mark J Cowley
- Computational Biology, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Toby N Trahair
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jan Zuna
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- CLIP-Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Rosemary Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia.
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Jabbour E, Haddad FG, Short NJ, Kantarjian H. Treatment of Adults With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia-From Intensive Chemotherapy Combinations to Chemotherapy-Free Regimens: A Review. JAMA Oncol 2022; 8:1340-1348. [PMID: 35834222 DOI: 10.1001/jamaoncol.2022.2398] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Importance With the advent of potent BCR::ABL1 tyrosine kinase inhibitors (TKIs), Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukemia (ALL) is now a relatively favorable-risk acute leukemia. In this review, we discuss the current evidence for frontline therapies of Ph-positive ALL, the major principles that guide therapy, and the progress with chemotherapy-free regimens. Observations Incorporating TKIs into the chemotherapy regimens of patients with newly diagnosed Ph-positive ALL has led to improved remission rates, higher probability of reaching allogeneic stem cell transplantation (SCT), and longer survival compared with chemotherapy alone. Early achievement of a complete molecular remission (CMR) is an important end point in Ph-positive ALL and identifies patients who have excellent long-term survival and may not need allogeneic SCT. Second-generation TKIs combined with intensive or low-intensity chemotherapy resulted in higher CMR rates compared with imatinib-based regimens. This translated into better outcomes, with less reliance on allogeneic SCT. To further improve the outcomes, the potent third-generation TKI ponatinib was added to chemotherapy. The combination of hyper-CVAD and ponatinib resulted in an overall CMR rate of 84% and a 5-year survival rate of 73% and 86% among patients who did and did not undergo allogeneic SCT, respectively, suggesting that allogeneic SCT may not be needed with this regimen. The recent chemotherapy-free combination of dasatinib and blinatumomab was safe and effective in patients with newly diagnosed Ph-positive ALL and resulted in an estimated 3-year OS rate of 80%; 50% of patients underwent allogeneic SCT. The chemotherapy-free regimen of ponatinib and blinatumomab resulted in a CMR rate of 86% and a 2-year survival rate of 93%, with no relapses or leukemia-related deaths, and with only 1 patient proceeding to allogeneic SCT. Conclusions and Relevance The promising results obtained with the chemotherapy-free regimens of blinatumomab plus TKIs question the role of allogeneic SCT in first remission. Patients with Ph-positive ALL who achieve early and deep molecular responses have excellent long-term outcomes and may not benefit from allogeneic SCT.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
45
|
The Promise of Single-cell Technology in Providing New Insights Into the Molecular Heterogeneity and Management of Acute Lymphoblastic Leukemia. Hemasphere 2022; 6:e734. [PMID: 35651714 PMCID: PMC9148686 DOI: 10.1097/hs9.0000000000000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Drug resistance and treatment failure in pediatric acute lymphoblastic leukemia (ALL) are in part driven by tumor heterogeneity and clonal evolution. Although bulk tumor genomic analyses have provided some insight into these processes, single-cell sequencing has emerged as a powerful technique to profile individual cells in unprecedented detail. Since the introduction of single-cell RNA sequencing, we now have the capability to capture not only transcriptomic, but also genomic, epigenetic, and proteomic variation between single cells separately and in combination. This rapidly evolving field has the potential to transform our understanding of the fundamental biology of pediatric ALL and guide the management of ALL patients to improve their clinical outcome. Here, we discuss the impact single-cell sequencing has had on our understanding of tumor heterogeneity and clonal evolution in ALL and provide examples of how single-cell technology can be integrated into the clinic to inform treatment decisions for children with high-risk disease.
Collapse
|
46
|
Doculara L, Trahair TN, Bayat N, Lock RB. Circulating Tumor DNA in Pediatric Cancer. Front Mol Biosci 2022; 9:885597. [PMID: 35647029 PMCID: PMC9133724 DOI: 10.3389/fmolb.2022.885597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The measurement of circulating tumor DNA (ctDNA) has gained increasing prominence as a minimally invasive tool for the detection of cancer-specific markers in plasma. In adult cancers, ctDNA detection has shown value for disease-monitoring applications including tumor mutation profiling, risk stratification, relapse prediction, and treatment response evaluation. To date, there are ctDNA tests used as companion diagnostics for adult cancers and it is not understood why the same cannot be said about childhood cancer, despite the marked differences between adult and pediatric oncology. In this review, we discuss the current understanding of ctDNA as a disease monitoring biomarker in the context of pediatric malignancies, including the challenges associated with ctDNA detection in liquid biopsies. The data and conclusions from pediatric cancer studies of ctDNA are summarized, highlighting treatment response, disease monitoring and the detection of subclonal disease as applications of ctDNA. While the data from retrospective studies highlight the potential of ctDNA, large clinical trials are required for ctDNA analysis for routine clinical use in pediatric cancers. We outline the requirements for the standardization of ctDNA detection in pediatric cancers, including sample handling and reproducibility of results. With better understanding of the advantages and limitations of ctDNA and improved detection methods, ctDNA analysis may become the standard of care for patient monitoring in childhood cancers.
Collapse
Affiliation(s)
- Louise Doculara
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Toby N. Trahair
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Narges Bayat
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Richard B. Lock
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Richard B. Lock,
| |
Collapse
|
47
|
High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Adv 2022; 6:4006-4014. [PMID: 35533262 PMCID: PMC9278301 DOI: 10.1182/bloodadvances.2022007378] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Measurable residual disease (MRD) is highly prognostic for relapse and overall survival (OS) in acute lymphoblastic leukemia (ALL), although many patients with apparent "MRD negativity" by standard assays still relapse. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay in 74 adults with ALL undergoing frontline therapy. Among remission samples that were MRD negative by multiparameter flow cytometry (MFC), 46% were MRD positive by the NGS assay. After one cycle of induction chemotherapy, MRD negativity by MFC at a sensitivity of 1x10-4 and NGS at a sensitivity of 1x10-6 was achieved in 66% and 23% of patients, respectively. The 5-year cumulative incidence of relapse (CIR) among patients who achieved MRD negativity by MFC at CR was 29%; in contrast, no patients who achieved early MRD negativity by NGS relapsed, and their 5-year OS was 90%. NGS MRD negativity at CR was associated with significantly decreased risk of relapse compared with MRD positivity (5-year CIR: 0% versus 45%, respectively, P=0.04). Among patients who were MRD negative by MFC, detection of low levels of MRD by NGS identified patients who still had a significant risk of relapse (5-year CIR: 39%). Early assessment of MRD using a highly sensitive NGS assay adds clinically relevant prognostic information to standard MFC-based approaches and can identify patients with ALL undergoing frontline therapy who have a very low risk of relapse and excellent long-term survival.
Collapse
|
48
|
Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults. Cancers (Basel) 2022; 14:cancers14071805. [PMID: 35406576 PMCID: PMC8997772 DOI: 10.3390/cancers14071805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Outcome of patients with Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) dramatically improved during the past 20 years with the advent of tyrosine kinase inhibitors and monoclonal antibodies. Their great efficacy in young and fit patients led to question our reliance on chemotherapy and allogeneic hematopoietic stem cell transplantation. Moreover, these well-tolerated treatments can be safely administrated even in the elderly that represent the majority of Ph+ ALL patient. This review will focus on the recent changes of paradigm in the management of Ph+ ALL patients and the development of novel therapeutic strategies. Abstract Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) is the most common subtype of B-ALL in adults and its incidence increases with age. It is characterized by the presence of BCR-ABL oncoprotein that plays a central role in the leukemogenesis of Ph+ ALL. Ph+ ALL patients traditionally had dismal prognosis and long-term survivors were only observed among patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first complete remission (CR1). However, feasibility of allo-HSCT is limited in this elderly population. Fortunately, development of increasingly powerful tyrosine kinase inhibitors (TKIs) from the beginning of the 2000′s dramatically improved the prognosis of Ph+ ALL patients with complete response rates above 90%, deep molecular responses and prolonged survival, altogether with good tolerance. TKIs became the keystone of Ph+ ALL management and their great efficacy led to develop reduced-intensity chemotherapy backbones. Subsequent introduction of blinatumomab allowed going further with development of chemo free strategies. This review will focus on these amazing recent advances as well as novel therapeutic strategies in adult Ph+ ALL.
Collapse
Affiliation(s)
- Khalil Saleh
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
| | - Alexis Fernandez
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
- INSERM, UMR 1287, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Correspondence:
| |
Collapse
|
49
|
In Utero Development and Immunosurveillance of B Cell Acute Lymphoblastic Leukemia. Curr Treat Options Oncol 2022; 23:543-561. [PMID: 35294722 PMCID: PMC8924576 DOI: 10.1007/s11864-022-00963-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent type of pediatric cancer with a peak incidence at 2–5 years of age. ALL frequently begins in utero with the emergence of clinically silent, preleukemic cells. Underlying leukemia-predisposing germline and acquired somatic mutations define distinct ALL subtypes that vary dramatically in treatment outcomes. In addition to genetic predisposition, a second hit, which usually occurs postnatally, is required for development of overt leukemia in most ALL subtypes. An untrained, dysregulated immune response, possibly due to an abnormal response to infection, may be an important co-factor triggering the onset of leukemia. Furthermore, the involvement of natural killer (NK) cells and T helper (Th) cells in controlling the preleukemic cells has been discussed. Identifying the cell of origin of the preleukemia-initiating event might give additional insights into potential options for prevention. Modulation of the immune system to achieve prolonged immunosurveillance of the preleukemic clone that eventually dies out in later years might present a future directive. Herein, we review the concepts of prenatal origin as well as potential preventive approaches to pediatric B cell precursor (BCP) ALL.
Collapse
|
50
|
Singh J, Gorniak M, Grigoriadis G, Westerman D, McBean M, Venn N, Law T, Sutton R, Morgan S, Fleming S. Correlation between a 10-color flow cytometric measurable residual disease (MRD) analysis and molecular MRD in adult B-acute lymphoblastic leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:115-122. [PMID: 34806309 DOI: 10.1002/cyto.b.22043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Measurable residual disease (MRD) monitoring in acute lymphoblastic leukemia (ALL) is an important predictive factor for patient outcome and treatment intensification. Molecular monitoring, particularly with quantitative polymerase chain reaction (qPCR) to measure immunoglobin heavy or kappa chain (Ig) or T-cell receptor (TCR) gene rearrangements, offers high sensitivity but accessibility is limited by expertise, cost, and turnaround time. Flow cytometric assays are cheaper and more widely available, and sensitivity is improved with multi-parameter flow cytometry at eight or more colors. METHODS We developed a 10-color single tube flow cytometry assay. Samples were subject to bulk ammonium chloride lysis to maximize cell yields with a target of 1 × 106 events. Once normal maturation patterns were established, patient samples were analyzed in parallel to standard molecular monitoring. RESULTS Flow cytometry was performed on 114 samples. An informative immunophenotype was identifiable in all 22 patients who had a diagnostic sample. MRD analysis was performed on 87 samples. The median lower limits of detection and quantification were 0.004% (range 0.0005%-0.028%) and 0.01% (range 0.001%-0.07%) respectively. Sixty-five samples had concurrent molecular MRD testing, with good correlation (r = 0.83, p < 0.001). Results were concordant in 52 samples, and discordant in 13 samples, including one case where impending relapse was detected by flow cytometry but not Ig/TCR qPCR. CONCLUSIONS Our 10-color flow cytometric MRD assay provided adequate sensitivity and good correlation with molecular assays. This technique offers rapid and affordable testing in B-ALL patients, including cases where a suitable molecular assay cannot be developed or has reduced sensitivity.
Collapse
Affiliation(s)
- Jasmine Singh
- Laboratory Haematology, Alfred Pathology, Melbourne, Victoria, Australia
| | - Malgorzata Gorniak
- Laboratory Haematology, Alfred Pathology, Melbourne, Victoria, Australia
| | - George Grigoriadis
- Laboratory Haematology, Alfred Pathology, Melbourne, Victoria, Australia.,Clinical Haematology, Monash Health, Clayton, Victoria, Australia
| | - David Westerman
- Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michelle McBean
- Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicola Venn
- Children's Cancer Institute and School of Women's and Children's Health, UNSW, Sydney, New South Wales, Australia
| | - Tamara Law
- Children's Cancer Institute and School of Women's and Children's Health, UNSW, Sydney, New South Wales, Australia
| | - Rosemary Sutton
- Children's Cancer Institute and School of Women's and Children's Health, UNSW, Sydney, New South Wales, Australia
| | - Sue Morgan
- Laboratory Haematology, Alfred Pathology, Melbourne, Victoria, Australia
| | - Shaun Fleming
- Laboratory Haematology, Alfred Pathology, Melbourne, Victoria, Australia.,Clinical Haematology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|