1
|
Miranda RN, Amador C, Chan JKC, Guitart J, Rech KL, Medeiros LJ, Naresh KN. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Mature T-Cell, NK-Cell, and Stroma-Derived Neoplasms of Lymphoid Tissues. Mod Pathol 2024; 37:100512. [PMID: 38734236 DOI: 10.1016/j.modpat.2024.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This review focuses on mature T cells, natural killer (NK) cells, and stroma-derived neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors, including changes from the revised fourth edition. Overall, information has expanded, primarily due to advancements in genomic understanding. The updated classification adopts a hierarchical format. The updated classification relies on a multidisciplinary approach, incorporating insights from a diverse group of pathologists, clinicians, and geneticists. Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract, Epstein-Barr virus-positive nodal T- and NK-cell lymphoma, and several stroma-derived neoplasms of lymphoid tissues have been newly introduced or included. The review also provides guidance on how the fifth edition of the World Health Organization classification of hematolymphoid tumors can be applied in routine clinical practice.
Collapse
Affiliation(s)
- Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Catalina Amador
- Department of Pathology, University of Miami, Miami, Florida
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg Medical School, Chicago, Illinois
| | - Karen L Rech
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
2
|
Zanelli M, Fragliasso V, Parente P, Bisagni A, Sanguedolce F, Zizzo M, Broggi G, Ricci S, Palicelli A, Foroni M, Gozzi F, Gentile P, Morini A, Koufopoulos N, Caltabiano R, Cimino L, Fabozzi M, Cavazza A, Neri A, Ascani S. Programmed Death Ligand 1 (PD-L1) Expression in Lymphomas: State of the Art. Int J Mol Sci 2024; 25:6447. [PMID: 38928153 PMCID: PMC11203507 DOI: 10.3390/ijms25126447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The interaction of programmed death-1 (PD-1) on T lymphocytes with its ligands Programmed Death Ligand 1 (PD-L1) and Programmed Death Ligand 2 (PD-L2) on tumor cells and/or tumor-associated macrophages results in inhibitory signals to the T-cell receptor pathway, consequently causing tumor immune escape. PD-L1/PD-L2 are currently used as predictive tissue biomarkers in clinical practice. Virtually PD-L1 levels expressed by tumor cells are associated with a good response to immune checkpoint blockade therapies targeting the PD-1/PD-L1 axis. These therapies restore T-cell antitumor immune response by releasing T-lymphocytes from the inhibitory effects of tumor cells. Immune checkpoint therapies have completely changed the management of patients with solid cancers. This therapeutic strategy is less used in hematological malignancies, although good results have been achieved in some settings, such as refractory/relapsed classic Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Variable results have been obtained in diffuse large B-cell lymphoma and T-cell lymphomas. Immunohistochemistry represents the main technique for assessing PD-L1 expression on tumor cells. This review aims to describe the current knowledge of PD-L1 expression in various types of lymphomas, focusing on the principal mechanisms underlying PD-L1 overexpression, its prognostic significance and practical issues concerning the evaluation of PD-L1 immunohistochemical results in lymphomas.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (S.R.); (A.P.); (M.F.); (A.C.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (S.R.); (A.P.); (M.F.); (A.C.)
| | | | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.M.); (M.F.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (S.R.); (A.P.); (M.F.); (A.C.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (S.R.); (A.P.); (M.F.); (A.C.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (S.R.); (A.P.); (M.F.); (A.C.)
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (P.G.); (L.C.)
| | - Pietro Gentile
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (P.G.); (L.C.)
| | - Andrea Morini
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.M.); (M.F.)
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece;
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (P.G.); (L.C.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimiliano Fabozzi
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.M.); (M.F.)
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (S.R.); (A.P.); (M.F.); (A.C.)
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
| |
Collapse
|
3
|
D’Orsi G, Giacalone M, Calicchia A, Gagliano E, Vannucchi L, Vanni G, Buonomo OC, Cervelli V, Longo B. BIA-ALCL and BIA-SCC: Updates on Clinical Features and Genetic Mutations for Latest Recommendations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:793. [PMID: 38792976 PMCID: PMC11122735 DOI: 10.3390/medicina60050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) and Breast Implant-Associated Squamous Cell Carcinoma (BIA-SCC) are emerging neoplastic complications related to breast implants. While BIA-ALCL is often linked to macrotextured implants, current evidence does not suggest an implant-type association for BIA-SCC. Chronic inflammation and genetics have been hypothesized as key pathogenetic players, although for both conditions, the exact mechanisms and specific risks related to breast implants are yet to be established. While the genetic alterations in BIA-SCC are still unknown, JAK-STAT pathway activation has been outlined as a dominant signature of BIA-ALCL. Recent genetic investigation has uncovered various molecular players, including MEK-ERK, PI3K/AKT, CDK4-6, and PDL1. The clinical presentation of BIA-ALCL and BIA-SCC overlaps, including most commonly late seroma and breast swelling, warranting ultrasound and cytological examinations, which are the first recommended steps as part of the diagnostic work-up. While the role of mammography is still limited, MRI and CT-PET are recommended according to the clinical presentation and for disease staging. To date, the mainstay of treatment for BIA-ALCL and BIA-SCC is implant removal with en-bloc capsulectomy. Chemotherapy and radiation therapy have also been used for advanced-stage BIA-ALCL and BIA-SCC. In-depth characterization of the tumor genetics is key for the development of novel therapeutic strategies, especially for advanced stage BIA-ALCL and BIA-SCC, which show a more aggressive course and poor prognosis.
Collapse
Affiliation(s)
- Gennaro D’Orsi
- PhD School of Applied Medical-Surgical Sciences, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Giacalone
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Alessio Calicchia
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Elettra Gagliano
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Lisa Vannucchi
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Gianluca Vanni
- Division of Breast Unit, Department of Surgical Sciences, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Oreste Claudio Buonomo
- Division of Breast Unit, Department of Surgical Sciences, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Benedetto Longo
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Sánchez-Beato M, Méndez M, Guirado M, Pedrosa L, Sequero S, Yanguas-Casás N, de la Cruz-Merino L, Gálvez L, Llanos M, García JF, Provencio M. A genetic profiling guideline to support diagnosis and clinical management of lymphomas. Clin Transl Oncol 2024; 26:1043-1062. [PMID: 37672206 PMCID: PMC11026206 DOI: 10.1007/s12094-023-03307-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.
Collapse
Affiliation(s)
- Margarita Sánchez-Beato
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain.
| | - Miriam Méndez
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - María Guirado
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital General Universitario de Elche, Alicante, Spain
| | - Lucía Pedrosa
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Silvia Sequero
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario San Cecilio, Granada, Spain
| | - Natalia Yanguas-Casás
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis de la Cruz-Merino
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Facultad de Medicina, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBID)/CSIC, Seville, Spain
| | - Laura Gálvez
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marta Llanos
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario de Canarias, La Laguna, Sta. Cruz de Tenerife, Spain
| | - Juan Fernando García
- Servicio de Anatomía Patológica, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Departamento de Medicina, Facultad de Medicina, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| |
Collapse
|
5
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Luan Y, Li X, Luan Y, Luo J, Dong Q, Ye S, Li Y, Li Y, Jia L, Yang J, Yang DH. Therapeutic challenges in peripheral T-cell lymphoma. Mol Cancer 2024; 23:2. [PMID: 38178117 PMCID: PMC10765866 DOI: 10.1186/s12943-023-01904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.
Collapse
Affiliation(s)
- Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Yunqi Luan
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation On Chinese Medicine, Beijing Institute for Drug Control, Beijing, 102206, China
| | - Junyu Luo
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Qinzuo Dong
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Shili Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yuejin Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yanmei Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jun Yang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, 200 Old Country Rd, Suite 500, Mineola, NY, 11501, USA.
| |
Collapse
|
7
|
Meshkin DH, Firriolo JM, Karp NS, Salibian AA. Management of complications following implant-based breast reconstruction: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:416. [PMID: 38213810 PMCID: PMC10777227 DOI: 10.21037/atm-23-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/15/2023] [Indexed: 01/13/2024]
Abstract
Background and Objective Complications associated with implant-based reconstruction have a spectrum of severity with sequelae ranging from mild aesthetic deformities to additional surgery, reconstructive failure and systemic illness. The purpose of this narrative review of the literature is to provide updated evidence-based information on the management of complications in implant-based reconstruction. Methods A systematic search of PubMed, OVID MEDLINE and the Cochrane Library databases was performed to identify common complications associated with implant-based breast reconstruction, incidences of occurrence as well as preventative and management strategies. Key Content and Findings Pertinent short and long-term complications of implant-based breast reconstruction include hematoma, implant infection, seroma, skin envelope necrosis, capsular contracture, rupture, malposition, animation and contour deformities, implant-associated anaplastic large cell lymphoma, and breast implant illness. Important preventative measures for short term complications include meticulous sterile technique and antibiotic irrigation, adequate drainage and critical evaluation of mastectomy flaps. Management of short-term complications requires early recognition and aggressive treatment to prevent reconstructive failure as well as long-term complications such as capsular contracture. Important technological advances include dual-port expanders for seroma drainage, indocyanine green angiography for mastectomy flap perfusion evaluation, cohesive form-stable implants for treatment of rippling, and various biologic and synthetic mesh products for pocket control and correction. Conclusions Important principles in management of short-term complications in implant-based reconstruction include aggressive and early intervention to maximize the chance of reconstructive salvage. Contemporary technological advances have played an important role in both prevention and treatment of complications. Over-arching principles in management of implant-based reconstruction complications focus on preventative techniques and preoperative patient counseling on potential risks, their likelihood, and necessary treatments to allow for informed and shared decision-making.
Collapse
Affiliation(s)
- Dean H. Meshkin
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Joseph M. Firriolo
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Nolan S. Karp
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health, New York, NY, USA
| | - Ara A. Salibian
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
8
|
Oishi N, Ahmed R, Feldman AL. Updates in the Classification of T-cell Lymphomas and Lymphoproliferative Disorders. Curr Hematol Malig Rep 2023; 18:252-263. [PMID: 37870698 PMCID: PMC10834031 DOI: 10.1007/s11899-023-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW Mature T/NK-cell neoplasms comprise a heterogeneous group of diseases with diverse clinical, histopathologic, immunophenotypic, and molecular features. A clinically relevant, comprehensive, and reproducible classification system for T/NK-cell neoplasms is essential for optimal management, risk stratification, and advancing understanding of these diseases. Two classification systems for lymphoid neoplasms were recently introduced: the 5th edition of World Health Organization classification (WHO-HAEM5) and the 2022 International Consensus Classification (ICC). In this review, we summarize the basic framework and updates in the classification of mature T/NK-cell neoplasms. RECENT FINDINGS WHO-HAEM5 and ICC share basic concepts in classification of T/NK-cell neoplasms, emphasizing integration of clinical presentation, pathology, immunophenotype, and genetics. Major updates in both classifications include unifying nodal T-follicular helper-cell lymphomas into a single entity and establishing EBV-positive nodal T/NK-cell lymphoma as a distinct entity. However, some differences exist in taxonomy, terminology, and disease definitions. The recent classifications of mature T/NK-cell neoplasms are largely similar and provide new insights into taxonomy based on integrated clinicopathologic features.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reham Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Falini B, Lazzi S, Pileri S. A comparison of the International Consensus and 5th WHO classifications of T-cell lymphomas and histiocytic/dendritic cell tumours. Br J Haematol 2023; 203:369-383. [PMID: 37387351 DOI: 10.1111/bjh.18940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Since the publication in 2017 of the revised 4th Edition of the World Health Organization (WHO) classification of haematolymphoid tumours, here referred to as WHO-HAEM4, significant clinicopathological, immunophenotypic and molecular advances have been made in the field of lymphomas, contributing to refining the diagnostic criteria of several diseases, upgrading entities previously defined as provisional and identifying new entities. This process has resulted in two recent classification proposals of lymphoid neoplasms: the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In this paper, we review and compare the two classifications in terms of diagnostic criteria and entity definition, focusing on T-cell lymphomas and histiocytic/dendritic cell tumours. Moreover, we update the genetic data of the various pathological entities. The main goal is to provide a tool to facilitate the work of the pathologists, haematologists and researchers involved in the diagnosis and treatment of these haematological malignancies.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Haematology and CREO, University and Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Institute of Pathology, University of Siena, Siena, Italy
| | - Stefano Pileri
- European Institute of Oncology IRCCS, Milan, Italy
- Diatech Pharmacogenetics, Jesi, Italy
| |
Collapse
|
10
|
Zeyl VG, Xu H, Khan I, Machan JT, Clemens MW, Hu H, Deva A, Glicksman C, McGuire P, Adams WP, Sieber D, Sinha M, Kadin ME. CD30 Lateral Flow and Enzyme-Linked Immunosorbent Assays for Detection of BIA-ALCL: A Pilot Study. Cancers (Basel) 2023; 15:5128. [PMID: 37958303 PMCID: PMC10649192 DOI: 10.3390/cancers15215128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) commonly presents as a peri-implant effusion (seroma). CD30 (TNFRSF8) is a consistent marker of tumor cells but also can be expressed by activated lymphocytes in benign seromas. Diagnosis of BIA-ALCL currently includes cytology and detection of CD30 by immunohistochemistry or flow cytometry, but these studies require specialized equipment and pathologists' interpretation. We hypothesized that a CD30 lateral flow assay (LFA) could provide a less costly rapid test for soluble CD30 that eventually could be used by non-specialized personnel for point-of-care diagnosis of BIA-ALCL. METHODS We performed LFA for CD30 and enzyme-linked immunosorbent assay (ELISA) for 15 patients with pathologically confirmed BIA-ALCL and 10 patients with benign seromas. To determine the dynamic range of CD30 detection by LFA, we added recombinant CD30 protein to universal buffer at seven different concentrations ranging from 125 pg/mL to 10,000 pg/mL. We then performed LFA for CD30 on cryopreserved seromas of 10 patients with pathologically confirmed BIA-ALCL and 10 patients with benign seromas. RESULTS Recombinant CD30 protein added to universal buffer produced a distinct test line at concentrations higher than 1000 pg/mL and faint test lines at 250-500 pg/mL. LFA produced a positive test line for all BIA-ALCL seromas undiluted and for 8 of 10 malignant seromas at 1:10 dilution, whereas 3 of 10 benign seromas were positive undiluted but all were negative at 1:10 dilution. Undiluted CD30 LFA had a sensitivity of 100.00%, specificity of 70.00%, positive predictive value of 76.92%, and negative predictive value of 100.00% for BIA-ALCL. When specimens were diluted 1:10, sensitivity was reduced to 80.00% but specificity and positive predictive values increased to 100.00%, while negative predictive value was reduced to 88.33%. When measured by ELISA, CD30 was below 1200 pg/mL in each of six benign seromas, whereas seven BIA-ALCL seromas contained CD30 levels > 2300 pg/mL, in all but one case calculated from dilutions of 1:10 or 1:50. CONCLUSIONS BIA-ALCL seromas can be distinguished from benign seromas by CD30 ELISA and LFA, but LFA requires less time (<20 min) and can be performed without special equipment by non-specialized personnel, suggesting future point-of-care testing for BIA-ALCL may be feasible.
Collapse
Affiliation(s)
- Victoria G. Zeyl
- Division of Plastic Surgery, Department of Surgery, Brown Alpert School of Medicine, Providence, RI 02903, USA;
| | - Haiying Xu
- Department of Pathology and Laboratory Medicine, Brown Alpert School of Medicine, Providence, RI 02903, USA;
| | - Imran Khan
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.K.); (M.S.)
| | - Jason T. Machan
- Lifespan Biostatistics, Epidemiology, Research Design, and Informatics (BERDI) Lifespan Hospital System, Providence, RI 02903, USA;
| | - Mark W. Clemens
- Division of Plastic and Reconstructive Surgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (H.H.); (A.D.)
- Plastic & Reconstructive Surgery, Faculty of Health and Medical Science, Macquarie University, Sydney, NSW 2109, Australia
| | - Anand Deva
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (H.H.); (A.D.)
- Plastic & Reconstructive Surgery, Faculty of Health and Medical Science, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - William P. Adams
- Department of Plastic Surgery, University of Texas Southwestern, Dallas, TX 75390, USA;
| | - David Sieber
- Sieber Plastic Surgery, San Francisco, CA 94108, USA;
| | - Mithun Sinha
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.K.); (M.S.)
| | - Marshall E. Kadin
- Division of Plastic Surgery, Department of Surgery, Brown Alpert School of Medicine, Providence, RI 02903, USA;
- Department of Pathology and Laboratory Medicine, Brown Alpert School of Medicine, Providence, RI 02903, USA;
| |
Collapse
|
11
|
Song Z, Wu W, Wei W, Xiao W, Lei M, Cai KQ, Huang DW, Jeong S, Zhang JP, Wang H, Kadin ME, Waldmann TA, Staudt LM, Nakagawa M, Yang Y. Analysis and therapeutic targeting of the IL-1R pathway in anaplastic large cell lymphoma. Blood 2023; 142:1297-1311. [PMID: 37339580 PMCID: PMC10613726 DOI: 10.1182/blood.2022019166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Anaplastic large cell lymphoma (ALCL), a subgroup of mature T-cell neoplasms with an aggressive clinical course, is characterized by elevated expression of CD30 and anaplastic cytology. To achieve a comprehensive understanding of the molecular characteristics of ALCL pathology and to identify therapeutic vulnerabilities, we applied genome-wide CRISPR library screenings to both anaplastic lymphoma kinase positive (ALK+) and primary cutaneous (pC) ALK- ALCLs and identified an unexpected role of the interleukin-1R (IL-1R) inflammatory pathway in supporting the viability of pC ALK- ALCL. Importantly, this pathway is activated by IL-1α in an autocrine manner, which is essential for the induction and maintenance of protumorigenic inflammatory responses in pC-ALCL cell lines and primary cases. Hyperactivation of the IL-1R pathway is promoted by the A20 loss-of-function mutation in the pC-ALCL lines we analyze and is regulated by the nonproteolytic protein ubiquitination network. Furthermore, the IL-1R pathway promotes JAK-STAT3 signaling activation in ALCLs lacking STAT3 gain-of-function mutation or ALK translocation and enhances the sensitivity of JAK inhibitors in these tumors in vitro and in vivo. Finally, the JAK2/IRAK1 dual inhibitor, pacritinib, exhibited strong activities against pC ALK- ALCL, where the IL-1R pathway is hyperactivated in the cell line and xenograft mouse model. Thus, our studies revealed critical insights into the essential roles of the IL-1R pathway in pC-ALCL and provided opportunities for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhihui Song
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wenjun Wu
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wei Wei
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wenming Xiao
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Michelle Lei
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Subin Jeong
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jing-Ping Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Hongbo Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
12
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
13
|
Mulder FVM, Evers D, de Haas M, Cruijsen MJ, Bernelot Moens SJ, Barcellini W, Fattizzo B, Vos JMI. Severe autoimmune hemolytic anemia; epidemiology, clinical management, outcomes and knowledge gaps. Front Immunol 2023; 14:1228142. [PMID: 37795092 PMCID: PMC10545865 DOI: 10.3389/fimmu.2023.1228142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is an acquired hemolytic disorder, mediated by auto-antibodies, and has a variable clinical course ranging from fully compensated low grade hemolysis to severe life-threatening cases. The rarity, heterogeneity and incomplete understanding of severe AIHA complicate the recognition and management of severe cases. In this review, we describe how severe AIHA can be defined and what is currently known of the severity and outcome of AIHA. There are no validated predictors for severe clinical course, but certain risk factors for poor outcomes (hospitalisation, transfusion need and mortality) can aid in recognizing severe cases. Some serological subtypes of AIHA (warm AIHA with complement positive DAT, mixed, atypical) are associated with lower hemoglobin levels, higher transfusion need and mortality. Currently, there is no evidence-based therapeutic approach for severe AIHA. We provide a general approach for the management of severe AIHA patients, incorporating monitoring, supportive measures and therapeutic options based on expert opinion. In cases where steroids fail, there is a lack of rapidly effective therapeutic options. In this era, numerous novel therapies are emerging for AIHA, including novel complement inhibitors, such as sutimlimab. Their potential in severe AIHA is discussed. Future research efforts are needed to gain a clearer picture of severe AIHA and develop prediction models for severe disease course. It is crucial to incorporate not only clinical characteristics but also biomarkers that are associated with pathophysiological differences and severity, to enhance the accuracy of prediction models and facilitate the selection of the optimal therapeutic approach. Future clinical trials should prioritize the inclusion of severe AIHA patients, particularly in the quest for rapidly acting novel agents.
Collapse
Affiliation(s)
- Femke V. M. Mulder
- Sanquin Research and Landsteiner Laboratory, Translational Immunohematology, Amsterdam UMC, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Dorothea Evers
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Masja de Haas
- Sanquin Research and Landsteiner Laboratory, Translational Immunohematology, Amsterdam UMC, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | | | - Sophie J. Bernelot Moens
- Department of Hematology and Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Wilma Barcellini
- Department of Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bruno Fattizzo
- Department of Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Josephine M. I. Vos
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, Netherlands
- Department of Hematology and Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Boyer DF, Perry A, Wey E, Hsueh J, Li A, Jackson R, Soma L, Zhang W, Song JY. Fibrin-associated large B-cell lymphoma shows frequent mutations related to immune surveillance and PTEN. Blood 2023; 142:1022-1025. [PMID: 37433264 PMCID: PMC10517201 DOI: 10.1182/blood.2023020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Affiliation(s)
- Daniel F. Boyer
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Anamarija Perry
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Elizabeth Wey
- Department of Pathology, Beaumont Health System, Royal Oak, MI
| | - Julia Hsueh
- Department of Pathology, City of Hope, Duarte, CA
| | - Aimin Li
- Department of Pathology, City of Hope, Duarte, CA
| | - Ryan Jackson
- Department of Pathology, City of Hope, Duarte, CA
| | - Lorinda Soma
- Department of Pathology, City of Hope, Duarte, CA
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Joo Y. Song
- Department of Pathology, Beaumont Health System, Royal Oak, MI
| |
Collapse
|
15
|
Osakada A, Fujimoto M, Ueshima C, Kaku Y, Nishikori M, Inoue N, Takeuchi K, Haga H. Constant small-cell changes and variable LEF1 expression in DUSP22-rearranged primary cutaneous anaplastic large-cell lymphoma: Analysis of the repeated biopsies of three patients. Pathol Int 2023; 73:456-462. [PMID: 37530485 DOI: 10.1111/pin.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023]
Abstract
DUSP22-rearranged primary cutaneous anaplastic large-cell lymphoma (pcALCL) has a biphasic histological pattern defined by large dermal atypical lymphocytes and epidermotropic small lymphocytes resembling pagetoid reticulosis, but the positivity rate of the biphasic pattern in DUSP22-rearranged pcALCL is unknown. Immunohistochemically, LEF1 expression in >75% of tumor cells is associated with DUSP22-rearrangement (DUSP22-R) in systemic ALCL. However, whether this association applies to pcALCL remains unclear. To analyze these pathological clues for screening DUSP22-R, we reviewed 11 skin biopsies from three patients with DUSP22-rearranged pcALCL. All specimens showed a biphasic pattern, of which three showed nonpagetoid infiltration of the epidermis. In all lesions, small-cell changes of tumor cells were observed not only within the epidermis but also under the epidermis. LEF1 positivity rates varied by lesion (range: 30%-90%, mean: 59.6%) with only three patients expressing LEF1 in more than 75% of tumor cells. In conclusion, the biphasic pattern was a constant finding in DUSP22-rearranged pcALCL, but it was not always pagetoid reticulosis-like. The recognition of small-cell change outside the epidermis may be helpful in diagnosing DUSP22-rearranged pcALCL. However, LEF1 expression was variable and its diagnostic usefulness may be limited.
Collapse
Affiliation(s)
- Akio Osakada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Chiyuki Ueshima
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yo Kaku
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto, Japan
| | - Norihito Inoue
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
16
|
Di Napoli A, Soma L, Quintanilla-Martinez L, de Leval L, Leoncini L, Zamò A, Ng SB, Ondrejka SL, Climent F, Wotherspoon A, Dirnhofer S. Cavity-based lymphomas: challenges and novel concepts. A report of the 2022 EA4HP/SH lymphoma workshop. Virchows Arch 2023; 483:299-316. [PMID: 37555981 PMCID: PMC10542738 DOI: 10.1007/s00428-023-03599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
The 2022 European Association for Haematopathology/Society for Hematopathology lymphoma workshop session on cavity-based lymphomas included sixty-eight cases in seven sections. The disease entities discussed include primary effusion lymphomas (PEL), extracavitary primary effusion lymphomas and confounding entities (ECPEL), HHV8-negative B-lineage lymphomas-effusion based (EBV-negative, EBV-positive, and plasmablastic types), diffuse large B-cell lymphoma associated with chronic inflammation, fibrin-associated diffuse large B-cell lymphoma (FA-DLBCL), breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), and other lymphomas presenting as an effusion. All entities above are discussed; however, three are delved into greater detail given the challenges with classification: ECPEL, HHV8-negative effusion-based lymphomas, and FA-DLBCL. Cases exemplifying the diagnostic difficulty in differentiating ECPEL from HHV8-positive diffuse large B-cell lymphoma and germinotropic lymphoproliferative disorder were discussed. The more recently recognized effusion-based HHV8-negative large B-cell lymphoma is explored, with several cases submitted raising the question if this subset should be carved out as a specific entity, and if so, what should be the refining diagnostic criteria. Case submissions to the FA-DLBCL section yielded one of the largest case series to date, including classic cases, cases furthering the discussion on disease sites and prognosis, as well as novel concepts to be considered in this entity. The 2022 EA4HP/SH workshop cases allowed for further confirmation of the characteristics of some of the more historically accepted cavity-based lymphomas, as well as further inquiry and debate on relatively new or evolving entities.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy.
| | - Lori Soma
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Alberto Zamò
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarah L Ondrejka
- Pathology, and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fina Climent
- Pathology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet De Llobregat, Barcelona, Spain
| | | | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Xagoraris I, Stathopoulou K, Aulerio RD, He M, Ketscher A, Jatta K, de Flon FH, Barbany G, Rosenquist R, Westerberg LS, Rassidakis GZ. Establishment and characterization of a novel breast implant-associated anaplastic large cell lymphoma cell line and PDX model (BIA-XR1) with a unique KRAS mutation. Curr Res Transl Med 2023; 71:103401. [PMID: 37364351 DOI: 10.1016/j.retram.2023.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon T-cell lymphoma type with distinct clinical, molecular and genetic features. Establishment of BIA-ALCL cell lines and patient-derived xenograft (PDX) models are essential experimental tools to investigate the molecular pathogenesis of the disease. We characterized a novel BIA-ALCL cell line and PDX model, named BIA-XR1, derived from a patient with textured breast implant who developed lymphoma. Next-generation sequencing revealed a STAT3 mutation, commonly detected in BIA-ALCL, and a unique KRAS mutation reported for the first time in this lymphoma type. Both JAK/STAT3 and RAS/MEK/ERK oncogenic pathways were activated in BIA-XR1, which are targetable with clinically available agents.
Collapse
Affiliation(s)
- Ioanna Xagoraris
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Roberta D' Aulerio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anett Ketscher
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Kenbugul Jatta
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Haglund de Flon
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - George Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Carbonaro R, Accardo G, Mazzocconi L, Pileri S, Derenzini E, Veronesi P, Caldarella P, De Lorenzi F. BIA-ALCL in patients with genetic predisposition for breast cancer: our experience and a review of the literature. Eur J Cancer Prev 2023; 32:370-376. [PMID: 37302016 DOI: 10.1097/cej.0000000000000809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an emerging non-Hodgkin's lymphoma that occurs exclusively in patients with breast implants. The estimated risk of developing BIA-ALCL from exposure to breast implants is largely based on approximations about patients at risk. There is a growing body of evidence regarding the presence of specific germline mutations in patients developing BIA-ALCL, rising interest regarding possible markers of genetic predisposition to this type of lymphoma. The present paper focuses attention on BIA-ALCL in women with a genetic predisposition for breast cancer. We report our experience at the European Institute of Oncology, Milan, Italy, describing a case of BIA-ALCL in a BRCA1 mutation carrier who developed BIA-ALCL 5 years after implant-based post mastectomy reconstruction. She was treated successfully with an en-bloc capsulectomy. Additionally, we review the available literature on inherited genetic factors predisposing to the development of BIA-ALCL. In patients with genetic predisposition to breast cancer (mainly TP53 and BRCA1/2 germline mutations), BIA-ALCL prevalence seems to be higher and time to onset appears to be shorter in comparison to the general population. These high-risk patients are already included in close follow-up programs allowing the diagnosis of early-stage BIA-ALCL. For this reason, we do not believe that a different approach should be followed for postoperative surveillance.
Collapse
Affiliation(s)
- Riccardo Carbonaro
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS
- University of Milan, Milan
| | - Giuseppe Accardo
- Breast Surgery Unit, USL Toscana centro, ospedale Santo Stefano, Prato
| | - Luca Mazzocconi
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS
- University of Milan, Milan
| | - Stefano Pileri
- Division of Haematopathology, European Institute of Oncology, IRCCS, Milan
- Bologna University School of Medicine, Bologna
| | - Enrico Derenzini
- Onco-Hematology Division, European Institute of Oncology, IRCCS, Milan
- Department of Health Sciences, University of Milan, Milan and
| | - Paolo Veronesi
- University of Milan, Milan
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Pietro Caldarella
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca De Lorenzi
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS
| |
Collapse
|
19
|
Zain J, Kallam A. Challenges in nodal peripheral T-cell lymphomas: from biological advances to clinical applicability. Front Oncol 2023; 13:1150715. [PMID: 37188189 PMCID: PMC10175673 DOI: 10.3389/fonc.2023.1150715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
T cell lymphomas are a heterogenous group with varying biological and clinical features that tend to have poor outcomes with a few exceptions. They account for 10-15% of all non-Hodgkin lymphomas (NHL), and 20% of aggressive NHL. There has been little change in the overall prognosis of T cell lymphomas over the last 2 decades. Most subtypes carry an inferior prognosis when compared to the B cell lymphomas, with a 5-year OS of 30%. Gene expression profiling and other molecular techniques has enabled a deeper understanding of these differences in the various subtypes as reflected in the latest 5th WHO and ICC classification of T cell lymphomas. It is becoming increasingly clear that therapeutic approaches that target specific cellular pathways are needed to improve the clinical outcomes of T cell lymphomas. This review will focus on nodal T cell lymphomas and describe novel treatments and their applicability to the various subtypes.
Collapse
Affiliation(s)
- Jasmine Zain
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | | |
Collapse
|
20
|
Oishi N, Feldman AL. Current Concepts in Nodal Peripheral T-Cell Lymphomas. Surg Pathol Clin 2023; 16:267-285. [PMID: 37149360 DOI: 10.1016/j.path.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
This review summarizes the current understanding of mature T-cell neoplasms predominantly involving lymph nodes, including ALK-positive and ALK-negative anaplastic large cell lymphomas, nodal T-follicular helper cell lymphoma, Epstein-Barr virus-positive nodal T/NK-cell lymphoma, and peripheral T-cell lymphoma (PTCL), not otherwise specified. These PTCLs are clinically, pathologically, and genetically heterogeneous, and the diagnosis is made by a combination of clinical information, morphology, immunophenotype, viral positivity, and genetic abnormalities. This review summarizes the pathologic features of common nodal PTCLs, highlighting updates in the fifth edition of the World Health Organization classification and the 2022 International Consensus Classification.
Collapse
|
21
|
An update on genetic aberrations in T-cell neoplasms. Pathology 2023; 55:287-301. [PMID: 36801152 DOI: 10.1016/j.pathol.2022.12.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023]
Abstract
T-cell neoplasms are a highly heterogeneous group of leukaemias and lymphomas that represent 10-15% of all lymphoid neoplasms. Traditionally, our understanding of T-cell leukaemias and lymphomas has lagged behind that of B-cell neoplasms, in part due to their rarity. However, recent advances in our understanding of T-cell differentiation, based on gene expression and mutation profiling and other high throughput methods, have better elucidated the pathogenetic mechanisms of T-cell leukaemias and lymphomas. In this review, we provide an overview of many of the molecular abnormalities that occur in various types of T-cell leukaemia and lymphoma. Much of this knowledge has been used to refine diagnostic criteria that has been included in the fifth edition of the World Health Organization. This knowledge is also being used to improve prognostication and identify novel therapeutic targets, and we expect this progress will continue, eventually resulting in improved outcomes for patients with T-cell leukaemias and lymphomas.
Collapse
|
22
|
Yuan CT, Cheng AL, Hou HA. Primary effusion anaplastic large cell lymphoma with indolent clinical course and IRF4/DUSP22 rearrangement: a case report expanding the spectrum of effusion-based lymphoma. Virchows Arch 2023; 482:641-645. [PMID: 35984488 DOI: 10.1007/s00428-022-03385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Effusion-based lymphomas arising from pleural cavities are mostly B cell lymphomas. Non-B cell origins are very rare. These non-B cell lymphomas are usually disseminated and aggressive, and their underlying genetic changes are indeterminate. Here, we reported the first case of primary effusion anaplastic large cell lymphoma (ALCL) with exclusive involvement of a single body cavity, indolent initial presentation, and IRF4/DUSP22 rearrangement. This 73-year-old man had been in his usual health until he presented with exertional dyspnea for 1 month. Physical examination and whole-body imaging indicated isolated left pleural effusion without lymphadenopathies or tumors. Thoracentesis revealed anaplastic large lymphoid cells that were CD30 + , CD3 - , CD8 + , TIA1 + , CD138 - , Epstein-Barr virus-encoded small RNA - , human herpesvirus 8 - , and ALK - . Fluorescence in situ hybridization exhibited IRF4/DUSP22 rearrangement. A primary effusion ALK-negative ALCL was diagnosed. There was no evident progression without chemotherapeutics until 4 months after the diagnosis. Our findings expanded the spectrum of effusion-based lymphoma. Recognition of this disease could prevent misdiagnosis and guide treatment strategies for patients.
Collapse
Affiliation(s)
- Chang-Tsu Yuan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No.7, Chung Shan S. Rd, Zhongzheng Dist, 100225, Taipei City, Taiwan.
| |
Collapse
|
23
|
Marques-Piubelli ML, Medeiros LJ, Stewart J, Miranda RN. Breast Implant-Associated Anaplastic Large Cell Lymphoma. Surg Pathol Clin 2023; 16:347-360. [PMID: 37149362 DOI: 10.1016/j.path.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Pathologic staging including assessment of margins is essential for the proper management of patients with breast implant-associated anaplastic large-cell lymphoma (BIA-ALCL). As most patients present with effusion, cytologic examination with immunohistochemistry and/or flow cytometry immunophenotyping are essential for diagnosis. Upon a diagnosis of BIA-ALCL, en bloc resection is recommended. When a tumor mass is not identified, a systematic approach to fixation and sampling of the capsule, followed by pathologic staging and assessment of margins, is essential. Cure is likely when lymphoma is contained within the en bloc resection and margins are negative. Incomplete resection or positive margins require a multidisciplinary team assessment for adjuvant therapy.
Collapse
|
24
|
Lewis NE, Sardana R, Dogan A. Mature T-cell and NK-cell lymphomas: updates on molecular genetic features. Int J Hematol 2023; 117:475-491. [PMID: 36637656 DOI: 10.1007/s12185-023-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mature T-cell and NK-cell lymphomas are a heterogeneous group of rare and typically aggressive neoplasms. Diagnosis and subclassification have historically relied primarily on the integration of clinical, histologic, and immunophenotypic features, which often overlap. The widespread application of a variety of genomic techniques in recent years has provided extensive insight into the pathobiology of these diseases, allowing for more precise diagnostic classification, improved prognostication, and development of novel therapies. In this review, we summarize the genomic features of the most common types of mature T-cell and NK-cell lymphomas with a particular focus on the contribution of genomics to biologic insight, classification, risk stratification, and select therapies in the context of the recently published International Consensus and updated World Health Organization classification systems.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Rohan Sardana
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
25
|
Murga-Zamalloa C, Inamdar K. Classification and challenges in the histopathological diagnosis of peripheral T-cell lymphomas, emphasis on the WHO-HAEM5 updates. Front Oncol 2022; 12:1099265. [PMID: 36605429 PMCID: PMC9810276 DOI: 10.3389/fonc.2022.1099265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Mature T-cell lymphomas represent neoplastic expansions of T-cell lymphocytes with a post-thymic derivation. Most of these tumors feature aggressive clinical behavior and challenging histopathological diagnosis and classification. Novel findings in the genomic landscape of T-cell lymphomas are helping to improve the understanding of the biology and the molecular mechanisms that underly its clinical behavior. The most recent WHO-HAEM5 classification of hematolymphoid tumors introduced novel molecular and histopathological findings that will aid in the diagnostic classification of this group of neoplasms. The current review article summarizes the most relevant diagnostic features of peripheral T-cell lymphomas with an emphasis on the updates that are incorporated at the WHO-HAEM5.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Carlos Murga-Zamalloa,
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
26
|
Demko N, Safran T, Vorstenbosch J, Michel RP. Breast Implanted-Associated Anaplastic Large Cell Lymphoma: A Case of Advanced Disease with Flow Cytometric Findings. Int J Surg Pathol 2022; 31:464-471. [PMID: 36357370 PMCID: PMC10173349 DOI: 10.1177/10668969221102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Breast implant-associated anaplastic large cell lymphoma (breast implant-associated ALCL) is a recently described, distinct clinicopathological entity associated with macrotextured breast implants. The diagnostic workup of a patient suspected to have breast implant-associated ALCL includes cytological assessment of effusions and tissue biopsies of any masses or enlarged lymph nodes, with morphologic and immunophenotypic evaluation and possible flow cytometric and molecular testing. We report the case of a woman found to have breast implant-associated ALCL on fine needle aspirate and core biopsy, who on surgical resection, had extensive local disease with involvement of the resection margins and lymph nodes, requiring systemic treatment. We focus on the flow cytometric findings that identified a population of large cells on the CD30/side scatter dot plot and whose immunophenotype was consistent with breast implant-associated ALCL, highlighting the value of flow cytometry as an adjunct to morphological and immunophenotypic evaluation.
Collapse
Affiliation(s)
- Nadine Demko
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Tyler Safran
- Division of Plastic & Reconstructive Surgery, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Joshua Vorstenbosch
- Division of Plastic & Reconstructive Surgery, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - René P. Michel
- Department of Pathology, McGill University, Montréal, QC, Canada
| |
Collapse
|
27
|
Feldman AL, Oishi N, Ketterling RP, Ansell SM, Shi M, Dasari S. Immunohistochemical Approach to Genetic Subtyping of Anaplastic Large Cell Lymphoma. Am J Surg Pathol 2022; 46:1490-1499. [PMID: 35941721 PMCID: PMC9588576 DOI: 10.1097/pas.0000000000001941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) can be classified genetically based on rearrangements (R) of the ALK , TP63 , and/or DUSP22 genes. ALK- R defines a specific entity, ALK-positive ALCL, while DUSP22- R and TP63- R define subgroups of ALK-negative ALCLs with distinct clinicopathologic features. ALK -R and TP63 -R produce oncogenic fusion proteins that can be detected by immunohistochemistry. ALK immunohistochemistry is an excellent surrogate for ALK- R and screening with p63 immunohistochemistry excludes TP63- R in two third of ALCLs. In contrast, DUSP22 -R does not produce a fusion protein and its identification requires fluorescence in situ hybridization. However, DUSP22- R ALCL has a characteristic phenotype including negativity for cytotoxic markers and phospho-STAT3 Y705 . Recently, we also identified overexpression of the LEF1 transcription factor in DUSP22- R ALCL. Here, we sought to validate this finding and examine models for predicting DUSP22- R using immunohistochemistry for LEF1 and TIA1 or phospho-STAT3 Y705 . We evaluated these 3 markers in our original discovery cohort (n=45) and in an independent validation cohort (n=46) of ALCLs. The correlation between DUSP22- R and LEF1 expression replicated strongly in the validation cohort ( P <0.0001). In addition, we identified and validated a strategy using LEF1 and TIA1 immunohistochemistry that predicted DUSP22- R with positive and negative predictive values of 100% after exclusion of indeterminate cases and would eliminate the need for fluorescence in situ hybridization in 65% of ALK-negative ALCLs. This approach had similar results in identifying DUSP22- R in the related condition, lymphomatoid papulosis. Together with previous data, these findings support a 4-marker immunohistochemistry algorithm using ALK, LEF1, TIA1, and p63 for genetic subtyping of ALCL.
Collapse
Affiliation(s)
- Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Naoki Oishi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | - Min Shi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| |
Collapse
|
28
|
Genetic and immunohistochemical profiling of NK/T-cell lymphomas reveals prognostically relevant BCOR-MYC association. Blood Adv 2022; 7:178-189. [PMID: 35882439 PMCID: PMC9837655 DOI: 10.1182/bloodadvances.2022007541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 01/21/2023] Open
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTL) is an Epstein-Barr virus-positive, aggressive lymphoma with a heterogeneous cell of origin and variable clinical course. Several clinical prognostic indices have been proposed for ENKTL; however, there are few pathological biomarkers. This multi-institutional study sought to identify histologically assessable prognostic factors. We investigated mutation profiles by targeted next-generation sequencing (NGS) and immunohistochemical assessments of expression of MYC, Tyr705-phosphorylated (p-)STAT3, and CD30 in 71 ENKTL samples. The median age of the patients was 66 years (range, 6-100). The most frequent mutations were in STAT3 (27%), JAK3 (4%), KMT2D (19%), TP53 (13%), BCOR (10%), and DDX3X (7%). Immunohistochemistry (IHC) revealed that ENKTLs with STAT3 mutations exhibited higher expression of pSTAT3 and CD30. BCOR mutations were associated with increased MYC expression. Univariate analysis in the entire cohort showed that stage (II, III, or IV), BCOR mutations, TP53 mutations, and high MYC expression (defined as ≥40% positive neoplastic cells) were associated with reduced overall survival (OS). Multivariate modeling identified stage (II, III, or IV) and high MYC expression as independent adverse prognostic factors. In a subgroup analysis of patients treated with anthracycline (AC)-free chemotherapy and/or radiotherapy (RT) with curative intent, BCOR but not high MYC expression was an independent adverse prognostic factor. In conclusion, activating STAT3 mutations are common in ENKTLs and are associated with increased CD30 expression. MYC overexpression is, at least in part, associated with deleterious BCOR mutations, and this BCOR-MYC linkage may have prognostic significance, underscoring the potential utility of IHC for MYC in risk stratification of patients with ENKTL.
Collapse
|
29
|
Xie W, Medeiros LJ, Li S, Tang G, Fan G, Xu J. PD-1/PD-L1 Pathway: A Therapeutic Target in CD30+ Large Cell Lymphomas. Biomedicines 2022; 10:biomedicines10071587. [PMID: 35884893 PMCID: PMC9313053 DOI: 10.3390/biomedicines10071587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein–Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL). The genetic alteration of the chromosome 9p24.1 locus, the location of PD-L1, PD-L2, and JAK2 are the main mechanisms leading to PD-L1 and PD-L2 overexpression and are frequently observed in these CD30+ large cell lymphomas. The JAK/STAT pathway is also commonly constitutively activated in these lymphomas, further contributing to the upregulated expression of PD-L1 and PD-L2. Other mechanisms underlying the overexpression of PD-L1 and PD-L2 in some cases include EBV infection and the activation of the mitogen-activated protein kinase (MAPK) pathway. These cellular and molecular mechanisms provide a scientific rationale for PD-1/PD-L1 blockade in treating patients with relapsed/refractory (R/R) disease and, possibly, in newly diagnosed patients. Given the high efficacy of PD-1 inhibitors in patients with R/R CHL and PMBL, these agents have become a standard treatment in these patient subgroups. Preliminary studies of PD-1 inhibitors in patients with R/R EBV+ DLBCL and R/R ALCL have also shown promising results. Future directions for these patients will likely include PD-1/PD-L1 blockade in combination with other therapeutic agents, such as brentuximab or traditional chemotherapy regimens.
Collapse
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
- Correspondence: ; Tel.: +1-713-794-1220; Fax: +1-713-563-3166
| |
Collapse
|
30
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36:1720-1748. [PMID: 35732829 PMCID: PMC9214472 DOI: 10.1038/s41375-022-01620-2] [Citation(s) in RCA: 1315] [Impact Index Per Article: 657.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
Collapse
|
31
|
Santanelli di Pompeo F, Clemens MW, Atlan M, Botti G, Cordeiro PG, De Jong D, Di Napoli A, Hammond D, Haymaker CL, Horwitz SM, Hunt K, Lennox P, Mallucci P, Miranda RN, Munhoz AM, Swanson E, Turner SD, Firmani G, Sorotos M. 2022 Practice Recommendation Updates From the World Consensus Conference on BIA-ALCL. Aesthet Surg J 2022; 42:1262-1278. [PMID: 35639805 PMCID: PMC9924046 DOI: 10.1093/asj/sjac133] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Laboratory and clinical research on breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is rapidly evolving. Changes in standard of care and insights into best practice were recently presented at the 3rd World Consensus Conference on BIA-ALCL. OBJECTIVES The authors sought to provide practice recommendations from a consensus of experts, supplemented with a literature review regarding epidemiology, etiology, pathogenesis, diagnosis, treatment, socio-psychological aspects, and international authority guidance. METHODS A literature search of all manuscripts between 1997 and August 2021 for the above areas of BIA-ALCL was conducted with the PubMed database. Manuscripts in different languages, on non-human subjects, and/or discussing conditions separate from BIA-ALCL were excluded. The study was conducted employing the Delphi process, gathering 18 experts panelists and utilizing email-based questionnaires to record the level of agreement with each statement by applying a 5-point Likert Scale. Median response, interquartile range, and comments were employed to accept, reject, or revise each statement. RESULTS The literature search initially yielded 764 manuscripts, of which 405 were discarded. From the remaining 359, only 218 were included in the review and utilized to prepare 36 statements subdivided into 5 sections. After 1 round, panelists agreed on all criteria. CONCLUSIONS BIA-ALCL is uncommon and still largely underreported. Mandatory implant registries and actions by regulatory authorities are needed to better understand disease epidemiology and address initial lymphomagenesis and progression. Deviation from current diagnosis and treatment protocols can lead to disease recurrence, and research on breast implant risk factors provide insight to etiology. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Fabio Santanelli di Pompeo
- Corresponding Author: Prof Fabio Santanelli di Pompeo, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sant’Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy. E-mail: ; Instagram: @diepflap.it
| | - Mark W Clemens
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA and is a Breast Surgery section editor for Aesthetic Surgery Journal
| | - Michael Atlan
- Aesthetic Plastic Reconstructive Unit/CHU TENON PARIS—APHP, Université Pierre et Marie Curie, Paris, France
| | | | - Peter G Cordeiro
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daphne De Jong
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Pathology and Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arianna Di Napoli
- Pathology Unit, Department of Clinical and Molecular Medicine, Sapienza University, Sant’Andrea Hospital, Rome, Italy
| | | | - Cara L Haymaker
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Horwitz
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Kelly Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Lennox
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of British Columbia, Vancouver, BC, Canada and is a clinical editor for Aesthetic Surgery Journal
| | | | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre M Munhoz
- Plastic Surgery Department, Hospital Moriah, Hospital Sírio-Libanês, Higienópolis, São Paulo, Brazil
| | | | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Guido Firmani
- Faculty of Medicine and Psychology, Sapienza University of Rome, Department of Plastic Surgery, Sant’Andrea Hospital, Rome, Italy
| | - Michail Sorotos
- Faculty of Medicine and Psychology, Sapienza University of Rome, Department NESMOS, Sant’Andrea Hospital, Rome, Italy
| |
Collapse
|
32
|
Oishi N, Feldman AL. CA9 expression in breast implant-associated anaplastic large cell lymphoma presenting in a lymph node. Histopathology 2022; 81:270-272. [PMID: 35437827 PMCID: PMC9308674 DOI: 10.1111/his.14666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Yoo H, Park JU, Chang H. Comprehensive Evaluation of the Current Knowledge on Breast Implant Associated-Anaplastic Large Cell Lymphoma. Arch Plast Surg 2022; 49:141-149. [PMID: 35832665 PMCID: PMC9045542 DOI: 10.1055/s-0042-1744422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a recently spotlighted T-cell origin non-Hodgkin's lymphoma with an increasing incidence of over 800 cases and 33 deaths reported worldwide. Development of BIA-ALCL is likely a complex process involving many factors, such as the textured implant surface, bacterial biofilm growth, immune response, and patient genetics. As the incidence of BIA-ALCL is expected to increase, it is important for all surgeons and physicians to be aware of this disease entity and acquire thorough knowledge of current evidence-based guidelines and recommendations. Early detection, accurate diagnosis, and appropriate treatment are the foundations of current care.
Collapse
Affiliation(s)
- Hyokyung Yoo
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Nestler JA, Kim JK, Goodreau AM, Mountziaris PM, McGuire KP. Invasive stage III breast implant-associated anaplastic large cell lymphoma successfully treated with incomplete resection. BMJ Case Rep 2022; 15:e246664. [PMID: 35379678 PMCID: PMC8981349 DOI: 10.1136/bcr-2021-246664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/04/2022] Open
Abstract
A woman with history of bilateral breast augmentation 15 years prior presented with right breast swelling, peri-implant effusion and a palpable inferomedial mass. Effusion aspiration demonstrated pleiomorphic cells consistent with breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). Further diagnostic studies confirmed stage III disease with a 4.7 cm right breast mass and fluorodeoxyglucose uptake in an internal mammary chain lymph node. The patient underwent surgery with incomplete resection due to invasion of the chest wall followed by chemotherapy and radiation therapy. BIA-ALCL typically presents as an indolent effusion, however advanced disease carries a worse prognosis. This case highlights successful treatment without recurrence past the one-year mark as well as the need for multidisciplinary management when dealing with advanced disease.
Collapse
Affiliation(s)
- John A Nestler
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jin Kyung Kim
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Adam M Goodreau
- Department of Plastic and Reconstructive Surgery, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| | - Paschalia M Mountziaris
- Department of Plastic and Reconstructive Surgery, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| | - Kandace P McGuire
- Department of Surgery, Virginia Commonwealth University Health System, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
35
|
Tissue Expander-associated T Cells: Relevance to Breast Implant-associated Anaplastic Large-cell Lymphoma. Plast Reconstr Surg Glob Open 2022; 10:e4148. [PMID: 35356046 PMCID: PMC8942776 DOI: 10.1097/gox.0000000000004148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022]
Abstract
The generation of breast implant–associated anaplastic large-cell lymphoma (BIA-ALCL) is closely associated with textured implants. The phenotype of BIA-ALCL cells is well examined, but its cell of origin remains unknown. Here we investigate what types of T cells are recruited and differentiated in the surrounding capsules and tissues as a consequence of continuous contact with a textured surface.
Collapse
|
36
|
Anaplastic Large Cell Lymphoma: Molecular Pathogenesis and Treatment. Cancers (Basel) 2022; 14:cancers14071650. [PMID: 35406421 PMCID: PMC8997054 DOI: 10.3390/cancers14071650] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Anaplastic large cell lymphoma is a rare type of disease that occurs throughout the world and has four subtypes. A summary and comparison of these subtypes can assist with advancing our knowledge of the mechanism and treatment of ALCL, which is helpful in making progress in this field. Abstract Anaplastic large cell lymphoma (ALCL) is an uncommon type of non-Hodgkin’s lymphoma (NHL), as well as one of the subtypes of T cell lymphoma, accounting for 1 to 3% of non-Hodgkin’s lymphomas and around 15% of T cell lymphomas. In 2016, the World Health Organization (WHO) classified anaplastic large cell lymphoma into four categories: ALK-positive ALCL (ALK+ALCL), ALK-negative ALCL (ALK−ALCL), primary cutaneous ALCL (pcALCL), and breast-implant-associated ALCL (BIA-ALCL), respectively. Clinical symptoms, gene changes, prognoses, and therapy differ among the four types. Large lymphoid cells with copious cytoplasm and pleomorphic characteristics with horseshoe-shaped or reniform nuclei, for example, are found in both ALK+ and ALK−ALCL. However, their epidemiology and pathogenetic origins are distinct. BIA-ALCL is currently recognized as a new provisional entity, which is a noninvasive disease with favorable results. In this review, we focus on molecular pathogenesis and management of anaplastic large cell lymphoma.
Collapse
|
37
|
Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up. Mod Pathol 2022; 35:306-318. [PMID: 34584212 DOI: 10.1038/s41379-021-00937-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Peripheral T-cell lymphomas are a heterogeneous, and usually aggressive, group of mature T-cell neoplasms with overlapping clinical, morphologic and immunologic features. A large subset of these neoplasms remains unclassifiable with current diagnostic methods ("not otherwise specified"). Genetic profiling and other molecular tools have emerged as widely applied and transformative technologies for discerning the biology of lymphomas and other hematopoietic neoplasms. Although the application of these technologies to peripheral T-cell lymphomas has lagged behind B-cell lymphomas and other cancers, molecular profiling has provided novel prognostic and diagnostic markers as well as an opportunity to understand the biologic mechanisms involved in the pathogenesis of these neoplasms. Some biomarkers are more prevalent in specific T-cell lymphoma subsets and are being used currently in the diagnosis and/or risk stratification of patients with peripheral T-cell lymphomas. Other biomarkers, while promising, need to be validated in larger clinical studies. In this review, we present a summary of our current understanding of the molecular profiles of the major types of peripheral T-cell lymphoma. We particularly focus on the use of biomarkers, including those that can be detected by conventional immunohistochemical studies and those that contribute to the diagnosis, classification, or risk stratification of these neoplasms.
Collapse
|
38
|
Kadin ME, Xu H, Hunsicker LM, Guan Y. Nonmalignant CD30+ Cells in Contralateral Peri-Implant Capsule of Patient With BIA-ALCL: A Premalignant Step? Aesthet Surg J 2022; 42:NP125-NP129. [PMID: 33944901 DOI: 10.1093/asj/sjab215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CD30 lymphocyte activation antigen and phosphorylated STAT3 (pSTAT3) are consistent markers of tumor cells in breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). We present a case of BIA-ALCL in a breast implant capsule containing clustered tumor cells expressing CD30, pSTAT3, pSTAT6, interleukin 9, and granzyme B tumor cell biomarkers. Remarkably, the contralateral breast contained many scattered large, atypical CD30+ cells surrounded by inflammatory cells, raising a suspicion of bilateral BIA-ALCL, known to occur in some patients. To clarify the diagnosis, immunohistochemistry and multilabel immunofluorescence were performed. Unlike the tumor cells, the atypical CD30+ cells of the contralateral breast lacked pSTAT3, pSTAT6, interleukin 9, and granzyme B, eliminating a diagnosis of bilateral BIA-ALCL. This case highlights the importance of interpreting CD30 staining in the context of other tumor cell biomarkers and histopathology to avoid an incorrect diagnosis of BIA-ALCL. We believe the findings also suggest the possibility of CD30 expression as an early event in the multistep pathogenesis of BIA-ALCL. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School, Providence, RI, USA
| | - Haiying Xu
- Rhode Island Hospital, Providence, RI, USA
| | | | - Yingjie Guan
- Department of Medicine, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
39
|
Miranda RN, Marques-Piubelli ML. Commentary on: Nonmalignant CD30+ Cells in Contralateral Peri-Implant Capsule of Patient With BIA-ALCL: A Premalignant Step? Aesthet Surg J 2022; 42:NP130-NP132. [PMID: 34048544 DOI: 10.1093/asj/sjab238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Roberto N Miranda
- Department of Hematopathology and the Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario L Marques-Piubelli
- Department of Hematopathology and the Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Wang Y, Zhang Q, Tan Y, Lv W, Zhao C, Xiong M, Hou K, Wu M, Ren Y, Zeng N, Wu Y. Current Progress in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Front Oncol 2022; 11:785887. [PMID: 35070989 PMCID: PMC8770274 DOI: 10.3389/fonc.2021.785887] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Breast implant-associated anaplastic large-cell lymphoma (BIA-ALCL) is an uncommon type of T-cell lymphoma. Although with a low incidence, the epidemiological data raised the biosafety and health concerns of breast reconstruction and breast augmentation for BIA-ALCL. Emerging evidence confirms that genetic features, bacterial contamination, chronic inflammation, and textured breast implant are the relevant factors leading to the development of BIA-ALCL. Almost all reported cases with a medical history involve breast implants with a textured surface, which reflects the role of implant surface characteristics in BIA-ALCL. With this review, we expect to highlight the most significant features on etiology, pathogenesis, diagnosis, and therapy of BIA-ALCL, as well as we review the physical characteristics of breast implants and their potential pathogenic effect and hopefully provide a foundation for optimal choice of type of implant with minimal morbidity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Ren
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- *Correspondence: Yiping Wu, ; Min Wu, ; Yuping Ren, ; Ning Zeng,
| |
Collapse
|
41
|
Lajevardi SS, Rastogi P, Isacson D, Deva AK. What are the likely causes of Breast Implant Associated Anaplastic Large Cell Lymphoma (BIA-ALCL)? JPRAS Open 2022; 32:34-42. [PMID: 35242986 PMCID: PMC8867047 DOI: 10.1016/j.jpra.2021.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a CD30-positive, anaplastic lymphoma kinase-negative T-cell lymphoma. Where implant history is known, all confirmed cases to date have occurred in patients with exposure to textured implants. The etiopathogenesis of BIA-ALCL is likely to be multifactorial, with current evidence-based theories recognising the combination of chronic infection in setting of textured implants, gram-negative biofilm formation, chronic inflammation, host genetics (e.g. JAK/STAT, p53) and time in tumorigenesis. Proposed triggers for the development of malignancy are mechanical friction, silicone implant shell particulates, silicone leachables and bacteria. Of these, the bacterial hypothesis has received significant attention, supported by a plausible biological model. In this model, bacteria form an adherent biofilm in the favourable environment of the textured implant surface, producing a bacterial load that elicits a chronic inflammatory response. Bacterial antigens, primarily of gram-negative origin, may trigger innate immunity and induce T-cell proliferation with subsequent malignant transformation in genetically susceptible individuals. Future research, investigating BIA-ALCL genetic mutations and immunological modulation with Gram-negative biofilm in BIA-ALCL models is warranted to establish a unifying theory for the aetiology of BIA-ALCL.
Collapse
Affiliation(s)
| | | | | | - Anand K. Deva
- Corresponding author at: Suite 301, 2 Technology Place, Macquarie University, NSW 2109 Australia.
| |
Collapse
|
42
|
Di Napoli A, Vacca D, Bertolazzi G, Lopez G, Piane M, Germani A, Rogges E, Pepe G, Santanelli Di Pompeo F, Salgarello M, Jobanputra V, Hsiao S, Wrzeszczynski KO, Berti E, Bhagat G. RNA Sequencing of Primary Cutaneous and Breast-Implant Associated Anaplastic Large Cell Lymphomas Reveals Infrequent Fusion Transcripts and Upregulation of PI3K/AKT Signaling via Neurotrophin Pathway Genes. Cancers (Basel) 2021; 13:cancers13246174. [PMID: 34944796 PMCID: PMC8699465 DOI: 10.3390/cancers13246174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cutaneous and breast implant-associated anaplastic large-cell lymphomas are usually localized neoplasms with an indolent clinical course compared to systemic ALCL. However comparative analyses of the molecular features of these two entities have not yet been reported. We performed targeted RNA sequencing, which revealed that fusion transcripts, although infrequent, might represent additional pathogenetic events in both diseases. We also found that these entities display upregulation of the PI3K/Akt pathway and show enrichment in genes of the neurotrophin signaling pathway. These findings advance our knowledge regarding the pathobiology of cALCL and BI-ALCL and point to additional therapeutic targets. Abstract Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
- Correspondence:
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, Palermo University, 90134 Palermo, Italy;
| | - Giorgio Bertolazzi
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, 90134 Palermo, Italy;
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Evelina Rogges
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | | | - Marzia Salgarello
- Department of Plastic Surgery, Catholic University of Sacred Heart, University Hospital Agostino Gemelli, 00168 Roma, Italy;
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
- New York Genome Center, New York, NY 10013, USA;
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| | | | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| |
Collapse
|
43
|
An Update on the Current Genomic Landscape of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13194921. [PMID: 34638403 PMCID: PMC8508182 DOI: 10.3390/cancers13194921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Breast implant-associated lymphoma is a unique entity that arises in the setting of breast prostheses due to a complex interplay of external and internal factors. Understanding of the mechanisms of pathogenesis is yet to be fully elucidated but recurrent mutations in signalling pathways, tumour suppressors and epigenetic regulators have been reported. This article summarises the key studies to date that have described these genetic aberrancies, which have provided an insight into potential pathways to lymphogenesis. Abstract Breast implant-associated lymphoma (BIA-ALCL) is a rare subtype of anaplastic large-cell lymphoma associated with breast prostheses. Most patients present with a localised periprosthetic effusion and are managed with removal of the implant and surrounding capsule. Less commonly, the lymphoma can form a mass associated with the capsule and rarely can present with disseminated disease. Recent series characterising the genomic landscape of BIA-ALCL have led to insights into the mechanisms of lymphomagenesis. Constitutive JAK/STAT pathway activation has emerged as a likely key component while, more recently, aberrancies in epigenetic regulators have been reported. This review describes the genomic characterisation reported to date and the insight these findings have provided into this rare entity.
Collapse
|
44
|
ALK-Negative Anaplastic Large Cell Lymphoma: Current Concepts and Molecular Pathogenesis of a Heterogeneous Group of Large T-Cell Lymphomas. Cancers (Basel) 2021; 13:cancers13184667. [PMID: 34572893 PMCID: PMC8472588 DOI: 10.3390/cancers13184667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary ALK- anaplastic large cell lymphoma (ALK- ALCL) is a rare subtype of CD30+ large T-cell lymphoma that typically affects older adults and has a poor prognosis. Recognition of its histopathologic spectrum, subtypes, and of other tumors that can resemble ALK- ALCL is crucial to avoid making a wrong diagnosis that could result in inappropriate treatment for a patient. In recent years, several important studies have identified recurrent molecular alterations that have shed light on the pathogenesis of this lymphoma. However, on the other hand, putting all this vast information together into a concise form has become challenging. In this review, we present not only a more detailed view of the histopathologic findings of ALK- ALCL but also, we attempt to provide a more simplified perspective of the relevant genetic and molecular alterations of this type of lymphoma, that in our opinion, is not available to date. Abstract Anaplastic large cell lymphoma (ALCL) is a subtype of CD30+ large T-cell lymphoma (TCL) that comprises ~2% of all adult non-Hodgkin lymphomas. Based on the presence/absence of the rearrangement and expression of anaplastic lymphoma kinase (ALK), ALCL is divided into ALK+ and ALK-, and both differ clinically and prognostically. This review focuses on the historical points, clinical features, histopathology, differential diagnosis, and relevant cytogenetic and molecular alterations of ALK- ALCL and its subtypes: systemic, primary cutaneous (pc-ALCL), and breast implant-associated (BIA-ALCL). Recent studies have identified recurrent genetic alterations in this TCL. In systemic ALK- ALCL, rearrangements in DUSP22 and TP63 are detected in 30% and 8% of cases, respectively, while the remaining cases are negative for these rearrangements. A similar distribution of these rearrangements is seen in pc-ALCL, whereas none have been detected in BIA-ALCL. Additionally, systemic ALK- ALCL—apart from DUSP22-rearranged cases—harbors JAK1 and/or STAT3 mutations that result in the activation of the JAK/STAT signaling pathway. The JAK1/3 and STAT3 mutations have also been identified in BIA-ALCL but not in pc-ALCL. Although the pathogenesis of these alterations is not fully understood, most of them have prognostic value and open the door to the use of potential targeted therapies for this subtype of TCL.
Collapse
|
45
|
Zhang X, Zhou J, Han X, Wang E, Zhang L. Update on the Classification and Diagnostic Approaches of Mature T-Cell Lymphomas. Arch Pathol Lab Med 2021; 146:947-952. [PMID: 34524423 DOI: 10.5858/arpa.2021-0143-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— In the 2017 revised World Health Organization classification of tumors of hematopoietic and lymphoid tissues, some mature T-cell lymphomas are reclassified and a few new provisional entities are established based on new data from clinical and laboratory studies. T follicular helper cell lymphoma is identified by T follicular helper cell markers. Anaplastic large cell lymphoma, ALK negative, is a better-defined entity based on genetic abnormalities, and breast implant-associated anaplastic large cell lymphoma is recognized as a provisional entity. The gastrointestinal T-cell lymphomas are reclassified, with addition of a new provisional entity, indolent T-cell lymphoproliferative disorder of the gastrointestinal tract, characterized by an indolent clinical course. OBJECTIVE.— To review the diagnostic approaches of reclassified and newly established entities of mature T-cell lymphomas, focusing on significant immunophenotypic features and molecular genetic abnormalities. Relevant new discoveries after the publication of the 2017 World Health Organization classification are included. DATA SOURCES.— Information from the literature most relevant to 2017 World Health Organization revised classification and publications after 2016. CONCLUSIONS.— Incorporating clinical, morphologic, and immunophenotypic features usually provides sufficient evidence to reach a preliminary diagnosis of mature T-cell lymphoma. Molecular genetic studies can be very helpful for the final diagnosis and classification, especially in challenging cases. Some molecular genetic features have been found in breast implant-associated anaplastic large cell lymphoma, distinct from anaplastic large cell lymphoma, ALK negative. Immunohistochemical staining of 4 markers may enable further subtyping of peripheral T-cell lymphomas.
Collapse
Affiliation(s)
- Xiaohui Zhang
- From the Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (X. Zhang)
| | - Jiehao Zhou
- The Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis (Zhou)
| | - Xin Han
- The Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston (Han)
| | - Endi Wang
- The Department of Pathology, Duke University Medical Center, Durham, North Carolina (Wang)
| | - Linsheng Zhang
- The Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia (L. Zhang)
| |
Collapse
|
46
|
Santanelli di Pompeo F, Sorotos M, Clemens MW, Firmani G, Athanasopoulos E, Arctander K, Berenguer B, Bozikov K, Cardoso A, Nord ÅE, Filip C, Georgeskou Romania A, Heitman C, Kaarela O, Kolenda M, Hamdi M, Lantieri L, Lumenta D, Mercer N, Ruegg E, Santanelli di Pompeo F, Stanec Z, Van Der Hulst R, Vranckx JJ. Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL): Review of Epidemiology and Prevalence Assessment in Europe. Aesthet Surg J 2021; 41:1014-1025. [PMID: 33022037 DOI: 10.1093/asj/sjaa285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) epidemiologic studies focus on incidence and risk estimates. OBJECTIVES The aim of this study was to perform a thorough literature review, and to provide an accurate estimate of BIA-ALCL prevalence in Europe. METHODS We searched PubMed, Web of Science, SCOPUS, and Google Scholar databases to identify publications reporting BIA-ALCL epidemiology. Research was conducted between November 2019 and August 2020. European prevalence was assessed as the ratio between pathology-confirmed cases and breast implant-bearing individuals. The Committee on Device Safety and Development (CDSD) collected data from national plastic surgery societies, health authorities, and disease-specific registries to calculate the numerator. The denominator was estimated by combining European demographic data with scientific reports. RESULTS Our research identified 507 articles: 106 were excluded for not being relevant to BIA-ALCL. From the remaining 401 articles, we selected 35 that discussed epidemiology and 12 reviews. The CDSD reported 420 cases in Europe, with an overall prevalence of 1:13,745 cases in the 28 member states of the European Union (EU-28). Countries where specific measures have been implemented to tackle BIA-ALCL account for 61% of the EU-28 population and actively reported 382 cases with an overall prevalence of 1:9121. CONCLUSION Countries where specific measures have been implemented show a higher prevalence of BIA-ALCL compared with the European mean, suggesting that these countries have improved the detection of the condition and reduced underreporting, which affects the numerator value. Other nations should adopt projections based on these measures to avoid underestimating how widespread BIA-ALCL is. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
| | - Michail Sorotos
- Department of Medicine, Surgery and Dentistry, PhD School of Translational Medicine of Development and Active Ageing, Università degli Studi di Salerno, Salerno, Italy
| | - Mark W Clemens
- Department of Plastic Surgery, M.D. Anderson Cancer Center, TX, USA
| | - Guido Firmani
- School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oishi N, Hundal T, Phillips JL, Dasari S, Hu G, Viswanatha DS, He R, Mai M, Jacobs HK, Ahmed NH, Syrbu SI, Salama Y, Chapman JR, Vega F, Sidhu J, Bennani NN, Epstein AL, Medeiros JL, Clemens MW, Miranda RN, Feldman AL. Molecular profiling reveals a hypoxia signature in breast implant-associated anaplastic large cell lymphoma. Haematologica 2021; 106:1714-1724. [PMID: 32414854 PMCID: PMC8168507 DOI: 10.3324/haematol.2019.245860] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/17/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIAALCL) is a recently characterized T-cell malignancy that has raised significant patient safety concerns and led to worldwide impact on the implants used and clinical management of patients undergoing reconstructive or cosmetic breast surgery. Molecular signatures distinguishing BIA-ALCL from other anaplastic large cell lymphomas have not been fully elucidated and classification of BIA-ALCL as a World Health Organization entity remains provisional. We performed RNA sequencing and gene set enrichment analysis comparing BIA-ALCL to non-BIAALCL and identified dramatic upregulation of hypoxia signaling genes including the hypoxia-associated biomarker CA9 (carbonic anyhydrase- 9). Immunohistochemistry validated CA9 expression in all BIA-ALCL, with only minimal expression in non-BIA-ALCL. Growth induction in BIA-ALCL-derived cell lines cultured under hypoxic conditions was proportional to upregulation of CA9 expression, and RNA sequencing demonstrated induction of the same gene signature observed in BIAALCL tissue samples compared to non-BIA-ALCL. CA9 silencing blocked hypoxia-induced BIA-ALCL cell growth and cell cycle-associated gene expression, whereas CA9 overexpression in BIA-ALCL cells promoted growth in a xenograft mouse model. Furthermore, CA9 was secreted into BIA-ALCL cell line supernatants and was markedly elevated in human BIA-ALCL seroma samples. Finally, serum CA9 concentrations in mice bearing BIA-ALCL xenografts were significantly elevated compared to those in control serum. Together, these findings characterize BIA-ALCL as a hypoxia-associated neoplasm, likely attributable to the unique microenvironment in which it arises. These data support classification of BIA-ALCL as a distinct entity and uncover opportunities for investigating hypoxia-related proteins such as CA9 as novel biomarkers and therapeutic targets in this disease.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tanya Hundal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jessica L Phillips
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Guangzhen Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David S Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ming Mai
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hailey K Jacobs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nada H Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sergei I Syrbu
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Youssef Salama
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Francisco Vega
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Jagmohan Sidhu
- Department of Pathology and Laboratory Medicine, United Health Services, Binghamton, NY, USA
| | | | - Alan L Epstein
- Dept of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jeffrey L Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mark W Clemens
- Department of Plastic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Rotili A, Ferrari F, Nicosia L, Pesapane F, Tabanelli V, Fiori S, Vanazzi A, Meneghetti L, Abbate F, Latronico A, Cassano E. MRI features of breast implant-associated anaplastic large cell lymphoma. Br J Radiol 2021; 94:20210093. [PMID: 33989039 DOI: 10.1259/bjr.20210093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare and newly recognized subtype of T cell Non-Hodgkin Lymphoma (NHLs) associated with breast implants.The mechanism involved in the development of this kind of lymphoma is still uncertain.BIA-ALCL is generally an indolent disease localized to the breast implant and its capsule and effectively treated with capsulectomy alone without chemotherapy.Clinically, BIA-ALCL may typically present a sudden-onset breast-swelling secondary to periimplant effusion. The minority of BIA-ALCL patients present a more aggressive mass-forming subtype, for which systemic therapy is mandatory.Despite the number of cases has recently increased, BIA-ALCL remains a rare disease described mainly in several case reports and small case series.Breast imaging, including mammography, ultrasound and breast MRI are routinely used in the screening of breast cancer; however, guidelines for the imaging and pathological diagnosis of this disease have only recently been proposed and included in the 2019 National Comprehensive Cancer Network (NCCN) consensus guidelines for BIA-ALCL.The main purpose of this pictorial is to illustrate the MRI signs of BIA-ALCL and correlate them with the corresponding pathology features in order to improve the knowledge of the principals MRI features of this type of lymphoma.
Collapse
Affiliation(s)
- Anna Rotili
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Ferrari
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo Pesapane
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Tabanelli
- Division of Diagnostic Hematopathology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Fiori
- Division of Diagnostic Hematopathology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Vanazzi
- Division of Hemato-Oncology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenza Meneghetti
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Abbate
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Antuono Latronico
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
49
|
Abstract
Twenty-five years after the Revised European American Classification of Lymphoid Neoplasms classification was published, its principle of an integrative approach to disease definition based on several parameters still prevails and has been adopted and expanded in the following World Health Organization classifications of tumors of the hematopoietic organs. The latest World Health Organization classification revised in 2017 comprises more than 80 entities of mature lymphoid neoplasms (B-cell, T-cell, and Hodgkin lymphomas), which are defined according to their morphology, immunophenotype, genetic lesions and molecular profiles, clinical features, and cellular derivation. The classification also recognizes both incipient and indolent lymphoid neoplasms with a low potential of progression. In this review, we highlight some of the new data and recent modifications introduced in the 2017 classification.
Collapse
|
50
|
Breast Implant-Associated Anaplastic Large Cell Lymphoma: Defining Future Research Priorities. Clin Plast Surg 2021; 48:33-43. [PMID: 33220903 DOI: 10.1016/j.cps.2020.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an emerging cancer of the immune system that is exclusively associated with textured-surface breast implants. This clinical review provides an update on the diagnosis and management of BIA-ALCL with an emphasis on major advances. The epidemiology and pathophysiology of the disease are also reviewed, focusing on current paradigm shifts and highlighting current controversies related to disease classification and risk mitigation. Finally, the authors conclude by discussing medicolegal and ethical issues surrounding BIA-ALCL while establishing a future basic science and clinical research agenda that is central to improving patient safety.
Collapse
|